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1 School of Mathematics and Statistics, Wuhan University

Wuhan 430072 China;

Email: komatsu@whu.edu.cn
2 School of Mathematics, University of the Witwatersrand,

Private Bag X3, Wits 2050, South Africa;

Email: florian.luca@wits.ac.za
3 Instituto de Matemáticas,
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Abstract

In this note, we study the divisibility relation Um | Us

n+k
− Us

n,
where U := {Un}n≥0 is the Lucas sequence of characteristic polynomial
x2 − ax± 1 and k,m, n, s are fixed positive integers.
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1 Introduction

Let U := U(a, b) = {Un}n≥0 be the Lucas sequence given by U0 = 0, U1 = 1
and

Un+2 = aUn+1 + bUn for all n ≥ 0, where b ∈ {±1}. (1)

Its characteristic equation is x2 − ax− b = 0 with roots

(α, β) =

(

a +
√
a2 + 4b

2
,
a−

√
a2 + 4b

2

)

.

When a ≥ 1, we have that α > 1 > |β|. We assume that ∆ = a2 + 4b > 0
and that α/β is not a root of unity. This only excludes the pairs (a, b) ∈
{(0,±1), (±1,−1), (2,−1)} from the subsequent considerations. Here, we
look at the relation

Um | U s
n+k − U s

n, (2)

with positive integers k, m, n, s. Note that when (a, b) = (1, 1), then
Un = Fn is the nth Fibonacci number. Taking k = 1 and using the relations

Fn+1 − Fn = Fn−1,

Fn+1 + Fn = Fn+2,

F 2
n+1 + F 2

n = F2n+1,

it follows that relation (2) holds with s = 1, 2, 4, and m = n−1, n+1, 2n+1,
respectively. Further, in [3], the authors assumed that m and n are coprime
positive integers. In this case, Fn and Fm are coprime, so the rational
number Fn+1/Fn is defined modulo Fm. Then it was shown in [3] that if
this last congruence class above has multiplicative order s modulo Fm and
s 6∈ {1, 2, 4}, then

m < 500s2. (3)

In this paper, we study the general divisibility relation (2) and prove the
following result.

Theorem 1. Assume b ∈ {±1}, (a, b) 6∈ {(0,±1), (±1,−1), (±2,−1)} and
that divisibility (2) holds. Then

m < max{9(n + k), 1440000(sk)2}. (4)
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2 Preliminary results

We put V := V(a, b) = {Vn}n≥0 for the Lucas companion of U which has
initial values V0 = 2, V1 = a and satisfies the same recurrence relation
Vn+2 = aVn+1 + bVn for all n ≥ 0. The Binet formulas for Un and Vn are

Un =
αn − βn

α− β
, Vn = αn + βn for all n ≥ 0. (5)

The next result addresses the period of {Un}n≥0 modulo Um, where m ≥ 1
is fixed.

Lemma 2. The congruence

Un+4m ≡ Un (mod Um) (6)

holds for all n ≥ 0, m ≥ 2.

Proof. This follows because of the following identity

Un+4m − Un = UmVmVn+2m,

which can be easily checked using the Binet formulas (5).

The following is Lemma 1 in [3]. It has also appeared in other places.

Lemma 3. Let X ≥ 3 be a real number. Let a and b be positive inte-
gers with max{a, b} ≤ X. Then there exist integers u, v not both zero with
max{|u|, |v|} ≤

√
X such that |au + bv| ≤ 3

√
X.

Lemma 4. Let v be any positive integer and ζ 6= 1 be such that ζv = 1.
Then 1 − ζ divides v in Q(e2πi/v).

Proof. Clearly,

1 − ζ |
∏

ηv=1
η 6=1

(1 − η) =
d

dX
(Xv − 1)

∣

∣

∣

X=1
= v.

Let ζ = e2πiu/v be a primitive root of unity of order v ≥ 1, where
1 ≤ u ≤ v is an integer coprime to v. The following lemma is the workhorse
of our argument.
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Lemma 5. Let a ≥ 1. Assume further that

α and
αk − (−b)kζ

αk − ζ
(7)

are multiplicatively dependent. Then

(i) (−b)k = −1, v = 4;

(ii) (a, b, k) = (1,−1, 1), (2,−1, 1), and v ∈ {1, 2};

(iii) (−b)k = 1, v ∈ {1, 2};

(iv) (a, b, k) = (4,−1, 1), and v ∈ {3, 4, 6};

Proof. We follow the method of proof of Lemma 2 from [3]. Note that α
and αk are already multiplicatively dependent. Thus, putting (α1, β1) :=
(αk, βk), and noting that −b1 = α1β1 = (−b)k, it suffices to first find all
instances when

αm
1 =

(

α1 − (−b1)ζ

α1 − ζ

)n

(8)

holds with some integers m, n not both zero. We distinguish two cases
according to the sign of b1.

