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Coherent Cerenkov radiation has been investigated previously in the time domain for an infinite
path. The present calculations for a finite path length show an effect analogous to diffraction (in
the frequency domain) in which radiation fields appear both at Cerenkov angles and at other angles.
The latter have previously been named electromagnetic pulse fields.

I. INTRODUCTION

Cerenkov radiation occurs when charges move faster
than radiation in a medium. Most work'~* is concerned
with optical radiation produced by a point charge, and in-
volves the Fourier spectra of these fields. Here, in con-
trast, we explore the time dependence of the radiation
fields, using our earlier® formulation to describe the radia-
tion from a bunch of electrons passing through an infinite
medium; however, now the medium has finite length,
which causes diffraction so that the radiation is produced
at angles other than the usual Cerenkov angle. This
spreading by diffraction was investigated earlier in the
Fourier-expansion approach,®~® but using the present
time-dependent fields, new insights are developed, and for
shorter paths the Cerenkov fields are related to other
forms of radiation, namely, what is referred to as elec-
tromagnetic pulse’ (EMP), transition, and ordinary dipole
radiation. It is much easier to understand Cerenkov radi-
ation from a finite-size charge than from a point charge;
in the former case, the Cerenkov fields remain finite but
become singular for a point charge.'”

II. TIME DEPENDENCE OF FIELDS

Let all charges within a bunch move along the z axis
with the same velocity v, which is larger than the velocity
¢ of radiation in the medium. Let ¢y be the velocity of
radiation in a vacuum, let s>=x2+y? and assume the
volume charge density p, has the form

Pu(r,t)=po(z —vt)8(x)8(y) , (1)

where p, represents an arbitrary line density. Following
our earlier work,’ the vector potential is

\ - ’
Alnn=—= [ R 'po(w)dz’ @)
where the variable ¥ =z’ —vt’ becomes
u=z—ut +%[s2+(z -z, (3)

Retardation is included by the form of u in Eq. (3). The
magnetic field B has radiation terms resulting from tak-
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ing the derivatives of py in Eq. (2). This leads to B in the
6 direction of cylindrical coordinates, with a magnitude
v s .
B=_ J gapiwaz’ . @
An approximate evaluation of Eq. (4) proceeds as follows:
u(z') is plotted as a function of z’. For further calcula-
tion assume pp has linear rising and falling ramps, of
width a, separated by a distance b. Then p; consists of
two opposite polarity square pulses. For early times, the
u curve is high (see Ref. 5, Fig. 1) and the integrand is
zero for all values of z'. As time increases, the u curve
drops and the minimum intersects the p, pulse, and con-
tributes to the integral in Eq. (4). The field E may also be
calculated; in Ref. 5 it was shown that E is perpendicular
to B and to R,,, and R,,, the vector from the particle (at
the retarded time) to the observer, is at an angle of 6, to
the z axis. Then E/B =c/cy; both the fields fall off as
R~12 appropriate for radiation from a cylindrical
source, and the total energy radiated agrees with the
Fourier approach. The two opposite pulses of the radia-
tion field have the same separation as the front and rear
slopes of the current pulse.
We now calculate the radiation fields for the case of a
finite path. The physical situation shown in Fig. 1 is one
in which a beam emerges at z'=0 from an accelerator,

(A)

BEAM |
SOURCE ' z

FIG. 1. For a finite path length Z, an observer in regions A
or C finds EMP radiation, shown in Fig. 4 and developed in
Secs. IIA and IIC. In region B, a Cerenkov field pulse
described in Sec. II B occurs.
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passes through a dielectric medium and at z'=2Z, stops in
an absorber. The path (usually air) from z'=0 to Z is the
radiator. The beam bunch has a linear rising ramp of
length a, is then constant and has a linear decrease of
length a, with an effective length b, from the midpoint of
the rise to the midpoint of the fall.

The calculation of the fields is based on Eq. (4) for B;
corresponding results will hold for E. We again assume
that s/R? is about constant in the range of integration
and may be factored out. Then s /R =sin6 and we have

_ v? sing

o R fpo(u)dz. (5)

The main difference between the calculations below and
those done previously® is that the range of z’ is finite,
from 0 to Z, to represent a finite length (Z) of radiation
source. The results of the integration depend on the rela-
tion of various parameters.

