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ABSTRACT

Expansion in the availability of relocatable near-surface atmospheric observing sensors introduces the

question of where placement maximizes gain in forecast accuracy. As one possible method of addressing ob-

servation placement, the performance of ensemble sensitivity analysis (ESA) is examined for high-resolution

(Dx5 4 km) predictions in complex terrain and during weak flow. ESA can be inaccurate when the underlying

assumptions of linear dynamics (andGaussian statistics) are violated, or when the sensitivity cannot be robustly

sampled. A case study of a fog event at Salt Lake City International Airport (KSLC) in Utah provides a useful

basis for examining these issues, with the additional influence of complex terrain. A realistic upper-air observing

network is used in perfect-model ensemble data assimilation experiments, providing the statistics for ESA.

Results show that water vapormixing ratios overKSLCare sensitive to potential temperature on the first model

layer tens of kilometers away, 6 h prior to verification and prior to the onset of fog. Potential temperatures

indicate inversion strength in the Salt Lake basin; the ESA predicts southerly flow and strengthened inversions

will increase water vapor over KSLC. Linearity tests show that the nonlinear response is about twice the ex-

pected response. Experiments with smaller ensembles show that qualitatively similar conclusions about the

sensitivity pattern can be reachedwith ensembles as small as 48members, but smaller ensembles do not produce

accurate sensitivity estimates. Taken together, the results motivate a closer look at the fundamental charac-

teristics of ESA when dynamics (and therefore correlations) are weak.

1. Introduction

Fog events in the Salt Lake basin in Utah, with im-

pacts on aviation operations at the Salt Lake City In-

ternational Airport (KSLC), arise in a range of flow

scenarios. Typically, weak synoptic forcing and non-

linear water phase changes present challenges to nu-

merical weather prediction (NWP) models when fog is

possible. Because interactions between the land–water

surface and the lower atmosphere can stronglymodulate

fog production and dissipation, near-surface shelter and

anemometer-height observations contain potentially

useful information for both forecasters and NWPmodel

initialization. Surface observation networks could

conceivably be designed to improve fog forecasts in re-

gions particularly susceptible.At the heart of the network

design is an understanding of numerical forecast sensi-

tivity to initial-condition analysis perturbations that result

from assimilating proposed hypothetical observations.

One candidate method for quantifying forecast sen-

sitivity to observations is ensemble sensitivity analysis

(ESA). ESA was elucidated by Ancell and Hakim

(2007), who showed a theoretical equivalence to adjoint

sensitivity under linear dynamics, Gaussian statistics,

and an infinite ensemble. Rather than linearizing

about a deterministic model trajectory as in adjoint

sensitivity, statistical linearization is performed about an

ensemblemean trajectory by exploiting the distributions

sampled by the ensemble. ESA has been used primarily

for identifying dynamical relationships where strong

dynamical signals can be expected, such as North Pacific

synoptic storms (e.g., Ancell and Hakim 2007; Hakim

and Torn 2008) and tropical cyclones (e.g., Torn and

Hakim 2009; Torn 2010). ESAhas also shown promise in

the area of observation network design, where the
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impact of hypothetical or proposed observations can be

evaluated (Torn and Hakim 2008).

Uncertainty characterized by Lorenz (1963), which

accompanies the growth of initial errors under nonlinear

chaotic dynamics, is accounted for in ESA by the pro-

duction of instantaneous and independent ensemble

state estimates. Those are in turn provided in an en-

semble data assimilation system (cf. Gombos and

Hansen 2008), which produces the samples for ESA.

Before applying ESA to evaluate the hypothetical

observation impact on a forecast, we must be confident

that the sensitivity estimates are robust and meaningful.

Past studies applied ESA primarily on the synoptic scale

with relatively coarse model grids, and the potential for

ESA in weak flows and complex terrain, and at high

resolution, is relatively unexplored. Ancell and Mass

(2006) reported that the accuracy of adjoint sensitivities

suffers as resolution increases, for example, because

nonlinearity is greater. Ensemblemethods possibly have

an advantage here because the ensemble mean retains

linear error growth characteristics longer than a de-

terministic forecast. Several previous studies examined

sensitivities for a wind-power forecast metric [e.g., Zach

et al. (2011) and reports cited therein] at spatial scales

similar to those here, finding some utility in sensitivities

just upstream from a wind farm. Those studies did not

evaluate the validity of the assumptions underlying the

ESA nor did they quantify the effect of sampling error.

Fog in the Salt Lake basin is expected to challenge

ESA in twoways. First, the forcing is weak. Variability is

on relatively small scales, and spatial covariances are

weak. We can expect the effects of sampling error

resulting from a finite ensemble to be significant in these

conditions. Using ensemble sensitivities to propose new

observations relies on quantitatively accurate sensitivity

estimates. Sampling error arises from using finite en-

sembles, and is inevitable. Weak correlations in the

ensemble statistics can be difficult to estimate accu-

rately. Yet many high-impact forecast problems occur

under weak dynamics accompanied by weak correla-

tions. Second, the condensation associated with fog

formation is highly nonlinear, which can invalidate the

linear perturbation assumption.

The goals of this work are twofold. The first goal is to

determine whether ESA can provide useful information

for a fog event characterized by weak synoptic forcing.

The second is to expose weaknesses in ESA for weakly

forced events and where nonlinearity may be sub-

stantial. To meet those goals, we evaluate the response

to a range of perturbations to initial conditions, com-

paring the response given by the nonlinear forecast

model to the linear ESA estimates derived from a 96-

member ensemble. Later, experiments with smaller

ensembles provide context for how the sensitivity esti-

mates can vary with ensemble size. Results reported

herein are relevant to other flow scenarios defined by

weak dynamics and nonlinearity, including mountain-

valley flows and convection over terrain.