Case 1. b1 = 1.

This is possible only when b = 1 and k is odd. This case is similar
with Lemma 2 in [3]. Let us reproduce the details here. If n = 0, then
αm
1 = 1, therefore m = 0, which is impossible. So, we assume that n 6= 0.

Let  L = Q(e2πi/v) = Q(ζ). Let K = Q(α).
Assume first that K is not contained in  L. Then K and  L are both

Galois extensions of Q whose intersection is trivial (i.e., equal to Q). Thus,
every Galois automorphism σ of G = Gal( L/Q) can be extended to a Galois
automorphism of the compositum M = K L of K and  L in such a way that
σ(α) = α. Applying an arbitrary such σ ∈ G to (8), we deduce that equation
(8) holds when we replace ζ by any conjugate of it. In particular, given
u1, u2 ∈ {1, . . . , v} both coprime to v, we have

(

α1 + e−2πiu1/v

α1 − e2πiu1/v

)m

= αn =

(

α1 + e−2πiu2/v

α1 − e2πiu2/v

)m

. (9)
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Taking absolute values in (9) and then extracting mth roots, we get

−1 +
2α2

1 + 2

α2
1 − 2α1 cos(2πu1/v) + 1

=
α2
1 + 2α1 cos(2πu1/v) + 1

α2
1 − 2α1 cos(2πu1/v) + 1

=

∣

∣

∣

∣

∣

α1 + e−2πiu1/v

α1 − e2πiu1/v

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

α1 + e−2πiu2/v

α1 − e2πiu2/v

∣

∣

∣

∣

∣

2

=
α2
1 + 2α1 cos(2πu2/v) + 1

α2
1 − 2α1 cos(2πu2/v) + 1

= −1 +
2α2

1 + 2

α2
1 − 2α1 cos(2πu2/v) + 1

,

giving
cos(2πu1/v) = cos(2πu2/v).

This gives

sin(2πu1/v) = ±
√

1 − cos(2πu1/v)2 = ±
√

1 − cos(2πu2/v)2

= ± sin(2πu2/v).

This argument shows that there exist at most 2 primitive roots of unity of
order v, therefore φ(v) ≤ 2. Thus, v ∈ {1, 2, 3, 4, 6}. Further,

α1 + ζ

α1 − ζ

is a unit so α1 − ζ is associated to α1 + ζ. Thus,

α1 − ζ | α1 + ζ = (α1 − ζ) + (ζ + ζ),

giving
α1 − ζ | ζ + ζ. (10)

The case ζ + ζ = 0 gives ζ = εi for some ε ∈ {±1}. Then

α1 + ζ

α− ζ
=

α1 − εi

α1 − εi
= 1,

and so (8) holds with m = 0 and any n. This is instance (i).
Assume now that ζ 6∈ {±i}. Then the number on the right–hand side

of (10) above belongs to {±1,±2} so it divides the integer 2. Since K 6⊂  L,
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it follows that there is an automorphism of M mapping α to β and fixing ζ.
Hence, we have that β1 − ζ | 2 as well, therefore

(α1 − ζ)(β1 − ζ) | 4,

or
−1 − ζ(α1 + β1) + ζ2 | 4.

Looping over the finitely many possibilities for ζ and the divisors of 4 in Q(ζ),
the above relation gives us that α1 +β1 = αk +βk ∈ {1, 2}. Since αk +βk =
U2k/Uk, by the Primitive Divisor Theorem of Carmichael (see [2]), we get
that if k ≥ 7, then U2k/Uk is divisible by a primitive prime factor of U2k

which is at least as large as 2k−1 ≥ 13. Since α1 +β1 ∈ {1, 2}, we infer that
k ≤ 6. Now trying all possibilities we only get that k = 1 and a ∈ {1, 2}.
Further, trying out all values of ζ = e2πiu/v with v ∈ {1, 2, 3, 6} and u
coprime to v and checking whether or not (α+ ζ)/(α− ζ) is multiplicatively
dependent over α, we only get the examples shown at (ii).

