
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

2015-09

Utilizing Robot Operating System (ROS) in robot

vision and control

Lum, Joshua S.

Monterey, California: Naval Postgraduate School

http://hdl.handle.net/10945/47300

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36739398?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

UTILIZING ROBOT OPERATING SYSTEM (ROS) IN
ROBOT VISION AND CONTROL

by

Joshua S. Lum

September 2015

Thesis Advisor: Xiaoping Yun
Co-Advisor: Zac Staples

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

September 2015
3. REPORT TYPE AND DATES COVERED

Master’s Thesis
4. TITLE AND SUBTITLE
UTILIZING ROBOT OPERATING SYSTEM (ROS) IN ROBOT VISION AND
CONTROL

5. FUNDING NUMBERS

6. AUTHOR(S) Lum, Joshua S.
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

The Robot Operating System (ROS) is an open-source framework that allows robot developers to create robust
software for a wide variety of robot platforms, sensors, and effectors. The study in this thesis encompassed the
integration of ROS and the Microsoft Kinect for simultaneous localization and mapping and autonomous navigation
on a mobile robot platform in an unknown and dynamic environment. The Microsoft Kinect was utilized for this
thesis due to its relatively low cost and similar capabilities to laser range scanners. The Microsoft Kinect produced
three-dimensional point-cloud data of the surrounding environment within the field-of-view. The point-cloud data was
then converted to mimic a laser scan. The odometry data from the mobile robot platform and the converted laser scan
were utilized by a ROS package for simultaneous localization and mapping. Once self-localization and mapping were
achieved, a ROS navigation package was utilized to generate a global and local plan, which translated to motor
velocities in order to move the robot to its objective. The results demonstrated that simultaneous localization and
mapping and autonomous navigation can be achieved through the integration of ROS and the Microsoft Kinect.

14. SUBJECT TERMS
Robotics, mobile robots, Microsoft Kinect, Pioneer P3-DX, ROS, SLAM, autonomous navigation

15. NUMBER OF
PAGES

91
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89)

Prescribed by ANSI Std. 239–18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

UTILIZING ROBOT OPERATING SYSTEM (ROS) IN ROBOT VISION AND
CONTROL

Joshua S. Lum
Captain, United States Marine Corps

B.S., U.S. Naval Academy, 2008

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2015

Author: Joshua S. Lum

Approved by: Xiaoping Yun
Thesis Advisor

Zac Staples
Co-Advisor

R. Clark Robertson
Chair, Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The Robot Operating System (ROS) is an open-source framework that allows robot

developers to create robust software for a wide variety of robot platforms, sensors, and

effectors. The study in this thesis encompassed the integration of ROS and the Microsoft

Kinect for simultaneous localization and mapping and autonomous navigation on a

mobile robot platform in an unknown and dynamic environment. The Microsoft Kinect

was utilized for this thesis due to its relatively low cost and similar capabilities to laser

range scanners. The Microsoft Kinect produced three-dimensional point-cloud data of the

surrounding environment within the field-of-view. The point-cloud data was then

converted to mimic a laser scan. The odometry data from the mobile robot platform and

the converted laser scan were utilized by a ROS package for simultaneous localization

and mapping. Once self-localization and mapping were achieved, a ROS navigation

package was utilized to generate a global and local plan, which translated to motor

velocities in order to move the robot to its objective. The results demonstrated that

simultaneous localization and mapping and autonomous navigation can be achieved

through the integration of ROS and the Microsoft Kinect.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. MOTIVATION FOR RESEARCH ..1
B. BACKGROUND ..3
C. PURPOSE AND ORGANIZATION OF THESIS ..4

II. DESIGN ..5
A. ROBOT OPERATING SYSTEM ..5

1. Filesystem Level ...5
2. Computation Graph Level ..6
3. Community Level ...10
4. Other ROS Concepts ...10

a. Unified Robot Description Format ...10
b. Coordinate Frames and Transforms.12
c. Visualization ..12

5. Basic ROS Commands ...13
B. HARDWARE ...14

1. Pioneer P3-DX ..14
2. The Microsoft Kinect ...14
3. Computer Processing Units ...17

III. SYSTEM DEVELOPMENT AND INTEGRATION ...19
A. INSTALLING AND CONFIGURING ROS ...19
B. P2OS STACK ...23
C. OPENNI STACK ...25
D. NAVIGATION STACK ..28

1. Sensor Information ..28
2. Odometry Information ..30
3. Transform Configuration ..31
4. SLAM – gmapping ...34
5. Autonomous Navigation – move_base ...35

IV. RESULTS ...41
A. MAPPING ..41
B. AUTONOMOUS NAVIGATION WITH MAP ..44
C. SIMULTANEOUS LOCALIZATION AND MAPPING46

V. CONCLUSIONS ..53
A. SUMMARY ..53
B. FUTURE WORK ...54

APPENDIX A. MASTER LAUNCH CODE ...57
APPENDIX B. NAVIGATION LAUNCH CODE ..59
APPENDIX C. NAVIGATION PARAMETER CODE ...61
APPENDIX D. KEYBOARD TELEOPERATION CODE ...63
APPENDIX E. MICROSOFT KINECT URDF CODE ...67
LIST OF REFERENCES ..69
INITIAL DISTRIBUTION LIST ...73