This paper reports upon experiments performed to

validate ESA in complex terrain, under weak dynamics,

and with finemodel grid spacing. Section 2 reviews some

previous work on fog in the Salt Lake valley, introduces

the January 2009 dense fog case that is the focus of this

work, and presents details about Weather Research and

Forecasting (WRF)Model implementation and the data

assimilation framework. Section 3 briefly reviews ESA

and details the ESA experiments. Section 4 evaluates

the ESA results. Section 5 presents results from three

distinct methods for testing the validity of the response

predicted by the sensitivity estimates. Section 6 presents

an analysis of the ensemble size necessary to gain these

results, and section 7 reviews conclusions.

2. Event and simulations

a. Fog in the Salt Lake basin

Though the basic processes governing fog formation

in valley basins is reasonably well understood, in-depth

analysis of fog formation in the Great Salt Lake (GSL)

basin is sparse. Peer-reviewed papers on the subject are

limited, but include a study on the effect of the size of the

GSL on fog formation (Hill 1988) and a partial exami-

nation of fog formation mechanisms in deep stable

layers (Wolyn and McKee 1989). Reports and data are

more numerous, and include a study on dense fog initi-

ation in the Salt Lake valley by Hogan (2013), the

characteristics of fog there (Slemmer 2004), and a cli-

matological database of fog events (Alder et al. 1998).

Hogan’s (2013) examination of 30 years of Salt Lake

valley dense fog events identified the role of low-level

inversions. Hogan identified two characteristics of an

inversion enabling dense fog formation: a shallow ver-

tical extent, less than 3700 ft in height, and moderate

strength, exhibiting greater than 1.58C (1000 ft)21 lapse

rate. Without meeting these criteria, the formation of

dense fog at KSLC is unlikely (Hogan 2013).

Slemmer (2004) studied dense fog at KSLC based on

surface observations from July 1971 through June 2001,

identifying and categorizing parameters typically ob-

served during dense fog events. Results indicate the

following: 1) dense fog forms primarily in early winter,

with 77% of annual occurrences observed in December

and January and 18% in February; 2) northwesterly and

southeasterly winds are most likely during dense fog

events when winds are .3 knots (kt; 1 kt 5 0.51ms21);
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and 3) less than 6% of all dense fog cases occurred with

the temperature above freezing. Slemmer (2004) further

categorized the dense fog events into three distinct

event types: a persistent inversion case, or fog formation

through radiative cooling at KSLC; precipitation falling

into a weakened inversion and shallow cold pool case,

where precipitation increased low-level moisture sup-

porting fog formation; and shallow cold pool advecting

from the GSL case, where radiative cooling over the

lake enabled fog to form and later move over KSLC.

b. Dense fog event

At 2243 UTC 23 January 2009, dense fog developed

over KSLC, forcing the closure of one runway and

prompting the National Weather Service to issue a

dense fog warning. Visibility remained #1/8 statutory

miles for approximately 10 h during the event. A well-

defined and slowly weakening omega block across the

Rockies characterized the synoptic flow, and a weak

midlevel disturbance propagated through northern

Utah on 23 January. This disturbance had two effects: it

helped to weaken low-level inversions that had formed

under subsidence across northern Utah, and it forced

rain across the GSL that saturated the boundary layer.

As this disturbance moved through northern Utah,

synoptic gradients in the western United States induced

southerly low-level flow and warm-air advection across

much of the southern IntermountainWest. Weak warm-

air advection was evident at the surface as KSLC tem-

peratures warmed from 18C at 1500 UTC to 88C at

2300 UTC during light rain. Stronger warm-air advec-

tion occurred at low levels above the surface (see Fig. 1),

stabilizing the low-level inversion. The inversion pre-

vented low-level moisture from mixing out, and the fog

exhibited characteristics of the second fog scenario de-

scribed by Slemmer (2004). Namely, precipitation fell

into a weakening cold pool. The southerly flow con-

tributed by persisting and strengthening the inversion.

FIG. 1. The 1200 UTC 23 Jan 2009 sounding from KSLC indicating the presence of a strong low-level inversion and warm-air advection

(http://weather.uwyo.edu/upperair/sounding.html).
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c. WRF Model setup

Version 3.2.1 of the Advanced Research version of

WRF (Skamarock et al. 2008) was used to simulate the

dense fog event. A 96-member ensemble was config-

ured with a nested 36/12/4-km horizontal grid spacing

configuration, centered over the Great Salt Lake

(Fig. 2). Each grid contained 60 vertical h levels and an

upper boundary at 100 hPa. All WRF simulations used

the same physics suite as follows: the Noah land sur-

face model (Chen and Dudhia 2001); the basic simi-

larity theory surface layer scheme with the Beljaars

(1995) convective velocity and stability functions from

Paulson (1970), Dyer and Hicks (1970), and Webb

(1970); the Yonsei University PBL scheme (Hong et al.

2006); the Rapid Radiative Transfer Model (Mlawer

et al. 1997) for longwave radiation; the Dudhia (1989)

scheme for shortwave radiation; and the WRF single-

moment 5-class microphysics scheme (Hong et al.

2004). The Kain–Fritsch cumulus scheme (Kain 2004)

was used on the 36- and 12-km outer and middle do-

mains, and no cumulus scheme was in use on the

4-km domain.

The Data Assimilation Research Testbed (DART)

facilitates ensemble data assimilation. DART is a com-

munity software environment created for ensemble data

assimilation research, is principally developed by staff at

the National Center for Atmospheric Research, and

contains several varieties of ensemble filters (Anderson

et al. 2009). The specific serial implementation of the

ensemble adjustment Kalman filter (EAKF; Anderson

2001) is given by Anderson (2003). The EAKF is a de-

terministic approach to the Kalman filter, and differs

from the original EnKF (Evensen 1994) primarily in that

it does not rely on perturbed observations to inject noise

into the system.