A similar argument applies when K ⊆  L. In this case, M =  L and
G = Gal(M/Q) is isomorphic with the group of invertible elements modulo
v which has order φ(v). Further, by Galois theory, there are exactly φ(v)/2
Galois automorphisms σ such that σ(α) = α. We deduce that there exists
a subset U ⊂ {1, 2, . . . , v} of positive integers coprime to v having exactly
φ(v)/2 elements, such that equation (8) holds for all ζ = e2πiu/v with all
u ∈ U . The preceding argument shows that

cos(2πu1/v) = cos(2πu2/v) holds for all u1, u2 ∈ U ,

therefore

sin(2πu1/v) = ± sin(2πu2/v) holds for all u1, u2 ∈ U .

This shows that the number of elements in U is at most 2, so φ(v) ≤ 4.
Hence, v ∈ {1, 2, 3, 4, 5, 6, 8, 10, 12}. Further, here we have the additional
information that  L contains the real quadratic field K. It then follows that:

(i) v = 5, 10, K = Q(
√

5), and α = ((1+
√

5)/2)ℓ for some positive integer
ℓ;

(ii) v = 8, K = Q(
√

2), and α = (1 +
√

2)ℓ for some positive integer ℓ;

(iii) v = 12, K = Q(
√

3), and α = (2 +
√

3)ℓ for some positive integer ℓ.
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Since b = 1 and k is odd, case (iii) above is not possible. Only case (i) and
(ii) are possible and then ℓ is odd. As before, we get the relation

α1 − ζ | ζ + ζ.

We take norms in  L and using (i) and (ii) above, we get a certain number
of possibilities for k and for ℓ (therefore, also for a). In fact we always get
k = ℓ = 1 and (u, v) ∈ {(2, 5), (3, 5), (3, 10), (7, 10), (3, 8), (5, 8)}. We now
checked that in fact for these six cases of ζ = e2πiu/v and corresponding α,
the elements α and (α+ζ)/(α−ζ) are in fact not multiplicatively dependent.

Case 2. b1 = −1.

In this case, either b = 1 and k is even, or b = −1. Here, we need to
study when α1 and (α1 − ζ)/(α1 − ζ) are multiplicatively dependent. When
ζ ∈ {±1} the second number is 1, so they are multiplicatively dependent
(we can take n = 0 and any m in relation (8)). This is instance (iii).

So, assume that ζ is non real, therefore that v ≥ 3. Since α1 is real, we
get that (α1−ζ)/(α1−ζ) has absolute value 1. Thus, taking absolute values
in equation (8) we get αm

1 = 1, therefore m = 0. Thus, n 6= 0, therefore

α1 − ζ

α1 − ζ
= η, (11)

where η is a root of unity. Let us exploit this relation. As before, we put
K = Q(α),  L = Q(ζ) and distinguish two cases.

Subcase 2.1 K 6⊆  L.

Relation (11) implies that

α1 − ζ | α1 − ζ = (α1 − ζ) + (ζ − ζ),

so α1 − ζ | ζ − ζ = ζ−1(1 − ζ2). The last number divides v by Lemma 4.
Further, since α 6∈ L, it follows that every Galois automorphism σ of  L can
be lifted to a Galois automorphism of the compositum M = K L such that
σ(α) = α. In particular,

α1 − ζ ′ | v,
for all primitive roots of unity ζ ′ of order v. Since β1 = 1/α1 is positive, the
above relation implies that

(
√
α1 − ζ ′

√

β1) | v
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in the number field Q(ζ,
√
α). Here,

√
α1 and

√
β1 denote the positive

determinations of these two square roots. Multiplying the above relations
over all primitive roots of unity ζ ′ of order v, we get

Φv(
√
α1,
√

β1) | v,

where Φn(X,Y ) stands for the homogenization of the cyclotomic polynomial
Φn(X). Since Φv(X,Y ) is symmetric in X and Y , it follows from the Funda-
mental Theorem of Symmetric Polynomials that Φv(X+Y ) = R(X+Y,XY )
for some polynomial R(X,Y ) ∈ Z[X,Y ]. Thus,

Φv(
√
α1,
√

β1) = R(
√
α1 +

√

β1, 1).