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

LIST OF FIGURES

Figure 1. Message format utilized in PointCloud2 message. ..6
Figure 2. Model of how the ROS nodes publish and subscribe to topics..........................7
Figure 3. A diagram of URDF of Pioneer P3-DX is shown utilizing the

urdf_to_graphiz tool. ..11
Figure 4. Commands used to create, parse, and check a URDF file.11
Figure 5. Tree diagram of transforms used by navigating Pioneer P3-DX is shown

utilizing the view_frames tool. ...12
Figure 6. Image captured by the Microsoft Kinect depth camera showing an

example of the parallax effect. The gray “shadows” are created by objects
blocking the coded infrared projection from the offset projector from
being captured by the CMOS sensor and results in a non-return.16

Figure 7. The Pioneer P3-DX with mounted SlimPro mini-computer and Microsoft
Kinect depth sensor. ...17

Figure 8. Commands used to download ROS. Replace <ros_distro> with
appropriate ROS distribution, for example: hydro. ..20

Figure 9. Command utilized to download the secure shell protocol in order to
initiate a secure shell session on a remote machine. ..20

Figure 10. Procedure to edit /etc/hosts configuration file to initiate a secure shell
session from a remote machine. ...21

Figure 11. Procedure to test if ROS has been properly configured for use on multiple
machines. ...22

Figure 12. Standard message format for the ROS odometry message, which sends x,
y, and z position, orientation, and linear and angular velocities with
covariance. ...23

Figure 13. Commands utilized to download and build the p2os stack.............................24
Figure 14. The left image was captured by the Microsoft Kinect’s depth camera,

which shows pixels with maximum range marked as purple and minimum
range marked as red. The right image demonstrates depth registration.26

Figure 15. Commands utilized to download and run openni_camera,
openni_launch, and openni_tracker as the driver and processors for
the Microsoft Kinect. ...27

Figure 16. The transforms produced by the openni_tracker package. This is the
psi pose used for joint tracking calibration. ...28

Figure 17. Depth registered point cloud with converted laser scan (red shows
minimum range and purple shows maximum range). The mesh of the
Pioneer P3-DX is created by the URDF. ...29

Figure 18. Commands utilized to download, run, and view
depthimage_to_laserscan; the package that converts point-cloud
depth images to range-finding laser scans. ..30

Figure 19. An example of the XML format for a URDF of a generic robot with a
manipulator arm. ..33

 x

Figure 20. Command utilized to install and run gmapping package, subscribe to the
/scan topic and publish the map in relation to the odometry frame.35

Figure 21. Depiction of a costmap, where the cells marked in red are considered to be
obstacles, cells marked in blue represent obstacles inflated by the
inscribed radius and orientation of the robot, and cells marked in gray are
considered to be free space. To avoid obstacle collision, the center point of
the robot should never cross a blue cell, from [34]..36

Figure 22. The difference between work space and configuration space. Note the
inflation of the obstacles and compaction of the robot to a single reference
point in configuration space, from [35]. ..36

Figure 23. Example images of path planning algorithms that can be used in the
global_planner package, from left to right, Dijkstra, potential field,
A*, from [36]. ..37

Figure 24. Flow chart of the internal communications in the move_base package,
from [38]. ...38

Figure 25. The navigation stack’s move_base package goes into recovery
procedures should the robot become stuck, from [38].39

Figure 26. Command-line inputs to record data from environment, conduct post-
capture SLAM, and save map data. ...42

Figure 27. Image depicting communication between nodes and topics utilizing the
tool rqt_graph...43

Figure 28. This image is a map of the interior of an office building created by the
teleoperated Pioneer P3-DX with Microsoft Kinect and gmapping
package. ...43

Figure 29. Command-line inputs to load map and start autonomous navigation.44
Figure 30. Image of Pioneer P3-DX conducting autonomous navigation on a pre-

constructed map. ..45
Figure 31. Image of the Pioneer P3-DX with the point-cloud data from the Microsoft

Kinect on a known mapped environment. ...45
Figure 32. Graphical representation of active nodes communicating via topics while

the robot was conducting autonomous navigation and SLAM.47
Figure 33. This image shows the global costmap while conducting autonomous

navigation and SLAM of the interior of an office building.49
Figure 34. This image depicts the results of a SLAM constructed map of the interior

of an office building. Note the rolling local costmap highlighted around
the robot. Also, note the green global path leading to the goal position and
orientation. ...49

Figure 35. Image of same office building produced by teleoperation SLAM.50
Figure 36. Image of costmap after the move_base package attempted in-place

rotations during recovery procedures. The false hallways, highlighted in
red, were produced from the skewed local map, placing inaccurate
obstacles. ..51

Figure 37. Example of three-dimensional SLAM utilizing the octomap package,
from [41]. ...55

 xi

LIST OF TABLES

Table 1. A few basic ROS commands. ..13
Table 2. Table of numerical permissions, with 7 being the most permissive and 0

being the most restrictive. ..25

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

API Application program interface

CMOS Complementary metal–oxide–semiconductor

GPS Global positioning system

IP Internet protocol

RGB Red, green, blue

ROS Robot Operating System

SLAM Simultaneous localization and mapping

SSH Secure shell

URDF Unified robot description format

XML Extensible markup language

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

First and foremost, I would like to thank my wife, Katelynn, for putting up with

all the late nights and early mornings, all while carrying and raising our son. No one can

ever question your strength, will, and patience for having to put up with me, and I thank

God for your support and encouragement. Next, I would like to recognize my thesis

advisors, Professor Xiaoping Yun and Commander Zac Staples. Professor Yun, you have

taught me so much about robotics and have helped develop a stronger desire to continue

to pursue research in the field. Commander Staples, thank you for introducing me to ROS

and guiding me in my first tentative steps in the Linux world. I never thought I would say

this, but I actually feel more comfortable with the black screen and white letters now. I

would also like to thank James Calusdian for his tireless efforts in supporting me and all

the students in the laboratory, Jeremy Dawkins for his aid in ROS networking, and Bill