Perfect-model experiments, where a nature run with

the WRF is sampled for synthetic observations (i.e., the

‘‘truth’’), gives us results without the ambiguity in-

troduced by unknown model errors. To produce the

nature run, the WRF was initialized at 0000 UTC

19 January 2009 from the North American Regional

Reanalysis (NARR), which also provided lateral

boundary conditions. Soil temperature and moisture

were reset every 3 h to the NARR, preventing land

surface drift during the 10-day nature run. Synthetic

observations were produced every 3 h; observation lo-

cations and physical quantities were identical to the

actual radiosonde observations available in the National

Centers for Environmental Prediction prepBUFR files

at each assimilation time. The synthetic observations

mirror the real observation frequency and spatial dis-

tribution of the radiosonde network, but the observation

values differ because they are taken directly from the

nature run.

Conditioning of theWRFensemble began at 0000UTC

20 January, and synthetic observations were assimilated

every 3h through 0000 UTC 24 January. As per the usual

practice with the WRF in DART, observations can con-

tribute to analysis increments on all domains within its

influence (localization radius). At initialization time, 96

members of the ensemble system were formed by adding

random, spatially consistent perturbations to the truth,

drawn from the global static error background covariance

field provided with theWRF variational data assimilation

system (WRF-VAR; Barker et al. 2012). Lateral bound-

ary condition perturbations to ensure sufficient spread

at the boundaries were also drawn with WRF-VAR

(e.g., Torn et al. 2006). Covariance localization with

the fifth-order piecewise polynomial described by

Gaspari and Cohn [(1999), their Eq. (4.10)] miti-

gated sampling errors from the finite ensemble. The

localization length scale was approximately 1200 km.

Adaptive covariance inflation following Anderson

(2007) was also implemented to help mitigate the ef-

fect of bias, and insufficient ensemble spread, on the

ensemble data assimilation. By not ingesting the

NARR soil states directly, the ensemble can be biased

in the lower boundary forcing (and consequently the

lower atmosphere) compared to the nature run. In-

flation helps to overcome the effects of bias on the

ensemble filter by increasing the overlap between the

FIG. 2. Telescoping nested configuration used in this study. The

outermost domain used 36-km horizontal grid spacing, the middle

12 km, and the innermost 4 km.
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distributions of background error and observation

likelihood.

Ensemble initial conditions were then used to create

6-h hindcasts initialized at 1800 UTC 23 January and

valid at 0000 UTC 24 January, approximately the onset

time of dense fog.We interpret the hindcasts as forecasts

here and refer to them as such.

d. Fog event simulation

Ensemble simulations show a shallow cool layer at the

surface and southerly winds above. Southerly warm-air

advection above the surface overran the cold pool and

strengthened the inversion. Some light precipitation

moistened the boundary layer and preceded observa-

tions of dense fog.

The WRF ensemble forecast simulated key aspects of

the dense fog event. Figure 3 shows ensemble-mean

3-hourly profiles of temperature over KSLC, and Fig. 4

shows the model lowest-layer ensemble-mean water

vapor and temperature through the period, overlaid

with wind vectors on model layer 5 (approximately

270m AGL). Although model surface temperature

values are generally colder than observations, Fig. 3

shows a strong near-surface inversion that breaks up

between 1800 and 2100 UTC 23 January, and reforms by

0000 UTC 24 January. The ensemble lacks substantive

liquid water near the surface, consistent with systematic

errors in the WRF liquid water simulations (e.g.,

Ryerson and Hacker 2014; Wilson and Fovell 2015).

Instead, the water vapor mixing ratio qy near the sur-

face increases as moisture advects off the GSL with

the colder air, and the inversion strengthens. Though the

period of dense vapor concludes 3–6h early compared

to the observations, the inversion and moisture advec-

tion appear to qualitatively agree with the observa-

tions, lending confidence to the interpretation of the

ESA later.

3. Experiment

a. Ensemble sensitivity analysis (ESA)

The sensitivity of an arbitrary forecast metric J to an

initial analysis state variable xiwas defined inAncell and

Hakim (2007) as

›J

›x
i

’
cov(J, x

i
)

var(x
i
)
. (1)

Covariance is denoted cov and quantifies the strength of

the linear relationship between the two arguments.

Variance is denoted var and quantifies analysis spread

about the mean. Predictor xi represents an analysis state

variable at a single grid point and is an element of the

analysis state vector. Samples of xi and J are given by the

ensemble analysis and forecast, respectively. The sen-

sitivity in Eq. (1) then relates the expected change in a

forecast metric J given a change to an analysis variable

xi. In this work, the forecast metric J quantifies water

vapor in a small box over KSLC and xi is an analysis

gridpoint value on the first model layer (see section 3b).

Equation (1) is an approximation to the general form

of the ensemble sensitivity. The full analysis covariance,

as opposed to just the variance, is necessary for equiv-

alence with adjoint sensitivity methods. To avoid in-

verting the large analysis ensemble covariance matrix,

Ancell and Hakim (2007) proposed approximating the

analysis ensemble covariance matrix with its diagonal,

leading to the scalar approximation in Eq. (1). The full

analysis covariance is necessary for equivalence with

adjoint sensitivity methods for estimating gradients as in

Eq. (1). The diagonal approximation is perfect in the

limit that the analysis variables are all perfectly corre-

lated predictors of the forecast metric, and is poor in the

limit of analysis variables that are independent pre-

dictors of the forecast metric. In practice, the fidelity of

the diagonal approximation to the complete sensitivity

can vary with the scale of motion, which determines the

spatial correlations. The approximate form has been

used in the ensemble sensitivity literature to date.

Equation (1) can easily be rewritten as a product of the

linear (Pearson) correlation coefficient between J and xi
and the standard deviations of J and xi.

The sensitivity is expected to be overestimated be-

cause of sampling error in the finite-sized ensemble.

