
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications Collection

2015-11-05

Strong scaling for numerical weather prediction at

petascale with the atmospheric model NUMA

Müller, Andreas

American Mathematical Society

arXiv:1511.01561v1 [cs.DC] 5 Nov 2015

http://hdl.handle.net/10945/47546



Strong Scaling for Numerical Weather Prediction at Petascale
with the Atmospheric Model NUMA

Andreas Müller∗, Michal A. Kopera∗, Simone Marras†, Lucas C. Wilcox∗, Tobin Isaac‡ and Francis X. Giraldo∗
∗Department of Applied Mathematics

Naval Postgraduate School, Monterey, CA USA
Email: amueller@anmr.de, makopera@nps.edu, lwilcox@nps.edu, fxgirald@nps.edu

†Department of Geophysics
Stanford University, Stanford, CA USA

Email: smarras@stanford.edu
‡Computing Institute

University of Chicago, IL, USA
Email: tisaac@ices.utexas.edu

Abstract—Numerical weather prediction (NWP) has proven
to be computationally challenging due to its inherent multiscale
nature. Currently, the highest resolution NWP models use a
horizontal resolution of approximately 15 km. At this resolution
many important processes in the atmosphere are not resolved.
Needless to say this introduces errors. In order to increase the
resolution of NWP models highly scalable atmospheric models
are needed.

The Non-hydrostatic Unified Model of the Atmosphere
(NUMA), developed by the authors at the Naval Postgraduate
School, was designed to achieve this purpose. NUMA is used by
the Naval Research Laboratory, Monterey as the engine inside
its next generation weather prediction system NEPTUNE.
NUMA solves the fully compressible Navier-Stokes equations
by means of high-order Galerkin methods (both spectral
element as well as discontinuous Galerkin methods can be
used). Mesh generation is done using the p4est library. NUMA
is capable of running middle and upper atmosphere simula-
tions since it does not make use of the shallow-atmosphere
approximation.

This paper presents the performance analysis and optimiza-
tion of the spectral element version of NUMA. The performance
at different optimization stages is analyzed using hardware
counters with the help of the Hardware Performance Monitor
Toolkit as well as the PAPI library. Machine independent
optimization is compared to machine specific optimization
using BG/Q vector intrinsics. By using vector intrinsics the
main computations reach 1.2 PFlops on the entire machine
Mira. The paper also presents scalability studies for two
idealized test cases that are relevant for NWP applications.
The atmospheric model NUMA delivers an excellent strong
scaling efficiency of 99% on the entire supercomputer Mira
using a mesh with 1.8 billion grid points. This allows us to
run a global forecast of a baroclinic wave test case at 3 km
uniform horizontal resolution and double precision within the
time frame required for operational weather prediction.

I. INTRODUCTION

Numerical weather prediction (NWP) has always been
considered one of the important computationally intensive
uses of supercomputers. Nevertheless there is a big gap

between the size of the available supercomputers and the
amount of computing power that is used for operational
weather prediction. State of the art operational deterministic
weather forecast typically use about 1000 processors [1]
with a global resolution of approximately 15 km, whereas
the biggest available supercomputers offer more than one
million processors allowing more than 1015 floating point
operations in one second (petascale). One of the reasons for
this discrepancy is that many weather models do not scale to
this large number of processors and therefore are not able to
make good use of these big machines. The National Oceanic
and Atmospheric Administration (NOAA) has initiated the
High-Impact Weather Prediction Project (HIWPP) with the
goal to reach numerical weather prediction at 3 km resolution
by the year 2020 [2]. Being able to improve the resolution by
almost one order of magnitude will allow resolving some of
the atmospheric processes explicitly that are currently only
described by heuristic approximations (parameterizations).
For this reason, it is expected that such a significant im-
provement in the resolution of weather prediction models
will reduce the error and improve the accuracy of weather
forecasts significantly.

In this paper, we show that the Non-hydrostatic Unified
Model of the Atmosphere, NUMA [3], [4], [5], is capable
of simulating a global baroclinic wave test case within the
timeframe required for operational weather prediction at
3 km resolution using a uniform global mesh with 31 layers
in the vertical direction. We achieve this performance with
double precision and without making use of the commonly
used shallow atmosphere approximation. This allows our
simulations to include middle and upper atmospheric pro-
cesses which are important for long-term (seasonal) weather
and climate predictions. Furthermore, our code does not
assume any special alignment of its mesh with the hori-
zontal and vertical direction which allows the simulation of
arbitrary steep terrain. It was possible to reach the desired

ar
X

iv
:1

51
1.

01
56

1v
1 

 [
cs

.D
C

] 
 5

 N
ov

 2
01

5



resolution thanks to a careful optimization of the code and
an excellent strong scaling efficiency of 99% on the entire
3.14 million threads of the supercomputer Mira using a mesh
with 1.8 billion grid points. To our knowledge, this paper
not only presents the first atmospheric model that is capable
of reaching the envisioned resolution within operational
requirements, but also presents the first published strong
scalability study up to petascale of fully compressible 3D
global simulations.