Stanton for providing lab support from the United States Naval Academy. Additionally, I

would like to thank my thesis processor, Michele D’Ambrosio, for tediously reviewing

this thesis. Finally, I thank all those who provided assistance from the ROS Answers

community.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. MOTIVATION FOR RESEARCH

Autonomous navigation is considered to be one of the most challenging

competences of mobile robotics and requires four main components: perception,

localization, path planning, and motion control. For a robot to navigate, it must be able to

sense its environment in order to detect obstacles and a clear path to its goal. It must also

be able to identify or estimate its location relative to its objective and any obstacles that

may exist in its surroundings. While a robot may know its location in relation to its goal,

it must have the ability to determine a feasible and optimal path from its current location

to the desired goal while avoiding obstacles. Finally, the robot must have the means to

maneuver to its goal.

Within robotics, simultaneous localization and mapping (SLAM) is the problem

of using sensors to construct a map of an unknown environment while simultaneously

keeping track of its own location. It is a two-pronged issue, made complex because the

two parts of the problem rely on each other. In order to construct a map of its

environment, a robot must have a good estimation of its location. For self-localization, a

robot must have a relatively accurate map. The problem is further complicated in a

dynamic environment in which moving people or objects may exist. SLAM can be

simplified using a global positioning system (GPS); however, GPS is typically not

feasible indoors or the robot may be in an environment where GPS services have been

denied.

In order to conduct both autonomous navigation and SLAM, a robot must have a

capable sensor suite and the ability to process the data from the sensor, estimate its

location, construct a map, identify an optimal and feasible path from its current location

to the goal, and maneuver to the objective. This requires a robust software framework to

allow the robot platform, controllers, and sensors to work harmoniously in order to

achieve the objective.

 2

As humans, we have the natural ability to connect with our world through our

senses and to immediately process the information to make decisions almost

subconsciously. With the use of binocular vision, we are able to identify objects,

determine distances to obstacles, and mentally locate ourselves within a room. Even if the

lights of the room are suddenly turned off, we are able to cross the dark room while

avoiding the obstacles that were once visible because we are able to estimate our position

by the length of our strides and the natural accelerometer within our inner ear. Our brain

links all of our senses together and allows us to function more effectively and in a more

versatile way than any machine; however, as technology improves, machines and robots

draw ever closer to humans in their ability to perform tasks. While each simple task that

we perform is a complex and daunting task for a robot, research and development teams

are constantly working to improve the field of study to close the gap between robots and

humans.

Many consider the brain and the eye to be the most complex parts of the human

body. They allow humans the best methods to perceive their environment. In robotics,

there are many different sensors that allow the robot to sense its surroundings for the

purpose of navigation. The most widely used sensor, because of its accuracy and ability

to be used at short and long distances, is the laser-range scanner. Another type of sensor

that is widely used, because of the relatively low cost, is the sonar-range finder. The

limiting factor between these two popular range sensors is high cost or low accuracy.

With the development of the Microsoft Kinect and the subsequent release of its software

development kit, it has become one of the chief sensors for robotic researchers and

developers due to its relative low cost and the capabilities and accuracy of its depth

camera.

Robot Operating System (ROS) is becoming a widely popular method for writing

robot software, primarily because of its flexibility, robustness, and modularity.

Additionally, ROS is completely open-source, creating an environment in which the

spread of knowledge and learning is prevalent within the robotics community. Because of

these qualities, each modular part of ROS has a plug-and-play feel, allowing users,

 3

developers, and researchers to pick whichever packages are best for their robots and the

ability to configure them in a simple manner.

B. BACKGROUND

The topic of mobile robotics has recently become even more widespread and

popular, especially with the progress of technology and the increasing availability of

robot platforms and new robotic software architecture. Many autonomous and semi-

autonomous robots are being developed for specific purposes. Some examples of the uses

of mobile robots are space and sea exploration, elderly or disabled person assistance,

janitorial services, manufacturing, and even autonomous cars that operate on roadways

with human-driven cars and pedestrians.

Typically, when robots are designed, software developers and programmers must

write programs and code that is specifically designed for that particular robot. Because

different robot designs typically contain different controlling software, robot developers

must write diverse programs to meet the needs of each robot design. These programs can

often be used only by that robot design and are not modular in nature. Creating

modularity in terms of hardware is quite a simple task, but designing modularity in

software can be extremely difficult [1].

One particular area of importance for employing a mobile robot that can conduct

SLAM and autonomous navigation is the sensor systems utilized to gather information

about the robot’s surroundings. Popular range sensors include the laser range finder, the

laser range scanner, and the sonar array. The Microsoft Kinect offers an infrared depth

sensor, which offers a cheap yet relatively accurate solution for a robot to sense its

environment.

This thesis stems from a thesis [2] completed within the Naval Postgraduate

School’s Electrical and Computer Engineering Department in which the capabilities of

the Microsoft Kinect and its ability to detect thin or narrow obstacles, which were

undetectable by the sonar-range sensors of the Pioneer P3-DX mobile robot platform,

were investigated. An algorithm to process and analyze the point-cloud data from the

Microsoft Kinect was presented, and the point-cloud data was transformed into a two-

 4

dimensional map of the local environment in order to conduct obstacle avoidance.