The analysis variance is expected to be systemati-

cally underestimated, and the covariance between the

FIG. 3. Ensemble mean temperature from the surface to 700 hPa

in 3-h intervals at KSLC from 1800 UTC 23 Jan to 0600 UTC

24 Jan.
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analysis and the forecast is expected to be systematically

overestimated. Sensitivity in Eq. (1) is then expected to

be biased toward large magnitudes, and the predicted

response to a known perturbation will also be most

likely overestimated. To gain confidence in the ESA, we

perform a Student’s t test at the 95% significance level,

for which the null hypothesis was that no linear re-

lationship exists between J and xi. We reject the null

hypothesis when the absolute value of the correlation

coefficient exceeds the 95% confidence bounds.

ESA is based on linear regression, which requires

Gaussian distributions for proper interpretation. A test for

Gaussian distribution can be used to eliminate sensitivities

that should not be interpreted with confidence. Candidate

sensitivity predictors (x) and predictands (J) are subject

to a Lilliefors (1967) test. This test, a variation of the

Kolmogorov–Smirnoff (K–S) test, is a two-sided goodness-

of-fit check that measures the distribution of each variable

set (empirical) to determine how well it compares against

the theoretical normal distribution. We propose the null

hypothesis that the empirical data come from a normally

distributed population, with the alternative that the data

do not come from a normal distribution. Candidate pre-

dictors and predictands that do not satisfy the K–S

goodness-of-fit test are rejected from further consider-

ation. Predictors and predictands used in the remainder

of this work cannot be rejected at the 0.95 confidence

level from the K–S test.

b. Parameter selection

In addition to sampling error, characteristics of the

analysis, its covariances, and the forecast metric distri-

butions can affect sensitivity estimates. Careful selection

of J ensures that sensitivities can be interpreted for the

relevant physics of the flow. Because of some desir-

able characteristics described later, we chose J to be

an average of the water vapor mixing ratio qy within an

N 5 ni 3 nj 3 nk box over KSLC.

After examining sensitivities to several analysis state

variables, we focus on potential temperature u at the first

model layer (approximately 20m AGL). The first model

layer gives sensitivities relevant to surface observation sta-

tions thatmight be easily deployable, and u is closely related

to the temperature inversion often associated with dense

fog formation in the GSL basin. Some additional state

variables in our screening, including qy and total dry air

mass in the column, do not provide qualitatively coherent

sensitivity relationships and were immediately rejected.

FIG. 4. (a)–(c) Lowest-layer ensemble-mean qy (kg kg
21) and (d)–(f) temperature (°C) in (from left to right) 6-h intervals from 1800 UTC

23 Jan to 0600 UTC 24 Jan. Vectors show winds on model level 5 (;270m AGL).
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By choosing water vapor mixing ratio instead of liquid

water to define the forecast metric J, we also avoid dif-

ficulties resulting from the highly nonlinear formation of

fog. Compared with observations, the simulations ade-

quately represent the ingredients of the fog, but do not

condense water at the surface. The WRF Model’s in-

ability to reliably form fog is consistent with past studies

(e.g., Ryerson and Hacker 2014); high values of qy are,

within this context, a better indicator that the model

state should support fog formation. Conveniently, it also

simplifies the sensitivity interpretation by avoiding the

conversion to liquid. Because of inherent nonlinearity it

is not straightforward to apply linear ensemble sensi-

tivity with a forecast metric based on liquid water.

To ensure a Gaussian-distributed forecast parameter,

and continuity between forecast lead times, N was al-

lowed to vary depending on forecast variable and lead

time. After trial and error, the smallest, yet still Gaussian

J for 6- and 12-h forecast resulted from a 4 3 4 3 2 box

(approximately 16km 3 16km 3 70m) centered on the

grid point closest to KSLC. This box is used to define

J in the remainder of the paper.

The sensitivity analysis and interpretation of pertur-

bation experiments focus on the innermost domain in

theWRF simulation.We next present the ESA and later

test the WRF response to actual perturbations.

4. Sensitivity results

ESA is a statistical approach and cannot, by itself,

prove that an analysis perturbation causes a specific

forecast change. Even when subject to hypothesis test-

ing, statistical relationships may be coincident and not

causal. But in the absence of analytical solutions that

indicate cause and effect, spatial and temporal co-

variances in the sensitivity calculation can suggest a link

between a forecast and an initial state. Intuition is

helpful in proposing a plausible physical explanation

and narrows down the meaningful sensitivities (e.g.,

Torn and Hakim 2008, 2009).

Results from the 6-h ESA with u on the lowest model

level as the independent variable are displayed in

Fig. 5a. Broadly, positive sensitivities that cannot be

rejected by the hypothesis testing are present at higher

elevations where the first model layer is above the cold

air and to the south of KSLC. Those regions indicate

where a positive change in analysis potential tempera-

ture would result in an increase in qy 6h later at KSLC.

Region 1, approximately 150 km south-southwest of the

GSL, indicates the most positive sensitivity region

within the innermost domain. Sensitivity in this area

ranges from 4.43 3 1024 to 6.62 3 1024 kg kg21K21. At

the most sensitive grid point (39.518N, 112.928W) the

sensitivity predicts that a 60.052-K (i.e., the standard

deviation of the analysis potential temperature; 61su)

change in u at the lowest model level will lead to an

equivalent 63.41 3 1025 kg kg21 change in the 6-h qy
at KSLC. While this value is rather small, an assump-

tion allowing linear extrapolation predicts a 6.62 3
1024 kg kg21 in 6-h qy from a 1-K analysis change. A

kelvin is a reasonable error in near-surface analysis u,

and 0.662 g kg21 is greater than 10% of the spatiotem-

poral variability evident in Fig. 4.

