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Consistent Approximation of an Optimal Search Problem

Chris Phelps, Qi Gong, Johannes O. Royset and Isaac Kaminer

Abstract— This paper focuses on the problem of optimizing
the trajectories of multiple searchers attempting to detect
a non-evading moving target whose motion is conditionally
deterministic. This problem is a parameter-distributed optimal
control problem, as it involves an integration over a space of
stochastic parameters as well as an integration over the time
domain. In this paper, we consider a wide range of discretization
schemes to approximate the integral in the parameter space
by a finite summation, which results in a standard control-
constrained optimal control problem that can be solved using
existing techniques in optimal control theory. We prove that
when the sequence of solutions to the discretized problem has an
accumulation point, it is guaranteed to be an optimal solution
of the original search problem. We also provide a necessary
condition that accumulation points of this sequence must satisfy.

I. INTRODUCTION

In this paper we consider a search optimization problem
where multiple searchers seek multiple non-evading, mov-
ing targets. The problem takes the form of a parameter-
distributed optimal control problem, where the searcher dy-
namics are given by ordinary differential equations (ODEs).
The targets follow conditionally deterministic trajectories in
the sense that the targets trajectories depend on unknown
parameters treated as random variables. The optimal control
problem is to determine searcher trajectories that maximize
the probability of detecting the targets.

While earlier studies have considered similar problems
with assumptions such as simple searcher dynamics and a
single target [1]–[3], special target movement in a channel
[4], and exponential detection model [5], we consider a
broader class of problems with general nonlinear dynamics
and detection models. In the literature, previous theoretical
works on such search problems have focused on the devel-
opment of necessary optimality conditions in the tradition
of Pontryagin, e.g. [2], [6]–[8], and sufficient conditions
for optimality in the tradition of Hamilton-Jacobi-Bellman
equation (see, for example, [9], [10]). Numerical algorithms
corresponding to those theoretical results for solving optimal
search problems were developed in [3], [10]–[14].
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In this paper, we conduct theoretical analysis for the
solution of parameter-distributed optimal control problems
by employing a direct method. The parameter space is
directly discretized, which results in a family of standard
optimal control problems that can be solved using existing
approaches. The considered direct method is similar to those
of [4], [5]. We go beyond [4], which focuses on model
formulation and computations exclusively, and show that
the discretization scheme is consistent in the sense that
globally optimal solutions of the standard optimal control
problems converge to a globally optimal solution of the
parameter-distributed optimal control problem. In addition,
we provide a necessary condition that an accumulation point
of a sequence of optimal solutions of the standard optimal
control problems must satisfy, when such an accumulation
point exists. While [5] also provides consistency results
and optimality conditions, they are limited to the case with
a two-dimensional parameter space and integration using
Simpson’s rule. We allow for essentially any numerical in-
tegration scheme in an arbitrary finite dimension under mild
smoothness assumptions. We also consider a Pontryagin-type
necessary condition in contrast to that in [5], which follows
an approach by Polak [15], Chapter 4.

The paper is organized as follows: Section II introduces
the optimal control model associated with the search problem
and its spatial discretization, Section III shows the consis-
tency of the family of approximate standard optimal control
problems, Section IV shows the consistency of the dual
variables and provides a necessary condition for the accu-
mulation point, and a numerical example is demonstrated in
Section V.

II. PROBLEM FORMULATION

Motivated by the problem of optimal search for a target
with conditionally deterministic motion, we now introduce
the parameter-distributed optimal control problem, which
we refer to as Problem B. The focus of this paper will be
the consistent approximation of this problem, as well as the
formulation of a necessary condition for a solution obtained
with this approximation.

Problem B. Determine the function pair (x(t), u(t)) with
x ∈ W1,∞([0, 1];Rnx), u ∈ L∞([0, 1];Rnu) that minimizes
the cost functional

J =

∫
A
F

(∫ 1

0
r(x(t), y(t, α), u(t))dt

)
φ(α)dα (1)

subject to initial condition x(0) = x0, the dynamics
ẋ = f(x(t), u(t))

and the control constraint g(u(t)) ≤ 0 for all t ∈ [0, 1].
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Here W1,∞([0, 1];Rnx) is the space of all essentially
bounded functions with essentially bounded distributional
derivatives which map the interval [0, 1] into the space Rnx

and L∞([0, 1];Rnu) is the set of all essentially bounded
functions mapping the interval [0, 1] into the space Rnu . The
function y(t, α) : [0, 1]×A 7→ Rny represents the trajectory
of the target, given that the unknown parameter takes the
value α. r : Rnx × Rny × Rnu 7→ RK and F : RK 7→ R
are functions which determine the probability of detecting
the target, and are determined by the sensor model. Note
that because we allow nx, nu, and ny to be any integer,
this formulation can include the case of multiple searchers
and multiple targets. The following regularity conditions are
assumed:

Assumption 1. The function g is continuous and the set
U = {ν ∈ Rnu |g(ν) ≤ 0} is compact.