A. Outside the Cerenkov cone, Z long

Figure 2 represents the situation involved in evaluating
Eq. (5). The u(z') curve moves down in time [Eq. (3)].
For early times, the integrand is always zero. Later the u
curve moves down and intersects the dotted rectangle
representing the region of u and z’ where the integrand is
constant. In the situation shown, the integral builds up to
a peak value in a time interval a /v, and the integral satu-
rates at the value pyAz =pgpa divided by the slope of the u
curve. From Eq. (3), the slope is

Qu _,_ v z—7'
az' - c [s2+(z ___zl)2]1/2
=1—2cos6 . (6)
[

Furthermore pya is the peak value of p, which is Iycq /v,
where I is the peak current.
Thus the integral saturates at

p’o

FIG. 2. Variable u plotted as a function of z’. As time in-
creases, the curves are displaced downward. The derivative of
the current pulse is shown. When the u(z') first intersects the
po pulse, the integrand of Eq. (4) becomes nonzero, and the
Cerenkov pulse starts (Sec. II).
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Bmax =

where R is measured from the start of the source, z'=0,
to the observer, and it makes an angle 6 to the z axis.

The rise time was a /v, a similar fall time occurs, and
the duration of the pulse is given by Z times the slope of
the u curve divided by v, or Z[1—(v/c)cos€]/v. Because
this combination appears often, we define the effective
length
. (8)

Z,=Z 1—-%cos(9

The significance of Z, is that it yields the time differ-
ence for two signals emitted by a given charge at two
points separated by a distance Z in the laboratory. Note
that Z,=0 at the Cerenkov angle, as expected, because
signals emitted at 6, from all parts of the path reach a
distant observer at the same time.

Thus we have, for the leading ramp of the current
pulse, a field at the observer of value given by Eq. (7) with
lengths shown in Fig. 3(a). Here the lengths are times
multiplied by v. Also shown is the negative field pulse
caused by the back ramp of the current pulse. The two
pulses combine to give the symmetric pulse of Fig. 3(b),
which a separation that is the larger of Z, or b, and a
duration that is the smaller of Z, or b.

B. On the Cerenkov cone

If the observer is in the Cerenkov region (region B in
Fig. 1), the rectangular region of integration in Fig. 1 is
centered about the minimum in the u (z’) curve. If Z is
large, the integral for the field is the same as in our earlier
paper. The pulse starts when the u(z’) curve, as it ad-
vances down in time, becomes tangent to the rectangular
integration region. The integral increases as ¢'/2 until the
u curve is tangent to the lower boundary, and then de-
creases, again proportional to ¢!/2. The result is

ﬂ |——Z—»‘ (a)
B| rad )

|
fe— S —>

FIG. 3. Field pulse outside the Cerenkov cone for finite path
length. (a) shows the positive and negative pulses separately,
whereas (b) shows the composite field. The separation S is the
larger of Z, or b, whereas the duration D is the smaller (Secs.
ITA and I1C).
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Bmax= 3/20
¢

¢* Ry tan

The positive and negative pulses have rise and fall times
of a /v and are separated by b /v. The field falls as 1/R,,
as one proceeds outward at a fixed angle with
s =R,,sinf,.

If the path is short, the B field pulse, as a function of
time, increases as ¢'/2 as noted above, but the maximum
value of the integral for Eq. (5) occurs when the u(z’)
curve first intersects the vertical limits (0 and Z) of in-
tegration of the rectangular region in the u-z’ plane.
Then the maximum magnetic field becomes

p? sinf,
cco R,
p? sin@c , Z

cco R, poaa

Brax=

polu)Z

Eliminating pg in terms of I, yields

v sinBc Z
— I,— . (11
R, 0q )

Bmax =

In this case, positive and negative pulses of width a
have a separation b, which is the same as for the long ra-
diator, but the pulses have flat tops.  _

If the observer moves out along the Cerenkov cone, the
long-path case changes into the short-path case. In the
former, the source is long and the observer sees a field as-
sociated with cylindrical symmetry. But as the observer
moves out, the radiator of length Z appears to be short,
leading to the R ~' field of Eq. (11) instead of the R ~!/
(cylindrical) field of Eq. (9). The transition from the
cylindrical wave to the spherical wave occurs when 2Az
[defined in Eq. (18) of Ref. 5] is equal to Z. This yields
for the value of s, denoted by s;,

v 2

— =Z?. (12)
W2 tan’6,

That is, for s >s; [where s; satisfied Eq. (12)] the wave
becomes spherical and decreases as R ~! or s ~.