Other strong positive sensitivity responses appear in

Fig. 5a across the central Utah desert ranges, in regions 2

and 3. Regions 1–3 are in the path of a plume of warm air

pushing northward through the central Utah desert on

23 January (see temperature in Figs. 4d–f). The zonal

FIG. 5. (a) Sensitivities (kgkg21K21) using 1800UTC 23 Jan analysis u (K) as xi, and forecasted box-mean qy (kgkg
21) as J, valid at 0000UTC

24 Jan. White pixels are masked because they failed the hypothesis testing. Numbers indicate highest-ranking sensitivity magnitudes. (b) A

conceptual diagram of the sensitivity field with pink (blue) areas indicating positive (negative) T and qy sensitivity and arrows indicating the

direction of the warm-air advection. (c) The WRF terrain with colored elevations from 1000 to 2000m.
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breadth of these features allows them to block or divert

southerly flow. Because southerly flow in this region is

likely associated with warm-air advection, spatial gra-

dients in sensitivity to u are apparent over the terrain

that interacts most with the warm advection. Region 4,

northeast of the GSL in a low-lying plain between the

GSL and the Wasatch Range, indicates positive sensi-

tivity as southerly warm-air advection is forced between

the higher terrain of the Wasatch and the cold dome

over the GSL.

The negative sensitivity regionsmost obvious in Fig. 5,

region 5 (Tooele valley), region 6 (southeast Salt Lake

valley), and region 7 (lee side of the Uinta Mountains),

represent protected low-lying areas where cold dense air

can pool during stable regimes, and the first model layer

is in the cold air. They indicate where a negative per-

turbation to analysis potential temperature would result

in a predicted increase in qy 6 h later. Figure 5a shows

several areas of negative sensitivity, with smaller mag-

nitude relative to the positive regions; no values are less

than 22.5 3 1024 kg kg21K21.

The sensitivity regions offer a plausible path for fog

formation (Fig. 5b). Warm-air advection prior to the

event, as well as the importance of the low-level stability

profile that supported fog, appear to be important ac-

cording to the sensitivity estimates here and agree with

characteristics identified by Hogan (2013) and Slemmer

(2004). BecauseKSLC is in a basin, negative sensitivities

are most easy to link to fog at KSLC. Cooler and deeper

layers in valleys, with less change to the temperature

aloft, will strengthen the surface inversion. Assuming

soil temperatures increase slowly compared to the first

model layer, the first-layer temperature increases are

indicative of a more stable temperature profile at the

surface; positive sensitivities are consistent with a

strengthening inversion over KSLC. The sensitivity field

implies that advection of warmer air over the southern

part of the domain, and more evident at higher eleva-

tions (see Fig. 5c for elevation), is correlated with cooler

air in the low-lying valleys. A positive perturbation at

the analysis time where the sensitivity is positive will

correspond with cooling where the sensitivity is nega-

tive. Broadly, then, the sensitivity field is consistent with

strengthening a near-surface inversion to support in-

creased near-surface water vapor and the likelihood of

fog over a large region.

Greater positive sensitivity to the south indicates the

importance of the warm-air advection in dynamically

strengthening the inversion. Warming to the south

causes isentropes to slope upward toward the north. To

the extent that the flow is isentropic, a positive sensi-

tivity to the south will be correlated with a positive

FIG. 6. Analysis of change in u (K) after the addition of11su perturbation applied at 39.518N,

112.928W (black square) on the first model level, regressed onto the entire analysis with the

ensemble statistics. Positive (negative) values indicate an increase (decrease) in u.
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sensitivity above the cold air over KSLC. The analysis

statistics support these relationships. For brevity we do

not show them here, but the vertical structure of the

sensitivities also supports this conceptual model.

5. Tests of linear approximation

The sensitivities described in the last section, resulting

from a linear statistical approximation, are meaningful

only if the linear approximation is a good one. Three

tests provide a basis to judge the effectiveness of ESA

for identifying the sensitive points. Computational ex-

pense prevents an exhaustive exploration here, but the

experiments suggest where further work is needed. A

perturbation dxi to state variable xi, located at the point

of greatest sensitivity on the first model layer (Fig. 5a),

X 5 121, Y 5 52 (39.518N, 112.928W), is first applied.

Each remaining state variable in the analysis is per-

turbed according to its linear relationship with the sen-

sitivity point, estimated from the ensemble statistics.

The expected change in the forecast metric for a given

scalar analysis perturbation dxi is presented:

dJ5
cov(J, x

i
)

var(x
i
)

dx
i
, (2)

where dxi is a perturbation to the ensemble mean

(analysis state estimate) chosen differently for different

experiments below. Comparing the predicted change in

Eq. (2) to a forecast change realized by integrating the

nonlinear model forward from a perturbed state is

helpful in quantifying the accuracy of the expected

change (i.e., the accuracy of the linear approximation).

Differences between the predicted change and the ac-

tual forecast change may indicate nonlinearity, the ef-

fects of sampling error in the analysis statistics, or both.

The analysis state vector perturbation is formed by

perturbing the remaining state elements according to

each element’s linear relationship with the selected xi;

here, xi is chosen as the gridpoint potential temperature

showing the greatest sensitivity. The magnitude of the

perturbation assigned to that grid point also determines

the vector magnitude of the analysis state perturbation.

Perturbing the remaining state according to each el-

ement’s linear relationship with the sensitivity point

accomplishes two things. First, it reduces the chance that

resulting imbalances will cause the perturbation to im-

mediately lose its energy and produce spurious gravity

waves when the forecasts begin. Second, it builds in

some part of the analysis ensemble covariances that are

implicitly, but not explicitly, considered in the approxi-

mate sensitivity calculation [Eq. (1)]. The perturbations

are imperfect because of sampling error in the analysis,

which was not accounted for in the diagonal sensitivity

approximation; in general, the perturbation vector

magnitude will be too large because analysis covariances

are overestimated.