This is a reasonable assumption to make, as in a real world
scenario the set of allowable controls will be bounded and
therefore U , being a closed and bounded set, will be compact.

Assumption 2. There exists a compact set X ⊂ Rnx such
that for each u ∈ L∞([0, 1],Rnu with u(t) ∈ U for all
t ∈ [0, 1], we have x(t) ∈ X for all t ∈ [0, 1], where x(t)
is the solution to the dynamical system ẋ = f(x(t), u(t)),
with initial condition x(0) = x0. Furthermore, there exists a
compact set Y such that y(t, α) ∈ Y for all α ∈ A, t ∈ [0, 1].

We recognize that this assumption will not be true for
all nonlinear dynamical systems with bounded controls.
However, the assumption will be satisfied for dynamical
systems in which f is globally Lipschitz with respect to x.
In particular the example examined in this work, a Dubin’s
vehicle, has globally Lipschitz dynamics. It should be noted
that this assumption will also be satisfied for systems which
are input-to-state stable and systems with linearly bounded
dynamics, which includes a wide class of dynamical systems
often used in control problems.

Assumption 3. The functions f , r and F are C1 with respect
to their argument. Moreover, the derivative of r is Lipschitz
on the set X × Y × U . Also, y(t, ·) : A→ Y is continuous
for all t ∈ [0, 1].

Complications arise when attempting to apply stan-
dard non-linear optimal control methods to the parameter-
distributed optimal control problem because of the integral
in the objective functional. Indirect methods require a nec-
essary condition for the problem be known, but the standard
Pontryagin Minimum Principle does not directly apply to
problems of this type. A necessary condition for optimality
is presented in [2], but only for the simplified problem in
which the dynamics of the searcher are given by a single-
integrator with box constraints. In this paper we present a
direct method as a means to solve Problem B, by using a
numerical scheme to approximate the integral in the objective
functional, and show that this approximation is consistent.

III. CONSISTENT APPROXIMATION OF THE OPTIMAL
CONTROL PROBLEM

In this section we introduce a numerical integration
scheme to approximate the integral in the objective functional
for Problem B, creating a sequence of standard optimal
control problems, Problem BM , which can be solved numer-
ically using existing techniques in the field of computational
optimal control theory. We show that the family of standard
optimal control problems, Problem BM , have the property
that an accumulation point of the sequence of optimal
solutions to Problem BM will be an optimal solution to
Problem B. We show that this property holds for a wide
variety of numerical schemes, and furthermore show that
this sequence will indeed have an accumulation under certain
assumptions on the class of optimal controls to Problem BM .

A. Numerical Schemes and Problem BM

In this section we introduce the numerical scheme which
will be used in the approximation of Problem B, and the
approximated Problem BM . Because the integral over the
parameter space in (1) has an integrad which is continuous
as a function of α, we require only that the numerical scheme
converge over the class of continuous functions, as stated in
the following assumption:

Assumption 4. For each M ∈ N, there is a set of nodes
{αM

i }Mi=1 ⊂ A and an associated set of weights {wM
i }Mi=1 ⊂

R, such that for any continuous function h : A→ R,∫
A
h(α)dα = lim

M→∞

M∑
i=1

h(αM
i )ωM

i (2)

Remark 1. Note that if hM : A → R is continuous for all
M ∈ N and {hM} converges uniformly to h, then

lim
M→∞

M∑
i=1

hM (αM
i )ωM

i =

∫
A

h(α)dα (3)

Because the function h to be integrated is continuous,
numerical quadrature and Simpson’s rule will satisfy As-
sumption 4 in the case where the set A is compact; and
are applicable in this scenario to determine the nodes {αM

i }
and weights {ωM

i }. Throughout the paper, M will be used
to denote the number of nodes used in this approximation.
Research into application of other algorithms for a wider
class of functions h and spaces A, such as Monte Carlo
simulation methods, is ongoing. Once the numerical scheme
is chosen, we can then define a new approximated objective
function JM for each M ∈ N by

JM =
M∑
i=1

F

(∫ 1

0
r(x(t), y(t, αM

i ), u(t))dt

)
φ(αM

i )ωM
i

We introduce new states governed by the equations żM,i(t) =
r(x(t), y(t, αM

i ), u(t)) with zM,i(0) = 0, so that

zM,i(1) =

∫ 1

0
r(x(s), y(s, αM

i ), u(s))ds (4)