Related Work: Johnson et al. (2013) [6] present strong
scaling efficiency of about 65% at almost 300 TFlops
sustained performance on the Cray machine Blue Waters
for a Hurricane simulation using 4 billion grid points.
Wyszogrodzki et al. (2012) [7] present strong scaling up
to 105 cores on the Hopper II system including full param-
eterizations for moisture using up to 84 million grid points.
Strong scaling for the atmospheric model CAM-SE using
a spectral element method similar to the one utilized in
NUMA is presented by Dennis et al. (2012) [8]. CAM-SE
is targeted at climate prediction. Dennis et al. report strong
scaling up to 172,800 cores on the Cray system JaguarPF
using 81 million grid points. Other publications do either
not solve the fully compressible Navier-Stokes equations [9],
[10] or show strong scaling only at much smaller scale [11].
None of these publications is targeted at enabling numerical
weather prediction at petascale.

Our paper is organized as follows: the numerical methods
are introduced in Section II. Section III presents the two
test cases considered for the studies of this paper and Section
IV describes the mesh generation with the p4est library. The
code optimizations are presented in Section V and scalability
results are shown in Section VI.

II. NUMERICAL METHODS

NUMA solves the compressible Navier-Stokes equations
which can be written as (see e.g.[12])

∂q

∂t
+ ∇ · F (q) = S (q) , (1)

where t is the time, q ≡ q(t, x, y, z) =
(
ρ, ρuT,Θ

)T
is a

time dependent vector field containing the so called prognos-
tic variables (air density ρ, 3D wind speed, u, and potential
temperature, θ) and x, y, z are the coordinates in the three
space dimensions. The nonlinear operator F denotes the flux
tensor and S is a source function.

In the following subsections we illustrate the main steps
of the numerical solution of these equations using a spectral
element method. In the last subsection of this section we
describe two different numerical possibilities to organize the
data of our simulation. The two methods are identified as
CG storage and DG storage.

A. Spatial Discretization
In order to discretize eq. (1) we introduce a mesh of

elements. An example for a 2D cross section of our mesh is

illustrated in Fig. 1a. Inside each element we approximate
the solution q in each dimension by polynomials of order p.
We indicate with qN the approximate of q. To define these
polynomials we introduce a mesh of p+1 grid points inside
each element e and in each direction. To simplify numerical
integration we use Lobatto points. We denote the coordinates
of these grid points by (xi, yj , zk). We restrict the rest of
this section to the special case of p = 3 because this case is
most efficient for vectorization (see Section V). We define
our polynomials in a reference element over the interval
[−1, 1] in each direction, with coordinates (ξ, η, ζ) and grid
points (ξi, ηj , ζk). We denote the Jacobian determinant of
the coordinate transformation between reference element and
physical element e at grid point (xi, yj , zk) with Jei,j,k. The
numerical solution qN inside element e is given by

qN (t, ξ, η, ζ) =

4∑
l,m,n=1

ql,m,n(t)ψn(ζ)ψm(η)ψl(ξ), (2)

with ql,m,n(t) = q(t, ξl, ηm, ζn) and the 1D Lagrange basis
polynomials ψi are given by

ψi(ξ) =

{∏
m6=i

ξ−ξm
ξi−ξm , ξ ∈ [−1, 1]

0 , ξ /∈ [−1, 1],
(3)

where Ωe is the domain of element e.
The goal is now to insert eq. (2) into eq. (1) and solve

it for the values of qN at the grid points qi,j,k. In this
paper we use a spectral element method. From now on, the
spectral element method will be often referred to with the
acronym CG, from Continuous Galerkin. We multiply eq. (1)
by ψi(ξ)ψj(η)ψk(ζ) (including Jei,j,k) and integrate over the
entire domain Ω. By using Gauss-Lobatto quadrature with
quadrature weights wi we obtain the following equation:

Mi,j,k

dqi,j,k
dt

= −
∑
e

Jei,j,k wi,j,k (∇ · FN − SN ) , (4)

where wl,m,n = wl wm wn, FN = F (qN ), SN = S (qN )
and Mi,j,k =

∑
e wi,j,kJ

e
i,j,k are the entries of the diagonal

mass matrix.
The spatial derivatives in the divergence of the flux tensor

∇ · FN are given with eq. (2) by:

∂qN
∂x

∣∣∣∣
i,j,k

=

4∑
m=1

qm,j,k
dψm(ξ)

dξ

∣∣∣∣
ξi

∂ξ

∂x

∣∣∣∣
i,j,k

+

4∑
m=1

qi,m,k
dψm(η)

dη

∣∣∣∣
ηi

∂ξ

∂x

∣∣∣∣
i,j,k

(5)

+

4∑
m=1

qi,j,m
dψm(ζ)

dζ

∣∣∣∣
ζi

∂ζ

∂x

∣∣∣∣
i,j,k

.