Since the degree of Φv(X,Y ) which is φ(v) is even, it follows that R(S, 1)
contains only monomials of even degree in S. Therefore, since

(
√
α1 +

√

β1)
2 = α1 + β1 + 2

is a positive integer, we get that Φv(
√
α1,

√
β1) is an integer divisor of v.

From the Primitive Divisor Theorem, or more precisely from the proof of it,
Φv(

√
α1,

√
β1) captures all the primitive prime factors of the vth term of the

Lehmer sequence L = {Ln}n≥0 of parameters (α2, β2) = (
√
α1,

√
β1) whose

general term is given by

Ln =

{αn
2
−βn

2

α2−β2
if n ≡ 1 (mod 2);

αn
2
−βn

2

α2

2
−β2

2

if n ≡ 0 (mod 2).

Recall that a primitive prime divisor of Lk has the property that it is con-
gruent to ±1 (mod k). It thus follows that Lv has no primitive divisors.
By a version of the Primitive Divisor Theorem first proved by Ward [5] (see
also [1]), we get that v ∈ {3, 4, 5, 6, 8, 10, 12}. This gives a certain number
of possibilities for u. We now need to discuss η. Since K 6⊆  L, it follows
that M is of degree 2 over  L. Let µ = e2πi/w be a generator of the group of
roots of unity in M. Clearly, this group contains ζ. If µ = ±ζj for some j,
it then follows that α1 ∈  L, therefore K ⊂  L, a contradiction. This shows
that φ(w) > φ(v), therefore φ(w) = [M : Q] = 2[ L : Q] = 2φ(v). Writing
w = λv with some integer λ, the only possibilities are:

(i) λ = 2 and v is even;

(ii) λ = 3 and v is coprime to 3;

(iii) λ = 4 and v is odd;
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(iv) λ = 6 and v is coprime to 6.

This gives us a certain number of possibilities for (v,w) so a certain number
of possibilities for (ζ, η) = (e2πu/v , e2πu1/w) where 1 ≤ u ≤ v, 1 ≤ u1 ≤ w,
gcd(u, v) = gcd(u1, w) = 1 and

α1 − ζ

α1 − ζ
= η.

The above relation gives us

α1 =
ζ − ζη

1 − η
. (12)

We generated all the numbers appearing on the right–hand side of (12) and
checked whether the sum of such a number and its reciprocal (namely, β1),
is an integer. We get a certain number of possibilities for α1 +β1 = U2k/Uk,
and then we calculate all possible values for a and k. In fact, all examples
have α1 + β1 = 4, and b1 = −1, so α1 = 2 +

√
3, which is the fundamental

unit in Z = [
√

3]. We get that k = 1 and we check that for each v ∈ {3, 4, 6},
there exists u such that with ζ = e2πu/v, we have that (α − ζ)/(α − ζ) is a
root of unity. This is instance (iv).

Subcase 2.2 K ⊆  L.

In this case, we have
α1 − ζ

α1 − ζ
= ±ζj (13)

for some integer j ∈ {1, . . . , v}. If j = v, we get α−ζ = ±(α−ζ). This leads
to ζ = ζ (when the sign is +), which is not allowed since ζ is not real, or
α = (ζ+ζ)/2 = cos(2πu1/v), which is not possible either since α > 1. Thus,
j 6= v. If j = v − 1, we get (α− ζ)/(α − ζ) = ±ζ, which leads to α ∈ {±1},
which is not allowed either. So, j ∈ {1, . . . , v − 2}. Let d1 = gcd(j, v), and
write j1 = j/d1, v1 = v/d1. Then η := ±ζj has degree φ(v1) over Q. The
relation

α1 − ζ

α1 − ζ
= η leads to ηζ2 + (α1 − α1η)ζ − 1 = 0,

showing that ζ is of degree at most 2 over Q(α, η), a field of degree at most
2φ(v1) over Q. It thus follows that φ(v) ≤ 4φ(v1) = 4φ(v/d1) ≤ 4φ(v)/φ(d1),
which gives φ(d1) ≤ 4, so d1 ≤ 12.
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A similar argument shows that if we put d2 = gcd(j + 1, v), then d2 ≤ 6.
Indeed, to see why, let v2 = v/d2, put η′ = ±ζj+1, and note that our relation
is

α1 − ζ

α1 − ζ
= ζ−1η′, leading to ζ ∈ Q(η′, α).