We could choose any analysis variable xi to determine

the magnitude of the analysis perturbation; by using the

variable displaying the maximum sensitivity, we gain a

relatively large perturbation and can more easily relate

the nonlinear response to the predicted response. Sen-

sitivity is determined by two things: 1) rxJ, which explains

the strength of the linear relationship between xi and J,

and 2) and the ratios of sJ/sx, which quantifies the rel-

ative uncertainties (with units) of J and xi. Maximum

sensitivity occurs where for a fixed sJ, a large correlation

coefficient rxJ is collocated with small spread (standard

deviation) of an analysis state variable sx. Details of the

analysis perturbation differ in different experiments

explained below.

By perturbing the analysis at a point xi, the slope of the

regression line between xi and J gives the expected

forecast change. Further, assimilating an observation

at a sensitivity point decreases sx, reflecting more cer-

tainty in the analysis. In this case the uncertainty in

forecast J should also reduce as long as the linear ap-

proximation is valid, because to a linear approximation

each member of the ensemble forecast is perturbed to-

ward the ensemble mean of J.

a. Linearity tests with direct perturbation

A perturbation can be considered small if it is in the

high-probability region of the analysis distribution at

the sensitivity point, and we can expect the linearization

to provide a good estimate of the actual response to

small perturbations. First, a u perturbation of dxi 5
su 5 0.0516K is applied to the first model layer at the

greatest 6-h sensitivity point. The effect of this pertur-

bation is spread to other model variables in 3D with

univariate linear regression based on the analysis en-

semble statistics. The regression step follows Torn and

Hakim (2008) and others, and is a simple attempt at

creating initial conditions that will retain the perturba-

tion. Here, every ensemble member is perturbed iden-

tically so that the analysis spread is left unchanged.

Using the analysis covariance to produce the initial

vector perturbation introduces sampling error that is

different from the expected error in the ESA, which

does not explicitly use the analysis covariance in the

diagonal approximation [Eq. (1)]. The covariances, and

thus the regression coefficients, are likely to be erro-

neously large.

Figure 6 shows the 1800 UTC 23 January analysis

perturbation u (K) on the first model level resulting from

the11su perturbation applied to the most sensitive grid
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point in the 6-h ESA (black square) and regressed onto

the remaining state. Analysis u increases slightly across

the Salt Lake valley, with a stronger response at KSLC.

Also evident in Fig. 6 is a region of decreased temper-

atures west of the GSL in the low-lying Great Salt Lake

Desert. A warm perturbation introduced in the higher

terrain south of the Great Salt Lake Desert could, with

southerly flow, increase warm-air advection over the

PBL in this region, creating or strengthening a low-level

inversion. The cooler temperatures west of the GSL,

introduced from the analysis statistics, are indicative

of a strengthening inversion and northward-sloping

isentropes.

Integrating all members of the perturbed ensemble

forward to the valid forecast time, 0000UTC 24 January,

gives the nonlinear forecast response. Figure 7 shows the

difference in 6-h forecasted qy (kg kg21) between the

forecast from the 1800 UTC 23 January11su perturbed

analysis and the forecast from the 1800 UTC 23 January

control analysis. Figures 7a and 7b show the first two

model layers, respectively, illustrating the contributions

to J, and both clearly show increased qy above the

KSLC area.

The slice across the region defining J shows increased

qy, compared to the control forecast, over the southern

GSL and south of KSLC. The exact forecast difference

in J is an increase in qy so that the resulting dJ 5 2.2 3
1025 kg kg21, which can be compared to the predicted

change of 3.4 3 1025 kg kg21. That is, the change from

the nonlinear forecast is about 65% of the change pre-

dicted from the linear sensitivity.

A larger perturbation of 10su 5 0.516K is imposed to

test whether a similar relationship between predicted

and actual changes holds. The perturbation is an ex-

treme value relative to the ensemble statistics and may

be too large for the linear assumption to be valid. Be-

cause the analysis statistics for regressing that pertur-

bation to the other state variables is unchanged, the

analysis is perturbed as in Fig. 6 but scaled by a factor of

10. The resulting forecast (Fig. 8) shows qy structures

similar to those in Fig. 7a, but also greater magnitude.

The details in Figs. 7 and 8 differ, including a broader

swath of increased water vapor over the southern GSL

and nearby. All grid points around J show increases,

FIG. 7. Forecast difference in qy (kg kg21) at 0000 UTC

24 Jan at (a) the lowest model level and (b) the second model

level following the introduction of a 11su perturbation to the

1800 UTC 23 Jan ensemble analysis at the most sensitive

grid point.

FIG. 8. As in Fig. 7a, but for a 10su perturbation.
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contrasting Fig. 7, which shows some localized decrease

near J. Compared to a predicted dJ5 3.43 1024 kgkg21,

the resulting forecast change is 1.33 1024 kgkg21 (about

40% of predicted).

The nonlinear forecast response from small and large

perturbations, regressed onto the state with ensemble

statistics, is half or less of the linear sensitivity pre-

dictions. This can result from either nonlinearity in the

forecast or from sampling error in the analysis co-

variance. Both factors contribute here. Analysis re-

gression statistics most likely lead to initial-condition

perturbation magnitudes that are too large. We expect

that the ESA gives sensitivity estimates that are too

large, also because of sampling error. The effect of

sampling error is multiplied by 10 when introducing the

10su perturbation compared to the 1su perturbation;

the result is a larger error in analysis perturbation

magnitude. If linear, the forecast response would re-

flect that. But the 10su perturbation elicits a smaller

forecast response compared to the predicted response,

suggesting nonlinearity is also important. In the next

section we test the trade-offs within a data assimilation

context.

b. Linearity tests with assimilation

Covariance localization in ensemble data assimila-

tion is meant to mitigate sampling error arising from a

finite ensemble (e.g., Houtekamer and Mitchell 1998).