C. Outside the Cerenkov cone, Z short

In the Secs. IIA and IIB cases were considered in
which Z, > b > a, but other situations are possible. Be-
cause a is the rise and fall length of the current pulse, and
b is the width measured between the half-maximum
points, we must have b>a. We could then have
b>Z,>aand b>a>2Z, cases. For the latter the field is
again obtained by evaluating Eq. (5). The horizontal
range of integration is short so that the range of the vari-
able z' is always Z, if we are off the Cerenkov cone. The
result is

v? sinf
B= o R poZ . (13)
Noting that v/copea =1, the peak current in the pulse,
we find
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vsind Z
B=——7-—I,—.
¢c R %a
The field pulse at the observer will have a rise and fall
time Z, /v, the pulse length is a /v, and it will be followed
by a similar negative pulse at a time b /v later.

(14)

III. SEMI-INFINITE PATH

Let the beam emerge from the accelerator window at
z =0 and traverse a path, which is idealized to be infinite-
ly long. Starting from the point where the beam emerges,
define a cone with apex angle 6, relative to the beam. If
the observer is anywhere inside the cone, the minimum of
the u (2') curve will intersect the po(u) pulses, and the ra-
diation field will be the same as found in Ref. 5 and
described in Sec. IIB. The radiation fields will have a
positive and negative pulse separated by a distance b.
This region is dominated by Cerenkov radiation.

Now let the observer be outside the Cerenkov cone.
The situation is somewhat like that described in Sec. II
except that the horizontal range of integration is infinite
in the positive direction. The rising part, or head, of the
current pulse leads to fields which are essentially constant,
whereas the following tail gives an opposite field delayed
by a time b/v. We thus have a field pulse in the region
outside the Cerenkov cone of length b but only of one
sign. This is EMP, and in the above model both EMP
and Cerenkov radiation exist. The field lines are shown
qualitatively in Fig. 4.

IV. JUSTIFICATION OF MODEL

The model using a finite path is supported to represent
radiation from a bunch of electrons, emerging from an ac-
celerator system at z'=0, and stopped by some means at
z'=Z. No specific account has been made for these
boundaries; radiation by return currents has been neglect-
ed. Consider the following model: the charge that sud-
denly appears at z'=0 in all the cases is furnished by a
source electron pulse of lower velocity v, which moves in
the region z’ <0 and meets the previously specified pulse

BEAM PIPE ol e

FIG. 4. Qualitative representation of field lines for an elec-
tron bunch traversing a semi-infinite path. As the position of
the observer changes, the pulse form changes as shown in the in-
set. Cerenkov radiation occurs at the lower right; EMP pulses
occur to the upper left.
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at z'=0. To conserve charge at all times at z'=0,
by =bv, /v, a;=av, /v, and Io=1I,, where Iy, a,, and b;
are the current, rise, and width parameters for the slow
pulse approaching the boundary from negative z'.

The radiation pulse from the slow incoming electrons is
given by Eq. (7) with the appropriate lower velocity v,
substituted. By inserting a very low value of v, the field
becomes small, and because b, becomes small, the time in
which the field pulse occurs becomes short, so that the ra-
diated energy becomes very small. Thus we conclude that
inclusion of source and return currents, required to con-
serve charge, contribute little to radiation fields calculat-
ed, and may be neglected.

V. DISCUSSION

Cerenkov radiation has been described above and in
Ref. 5 in terms of time dependence of the radiation fields
caused by finite charge distributions such as are realized
by bunches emitted by an accelerator. In the usual
Fourier-expansion formalism, either a finite size of the
charge or dispersion in the medium limits the radiated
power at the high-frequency end of the spectrum, and a
finite length of path in the medium produces diffraction
of the angle of the emitted radiation about the Cerenkov
angle.
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The present time-dependent field formulation reveals
the following properties of Cerenkov radiation. (a) The
radiation is associated with dI /dt at the leading and trail-
ing parts of the pulse. (b) The Cerenkov radiation (for an
infinite path) consists of positive and negative pulses
separated by a distance, which is the puilse length. (c) For
a semi-infinite path, Cerenkov radiation appears within a
cone of angle 0., whose apex is at the start of the path.
An EMP pulse appears outside that cone. (d) For a finite
path of length Z, both Cerenkov and EMP appear, the
latter dominating as Z becomes smaller. For Z short and
B small, the sin6/(1—pBcosf) dependence of the EMP
pulse becomes sinf; thus the fields at low B becomes
essentially a single pulse of dipole radiation.

Finally, it should be noted that Cerenkov radiation is
not a different radiation to be added on to other forms of
radiation when v > ¢ (medium) but should appear natural-
ly in a correct calculation of the radiation. If v <c, radia-
tion also occurs but without the characteristic shock-
wave-like character of Cerenkov radiation.
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