The products of the values of qN at the grid points and the
derivatives of our basis functions are essentially 4×4 matrix-
matrix-multiplications. All of the derivatives in eq. (5) are
computed once at the beginning of the simulation.
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Figure 1: Illustration of a sample 2D cross section
containing 16 elements e1, . . . , e16 of our mesh (a) and
two possible approaches to store the data: CG storage
(b) and DG storage (c). For illustration purposes we
assume that elements e6, e7, e10 and e11 are computed
in the same MPI process while the other elements are
computed on different MPI processes. The elements and
grid points of the MPI process in the center of the figure
are highlighted in red. The process boundaries are shown
by the blue lines while element boundaries that are not
process boundaries are shown by green lines. The square
shape of the elements is used to keep this illustration
simple. The elements can have arbitrarily curved faces.

The basis functions ψi vanish outside of element e. For
this reason the sum over all elements in eq. (4) reduces
to a single element for interior grid points. For the grid
points along the edges we need to sum over all neighboring
elements weighted by the volume of the elements (this
summation is called DSS which stands for Direct Stiffness
Summation).

B. Time Discretization

In order to keep communication between different proces-
sors simple we use explicit time integration in the horizontal
direction. If the vertical resolution is of the same order of
magnitude of the horizontal resolution we use a fully explicit
Runge-Kutta scheme with five stages and third order. In each
of those five stages we need to evaluate the right hand side
of eq. (4) and communicate the values of the grid points

along the process boundary (blue lines in Fig. 1a).
If the vertical resolution is much finer than the horizontal

resolution we organize our mesh in such a way that all
the vertical columns of our elements are always computed
in the same MPI process. This allows us to make implicit
corrections along the vertical columns after an explicit step
of a leap-frog scheme. We call this approach 1D-IMEX
(IMplicit-EXplicit) [5].

C. Filter

Spectral element methods require stabilization [13].
NUMA allows for the use of different stabilization schemes
that range from subgrid-scale models [14] to low-pass filters
(Boyd-Vandeven). In this paper we use a Boyd-Vandeven
filter. The main idea of this filter is to perform a spectral
transformation of the nodal values qi,j,k and to dampen
the highest order modes. From a computational point of
view this results in multiplying all the values qi,j,k of the
element e with a filter matrix. Each time the filter is applied
the new filtered values need to be communicated between
neighboring MPI processes. In the future we will move to
Laplacian based stabilization methods which do not require
an additional communication step [5].

D. CG and DG storage

Each MPI process needs to own a copy of values at the
grid points along the process boundaries. This is illustrated
in Fig. 1b by drawing a gray gap between the different
processes. There is only one copy in memory for interior
grid points even if they are located on a boundary between
different elements (green lines in Fig. 1b). We call this
approach CG storage because it requires the solution to be
continuous and works only for Continous Galerkin methods.

Another possibility to organize the data is to always store
the values along element boundaries for each neighboring
element separately (Fig. 1c). We call this approach DG
storage because it allows the use of Discontinous Galerkin
methods. This approach has significant advantages even for
Continous Galerkin methods: it allows the access of data in
our computations in a continuous way whereas CG storage
produces a random memory access. This feature makes
DG storage much better suited for stream prefetching (see
Section V). The main disadvantage of DG storage is that up
to 2.4 times more data (64 vs. 27 grid points per element for
p = 3 in 3D) needs to be stored and communicated between
different MPI processes.

Two versions of NUMA exist: one version allows only
CG storage whereas the other version allows both CG and
DG storage. We restrict our work in this paper to the version
of NUMA that allows only CG storage because this version
was most advanced when we started the work presented in
this paper. Therefore we try to take advantage of the reduced
amount of data whenever possible. The optimization and



scalability with DG storage will be one of our next goals in
our future research.

III. TEST CASES

Two test cases are considered in this paper. One test case
is the baroclinic wave instability problem by Jablonowski
and Williamson [15]. This problem is classically used to
test the dynamical core of global circulation models (GCM,
spherical geometry). It is initialized by a zonal band of high
wind speed in the mid-latitudes (jet stream). A Gaussian
perturbation of the zonal wind is added. This perturbation
leads to wave like meridional perturbations of the jet stream.
After some time the flow pattern looks similar to the polar
front jet stream of the real atmosphere. The NUMA results of
the full simulation (25 days of simulated time) are reported
in [13].

The other test case is a 3D rising thermal bubble in a
box of 1000 m in each direction. This test case is initialized
with a temperature perturbation in a neutrally stratified
atmosphere. The precise definition and analysis of the full
simulation is reported in [4].

Both test cases are important for NWP applications.
Operational weather prediction needs to cover the global
circulation on the entire Earth like in the baroclinic wave
test case. In order to use a higher resolution, for specific
localized features of the atmosphere like hurricanes, one
needs to run the simulation in limited area mode like in
the 3D rising thermal bubble test case.

IV. MESH GENERATION AND LOAD BALANCING

The data structures and algorithms for parallel mesh
generation, partitioning, and load balancing used in our
simulations were provided by the p4est library. The p4est
library has been used for efficient and scalable parallel
adaptive mesh refinement for 2D advection on the sphere
[16], in other applications such as mantle convection and
seismic wave propagation [17], and as a backend for the
deal.II finite element library [18]. Our present paper is
the first time that p4est is used for full 3D atmospheric
simulations.