The auxiliary states, {zM,i(t)}Mi=1, can be used to eliminate
the integration over the time domain in JM . The state
zM,i contains all information about the probability of
detecting the target conditioned on α = αM

i and in fact
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when detection is given by a Poisson process, zM,i(t) is the
expected number of detections up to time t. With the integral
over the parameter space approximated by a sum, and the
integral over time replaced by the augmented state z, we are
now able to define the approximate optimal control problem:

Problem BM. Determine the state-control function triplet
(x(t), z(t), u(t)), where x ∈ W1,∞([0, 1];Rnx), z ∈
W1,∞([0, 1];RKM ), and u ∈ L∞([0, 1];Rnu), that mini-
mizes the cost functional

JM =

M∑
i=1

F (zM,i(1))φ(αM
i )ωM

i (5)

subject to the dynamics

ẋ(t) = f(x(t), u(t) (6)

żM,i(t) = r(x(t), y(t, αM
i ), u(t)) i = 1, . . . ,M, (7)

the initial conditions

x(0) = x0, zM,i(0) = 0 i = 1, . . . ,M, (8)

and the control constraint g(u(t)) ≤ 0 for all t ∈ [0, 1].

Remark 2. The spatial discretization in Problem BM occurs
in the parameter space A, not in the spaces Rnx or Rnu or
the time interval [0, 1]. Therefore, for any feasible triplet
(x, z, u) for Problem BM , the pair (x, u) is a feasible
solution for Problem B. Similarly, for any feasible pair (x, u)
for Problem B there exists a feasible triplet (x, z, u) for
Problem BM , with z defined by (7) and (8). Therefore when
we refer to a pair (x, u) as being feasible, it will satisfy the
feasibility condition for both Problem B and Problem BM .

Problem BM is a standard control-constrained optimal
control problem; and can be solved by a variety of compu-
tational optimal control methods, such as Runge-Kutta [16]
or pseudospectral [17], [18] methods.

B. Consistency of Problem BM

The following Theorem 1 shows that if a sequence of
optimal solutions to Problem BM converges as M → ∞,
then the limit will be an optimal solution to Problem B.
Such a consistency property guarantees that Problem BM

indeed is a valid approximation of the original non-standard
optimal control Problem B.

Remark 3. Before stating the Theorem, we first make a note
on the notation to be used. We define the set N#

∞ = {V ⊂
N|V infinite}. That is, N#

∞ is the set of all subsequences of
N, which are designated by the index set V ⊂ N. When M →
∞ as usual in N, we write limM→∞. However, in the case
of convergence with respect to a subsequence designated by
an index set V , we write limM∈V . For sequences of feasible
pairs {xM , uM}, the notation limM→∞{xM , uM} = {x, u}
will mean that xM converges pointwise to x and uM con-
verges pointwise to u. Similarly limM∈V {xM , uM} = {x, u}
will refer to pointwise convergence of the state-control pair
along the subsequence indexed by V .

We also need the following lemma:

Lemma 1. Let A be the set of feasible pairs to Problem
B, that is the set of all pairs (x, u) ∈ W1,∞([0, 1];Rnx ×
L∞([0, 1];Rnu) such that u(t) ∈ U and x(t) = x0 +∫ t

0
f(x(s), u(s))ds for all t ∈ [0, 1]. Then the set A is closed

in the topology of pointwise convergence.

Proof: Suppose {xM , uM} ∈ A and limM→∞{xM , uM} =
{x, u}. By the continuity of g, g(u(t)) ≤ 0 for all t ∈ [0, 1].
Now consider∥∥∥∥x(t)− x0 −

∫ t

0
f(x(s), u(s))ds

∥∥∥∥
=

∥∥∥∥x(t)− xM (t) +

∫ t

0
f(xM (s), uM (s))ds−

∫ t

0
f(x(s), u(s))ds

∥∥∥∥
≤ ‖x(t)− xM (t)‖+

∥∥∥∥∫ t

0
[f(xM (s), uM (s))− f(x(s), u(s))]ds

∥∥∥∥
≤ ‖x(t)− xM (t)‖+

∫ t

0
L[‖x(s)− xM (s)‖+ ‖u(s)− uM (s)‖]ds

Where we have used fact that f is C1 therefore Lipschitz
on the compact set X × U . Because x(s), xM (s) ∈ X and
u(s), uM (s) ∈ U where X and U are compact, ‖x(s) −
xM (s)‖ and ‖u(s) − uM (s)‖ are bounded for all s ∈ [0, 1]
M ∈ N. Therefore by the dominated convergence theorem
we have, for all t ∈ [0, 1],ε > 0,∥∥∥∥x(t)− x0 −

∫ t

0

f(x(s), u(s))ds

∥∥∥∥ < ε

Therefore {x, u} ∈ A.