MATLAB was utilized to process the captured point-cloud data, conduct obstacle

avoidance, and control the Pioneer P3-DX mobile robot [2].

In this thesis, we seek to investigate further the capabilities of the Microsoft

Kinect in conducting SLAM and autonomous navigation when integrated with the robust

and flexible software framework that ROS provides.

C. PURPOSE AND ORGANIZATION OF THESIS

The purpose of this thesis is to investigate the feasibility of the integration of ROS

and the Microsoft Kinect on a mobile robot platform for SLAM and autonomous

navigation without the use of a GPS or simulated indoor GPS. This thesis is divided into

five chapters. An explanation of ROS, the Microsoft Kinect, and the Pioneer P3-DX

mobile robot are provided in Chapter II. The integration of ROS software with the

Microsoft Kinect and Pioneer P3-DX, as well as the approaches used for SLAM and

autonomous navigation, are discussed in Chapter III. The focus of Chapter IV is the

results of experimentation and the effectiveness of the integration of ROS packages and

the Microsoft Kinect. A conclusion and a discussion of future work which can be

developed from this project are provided in Chapter V.

 5

II. DESIGN

The focus of Chapter II is the descriptions of the software and hardware utilized

in this thesis. Within the chapter, a detailed explanation of ROS, the Pioneer P3-DX

mobile robot platform, and the Microsoft Kinect depth sensor can be found.

A. ROBOT OPERATING SYSTEM

ROS is a Linux-based, open-source, middleware framework for modular use in

robot applications. ROS, originally designed by Willow Garage and currently maintained

by the Open Source Robotics Foundation, is a powerful tool because it utilizes object-

oriented programming, a method of programming organized around data rather than

procedures in its interaction with data and communication within a modular system [3].

ROS is divided into three conceptual levels: the filesystem level, the computation graph

level, and the community level.

1. Filesystem Level

The filesystem level is the organization of the ROS framework on a machine. At

the heart of the ROS’s organization of software is the package. A package may contain

ROS runtime execution programs, which are called nodes, a ROS-independent library,

datasets, configuration files, third-party software, or any software that should be

organized together [4]. The goal of the packages is to provide easy to use functionality in

a well-organized manner so that software may be reused for many different projects. This

organization, along with object-oriented programming, allows packages to act as modular

building blocks, working harmoniously together to accomplish the desired end-state.

Packages typically follow a common structure and usually contain the following

elements: package manifests, message types, service types, headers, executable scripts, a

build file, and runtime processes [4]. Package manifests provide metadata about a

package, such as the name, author, version, description, license information, and

dependencies. Packages may also contain message types, which define the structure of

data for messages sent within ROS, and service types, which define the request and

response data structures for services. Also within the filesystem level are repositories,

 6

which are a collection of packages sharing a common version control system. Both

packages and repositories help make ROS a modular system.

2. Computation Graph Level

The computation graph level is where ROS processes data within a peer-to-peer

network. The basic elements of ROS’s computation graph level are nodes, messages,

topics, services, bags, Master, and Parameter Server. Nodes are the small-scale

workhorses of ROS, subscribing to topics to receive information, performing

computations, controlling sensors and actuators, and publishing data to topics for other

nodes to use [5]. The rosnode tool is a useful command-line tool for displaying

information about ROS nodes. The command, rosnode list, displays all active nodes

running on the ROS Master. A package may have many nodes within it to accomplish a

group of computations and tasks, in which they all communicate with each other through

topics and services via messages.

The primary method in which nodes pass data to each other is by publishing

messages to topics. A message is simply a structuring of data so it is in a useful, standard

format for other nodes to use. Standard types, such as integer, floating point, and

Boolean, are supported as well as arrays. A standard message utilized in this thesis is the

sensor_msgs/PointCloud2 [6], which can be found in Figure 1. The command

rosmsg list prints all messages available to the ROS Master. The key to the

modularity of ROS is the method in which nodes typically communicate with each other

through topics.

Figure 1. Message format utilized in PointCloud2 message.

 7

Rather than communicating directly with each other, nodes usually communicate

through topics. Topics are named hubs in which nodes can publish and subscribe and are

the crux of what makes ROS an object-oriented and modular environment [7]. Nodes that

generate data are only interested in publishing that data, in the correct message format, to

the correct topic [7]. Nodes that require data simply subscribe to the topics of interest to

pull the required information. Multiple nodes may publish or subscribe to a single topic

as shown in Figure 2. This method of publishing and subscribing to topics decouples the

production of information from the consumption of information. It allows nodes within

different packages to work harmoniously with each other even though they may have

different origins and functions. The rostopic command-line tool is useful for

displaying debugging information about ROS topics. To display all active topics, the

command rostopic list is utilized. The command rostopic info

<topic_name> prints the message type accepted by the topic and publishing and

subscribing nodes. Another useful command-line tool is rostopic echo

<topic_name>, which prints messages published to a topic. The commands rostopic

hz <topic_name> and rostopic bw <topic_name> displays the publishing rate

and the bandwidth used by a topic, respectively. Additionally, data can be manually

published to a topic by using the rostopic pub <topic_name> command.

Figure 2. Model of how the ROS nodes publish and subscribe to topics.

 8

In addition to publishing messages to topics, nodes can also exchange a request

and response message as part of a ROS service. This is useful if the publish and subscribe

(many-to-many) communication method is not appropriate, such as a remote procedure

call. A ROS node that provides data offers a service under a string name, and a client

node that requires data calls the service by sending the request message and awaiting the

response [8]. Active services can be displayed by utilizing the command rosservice

list, and information about a service can be found by using rosservice info

<service_name>.