The p4est library represents two- and three-dimensional
domains via a two-level structure, with a macro mesh and a
micro mesh. The macro mesh is a conformal quadrilateral or
hexahedral mesh, which is encoded as an unstructured mesh
that is reproduced on each MPI process. Each element in
the macro mesh is then treated as the root of a partitioned
quadtree or octree, which recursively refines the macro
element isotropically to create a micro mesh. The tree
structure is represented in memory as a list of the leaves of
the tree, ordered by the Morton curve (also known as the z-
curve). This ordering induces a space filling curve that visits
the centers of the leaves: while this curve is not a continuous
space filling curve, it has many of its nice properties. One
important property is that partitioning a domain by dividing

the Morton curve into continuous segments creates subdo-
mains that are fairly compact, with low surface-to-volume
ratios [19]. This means that partitioning by this method
keeps the intra-process communication during simulations
low. A full description of p4est’s forest-of-quadtree and
forest-of-octree data structures and algorithms can be found
in [20].

When used in its raw form, the neighborhood information
of an element in the micro mesh (i.e., which elements are
adjacent) takes log(Ni) time to calculate, where Ni is the
number of micro mesh elements in the ith partition. To
avoid incurring this cost during each time step, the adjacency
information for all elements in the ith partition can be
converted into a lookup table, much like an unstructured
mesh. An efficient approach to creating this information,
which can also be used to enumerate the nodes for high-
order continuous Galerkin finite elements, is described in
[21].

The numerical methods in our simulations involve three-
dimensional computations, but the radial direction is treated
differently from the other two: its grid resolution require-
ments are different, and achieving efficiency in the IMEX
time evolution scheme (and other calculations that are
performed only in the radial direction) requires that radial
columns of elements and degrees of freedom be contiguous
in memory. A forest-of-octrees approach would be ill-suited
for these constraints. First, octree refinement is isotropic:
the aspect ratio of a macro element is inherited by all
of the micro elements created by refinement. This means
that the relationship between horizontal and radial resolu-
tion would have to be respected at the macro mesh level,
increasing the macro mesh’s complexity. Second, the three-
dimensional Morton curve does not respect the need to keep
radial columns contiguous: elements in a column would be
separated in memory, and without care would even be placed
in separate partitions.

For these reasons, we want to use a forest-of-quadtrees
approach to generate and partition radial columns, but to
handle the elements within each column using a different
approach. An extension to the p4est library, which was first
used in the context of ice sheet modeling [22], provides the
necessary data structures and interface. This extension is a
set of “p6est” data types and functions (so named because
it uses aspects of the two-dimensional “p4est” interface and
the three-dimensional “p8est” interface). Essentially, it treats
each radial column as a list, from the bottom to top, of the
elements created by recursive bisection of the full column,
and uses the existing two-dimensional p4est routines to man-
age the partitioning of columns and intercolumn interactions.
A more complete description of this approach can be found
in [23, Chapter 2]. The p6est mesh format is illustrated in
Figure 2.

The p6est functions include a method for enumerating
high-order continuous Galerkin finite elements, and pro-



Ωp

Figure 2: An illustration of meshing with the p6est
extension of the p4est library. A macro mesh represents
the cubed-sphere domain (left); division of the Morton
curve creates the partitions for each MPI process; the
columns in the ith partition Ωi are ordered by a 2D
Morton curve (middle); each radial column is stored as
a list of “layers” from the bottom to the top (right).
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Figure 3: Wallclock time in seconds of the mesh gen-
eration with the p4est library up to the entire machine
Mira for the simulations in Fig. 4 and 6.

vides point-to-point communicators for distributed vectors
for these discretizations, using the same data structures as
the underlying p4est library.1 In p6est, however, the order
of nodes is changed so that radial columns of degrees of
freedom are numbered contiguously.

As the elements within a column are defined by recursive
bisection, p6est was designed for meshes with 2k elements
per column for some k. Because NUMA must work with
meshes which do not have this property, the p6est format
was extended for this work to support an arbitrary number
of elements per column. The runtime of the mesh generation
is shown in Fig. 3. Even for 43 billion grid points (blue
results) it takes always less than 20 seconds runtime.

It should be noted that, although mesh adaptivity is not
used in this work, the p6est data structures support bi-
modal local mesh adaptivity: elements may be independently

1I.e., p6est_lnodes_new(), which enumerates Gauss-
Lobatto nodes for continuous Galerkin finite element calculations,
returns a p8est_lnodes_t object, the same type returned by
p8est_lnodes_new(), the equivalent function for a forest of octrees.

refined in the radial direction, and each column can be
independently refined into four smaller columns.

V. CODE OPTIMIZATIONS

The goal of this section is to optimize our CG storage
version of NUMA. To take advantage of the reduced amount
of data compared to DG storage we aim at computing as
much work as possible on a per grid point basis and try
to avoid making computations on a per element basis. The
main structure of our code is illustrated in code example 1.
Computations that need to be computed element-wise are
highlighted in blue. Communication is highlighted in red.