The last field above has degree at most 2φ(v2). So, we get the inequalities
φ(v) ≤ 2φ(v2) ≤ 2φ(v/d2) ≤ 2φ(v)/φ(d2), giving φ(d2) ≤ 2, so d2 ≤ 6.

We now need one lemma.

Lemma 6. Let N ≥ 2 be a positive integer and x ≥ 1 be any real number.
Let φ(x;N) = #{1 ≤ m ≤ x : gcd(m,N) = 1}. Then

φ(x;N) ≥ xφ(N)/N − τ(N)/2,

where τ(N) is the number of divisors of N .

Proof. Letting a(x, d) = #{1 ≤ m ≤ x : d | m}, by the Principle of Inclusion
and Exclusion, it follows that

φ(x;N) =
∑

d|N
µ(d)a(x; d).

Clearly, a(x; d) = ⌊x/d⌋ = x/d + ζd,x, where ζd,x ∈ (−1, 0). Thus,

φ(x;N) =
∑

d|N
µ(d) (x/d + ζd,x) = x

∑

d|N
µ(d)/d +

∑

d|N
µ(d)ζd,x.

The “main term” above is φ(N)/N . In the error, we have that µ(d) = 1 for
2ω(N)−1 divisors of N , where ω(N) is the number of distinct prime factors
of N . For the remaining divisors, µ(d) is 0 or negative. Hence,

φ(x;N) ≥ xφ(N)/N − 2ω(N)−1 ≥ xφ(N)/N − τ(N)/2,

which is what we wanted.

Choose x := (v1/2 + 1 + τ(v)/2)v/φ(v). Assume that

x < v. (14)

Then the interval [1, x] is contained in [1, v]. Lemma 6 shows that there
exist positive integers x1 < x2 < · · · < xt in [1, x] all coprime to v with
t ≥ v1/2 + 1. Now look at jx1, . . . , jxt. We claim that they are all distinct
modulo v. If not, there exist i1 6= i2 such that j(xi1 − xi2) ≡ 0 (mod v).
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Canceling d1, we get that j1(xi1 −xi2) ≡ 0 (mod v1). Since j1 is coprime to
v1, we get

v1 ≤ |xi1 − xi2 |.
The left hand-side above is v/d1 ≥ v/12, while the right–hand side above is
positive and less than max{xi1 , xi2} ≤ x. Hence, we get

v < 12x. (15)

Suppose that v is large enough such that (15) does not hold. Then jx1, . . . , jxt
are all distinct modulo v. Since t > v1/2 + 1, there exists i1 6= i2 such that
|jxi1 − jxi2 | ≤ v1/2. We now apply to relation (13) the two Galois automor-
phisms of  L mapping ζ in ζxi1 and ζxi2 , respectively, getting

αε1
1 − ζ

xi1

αε1
1 − ζxi1

= ±ζjxi1 and
αε2
1 − ζ

xi2

αε2
1 − ζxi2

= ±ζjxi2 .

Here, ε1,2 ∈ {±1}. Dividing the above relations side by side we get

(αε1ζxi1 − 1)(αε2 − ζxi2 )

(αε1 − ζxi1 )(αε2ζxi2 − 1)
= ζ(j+1)(xi1

−xi2
). (16)

We have (j + 1)(xi1 − xi2) is not zero modulo v, since that would imply,
by an argument used previously and via the fact that d2 ≤ 2, that v < 6x,
which is not the case since (15) does not hold. Expanding (16) we get a
polynomial equation which is non-trivial since its free term is either αε2 or
αε1 according to whether (j+1)(xi1−xi2) is positive or negative. The degree
of this polynomial is at most

|j(xi1 − xi2)| + |xi1 − xi2 | + xi1 + xi2 < v1/2 + 3x.

This is a polynomial for ζ with coefficients in K. Thus, this gives a polyno-
mial relation for ζ with coefficients in Q of degree at most

2v1/2 + 6x.