Localization reduces the magnitude of the resulting

analysis increments, from any single observation, as a

function of distance from that observation. Compared

to direct perturbation with linear regression, the

smaller analysis perturbation would be expected to

lead to a smaller dJ in the forecast. The smallest do-

main is the focus here, and a localization length scale

of approximately 1200 km means the localization is

generally weak at these scales, but it does have some

effect. Inflation, to address underdispersion in the

ensemble, is spun up to produce a filter that is closer

to optimal as measured by the 3-h forecast agreement

with observations. Assimilating an observation to

impose a perturbation helps gauge the importance of

using the assimilation system as the basis for sensitivity

estimates.

The observation is perfect, with zero observation

error, to isolate the effects of the localization. Nor-

mally temperature is assimilated, rather than poten-

tial temperature. The single synthetic observation

that is equal to the analysis temperature plus one

standard deviation (sT) at 1800 UTC 23 January at

the 6-h sensitivity point is simply appended to the

observation set for that time, and the assimilation is

executed again.

Assimilating the synthetic observation leads to an

analysis perturbation that is qualitatively similar to that

shown in Fig. 6. The perturbation magnitude is smaller

than for direct regression, and the smaller perturbation

magnitude is easily quantified. The L2 norm of the first-

layer u perturbation measures the analysis perturbation

magnitude. It is 3.7K when assimilating, compared to

5.9K when regressing. Differences in some details (not

shown) arise because the ensemble spread is also re-

duced, where it is not changed when the direct re-

gression is applied.

The resulting qy forecast (Fig. 9) shows results quali-

tatively similar to the regression experiments (Fig. 7a),

but with some details affecting the forecast metric J.

Comparing Figs. 8 and 9, forecasts from the regression

shows less drying area and magnitude, and more areas

of greater moistening around J. Here, dJ 5 9.9 3
1026 kg kg21 from the nonlinear forecast compared to

dJ 5 2.7 3 1025 kg kg21 predicted from Eq. (2). The

actual forecast change after assimilation is approxi-

mately 37%, compared to 65%when the perturbation is

formed via direct regression, consistent with a smaller

perturbation resulting from the data assimilation.

Similar to the regression experiments above, a large

perturbation of approximately 10sT can be introduced

via assimilation. The L2 norm of the u perturba-

tion on the first model layer is 30.9K, compared to

59.2K for the regression. The resulting forecast dJ 5
8.8 3 1025 kg kg21, approximately 38% of dJ 5 2.3 3
1024 kg kg21, as predicted from Eq. (2).

FIG. 9. Forecast difference in qy (kg kg
21) at 0000 UTC 24 Jan

at the lowest model level following the 1800 UTC 23 Jan assim-

ilation of a synthetic observation that is sT greater than the

analysis at the most sensitive grid point.
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Results from the data assimilation experiments show

the effect of mitigating sampling error in the analysis

perturbation and retain the effects of nonlinearity. Be-

cause the localization reduces the overestimated co-

variances underlying the analysis perturbation, the

initial perturbation and the resulting forecast response

are smaller than when direct regression is used to form

the perturbation. The ESA and its overprediction from

sampling error are unchanged. A strategy for mitigating

sampling error in the sensitivity calculation, which

would reduce the sensitivity estimates, is complicated by

dynamics evolving in space and time. That subject is

addressed by Hacker and Lei (2015). As discussed next,

these results are merely suggestive, and many more

(computationally demanding) experiments are needed

to confirm these results.

6. Effects of ensemble size

The number of ensemble members needed to

perform a robust ESA is a primary focus of this study.

Determining the necessary ensemble size helps establish

computational requirements for a reliable ESA. Imple-

menting ensemble data assimilation systems with smaller

ensembles, alongside the full 96-member ensemble, forms

the basis for comparison. At 0000 UTC 22 January, sub-

samples of 80, 64, and 48 ensemble members were ran-

domly chosen from the 96-member ensemble valid.

From that time forward, the smaller ensembles were

maintained separately from the 96-member ensemble

while assimilating the same observations. By running

through several observation intervals, the smaller en-

sembles stabilize at a statistical state representative of

that smaller ensemble. Assimilating the same obser-

vations keeps each of the ensembles close to each other

in the mean, but the ensembles are not each sampling

from the same distribution.

Sensitivities are computed as before and here again

we focus on the forecast qy sensitivity to u. The three

sensitivities at 6 h with greatest magnitude are identified,

by grid point, for each ensemble. Sensitivities failing the

95% confidence test are masked from the results and are

not considered in the ranking. We use the 96-member

ensemble as the standard against which the smaller en-

sembles are judged.

One result is that the smaller ensembles show less

spatial correlation in the sensitivity values (Fig. 10), di-

minishing with ensemble size. In the 96-member en-

semble, the second and third most sensitive points are

adjacent to the most sensitive point, used in the per-

turbation experiments above. Ensembles of 80 and 48

members produce the top three sensitivities in the

same area as the greatest sensitivity in the 96-member

ensemble. Also in all of the smaller ensembles, the three

greatest sensitivities are scattered rather than clumped

(excepting the 64-member ensemble, where ranks one

and three are adjacent).

The 80-member ensemble produces sensitivities that

broadly agree with the positioning of the 96-member

sensitivity features. The magnitude does not match as

well, with only the strongest sensitivity grid point re-

taining its position. The sensitivity at the most sensi-

tive grid point reduces from 6.62 3 1024 to 3.02 3
1024 kg kg21 K21. Ranked sensitivities 2 and 3 are not

in the same locations as for the 96-member ensemble,

suggesting that the additional sampling errors are large

enough to affect the weaker sensitivities even if they

pass the hypothesis test.

The 64-member ensemble also retains a similar geo-

graphic arrangement as the 96-member ensemble, with

the most salient features qualitatively evident. But three

of the most sensitive locations all differ from the 96-

member sensitivities. The first-ranked sensitivity from

the 96-member system is at the same grid point as the

ninth-ranked sensitivity from the 64-member sensitivity.