1 create the mesh
2 initialize data q at time t=0
3 while time < final time
4 begin loop over time integration stages
5 compute right hand side of eq. (4) for current stage (createrhs)
6 communicate
7 DSS and multiply with inverse mass matrix
8 update q
9 end

10 compute IMEX corrections for each vertical column of grid
points

11 compute filter
12 communicate
13 DSS and multiply with inverse mass matrix
14 increment time
15 end

Code example 1: Pseudocode of the main structure of
our code NUMA. The blue text needs to be computed
element-wise. The rest (black text) can be computed
for each grid point separately. MPI communication is
highlighted in red.

We tried to optimize all parts of our code. We found
createrhs to be the only function that contains enough
floating point operations to allow significant optimizations.
We expect that we need to merge the different parts of our
code into one loop over all elements to optimize the entire
code. Since this requires us to move to DG storage we focus
in this paper on optimizing createrhs for CG storage and
leave the optimization of the other parts for the DG storage
version of NUMA.

Table I and II show performance measurements for dif-
ferent versions of createrhs. For the rest of this section we
simply refer to the different versions in these tables.

Originally we expected that the performance of our code
would improve with increasing polynomial order (p = 6,
version A). We found however that order p = 3 gives signif-
icantly better time to solution (version B) without significant
impact on the accuracy of our test cases. We use p = 3 for
the rest of this paper because this order is very well suited
for vectorization on Mira (four double precision floating
point numbers fit into one register). Another significant



runtime flops instructions loads that hit traffic per node
description timeloop createrhs qpx fma mix issue L1P L2 DDR DDR
A: p = 6, 1 MPI process per core 1099.8 s 855.5 s 31.1 % 85.1 % 23.0 % 39.5 % 3.7 % 1.8 % 0.2 % 3.2 GB/s
B: p = 3, 1 MPI process per core 972.7 s 803.5 s 14.4 % 80.0 % 18.0 % 36.2 % 1.4 % 3.5 % 0.2 % 2.4 GB/s
C: like B, 4 MPI processes per core 454.3 s 352.2 s 14.4 % 80.0 % 18.0 % 67.7 % 2.6 % 6.8 % 0.5 % 8.5 GB/s
D: like C, all derivatives of e in one matrix 293.0 s 189.5 s 33.0 % 79.4 % 26.5 % 61.1 % 1.8 % 8.0 % 0.7 % 13.9 GB/s
E: like D, use BLAS function dgemm 447.8 s 336.7 s 51.0 % 85.8 % 16.9 % 53.6 % 2.2 % 11.0 % 0.6 % 8.4 GB/s
F: like C, optimized for compiler vectorization 283.6 s 181.1 s 73.9 % 81.3 % 21.2 % 49.3 % 4.5 % 13.8 % 0.7 % 15.3 GB/s
G: like D, some vector intrinsics 205.0 s 103.6 s 86.4 % 75.7 % 27.0 % 50.6 % 7.5 % 6.4 % 0.9 % 22.4 GB/s
H: like C, rewritten using vector intrinsics 191.7 s 88.8 s 98.6 % 75.7 % 28.9 % 39.7 % 7.2 % 12.2 % 1.1 % 23.6 GB/s
I: like H, 4 OpenMP threads per core 198.5 s 96.6 s 98.6 % 75.7 % 28.1 % 39.9 % 7.6 % 13.6 % 1.0 % 21.8 GB/s
optimal 0 s 0 s 100 % 100 % 50 % 100 % 0 % 0 % 0 % 28.5 GB/s [24]

Table I: Performance measurements for createrhs (the computation of the right hand side in eq.(4), see also code
example 1) with the Hardware Performance Monitor Toolkit for the rising thermal bubble test case on 768 nodes
of the BG/Q computer Vesta at the Argonne National Laboratory. The simulations with p=3 use 256 x 256 x 384
elements (6.8×108 grid points). This corresponds to 2048 elements (55k grid points) per BG/Q core which is the
workload we aim at using on the entire machine Mira. For p=6 we use half the number of elements in each direction.
All simulations use a CFL number of 0.7 in the vertical direction and are run for a model time of 1 second. This
corresponds for p=3 to 690 timesteps (3450 executions of createrhs) and for p=6 to 1123 timesteps (5615 executions of
createrhs). The last row indicates what kind of values we try to achieve for each of the columns. The column “qpx”
shows how many percent of all floating point operations are vectorized. The column “fma” gives the percentage
of fused multiply-add operations among all floating point operations. The column “mix” shows the percentage of
floating point instructions among all instructions. The column “issue” shows how close this part of the code is to the
maximum issue rate of one integer/load/store instruction per cycle per core. The three columns “L1P”, “L2” and
“DDR” show how many of the loads hit the L1P buffer, the L2 cache and the DDR memory respectively. Finally
the last column gives the total bandwidth between L2 cache and DDR memory per node.