Assuming
2v1/2 + 6x < φ(v), (17)

we get a contradiction. Thus, we get that the only candidates for v are the
ones for which at least one of the inequalities

v < 12(v1/2 + 1 + τ(v)/2)v/φ(v) = 2x

φ(v) ≤ 2v1/2 + 6(v1/2 + 1 + τ(v)/2)v/φ(v) = 2v1/2 + 6x

11



holds. Using the inequalities τ(v) ≤
√

3v and

v/φ(v) < 1.79 log log v + 2.5/ log log v

(see inequality (3.41) in [4]), we get that the last inequalities above are
implied by

v < 12((1 +
√

3/2)v1/2 + 1)(1.79 log log v + 2.5/ log log v);

v < (2v1/2 + 6((1 +
√

3/2)v1/2 + 1)(1.79 log log v + 2.5/ log log v))

×(1.79 log log v + 2.5/ log log v),

and they both imply that v < 116, 000. A quick computation with Mathe-
matica revealed only 1972 candidates, the largest one being 30, 030. We now
checked for each v among these candidates and for each j ∈ {1, . . . , v − 2},
whether the number γ satisfying

γ − ζ1
γ − ζ1

= ±ζj1 ,

with ζ1 = e2πi/v has the property that γ + 1/γ is a natural number (note
that γ = α±1

1 according to whether the Galois automorphism of  L mapping
ζ = e2πu/v to ζ1 = e2πi/v fixes α1 or sends it into its conjugate β1 = α−1

1 ).
No new examples were found.

This completes the proof of this lemma.

The following is a generalization of Lemma 4 from [3].
For a prime number p and a nonzero integer m, we put νp(m) for the

exponent of the prime p in the factorization of m. For a finite set of primes
S and a positive integer m, we put

mS =
∏

p∈S
pνp(m)

for the largest divisor of m whose prime factors are in S. For any prime
number p we put fp for the index of appearance in the Lucas sequence
{Un}n≥0, which is the minimal positive integer k such that p | Uk.

Lemma 7. Let a ≥ 1. If S is any finite set of primes and m is a positive
integer, then

(Um)S ≤ α2m lcm[Ufp : p ∈ S].
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Proof. For a prime p, let fp be its order of appearance in the Lucas sequence
{Un}n≥0, which is the minimal positive integer k such that p | Uk. It is well-
known that

νp(Um) =























0 if m 6≡ 0 (mod fp);
νp(Ufp) + νp(m/fp) if m ≡ 0 (mod fp), p is odd;
ν2(U2) + ν2(m/2) if m ≡ 0 (mod 2), p = 2, a ≡ 0 (mod 2);

ν2(U3) if m ≡ 3 (mod 6), p = 2, a ≡ 1 (mod 2);
ν2(U6) + ν2(m/2) if m ≡ 0 (mod 6), p = 2, a ≡ 1 (mod 2).

In particular, the inequality

νp(Um) ≤ νp(Ufp) + νp(m) + δp,2

always holds with δp,2 being 0 if p is odd or p = 2 and a is even and
ν2((a2 + 3b)/2) if p = 2 and a is odd. We get that

(Um)S ≤





∏

p∈S
pνp(Ufp )













∏

p|m
p>2

pνp(m)









2ν2(m)+ν2((a2+3b)/2

< α2m lcm[Ufp : p ∈ S],

which is what we wanted to prove. For the last inequality above, we used
the fact that 2ν2((a

2+3b)/2) ≤ (a2 + 3b)/2 = (α2 + β2)/2 < α2.

3 Proof of Theorem 1

We replace s by lcm[12, s] | 12s, and as such we may assume that 12 |
s. In particular, s is even. If a < 0, then we change a to −a > 0
leaving b unchanged. Then (α, β) changes to (−α,−β) and Un(−a, b) =
(−1)n−1Un(−a, b). Since s is even, U s

n+k −U s
n remains unchanged while Um

either remains unchanged or changes sign. Hence, we may assume that a ≥ 1
without changing the divisibility relation (2). Thus, α > 1 ≥ |β| = α−1. We
shall show that

m ≤ max{9(n + k), 10000(ks)2}, (18)

which will imply (4). By the Binet formula (5), we get easily that the
inequality

αn−2 ≤ Un ≤ αn is valid for all n ≥ 1. (19)
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We also assume that m ≥ 10000k. Since Un is periodic modulo Um with
period 4m (Lemma 2), we may assume that n ≤ 4m. We split Um into
various factors.

Step 1. We put S := {p : p | s} and bound D := (Um)S .

By Lemma 7 and the fact that fp ≤ p + 1 for all p | s, we get

D ≤ α2m
∏

p|s
Up+1 < mα2+

∑
p|s(p+1) < αs+3+logm/ logα, (20)

where we used the fact that
∑

p|s p + 1 ≤ s + 1, which is easily proved by
induction on the number of distinct prime factors of s.