Lemma 1 shows that if {xM , uM} is a sequence of feasible
pairs, then any accumulation point of this sequence will also
be a feasible pair. We use this fact to prove the that an
accumulation point of a sequence of optimal pairs to Problem
BM will be an optimal pair to Problem B, which is the result
in Theorem 1.

Theorem 1. Suppose Assumptions 1-4 hold, and in ad-
dition there exists V ∈ N#

∞ and a set of opti-
mal pairs {x∗M , u∗M}M∈V for Problem BM such that
limM∈V {x∗M , u∗M} = {x∞, u∞}. Then {x∞, u∞} is an
optimal solution to Problem B.

Proof: Let V ∈ N#
∞ and {x∗M , u∗M}M∈V be a set of opti-

mal pairs to Problem BM such that limM∈V {x∗M , u∗M} =
{x∞, u∞}. By Lemma 1, {x∞, u∞} is a feasible solution
to Problem B. Next, we prove the optimality of {x∞, u∞}.

From Assumption 3, r is bounded and Lipschitz on X ×
Y ×U and F is uniformly continuous on r(X,Y, U). From
the Lipschitz continuity of r, we have, for all α ∈ A∫ 1

0
‖r(x∗M (t), y(t, α), u∗M (t))− r(x∞(t), y(t, α), u∞(t)‖dt

≤
∫ 1

0
L
(
‖x∗M (t)− x∞(t)‖+ ‖u∗M (t)− u∞(t)‖

)
dt

By the dominated convergence theorem,

lim
M∈V

∫ 1

0

L
(
‖x∗M (t)− x∞(t)‖+ ‖u∗M (t)− u∞(t)‖

)
dt = 0

and this convergence must be uniform in α. Then by the
uniform continuity of F there must exist, for each ε > 0,
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N ∈ N such that for each M ∈ V with M > N and α ∈ A∣∣∣∣∣∣F (∫ 1

0
r(x∗M (t), y(t, α), u∗M (t))dt

)
−

F

(∫ 1

0
r(x∞(t), y(t, α), u∞(t))dt

) ∣∣∣∣∣∣ < ε (9)

This implies, by the statement in Remark 1,

lim
M∈V

JM (x∗M , u
∗
M ) = J(x∞, u∞).

Suppose {x, u} is a feasible pair for Problem B. Then,
based on the optimality of {x∗M , u∗M} and Remark 2,
JM (x∗M , u

∗
M ) ≤ JM (x, u) for all M ∈ V . Thus

J(x∞, u∞) = lim
M∈V

JM (x∗M , u∗M )

≤ lim
M∈V

JM (x, u) = J(x, u).

Therefore {x∞, u∞} is an optimal pair for Problem B,
since it produces the minimum cost among all feasible
solutions.

Theorem 1 shows that if a subsequence of optimal solu-
tions to Problem BM converges, this limit point will be an
optimal solution to Problem B. This shows that the Problem
BM is indeed a good approximation to Problem B in the
case where the solutions to Problem BM converge in the
pointwise sense. However, without additional restrictions on
the class of controls to be allowed, it does not guarantee the
existence of a convergent subsequence. Using the following
generalization of Helly’s Selection Theorem, we show the
existence of a convergent subsequence for a certain class of
controls.

Theorem 2. [19] Let (X, d) be a complete metric space and
{hn}n∈N a sequence of functions from [a, b] into X such that

1) For each t ∈ [a, b], the set {hn(t)}n∈N has compact
closure.

2) the functions {hn}n∈N have uniformly bounded varra-
tions.

Then there exists a subsequence of the sequence {hn}n∈N
converging pointwise in X to a function h : [a, b] 7→ X of
bounded variation.

This theorem allows us to prove the following corollary,
which guarantees the existence of an optimal solution to
Problem B when the optimal controls to problem BM are
known to be of a certain class.

Corollary 1. Suppose Assumptions 1-4 hold, and in ad-
dition there exists V ∈ N#

∞ and a set of optimal solu-
tions {x∗M , u∗M}M∈V to Problem BM , such that {u∗M}M∈V
have uniformly bounded variation. Then there exists V ′ ⊆
V such that limM∈V ′{x∗M , u∗M} = {x∞, u∞} for some
{x∞, u∞} ∈ A.

Proof: Because ẋ = f(x, u) and f is bounded on
X × U , {x∗M} is of uniformly bounded variation on X .
{u∗M} is of uniformly bounded variation on U by the
hypothesis. Therefore {x∗M , u∗M} is of uniformly bounded
variation on X × U . Furthermore, {(x∗M (t), u∗M (t))}M∈V
is relatively compact, as it is a subset of a compact space.