Bags are a method for recording and storing ROS message data. This is a

powerful tool that allows users to store, process, analyze, and visualize the flow of

messages. Bags are created utilizing the rosbag tool, which subscribes to one or more

ROS topics and stores message data as they are received. This stored data can be replayed

in ROS to the same topics, as if the original nodes were sending the messages. This tool

is useful for conducting experiments using a controlled set of data streams to test

different algorithms, sensors, actuators, and controllers. To record data, the command

rosbag record <topic_names> should be used. To view information about a

bagfile already created, the command rosbag info <bag_file> should be

utilized. The command rosbag play <bag_file> can be used to publish messages

from topics just as if they were being played for the first time. When rosbag is utilized to

play data, the time synchronization is based on the global timestamp when the bagfile

was recorded. It is recommended that when playing back data using rosbag play to

use rosparam set sim_time true and rosbag play <bag_file> --clock in

order to run the recorded system with simulated timestamps.

A launch file is method of launching multiple ROS nodes, either locally or

remotely, as well as establishing parameters on the ROS Parameter Server. It is useful for

running large projects, which may have many packages, nodes, libraries, parameters, and

even other launch files, which all can be started via one launch file rather than

individually running each node separately. The roslaunch tool uses extensible markup

language (XML) files that describe the nodes that should be run, parameters that should

be set, and other attributes of launching a collection of ROS nodes [9]. The roslaunch tool

 9

is utilized by using the command roslaunch <package_name> <file.launch>.

Examples of a roslaunch XML file can be found in Appendices A and B.

The ROS Master acts as a domain name system server, storing topic’s and

service’s registration information for ROS nodes. ROS Master provides an application

program interface (API), a set of routines and protocols, tracking services and publishers

and subscribers to topics. A node notifies ROS Master if it wants to publish a message to

a topic. When another node notifies the master that it wants to subscribe to the same

topic, the master notifies both nodes that the topic is ready for publishing and

subscribing. The master also makes callbacks to nodes already online, which allows

nodes to dynamically create connections as new nodes are run [10]. The ROS Master is

started with the command roscore and must be used to run nodes in ROS. The ROS

Master also provides the Parameter Server. The ROS Parameter Server can store integers,

floats, Boolean, dictionaries, and lists and is meant to be globally viewable for non-binary

data [11]. The parameter server is useful for storing global variables such as the

configuration parameters of the physical characteristics of a robot. ROS parameters can

be displayed by utilizing the command rosparam list. A user can also set a parameter

from the command line by using rosparam set <parameter_name>

<parameter_value>. Parameters can also be loaded from a .yaml file by using the

command rosparam load <parameters.yaml>.

An example of how a node is used in this thesis is openni_camera, which is

the driver for the Microsoft Kinect. The node runs the Microsoft Kinect, extracts data,

and publishes the captured data via messages such as sensor_msgs/CameraInfo and

sensor_msgs/PointCloud2 to various topics such as rgb/camera_raw,

depth/image_raw, and ir/image_raw. Then other nodes, such as

openni_tracker, subscribe to those topics and conducts processes and computations.

Names have an important role within ROS. Every node, topic, service, and

parameter has a unique name. This architecture allows for decoupled operation that

allows large, complex systems to be built. ROS supports command-line remapping of

names, which means a compiled program may be reconfigured at runtime to operate in a

 10

different computation graph topology [12]. This means that the same node can be run

multiple times, publishing difference messages to separate topics.

3. Community Level

The ROS Community Level consists of ROS distributions, repositories, the ROS

Wiki, and ROS Answers, which enable researchers, hobbyists, and industries to exchange

software, ideas, and knowledge in order to progress robotics communities worldwide.

ROS distributions are similar to the roles that Linux distributions play. They are a

collection of versioned ROS stacks, which allow users to utilize different versions of

ROS software frameworks. Even while ROS continues to be updated, users can maintain

their projects with older more stable versions and can easily switch between versions at

any time.

ROS does not maintain a single repository for ROS packages; rather, ROS

encourages users and developers to host their own repositories for packages that they

have used or created. ROS simply provides an index of packages, allowing developers to

maintain ownership and control over their software. Developers can then utilize the ROS

Wiki to advertise and create tutorials to demonstrate the use and functionality of their

packages. The ROS Wiki is the forum for documenting information about ROS, where

researchers and developers contribute documentation, updates, links to their repositories,

and tutorials for any open-sourced software they have produced. ROS Answers is a

community-oriented site to help answer ROS-related questions that users may have.

4. Other ROS Concepts

a. Unified Robot Description Format

The unified robot description format (URDF) package contains an XML file that

represents a robot model. The URDF is another tool within ROS that makes it a modular

system. Rather than creating a unique process for different styles of robots, nodes are

created without regard for the robot that will utilize them. The URDF file provides the

necessary, robot-specific, information so nodes may conduct their procedures. A URDF

file is written so that each link of the robot is the child of a parent link, with joints

 11

connecting each link, and joints are defined with their offset from the reference frame of

the parent link and their axis of rotation [13]. In this way, a complete kinematic model of

the robot is created. A tree diagram can be visualized utilizing the urdf_to_graphiz

tool as is shown in Figure 3. The URDF can be parsed and checked by utilizing the

commands shown in Figure 4.

Figure 3. A diagram of URDF of Pioneer P3-DX is shown utilizing the

urdf_to_graphiz tool.

Figure 4. Commands used to create, parse, and check a URDF file.

 12

b. Coordinate Frames and Transforms.