Step 2. We put A := gcd
(

Um, (U6
n+k − U6

n)(U2
n+k + U2

n)
)

and bound A.

We certainly have

A ≤ (U6
n+k − U6

n)(U2
n+k + U2

n) < 2U8
n+k < α2+8(n+k). (21)

Step 3. We put E =
Um

gcd(AD,Um)
, and bound E.

We shall estimate the number E by using the fact that E is coprime to
2s. Write

U s
n+s − U s

n = (U6
n+k − U6

n)(U2
n+k + U2

n)
∏

ζ:ζs=1
ζ 6∈{±1,±i,±ω,±ω2}

(Un+k − ζUn),

where ω = e2πi/3. Thus, divisibility (2) tells us in particular that

Um | AD
∗
∏

ζ:ζs=1
ζ 6∈{±1,±i,±ω,±ω2}

(Un+k − ζUn),

which shows that

E |
∏

ζ:ζs=1
ζ 6∈{±1,±i,±ω,±ω2}

(Un+k − ζUn). (22)

Let K = Q(e2πi/s, α), which is a number field of degree d equal to φ(s)
or to 2φ(s). Assume that there are ℓ roots of unity ζ participating in the

14



product appearing in the right–hand side of (22) and label them ζ1, . . . , ζℓ.
Clearly, ℓ = s− 8. Write

Ei = gcd(E,Un+k − ζiUn) for all i = 1, . . . , ℓ, (23)

where Ei are ideals in OK. Then relations (22) and (23) tell us that

EOK |
ℓ
∏

i=1

Ei. (24)

Our next goal is to bound the norm NK/Q(Ei) of Ei for i = 1, . . . , ℓ. First of
all, Um ∈ Ei. Thus, with formula (5) and the fact that β = (−b)α−1, we get

αm ≡ (−b)mα−m (mod Ei).

Multiplying the above congruence by αm, we get

α2m ≡ (−b)m (mod Ei). (25)

We next use formulae (5) and (23) to deduce that

(αn+k − (−b)n+kα−n−k) − ζ(αn − (−b)nα−n) ≡ 0 (mod Ei), (ζ = ζi).

Multiplying both sides above by αn, we get

α2n(αk − ζ) − (−b)n+k(α−k − (−b)kζ) ≡ 0 (mod Ei). (26)

Let us show that αk − ζ and Ei are coprime. Assume this is not so and let
π be some prime ideal of OK dividing both αk − ζ and Ei. Then we get
αk ≡ ζ (mod π) and so α−k ≡ (−b)kζ (mod π) by (26). Multiplying these
two congruences we get 1 ≡ (−b)kζ2 (mod π). Hence, π | 1−(−b)kζ2. If this
number is not zero, then, (−b)kζ2 is a root of unity whose order divides 2s,
so, by Lemma 4, we get that π | 2s, which is impossible because π | Ei | E,
and E is an integer coprime to 2s. If the above number is zero, we get that
ζ2 = ±1, so ζ ∈ {±1,±i}, but these values are excluded at this step. Thus,
indeed αk − ζ and Ei are coprime, so αk − ζ is invertible modulo Ei. Now
congruence (26) shows that

α2n+k ≡ (−b)nζ

(

αk − (−b)kζ

αk − ζ

)

(mod Ei). (27)

We now apply Lemma 3 to a = 2m and b = 2n + k ≤ 8m + k < 9m with
the choice X = 9m to deduce that there exist integers u, v not both zero
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with max{|u|, |v|} ≤
√
X such that |2mu + (2n + k)v| ≤ 3

√
X. We raise

congruence (25) to u and congruence (27) to v and multiply the resulting
congruences getting

α2mu+(2n+k)v = (−b)mu+nvζv
(

αk − (−b)kζ

αk − ζ

)v

(mod Ei).