Therefore by Theorem 2, there exists a V ′ ⊂ V such that
limM∈V ′{x∗M , u∗M} = {x∞, u∞} .

It is known that for non-linear optimal control problems,
the optimal control often belongs to the class of bang-
bang controllers. As long as the constraint function g is
well-behaved and the number of jump discontinuities in the
control is bounded, these controls will satisfy the conditions
in Corllary 1, therefore the Corollary guarantees the existence
of an accumulation point of optimal pairs to Problem BM .
From Theorem 1, it is known that this accumulation point
will be a optimal pair to Problem B, which shows the
existence of an optimal solution to this problem in the case
where the controls are known to be of the bang-bang type.

IV. ADJOINT EQUATION AND HAMILTONIAN FOR
PROBLEM B

In this section we introduce the adjoint equations and
Hamiltonian for Problem BM . By examining the limiting
behavior as M → ∞, we are able to introduce adjoint
equations and a Hamiltonian for Problem B. This allows us
to establish a necessary condition which must be satisfied by
accumulation points of sequences of optimal pairs to Problem
BM .

A. Necessary Condition for Problem BM

First, we note that Problem BM admits a minimum
principle in the fashion of Pontryagin [20]. To formulate
the necessary conditions, we introduce the adjoint variables
(costates) λ corresponding to (6), and the adjoint variables
ηM corresponding to (7). It should be noted that the di-
mension of the vectors zM (t) and ηM (t) depends on the
number of nodes M used in the discretization process. The
Hamiltonian for the Problem BM is

HM (x, λ, zM , ηM , u) = ẋTλ+ [żM ]T ηM , (10)

With this Hamiltonian in place, we are ready to state the
necessary condition for Problem BM :

Necessary Condition of Problem BM: Let {x∗M , u∗M} be
an optimal pair for the Problem BM , then there must exist
absolutely continuous costate trajectories λ∗M and η∗M such
that the following conditions hold for almost every t ∈ [0, 1]:

u∗(t) = arg min
u∈U

HM
(
x∗M (t), λ∗M (t), z∗M (t), η∗M (t), u(t)

)
ẋ∗M =

∂HM

∂λ∗M
λ̇∗M = −∂H

M

∂x∗M
(11)

ż∗M =
∂HM

∂η∗M
η̇∗M = −∂H

M

∂z∗M
(12)

Moreover, λ∗M and η∗M satisfy the transversality conditions

∂JM

∂x
|x∗M (1) − λ∗M (1) = 0 (13)

∂JM

∂zM
|z∗M (1) − η∗M (1) = 0 (14)
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We wish to use this necessary condition for Problem
BM to derive an equivalent necessary condition for problem
B. However, this is problematic for two reasons. First, the
necessary condition for Problem BM depends explicitly on
the variables zM , but there are no equivalent variables present
in the formulation of Problem B. Second, the dimension of
zM and ηM are dependent on the number of nodes M used
in the discretization, and the dimension of these variables
goes to infinity as we increase M . Therefore, even though
the limits of x∗M , u

∗
M , and λ∗M as M → ∞ may exist, we

cannot discuss the limit of HM in any meaningful sense. In
order to circumvent these difficulties, we define a reduced
Hamiltonian HM

red for Problem BM which depends only on
the variables x(t), u(t), and λ(t). We can then discuss the
convergence of HM

red, as the dimensions of x(t), u(t), and
λ(t) are fixed.

B. The Reduced Hamiltonian for Problem BM

Here we show that the necessary condition from Section
IV-A admits a form which does not explicity depend on the
variables zM and ηM . The Hamiltonian (10) can be written
as

HM (x, λ, zM , ηM , u) =
[
f(x, u)

]T
λ+

M∑
i=1

[
r(x, y(αM

i ), u)
]T
ηM,i

(15)

For an optimal solution, this leads to

η̇∗M = −∂H
M

∂z∗M
= 0.

Therefore η∗M is constant and given by η∗M (t) = η∗M (1).
From the transversality condition (14) and the objective
function (5) we have

η∗M,i(t) = η∗M,i(1) =
∂JM

∂z∗M,i

|z∗
M,i

(1)

= Fz(z
∗
M,i(1))ω

M
i φ(αM

i ) for i = 1, . . .M. (16)

Here Fz is the gradient of F with respect to the
augmented state z. Now the Hamiltonian, evaluated at
(x∗M , λ

∗
M , z

∗
M , η

∗
M , u) can be rewritten from (4), (15), and

(16) to give

HM (x∗M (t), λ∗M (t), z∗M (t), η∗M (t), u(t))

=
[
f(x∗M (t), u(t))

]T
λ(t) +

M∑
i=1

[
r(x∗M (t), y(t, αM

i ), u(t))
]T
η∗M,i(t)