runtime flops instructions loads that hit traffic per node
description timeloop createrhs qpx fma mix issue L1P L2 DDR DDR
A: p = 6, 1 MPI process per core 28.0 s 11.8 s 31.1 % 85.1 % 22.7 % 31.0 % 3.1 % 3.9 % 0.4 % 1.5 GB/s
B: p = 3, 1 MPI process per core 19.3 s 9.4 s 14.4 % 80.0 % 17.9 % 33.2 % 1.0 % 4.1 % 0.3 % 1.5 GB/s
C: like B, 4 MPI processes per core 9.4 s 4.0 s 14.4 % 80.0 % 17.8 % 63.3 % 2.3 % 8.4 % 0.5 % 7.2 GB/s
D: like C, all derivatives of e in one matrix 7.6 s 2.3 s 33.0 % 79.4 % 26.0 % 56.8 % 1.5 % 9.5 % 0.8 % 10.3 GB/s
E: like D, use BLAS function dgemm 9.4 s 3.9 s 51.0 % 85.8 % 16.5 % 52.5 % 1.7 % 11.9 % 0.7 % 7.0 GB/s
F: like C, optimized for compiler vectorization 7.5 s 2.1 s 73.9 % 81.3 % 20.7 % 47.1 % 4.3 % 13.2 % 0.9 % 13.4 GB/s
G: like D, some vector intrinsics 6.6 s 1.2 s 86.4 % 75.7 % 26.3 % 51.7 % 6.7 % 8.1 % 0.9 % 18.2 GB/s
H: like C, rewritten using vector intrinsics 6.4 s 1.0 s 98.6 % 75.7 % 28.1 % 41.8 % 6.0 % 12.8 % 1.3 % 19.7 GB/s
I: like H, 4 OpenMP threads per core 5.8 s 1.1 s 98.6 % 75.7 % 27.1 % 40.2 % 6.3 % 16.7 % 0.6 % 17.8 GB/s
optimal 0 s 0 s 100 % 100 % 50 % 100 % 0 % 0 % 0 % 28.5 GB/s [24]

Table II: Performance measurements like in Table I but for the baroclinic wave test case at a horizontal resolution
of 21.3 km and a vertical resolution of 1 km. All simulations use the same effective resolution, same final model time
of 4 hours and same CFL number of 0.4 in the horizontal direction and 6.4 in the vertical direction. For p=3 this
corresponds to 144 elements per cubed sphere edge, 10 elements in the vertical and 947 timesteps. For p=6 we use
72 elements per cubed sphere edge, 5 elements in the vertical and 1582 timesteps. All simulations use 972 BG/Q
nodes on Vesta. This setup gives us the same workload per node like in Section VI on the entire machine Mira.2

speedup was obtained by running four MPI processes per
core (version C).

We computed the derivatives of eq. (5) in versions A,
B and C for each of the five variables of q separately. By
merging all these derivatives into one matrix for each direc-
tion and element we achieved another significant speedup
(version D). We also tried to use the BLAS function dgemm
(version E) without any improvement of the performance.

2Even though only createrhs is changed between the different simulations
in this table the runtime saved for the entire timeloop is larger than the time
saved in createrhs. The reason for this behavior is that the reduced runtime
of createrhs leads to an improved synchronization between different MPI
processes which reduces the time spent in MPI communication.

The rest of our optimizations can be categorized into three
main topics which we discuss in the following subsections:
compiler optimizations, BG/Q vector intrinsics and OpenMP.
At the end of this section we give a short description of
possible next steps for further optimization.

A. Compiler Optimization

To improve the performance while retaining portability
we worked first on enabling better optimization through the
compiler. We spent some time on finding the best level of
compiler optimization for each function of our code. We
found a few functions for which level 3 optimization gave us
wrong results. This is not surprising because level 3 compiler



optimization is not IEEE compliant.
Many of our operations in createrhs looked initially like

code example 2. The operations were computed for each grid
point of the element separately which makes it impossible
for the compiler to vectorize the code. This explains the very
low fraction of vectorized operations in versions A, B, C and
D (column qpx in Table I and II). To improve vectorization
we changed our code in such a way that the operations are
performed for the entire element at once (code example 3).
Our measurements for version F show that this simple step
leads to a significant improvement of the vectorization.

1 real :: rho, rho_x, rho_y, rho_z, u, v, w, rhs
2 do e=1,num_elem ! loop through all elements
3 do i=1,num_points_e ! loop through all points of

the element e
4 ... ! compute derivatives rho_x, rho_y, rho_z
5 rhs = u*rho_x + v*rho_y + w*rho_z + ...
6 end do !i
7 end do !e

Code example 2: Fortran code similar to a function
from the non-optimized initial version of NUMA (used
in versions A, B, C, D and E in Table I and II).

1 real, dimension(num_points_e) :: rho, rho_x, rho_y, &
2 rho_z, u, v, w, rhs
3 do e=1,num_elem ! loop through all elements
4 ... ! compute derivatives like rho_x, rho_y, rho_z
5 rhs = u*rho_x + v*rho_y + w*rho_z + ...
6 end do !e

Code example 3: Like code example 2 rewritten for
improved compiler vectorization (used in version F)

B. BG/Q Vector Intrinsics

To make even better use of the vector unit we rewrote
our function createrhs by using BG/Q vector intrinsics (code
example 4). We first kept the computation of the derivatives
unchanged (version G). This gave us another significant
speedup. Using vector intrinsics for the entire function
createrhs gave us another minor speedup (version H).