We record this as

αA ≡ η

(

αk − (−b)kζ

αk − ζ

)B

(mod Ei) (28)

for suitable roots of unity η and ζ of order dividing 2s with ζ not of order
1, 2, 3, 4, or 6, where A = 2mu + (2n + k)v and B = v. We may assume
that A ≥ 0, for if not, we replace the pair (u, v) by the pair (−u,−v), thus
replacing (A,B) by (−A,−B) and η by η−1 and leaving ζ unaffected. We
may additionally assume that B ≥ 0, for if not, we replace B by −B and
ζ by (−b)kζ, again a root of unity of order dividing 2s but not of order
1, 2, 3, 4, or 6 and leave A and η unaffected. Thus, Ei divides the algebraic
integer

Ei = αA(αk − ζi)
B − ηi(α

k − (−b)kζi)
B . (29)

Let us show that Ei 6= 0. If Ei = 0, we then get

αA = ηi

(

α− (−b)kζi
α− ζi

)B

,

and after raising both sides of the above equality to the power 2s, we get,
since η2si = 1, that

α2sA =

(

αk − (−b)kζi
α− ζi

)2Bs

.

Lemma 5 gives us a certain number of conditions all of which have ζi or a
root of unity of order 1, 2, 3, 4, or 6, which is not our case. Thus, Ei is not
equal to zero. We now bound the absolute values of the conjugates of Ei.
We find it more convenient to work with the associate of Ei given by

Gi = α−⌊A/2⌋Ei = αA−⌊A/2⌋(αk − ζi)
B − α−⌊A/2⌋ηi(α

k − (−b)kζi)
B .

Note that

A ≤ |2m + (2n + k)v| ≤ 3
√
X = 9

√
m, and B = |v| ≤

√
X = 3

√
m.
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Let σ be an arbitrary element of G = Gal(K/Q). We then have that σ(ηi) =
η′i, σ(ζi) = ζ ′i, where η′i and ζ ′i are roots of unity of order dividing 2s.
Furthermore, σ(α) ∈ {α, β}. If σ(α) = α, we then get

|σ(Gi)| = |αA−⌊A/2⌋(αk − ζ ′i)
B − η′iα

−⌊A/2⌋(α− (−b)kζ ′i)
B |

≤ α(A+1)/2(αk + 1)B + (αk + 1)B

≤ 2α(A+1)/2(α + 1)Bk ≤ α2+(9
√
m+1)/2+6

√
mk

≤ α11
√
mk, (30)

while if σ(α) = β, we also get

|σ(Gi)| = |βA−⌊A/2⌋(βk − ζ ′i)
b − β−⌊A/2⌋η′i(β

k − (−b)kζ ′i)
B |

≤ (α−k + 1)B + αA/2(α−k + 1)B

= αB + αA/2+B ≤ 2αA/2+B ≤ α2+4.5
√
m+6

√
m

= α11
√
mk.

In the above, we used the fact that α−k + 1 ≤ α−1 + 1 ≤ α. In conclusion,

inequality (30) holds for all σ ∈ G. Thus, if we write G
(1)
i , . . . , G

(d)
i for the

d conjugates of Gi in K, we then get that

|NK/Q(Ei)| ≤ |NK/Q(Ei)| = |NK/Q(Gi)| ≤ α11dk
√
m,

where the first inequality above follows because Ei divides Ei; hence Gi, and
Ei 6= 0. Multiplying the above inequalities for i = 1, . . . , ℓ, we get that

Eℓ = NK/Q(E) = NK/Q (EOK) ≤ NK/Q







ℓ
∏

i=1
Ei 6=0

Ei







≤
ℓ′
∏

i=1

NK/Q(Gi) ≤ α11dℓk
√
m,

therefore
E ≤ α11kd

√
m ≤ α22kφ(s)

√
m < α8ks

√
m. (31)

In the above, we used that d ≤ 2φ(s), and φ(s) ≤ s/3, because 12 | s.

Step 4. The final inequality.

Inequality (19) together with estimates (20), (21) and (31), give

αm−2 ≤ Um = DAE ≤ αs+3+logm/ logα+2+8(n+k)+8ks
√
m.
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Thus,
m < (s + 7 + 3 logm) + 8(n + k) + 8ks

√
m.

Since m ≥ 10000, one checks that s + 7 + 3 logm < 3ks
√
m. Hence,

m ≤ (s + 7 + 3 logm) + 8(n + k) + 8ks
√
m < 8(n + k) + 11ks

√
m. (32)

If m ≤ 9(n+k), we are through. Otherwise, n+k ≤ m/9, so (32) implies that
m ≤ 8m/9 + 11ks

√
m, therefore m < 100ks

√
m, giving m < 10000(ks)2,

which is what we wanted to prove.
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