The deterioration in magnitude and different position

sensitivity patterns suggest this is likely below the min-

imum size ensemble needed to accurately estimate a 6-h

ESA in this case.

Finally, the 48-member ensemble retains the most

salient sensitivity patterns from the 96-member en-

semble, though most of the sensitivities fail the hy-

pothesis test. The response is in some ways more like

the response of the 96-member than 64-member en-

semble; the second- and ninth-most sensitive grid

points are both where the greatest sensitivity is in the

96-member ensemble. Although at first this seems

counterintuitive, it is consistent with increased sam-

pling error. An overestimation of the sensitivity is most

likely, but some probability of an underestimation is

possible. The estimates have lost little sensitivity

magnitude, as the sensitivity at point 2 in Fig. 10d is

4.243 1024 kg kg21K21, which is greater than estimated

from either the 80-member or 64-member ensemble

at the same grid point.

Figure 11 shows both correlation and sensitivity from

the 6-h ESA for each ensemble size. The green bars

indicate the upper and lower boundaries of the 95%

confidence interval for the correlation coefficient, and

show the expected increase in sampling error associated

with smaller ensembles. Figure 11 shows that ensem-

bles smaller than 80 members exhibit reductions in

sensitivity and linearity. The sampling error associated

with the correlation coefficient (r value) of each en-

semblemember increases, which is also as expected. The

green error bars for 80 members indicate variability
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(r 5 60.20) in the correlation coefficients associated

with this ensemble.

7. Summary and conclusions

This work examines the potential and behavior of

ensemble sensitivity analysis during weak flow and in

complex terrain. Most prior ensemble sensitivity studies

have been completed on cases of stronger forcing, and

at coarser scales, where we expect sensitivities to be

stronger, smoother, and less susceptible to sampling

error that arises from finite ensembles.

A case of dense fog that shut down the Salt Lake

City International Airport (KSLC) is a useful

experiment basis because the synoptic forcing is weak,

though not completely absent, and the interactions

between water vapor and thermal inversions present

challenges to linear methods. A series of perfect-

model data assimilation experiments with DART

and the WRF Model enable the ensemble sensitivity

analysis, where the forecast parameter (response

function) is an average water vapor mixing ratio in a

box over the airport. Forecasts are most sensitive to

potential temperature, at analysis time, on the first

model layer.

The overarching goal is to evaluate the ensemble

sensitivity method for plausibility and robustness in

these circumstances. Results address several questions.

FIG. 10. The 6-h sensitivity (kg kg21 K21) for (a) 96-, (b) 80-, (c) 64-, and (d) 48-member ensemble systems using initial condition

u (K) from 1800 UTC 23 Jan 2009 and forecast qy (kg kg
21) at KSLC at 0000 UTC 24 Jan 2009. Numbers identify grid points of the three

sensitivities with the greatest magnitude for each ensemble. Markers indicate a positive (plus sign) or negative (minus sign) sensitivity that

exists outside the cropped map. Note scales are not normalized.
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First, physically plausible sensitivity estimates are pos-

sible at lead times of 6 h. Patterns are consistent with

southerly warm-air advection strengthening the in-

version over KSLC, which has been observed as a

mechanism for fog formation there.

Second, the forecast responsemagnitude is monotonic

with initial perturbation magnitude, but the actual

forecast response is consistently smaller than the re-

sponse predicted by the ESA. Both nonlinearity and

sampling error contribute to the disagreement. Sam-

pling error leads to expected overprediction of both

sensitivities and initial vector perturbations formed

from regressing on the analysis covariances. Analysis

perturbations formed by either assimilation of a syn-

thetic T observation, or directly regressing a gridpoint

u perturbation to the remaining analysis, produce simi-

lar analysis perturbation structures. But covariance lo-

calization applied during assimilation reduces the

perturbation magnitude.

Similar behavior for large perturbations shows that

that the degree of nonlinearity does not change much

over a large range of perturbation magnitude. Small

and very large perturbations, of 1 and 10 standard

deviations of the analysis distribution at the most

sensitive grid point, are integrated with the nonlinear

model in the ensemble. In all cases, forecast pertur-

bations are half or less of that predicted by the sensi-

tivity analysis.

Third, fairly large ensembles are needed to detect the

weak correlations and provide reliable statistics during

weak flow scenarios. Results here suggest that even 96

members may not be enough to clearly identify the most

important sensitivities. In smaller ensembles, many of

the patterns are intact, if weaker, but some of the

details change.

Although the predicted responses are systematically

too large, the results suggest that additional observations

capturing the southerly warm-air advection may aid fog

forecasting in the area around KSLC. This study has

identified three regions.Region 1 in Fig. 12 represents the

region of strongest sensitivity, and an observation there

may provide advance warning of the impinging low-level

warm air. Region 2 is where southerly warm-air advec-

tion meets the influence of the GSL cold dome. Addi-

tional observations placed in this region, the southeast

Salt Lake valley, or along the Traverse Mountains to the

southwould help to define the warm-air advection as well

as the inversion strength in the southeast GSL basin.

Region 3 is a low-lying area northeast of the GSL, which

exhibits strong sensitivity when warm-air advection is

present across the GSL basin. Though a single observa-

tion exists on the northeast boundary of this region at

Brigham City Airport (KBMC), additional observations

across this plain would allow more thorough observation

of warm air channeling between the Wasatch Range

and a cold dome over the GSL. Combined, observations

at these areas may help to characterize the near-surface

conditions in the GSL known to lead to dense fog events

at KSLC.

Finally, the results herein motivate a more focused

study addressing the fundamental characteristics of en-

semble sensitivities under sampling error. That is the

primary subject of a forthcoming manuscript.
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