A robotic system typically has many three-dimensional coordinate frames that

change over time. The tf ROS package keeps track of multiple coordinate frames in the

form of a tree structure. Just as the URDF manages joints and links, the tf package

maintains the relationships between coordinate frames of points, vectors, and poses, and

computes the transforms between them. The tf package operates in a distributed system;

all ROS components within the system have access to information about the coordinate

frames. The transform tree can also be viewed by developers for debugging by utilizing

the view_frames tool as shown in Figure 5. Additional command-line tools for the tf

package are rosrun tf tf_monitor, rosrun tf tf_echo <source_frame>

<target_frame>, and roswtf, which, respectively, monitors delays between

transforms of coordinate frames, prints transforms between coordinate frames, and aids in

debugging [14].

Figure 5. Tree diagram of transforms used by navigating Pioneer P3-DX is
shown utilizing the view_frames tool.

c. Visualization

The Rviz package, developed by Willow Garage, comes standard with ROS and is

a powerful visualization tool that allows users to visualize data from sensors, maps, and a

robot’s internal state [15]. Used to its fullest capacity, it can allow users to view what the

 13

robot is seeing, thinking, and doing. Rviz subscribes to sensor topics such as

/LaserScan, /PointCloud2, and /Camera as well as topics such as /tf and /map.

Additionally, a URDF file can be utilized to visualize a robot in three-dimensional space.

5. Basic ROS Commands

ROS provides users with a variety of tools in order to make navigation through

the ROS filesystem and debugging as simple as possible. A few basic ROS commands

utilized within this thesis are shown in Table 1.

Table 1. A few basic ROS commands.

roscore Starts ROS Master.

rosrun <pkg_name> <node_name> Starts executable node.

roslaunch <pkg_name> <launch_file> Starts launch file.

rostopic list Lists all active topics.

rostopic info </topic_name> Provides data on topic such as
type, subscribers and publishers.

rostopic echo </topic_name> Prints topic messages to screen.

rostopic hz </topic_name> Prints publishing rate to screen.

rosnode list Lists all nodes running.

rosnode info <node_name> Provides data on node such as
publications, subcriptions,
services, and Pid.

Rosmsg show –r <msg_type> Prints raw message text.

rospack find <package_name> Prints file path to package.

rosrun rqt_graph rqt_graph Tool to visualize graphical
representation of active packages,
nodes, and topics.

rosrun rviz rviz Starts ROS visualization tool.

Rosbag record –O <filename> </topic> Starts rosbag tool to record data
from a desired topic.

 14

B. HARDWARE

The ground, mobile robot platform utilized for this thesis was the Pioneer P3-DX

designed by Adept MobileRobots. Mounted onto the P3-DX were the Microsoft Kinect

and the computer processing unit.

1. Pioneer P3-DX

The Pioneer 3 Operations Manual [16] states that the P3-DX is small, measuring

45.5 cm in length, 38.1 cm in width, 23.7 cm in height, and weighs only 9 kg. It has two

differential drive wheels and a small, free-rotating castor wheel, making it capable of

completing a zero radius turn. It is capable of traveling forward and backward on level

ground at a speed of 1.5 meters per second and has a rotation speed of 300 degrees per

second. Its power supply consists of one to three 12 V DC, sealed lead/acid batteries,

which gives it a maximum run time of four to six hours [16]. The P3-DX comes standard

with two sensor arrays, one oriented to the front of the robot and the other oriented to the

rear, each with eight sonar sensors. The sonar sensors provide 360° range data to a

maximum of five meters utilizing time of flight computations. Each sonar transducer

produces a sound wave in sequence at a rate of 25 Hz for each array [16]. Range data is

determined from the amount of time it takes for the emitted sound wave to travel from the

sonar sensor, reflect off an object, and return to the sonar sensor. Additionally, the P3-DX

has two segmented bumper arrays, which sense if the robot has come into contact with an

obstacle.

2. The Microsoft Kinect

The Kinect sensor, developed by Microsoft and PrimeSense, is a natural

interaction device that allows for a more natural connection between humans and

computers by capturing three-dimensional data of its environment and body movements

of humans. In June 2011, Microsoft released the software development kit for non-

commercial use. The Open Natural Interaction (OpenNI) framework, which focused on

improving interoperability of natural user interfaces, provided open-sourced APIs that

allowed public access to natural interaction devices such as the Microsoft Kinect [17].

 15

Due to its relatively low price and the ability to utilize open-source software to

interact with the sensor, the Kinect is a viable alternative to other depth-finding sensors

such as laser-range scanners and sonar sensors. Comparable laser-range scanners can cost

more than $2,000 and often only produce a two-dimensional “slice” of the environment.

More expensive alternatives can offer three-dimensional scans but cost as much as

$5,500. A few of the advantages that laser range scanners offer are accuracy and range.

Many laser range finders grant an accuracy of ±30-40 mm with maximum depth sensing

capabilities ranging from 25 m to 100 m. Sonar sensors offer a cheaper alternative, with

prices between $25 and $50, but only offer range data for a single vector. In order to

capture even a very limited three-dimensional view of its environment, a robot has to use

an array of many sonar sensors [18].