=
[
f(x∗M (t), u(t))

]T
λ∗M (t)

+

M∑
i=1

[
r(x∗M (t), y(t, αM

i ), u(t))
]T
Fz(z∗M,i(1))ωM

i φ(αM
i ). (17)

From this form of the Hamiltonian and the dynamics (11)
we get the following adjoint equation for λ∗M :

λ̇∗M (t) = −
[
fx(x∗M (t), u∗M (t))

]T
λ∗M (t)−

M∑
i=1

[
rx(x∗M (t), y(t, αM

i ), u∗M (t))
]T
Fz(z∗M,i(1))ωM

i φ(αM
i ), (18)

with the end condition given by the transversality condition
(13):

λ∗M (1) =
∂JM

∂x

∣∣
x∗(1)

= 0.

Remark 4. The value zM,i(1) is given by the integral∫ 1

0
r(x(s), y(s, αM

i ), u(s))ds, hence we can eliminate the
explicit dependence of both the Hamiltonian (17) and the
adjoint equation (20) on the variables {zM,i}Mi=1. Therefore
the necessary condition for Problem BM can be stated only
in terms of the original state variable x, adjoint variable λ,
and the control u.

By making the substition suggesting in Remark 4 in equa-
tions (17) and (18), we can define the reduced necessary
condition for Problem BM . First we define the reduced
Hamiltonian of the problem and the corresponding adjoint
variables.

HM
red(x(t), λ(t), u(t))

=
[
f(x(t), u(t))

]T
λ(t) +

M∑
i=1

[
r(x(t), y(t, αM

i ), u(t))
]T

×Fz

(∫ 1

0
r(x(s), y(s, αM

i ), u(s)ds

)
ωM
i φ(αM

i ) (19)

λ̇∗M = −
[
fx(x∗M (t), u∗M (t))

]T
λ∗M (t)−

M∑
i=1

[
rx(x∗M (t), y(t, αM

i ), u∗M (t))
]T

×Fz

(∫ 1

0
r(x∗M (s), y(s, αM

i ), u∗M (s)ds

)
ωM
i φ(αM

i ) (20)

λ∗M (1) = 0 (21)

Necessary Condition of Problem BM: Let {x∗M , u∗M} be
an optimal pair for the Problem BM , then it must satisfy

u∗M (t) = arg min
u∈U

HM
red(x∗M (t), λ∗M (t), u(t))

for almost every t ∈ [0, 1], where HM
red is given by (19),

λ∗M is given by (20) and (21).

Finally, to use this new necessary condition for Problem
BM to define a necessary condition for Problem B, we
must show that the adjoint states and resulting reduced
Hamiltonian converge.

C. Convergence of Adjoint States and Reduced Hamiltonians

We now demonstrate the convergence of the adjoint states
λ∗M and reduced Hamiltonians HM

red, which allows us to
determine a Hamiltonian H for Problem B and leads to a
corresponding minimum principle. It should be noted that
the number of nodes M , and the corresponding discretization
scheme given by {αM

i }Mi=1, {ωM
i }Mi=1 enter into the reduced

Hamiltonian and adjoint equations only through the sums in
(19) and (20). Therefore to show the convergence of these
functions, we show that these sums converge.

Lemma 2. Suppose Assumptions 1-4 hold, and in addi-
tion there exists V ∈ N#

∞ with {x∗M , u∗M}M∈V a se-
quence of optimal pairs for the Problem BM such that
limM∈V {x∗M , u∗M} = {x∞, u∞}. Then the following limits
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hold:

1. lim
M∈V

M∑
i=1

[
r(x∗M (t), y(t, αM

i ), u∗M (t))
]T

× Fz

(∫ 1

0
r(x∗M (s), y(s, αM

i ), u∗M (s))ds

)
ωM
i φ(αM

i )

=

∫
A

[
r(x∞(t), y(t, α), u∞(t))

]T
× Fz

(∫ 1

0
r(x∞(s), y(s, α), u∞(s))ds

)
φ(α)dα (22)

2. lim
M∈V

M∑
i=1

[
rx(x∗M (t), y(t, αM

i ), u∗M (t))
]T

× Fz

(∫ 1

0
r(x∗M (s), y(s, αM

i ), u∗M (s))ds

)
ωM
i φ(αM

i )

=

∫
A

[
rx(x∞(t), y(t, α), u∞(t))

]T
Fz

(∫ 1

0
r(x∞(s), y(s, α), u∞(s))ds

)
φ(α)dα (23)

For a proof of Lemma 2, see [21].
Based on Lemma 2, the consistent approximation of the

adjoint equations can be established. For this purpose, let
λ∞ be the solution of the initial value problem