C. OpenMP

OpenMP allows reducing the number of MPI processes.
This leads for CG storage to a reduced amount of work
for some parts of the code (namely the black text in code
example 1). However, we need to be very careful to avoid
race conditions. In createrhs race conditions can occur in the
summation over all the elements in eq. (4). Using OpenMP
atomic statements made our code too slow. The best solution
that we could find was to reorder the elements inside each
MPI process in such a way that different OpenMP threads
can never compute neighboring elements at the same time.

1 real, dimension(4,4,4) :: rho, rho_x, rho_y, &
2 rho_z, u, v, w, u_x, v_y, w_z, rhs
3 !IBM* align(32, rho, rho_x, rho_y, rho_z, u, v, w,

u_x, v_y, w_z, rhs)
4 ! declare variables representing registers: (each

contains four double precision floating point
numbers)

5 vector(real(8)) vct_rho, vct_rhox, vct_rhoy, vct_rhoz
6 vector(real(8)) vct_u, vct_v, vct_w, vct_rhs
7 if (iand(loc(rho), z’1F’) .ne. 0) stop ’rho is not

aligned’
8 ... ! check alignment of other variables
9 do e=1,num_elem ! loop through all elements

10 do k=1,4 ! loop over points in z-direction
11 do j=1,4 ! loop over points in y-direction
12 ... ! compute derivatives rho_x, ...
13 ! load always four floating point numbers:
14 vct_u = vec_ld(0, u(1,j,k))
15 vct_v = vec_ld(0, v(1,j,k))
16 vct_w = vec_ld(0, w(1,j,k))
17 vct_rhox = vec_ld(0, rho_x(1,j,k))
18 vct_rhoy = vec_ld(0, rho_y(1,j,k))
19 vct_rhoz = vec_ld(0, rho_z(1,j,k))
20 ! rhs = u*rho_x
21 vct_rhs = vec_mul(vct_u,vct_rhox)
22 ! rhs = rhs + v*rho_y
23 vct_rhs = vec_madd(vct_v,vct_rhoy,vct_rhs)
24 ! rhs = rhs + w*rho_z
25 vct_rhs = vec_madd(vct_w,vct_rhoz,vct_rhs)
26 ! write result from register into cache:
27 call vec_st(vct_rhs, 0, rhs(1,j,k))
28 ...
29 end do !j
30 end do !k
31 end do !e

Code example 4: Like code example 2 rewritten with
vector intrinsics (used in versions G, H and I)

To ensure this we need to synchronize all threads by using
an OpenMP barrier after each element computation. These
barriers slow down createrhs by less than 10% (version
I). Nevertheless we obtain in the case of the baroclinic
instability a noticeable improvement of the runtime of the
entire timeloop due to the reduced amount of work for
the IMEX corrections in the vertical direction. We obtained
the best performance by using 4 OpenMP threads per MPI
process (2, 8, 16 and 64 OpenMP threads per MPI process
were slower).

D. Next Steps

Our measurements show that our final version I achieves
an excellent level of vectorization (98.6% of all floating
point operations are vectorized). The main weakness of our
code is the very low percentage of floating point instructions
among all instructions and the fairly high number of loads
that hit L1P buffer and L2 cache. Optimal would be if
the prefetcher could bring all data into L1 cache before
it is needed. We tried different prefetching strategies and
handwritten prefetching but could not improve the perfor-
mance compared to the default strategy. These issues could
be avoided by merging the different parts of our code into
one loop over all the elements and by rearranging the data
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Figure 4: Strong scaling for the baroclinic wave test
case with polynomial order p = 3 using 1024 elements
per cubed sphere edge and 10 elements in the vertical
direction (31 degrees of freedom). This corresponds to a
global effective resolution of 3.0km and a total number
of about 1.8 billion grid points. The dashed line shows
ideal strong scaling over a base run on 6.5×104 threads.

in the order in which it is needed. This will be possible in
the DG storage version of NUMA.

VI. STRONG SCALING RESULTS

We present in this section strong scaling results up to the
entire machine Mira for the baroclinic wave test case (Fig.
4, 5 and 7) and the rising thermal bubble test case (Fig. 6
and 8). All these results use version I from Section V.

The runtime of the entire simulation for the baroclinic
wave test case is shown in Fig. 4. The dynamics of a one
day forecast needs to be finished within less than about 4.5
minutes runtime (more than 320 model days per wallclock
day). We reach this goal on the entire machine Mira for
our 3.0 km uniform horizontal resolution simulation of the
baroclinic wave test case which takes 4.15 minutes runtime
per one day forecast (346.6 model days per wallclock day).