According to [19], the Microsoft Kinect is composed of a red-green-blue (RGB)

camera and a depth sensor. The RGB camera captures color images of its environment. In

[19] it further explains that the depth sensor is composed of an infrared laser projector

and a complementary metal–oxide–semiconductor (CMOS) sensor. The infrared source

projects an infrared light-coded image into the scene, and the CMOS sensor captures the

image of the reflections of the coded, infrared, laser speckle, the deformation of the

coded pattern of infrared light from objects. Additionally, the CMOS sensor and infrared

source are separated laterally on the sensor by 7.5 cm, which allows for stereo

triangulation, which is similar to the binocular vision that humans and many animals use

to determine depth. Through the returned light-coded image and stereovision, the

processor computes the position and depth through statistical analysis, producing an array

of voxels, a three-dimensional point cloud of the scene. Both the color video-stream and

the point cloud are captured at a frame rate of 30 Hz.

One side effect of utilizing stereo triangulation is known as the parallax effect, the

difference in the apparent position of an object due to varying lines-of-sight. An example

of this is the shift in view when one focuses on an object and alternately covers one eye

then the other. The view of the object shifts slightly due to a change in the line-of-sight of

the object from one eye to the other. With the Microsoft Kinect, the parallax effect causes

shadow-like areas of non-returns around objects as seen in Figure 6, since the coded

 16

infrared light cannot be captured if blocked by an object. As the distance of the object

from the viewer increases, the effect of parallax decreases.

Figure 6. Image captured by the Microsoft Kinect depth camera showing an
example of the parallax effect. The gray “shadows” are created by

objects blocking the coded infrared projection from the offset projector
from being captured by the CMOS sensor and results in a non-return.

The Kinect produces a VGA-sized (640 pixels × 480 pixels) resolution and has a 57°

horizontal and 43° vertical field-of-view. The depth sensor is able to provide a depth z

resolution of ±1.0 cm and an x/y resolution of ±0.3 cm and operates optimally between 0.8

m and 3.5 m, although it can operate at a maximum range of approximately 6.0 m [20].

In addition to capturing a three-dimensional point cloud of its environment, the

Microsoft Kinect is capable of tracking human body positions within the field-of-view.

Microsoft, through the study of more than 15 body-types and hundreds of thousands of body

positions, utilized random decision-making trees, probability distributions, and machine

 17

learning to teach the Kinect to recognize the human form. Because of this, the Kinect is able

to infer body position even if a person’s body is partially hidden from view.

3. Computer Processing Units

A SlimPro 675FP fanless mini-computer, running the Linux kernel, Ubuntu

Precise Pangolin 12.04, was mounted to the top of the Pioneer P3-DX and was connected

to the robot through its serial port. The processing unit was used to run the ROS packages

required for the Pioneer P3-DX, the Microsoft Kinect, SLAM, and autonomous

navigation. It also communicated wirelessly, through a wireless access point, to an

ASUSPRO Advanced Notebook, which also ran ROS on Ubuntu 12.04. The base laptop

was utilized to remotely launch the ROS packages on the robot’s processing unit, check

the robot’s real-time diagnostics, visualize maps built through simultaneous localization

and mapping (SLAM) as the robot autonomously navigated its environment, and, if

necessary, control the robot through keyboard inputs. The Pioneer P3-DX, with forward-

mounted Microsoft Kinect and SlimPro processing unit, is shown in Figure 7.

Figure 7. The Pioneer P3-DX with mounted SlimPro mini-computer and
Microsoft Kinect depth sensor.

 18

THIS PAGE INTENTIONALLY LEFT BLANK

 19

III. SYSTEM DEVELOPMENT AND INTEGRATION

The process of configuring the Pioneer P3-DX with Microsoft Kinect into a

system capable of conducting SLAM and autonomous navigation can be divided into four

parts. The first is the installation and configuration of ROS onto the robot’s processing

unit as well as the base laptop, to include establishing a wireless network connection

between the two Ubuntu 12.04 machines and ensure ROS is properly communicating.

The second is to install and configure the ROS driver nodes for the Pioneer P3-DX. The

third is to install and configure the ROS driver nodes for the Microsoft Kinect. The fourth

is to install, configure, and test the ROS navigation stack, to include the SLAM packages

and navigation control packages.

A. INSTALLING AND CONFIGURING ROS

ROS is supported on Ubuntu and experimentally on OS X, Arch Linux, and

Debian Wheezy. For this thesis, Ubuntu 12.04, Precise Pangolin, was utilized. Before

installing ROS, Ubuntu must be properly configured to accept the four types of repository

components: main, officially supported software; restricted, supported software not

available under a completely free license; universe, community maintained software; and

multiverse, software that is not free. This is done from the Software Sources interface,

which can be accessed through the Ubuntu Software Center.

Next, the appropriate ROS keys must be downloaded and the Debian package

index updated. Once the keys have been downloaded, ROS can be installed. For this

thesis, ROS Hydro was installed. The full ROS desktop install downloads all packages

and libraries. This can be accomplished by running the commands found in Figure 8.

 20

Figure 8. Commands used to download ROS. Replace <ros_distro> with

appropriate ROS distribution, for example: hydro.

In order to allow the robot’s processing unit to communicate with the base laptop

for remote launch operations and to visualize the robot’s operations through Rviz, the two

computers must be properly configured on a wireless network adaptor. In order to

establish a secure, encrypted connection, openssh-server and openssh-client

must be downloaded on the robot’s processing unit and the base laptop. The appropriate

commands to download the secure shell protocol are shown in Figure 9.

Figure 9. Command utilized to download the secure shell protocol in order to
initiate a secure shell session on a remote machine.