λ̇∞(t) = −
[
fx(x∞(t), u∞(t))

]T
λ∞

−
∫
A

[
rx(x∞(t), y(t, α), u∞(t))

]T
× Fz

(∫ 1

0
r(x∞(s), y(s, α), u∞(s))ds

)
φ(α)dα, (24)

with final condition λ∞(1) = 0; and the Hamiltonian of
Problem B as

H(x(t), λ(t), u(t))

= [f(x(t), u(t))]Tλ+

∫
A

[r(x(t), y(t, α), u(t))]T

× Fz

(∫ 1

0

r(x(s), y(s, α), u(s))ds

)
φ(α)dα (25)

Lemma 3. Suppose Assumptions 1-4 hold. Let V ∈ N#
∞ and

let {x∗M , u∗M}M∈V be a set of optimal solutions to Problem
BM such that limM∈V {x∗M , u∗M} = {x∞, u∞}. Let λ∗M be
the corresponding solutions to (20), λ∞ be the solution to
(24), HM

red be given by (19), and H be given by (25). Then

1. lim
M∈V

λ∗M (t) = λ∞(t)

2. lim
M∈V

HM
red(x∗M (t), λ∗M (t), u∗M (t)) = H(x∞(t), λ∞(t), u∞(t))

For a proof of Lemma 3, see [21].
Given the convergence of the adjoint variables and Hamil-

tonians, we can now show that if the solutions to Problem
BM have an accumulation point, this accumulation point
must minimize the Hamiltonian for Problem B.

Theorem 3. Suppose Assumptions 1-4 hold. Let V ∈ N#
∞

and let {x∗M , u∗M} be a sequence of optimal pairs to Prob-
lem BM such that limM∈V {x∗M , u∗M} = {x∞, u∞}. Then
there exists an absolutely continuous costate trajectory λ∞

satisfying (24) such that the following holds for almost every
t ∈ [0, 1]

u∞(t) = arg min
U

H(x∞(t), λ∞(t), u)

where H is given by (25).

Proof: Let V ∈ N#
∞ and let {x∗M , u∗M} be a sequence of op-

timal pairs to Problem BM such that limM∈V {x∗M , u∗M} =
{x∞, u∞}. Due to the result of Lemma 3, limM∈V λ

∗
M =

λ∞ and limM∈V HM
red(x∗M , λ

∗
M , u

∗
M ) = H(x∞, λ∞, u∞).

Then for any admissable u ∈ U

H(x∞, λ∞, u∞) = lim
M∈V

HM
red(x∗M , λ

∗
M , u

∗
M )

≤ lim
M∈V

HM
red(x∗M , λ

∗
M , u) = H(x∞, λ∞, u).

While there may exist optimal pairs which are not accumu-
lation points of the set of optimal pairs to Problem BM ,
the result is still useful for checking the optimality of a
solution computed numerically by discretizing the integral
in the objective of Problem B and then solving the result-
ing Problem BM , as a solution obtained in this way will
necessarily be a accumulation point of the approximated
problem. The result in Theorem 3 is a more general result
than that in [2], since it provides a minimum principle for
the problem with multiple searchers, multiple targets, and
nonlinear dynamics with a control constraint. We show the
existence of a solution satisfying the condition of Theorem
3 under certain assumptions in the following Corollary.

Corollary 2. Suppose Assumptions 1-4 hold, and in ad-
dition there exists V ∈ N#

∞, a set of optimal solutions
{x∗M , u∗M}M∈V to Problem BM , such that {u∗M}M∈V have
uniformly bounded variation. Then there exists a solution to
Problem B satisfying the necessary condition of Theorem 3.

Proof: This corollary follows directly from Theorem 3 and
Corollary 1.

The existence of a necessary condition such as that
found in Theorem 3 allows us to assess the optimality of a
numerically computed control.

V. APPLICATION ON OPTIMAL SEARCH FOR A TARGET
WITH CONDITIONALLY DETERMINISTIC MOTION

In this section, we apply the results of the previous
sections to a problem in optimal search theory. In this
example, taken from [5] and [22], we consider an optimal
search problem inspired by a real-world scenario.