The strong scaling efficiency of the simulations in Fig. 4
is shown in Fig. 5 for the different parts of the code. The
entire code reaches a strong scaling efficiency of 99.1% on
the entire machine Mira. The parts createrhs and filter show a
scaling efficiency of more than 100%. This is not surprising
because the problem fits better into L2 cache with increasing
number of threads and at the same time the time spent in
our OpenMP barriers is decreasing. The IMEX part gives
us the lowest scaling efficiency. We still need to understand
the reason for this behavior.

The lowest scaling efficiency for the entire simulation is
obtained for 2.1×106 threads. This is due to non-optimal
load balancing. The number of elements per thread is
always perfectly balanced for all results shown in this paper.
However, the arrangement of these elements can vary which
leads for CG storage to variations in the number of grid
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Figure 5: Strong scaling efficiency over base run on
6.5×104 threads for the simulations shown in Fig. 4.
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Figure 6: Strong scaling efficiency over base run on
7.7×105 threads for the rising thermal bubble test case
using 1024× 1024× 1536 elements which corresponds
to about 43 billion grid points.

points. So far we use the very simple mesh partitioning built
into the p4est library. We expect to be able to improve this
result by using more advanced mesh partitioning algorithms.

The strong scaling efficiency of the rising thermal bubble
test case is shown in Fig. 6. We achieve 99.7% strong scaling
efficiency on the entire machine for this case. We use a
much larger total number of grid points of about 43 billion
grid points for this case because we plan to use our code
for hurricane and cloud simulations at this kind of problem
size. We have not optimized the memory usage of our code.
The smallest number of threads that can handle this problem
is currently 7.7×105. We expect to be able to reduce the
memory usage of our code significantly. Also we need to
understand the reason why the simulation using 1.6×106

shows a reduced performance.
The percentage of the theoretical peak performance in

terms of floating point operations is shown in Fig. 7 and
8. Not surprisingly we obtain the best performance for
our optimized part createrhs. For the baroclinic wave test
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Figure 7: Percentage of theoretical peak performance in
terms of floating point operations for the baroclinic wave
test case like in Fig. 4.
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Figure 8: Percentage of theoretical peak performance in
terms of floating point operations for the rising thermal
bubble test case like in Fig. 6.

createrhs reaches 1.21 PFlops (12.1% of peak) and for the
rising bubble test it reaches 1.28 PFlops (12.8% of peak) on
the entire machine. The sustained performance of the entire
simulation is at 0.55 PFlops for the baroclinic wave test
and at 0.70 PFlops for the rising bubble test on the entire
machine Mira.

VII. CONCLUSIONS

In this paper, we present the optimization and performance
analysis of the atmospheric model NUMA. We are able to
perform most of the computations at 1.2 PFlops on the entire
supercomputer Mira by using BG/Q vector intrinsics. The
sustained performance of our simulation is at 0.70 PFlops
for a rising thermal bubble test case using explicit time
integration. We have not optimized the entire code yet. For
the baroclinic wave test the non-optimized computations for
the implicit part of the time integration lead to a slightly
lower sustained performance of 0.55 PFlops. We expect to
improve our performance significantly by optimizing the
remaining non-optimized parts of our code.

We have shown that NUMA achieves a near perfect strong
scaling efficiency of 99.7% for the rising thermal bubble test
case using 43 billion grid points on the entire 3.14 million
threads of Mira. For the baroclinic wave test case on the
sphere we obtain a strong scaling efficiency of 99.1% using a
mesh with 1.8 billion grid points. This allows us to compute
a one day forecast at 3.0 km resolution within 4.15 minutes
runtime and fulfills the requirements for operational weather
prediction (less than 4.5 minutes runtime for the dynamics
of a one day forecast).

As explained in the introduction, we expect this massive
increase in resolution to be a major step towards more
accurate weather forecasts. Nevertheless, the demand to
increase the resolution of NWP models does not end at
3 km resolution [1]. The demand for better performance is
even more severe when high resolution climate prediction
is considered. Climate prediction requires forecast periods
of more than one hundred years. To simulate such a long
period of time at a resolution of 3 km would still require
about one year of runtime on the entire machine Mira when
tracers and physics parameterizations are taken into account.
For this reason we need to continue to work on improving
the performance of our code and to optimize it for next
generation supercomputers.

Our analysis in this paper shows that we need to merge
the different parts in our code and improve our memory
access. We are confident that we can achieve this goal
by using DG storage. DG storage allows us to access the
data in the order in which it is stored and enables much
better use of the stream prefetcher. DG storage will also
allow us to merge different parts of the code since all
computations are performed on an element basis (compare
code example 1). For this reason, we expect to improve our
sustained performance beyond 1 PFlops by moving to DG
storage. This should allow us to reach a uniform horizontal
resolution close to 2 km within operational requirements.
The next goal will be the optimization of our code for
the upcoming next generation supercomputer Aurora at the
Argonne National Laboratory. Aurora is expected to achieve
a peak performance of 180 PFlops (18 times more than
Mira). We hope to be able to reach 1 km resolution for global
numerical weather prediction once Aurora is available and
once our code is fully optimized for that machine.
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