A hostile target, whose location is unknown, is travelling
towards a friendly ship, called the “high value unit” or
“HVU.” The starting location of this target is unknown,
but the trajectory of the target, conditioned on the starting
location, is known for all possible starting locations. The
objective of the problem is to find a search path for a single
searcher with given intitial position which will maximize the
chance of detecting the target, before the target can reach
the “HVU.” The searcher is assumed to be a Dubin’s vehicle
with known constant velocity v and turning rate bounded by
K ∈ R+. The dynamics are then given by

ẋ1 = v cos(x3) ẋ2 = v sin(x3) ẋ3 = u |u| ≤ K

For the simulation we use the values v = 120, and K = 50.
For the detection probability we adopt the model in which

r is explicitly the detection rate, that is the probability of the
searcher detecting the target in the time intervel [t, t+∆t] is
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given by r(x(t), y(t, α))∆t+o(∆t), when y(t, α) is the true
position of the target. Note that in this scenario the detection
rate function is independent of the control u(t). When r
satisfies this property, F is given by F (z) = exp(−z). The
specific form of the detection rate function is given by the
Poisson scan model:

r(x(t), y(t, α)) = βΦ

(
F −D(||x(t)− y(t, α)||2 − b)

σ

)
,

where Φ(·) is the standard normal cumulative distribution
function, β is the scan opportunity rate, F k is the so-called
“figure of merit” (a sonar characteristic), and σ reflects the
variability in the “signal excess”. In the simulation we use
the values

β = 1.1 F = 90 b = 20 D = 0.3 σ = 100

The optimal control Problem B is then to find a trajectory
x : [0, 1] 7→ R3 and control u : [0, 1] 7→ R, which minimize
the objective function∫ 70

0
exp

(
−
∫ 1

0
βΦ

(
F −D(||x(t)− y(t, α)||2 − b)

σ

)
dt

)
φ(α)dα

where φ(α) is the beta probability distribution functioned
scaled to the interval [0, 70].

We obtain an approximate solution to the optimal control
problem by first discretizing the integral over the parameter
α in the objective functional, and solving the resulting
Problem BM using a standard computational optimal control
technique. In this section we consider an Euler discretization
in the parameter space, and will solve the resulting standard
optimal control problem using a direct method based on
an Euler discretization in the time domain. After applying
both discretizations, the resulting constrained optimization
problem is solved using the NLP package SNOPT [23]. A
discretization using 50 nodes in the parameter space and 120
nodes in the time domain is used with an Euler scheme, and
the calculated optimal trajectories are shown in Figures 1
and 2. In Figure 1 the initial starting location of the target is
distributed according to a Beta(7, 2) distribution, whereas in
Figure 2 the targets are distributed according to a Beta(2, 7)
distribution.

We use the necessary condition to assess the optimality of
this trajectory by examining the adjoint variables, which can
be computed by directly integrating the adjoint equations.
We first construct the Hamiltonian according to (25) as
H(x, λ, u) = v

(
cos(x3(t))λ1(t) + sin(x3(t))λ2(t)

)
+ λ3 u

−
∫ 70

0
βΦ

(
F −D(||x(t)− y(t, α)||2 − b)

σ

)
×

exp

(
−
∫ 1

0
βΦ

(
F −D(||x(s)− y(s, α)||2 − b)

σ

)
ds

)
φ(α)dα

By Eqn. (24), adjoint variables are given by λ1(1) = λ2(1) =
λ3(1) = 0, for i = 1, 2,

λ̇i(t) =

∫ 70

0
φ(α)

2βD

σ
√
π

(
yi(t, α)− xi(t)

)
×

exp

(
−
(
F −D||x(t)− y(t, α)||2 − b

σ

)2
)
× (26)

exp

(
−
∫ 1

0
βΦ
(F −D(||x(s)− y(s, α)||2)− b

σ

)
ds

)
dα

and

λ̇3(t) = −λ1(t)v sin(x3(t)) + λ2(t)v cos(x3(t)) (27)
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Fig. 1. Calculated optimal trajectory for the searcher and a random sample
of target trajectories from a Beta(7, 2) distribution.

This is a system of ordinary differential equations depending
on the known trajectory x(t), thus can be calculated by
backward propagating the system from t = 1.

Observe that the control u enters into the Hamiltonian
H only through the linear term λ3 u. Therefore, the optimal
control must satsify

u∗(t) =

{
K λ3(t) < 0

−K λ3(t) > 0
(28)

when λ3 = 0, the problem is singular. The adjoint variable
λ3 is determined from the KKT multipliers obtained from
SNOPT. Figure 3 shows that the optimal control calculated
using the numerical method satisfies the condition in (28).

VI. CONCLUSION

A computational scheme is proposed for the problem of
optimizing the trajectories of multiple searchers attempting
to detect a moving target. The proposed scheme discretizes
the original problem into a sequence of standard optimal
control problems. We show that an accumulation point of
the solution of the discretized problem is guaranteed to be
an optimal solution of the original search problem. We also
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Fig. 2. Calculated optimal trajectory for the searcher and a random sample
of target trajectories from a Beta(2, 7) distribution.
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Fig. 3. Adjoint variable λ3 and optimal control u.

provide a necessary condition that accumulation points must
satisfy.
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