Once the openssh-server and openssh-client have been downloaded, it is

necessary to add each computer’s IP address on the wireless access point, create a

hostname, and add the remote machine’s information to the /etc/hosts configuration

 21

file. Utilizing the command ifconfig in the command-line of the terminal will display

the IP address that each machine has been given on the wireless access point. Once the IP

address has been identified, it is necessary to add that IP address and a hostname, as well

as the IP address and hostname of the remote machine to the robot’s processing unit and

the base laptop. This can be accomplished by editing the /etc/hosts configuration file

and adding the appropriate data as seen in Figure 10. Once the configuration file has been

edited, a secure shell session can be started on the remote machine by utilizing the

command ssh remote_machine@hostname. Once accomplished, programs may be

created, edited, and run remotely.

Figure 10. Procedure to edit /etc/hosts configuration file to initiate a secure
shell session from a remote machine.

Once each of the machines have been properly configured, it is necessary to

ensure ROS is properly configured to operate on multiple machines so all machines can

see all topics in real-time. It is of note that only one ROS Master is necessary to be

running, even across multiple machines. Let it be assumed that the hostname for the base

laptop is base with the alias base_laptop and IP address of 192.168.0.100, and

the hostname for the machine onboard the P3-DX is SlimPro with the alias p3dx and

IP address of 192.168.0.101. It is desired that the ROS Master be run on the base

laptop. To test the connection between the two computers and ensure ROS is properly

communicating across them, we use the nodes talker and listener from the

rospy_tutorial package, two standard packages within the ROS installation. From

 22

the base laptop, the ROS Master is run by utilizing the command roscore. Next, it is

necessary to check the ROS_MASTER_URI, which informs nodes where to find the

master. This can be accomplished by using the command export ROS_MASTER_URI.

Let it be assumed the ROS_MASTER_URI is http://192.168.0.100:11311. Next, on

the base laptop, the node listener.py is run by utilizing the command rosrun

rospy_tutorials listener.py. Next, on the Pioneer’s processing unit, the

ROS_MASTER_URI is configured to match the master that was run on the

base laptop by using the following command: export ROS_MASTER_URI=

http://192.168.0.100:11311. Finally, the talker node is started by utilizing the

command rosrun rospy_tutorials talker.py. If the network and ROS have

been configured correctly, the test message “hello world” with a counter appears on

the base laptop. This process is shown in Figure 11.

Figure 11. Procedure to test if ROS has been properly configured for use on
multiple machines.

Once both the robot and the base laptop have been properly configured to

communicate with each other, a secure “tunnel” must be established to allow the base

laptop to remotely start tasks on the robot. In order to do this, the command ssh

SlimPro@p3dx must be implemented. The user is prompted for the password of the

robot’s computer. Once given, the user is utilizing a terminal window as if it is on the

remote machine.

 23

B. P2OS STACK

Once ROS has been successfully installed, it is necessary to install the appropriate

drivers in order for ROS to communicate with and control the Pioneer P3-DX. There are

two main drivers available for the Adept MobileRobots Pioneer family of robots, the

p2os and ROSARIA stacks. For this thesis, the p2os stack was chosen as the driver for

the P3-DX. The packages that comprise the p2os stack are p2os_driver,

p2os_launch, p2os_teleop, p2os_urdf, and p2os_msgs.

The p2os_driver package is the main package of the p2os stack and contains

nodes, libraries, and parameters that are essential for ROS to interface with the Pioneer

P3-DX’s client-server Advanced Robot Control and Operations Software (ARCOS). The

package p2os_driver receives linear and angular velocity commands by subscribing to

the ROS topic /cmd_vel and sends the necessary motor commands to the P3-DX.

Additionally, the p2os_driver package extracts motor encoder information and

publishes position, orientation, and velocity in the form of an odometry message from

[21], as seen in Figure 12, to the ROS topic /pose.

Figure 12. Standard message format for the ROS odometry message, which
sends x, y, and z position, orientation, and linear and angular velocities

with covariance.

 24

The p2os_driver package is also responsible for publishing the transforms of the robot

to the /tf topic for other ROS nodes to utilize. Additionally, the p2os_driver package

publishes useful information about the Pioneer P3-DX such as its battery state, digital

input/output voltage, and analog input/output voltage [22]. The p2os_driver package

utilizes the URDF from the p2os_urdf package. For this thesis, the Microsoft Kinect

was added to the Pioneer’s URDF model. The URDF is responsible for establishing the

transforms for each joint and link of the robot so the p2os_driver package can publish

it to the /tf topic. The p2os_driver package also utilizes message formats that are

specific to the p2os stack, which are located in the p2os_msgs package.

The p2os_launch package contains useful ROS launch files for running

multiple nodes of the p2os stack to systematically start certain operations of the robot.

Some of the launch files run necessary parameters for proper navigation of the Pioneer

P3-DX, while others are used for running sensors such as the Hokuyo laser range scanner

[22]. For this thesis, a master launch file, which can be found in Appendix A, was created

in order to launch all the necessary nodes to conduct SLAM, autonomous navigation, and

human form tracking with the Pioneer P3-DX and Microsoft Kinect.

The commands that must be utilized in the shell command-line in order to

download, build, and configure the p2os stack are seen in Figure 13. The p2os_driver

node can also be started by using the roslaunch tool as seen in Appendix A.

Figure 13. Commands utilized to download and build the p2os stack.

 25

In order for the Pioneer P3-DX to be able to communicate to the SlimPro mini-

computer, it is necessary to configure the system in order to allow the robot to have access

permissions via the serial or USB ports. To properly set up permissions to allow the P3-DX

to connect to its processor, the robot must be powered, and the last command shown in

Figure 13 must be utilized in the terminal window [23]. The program sudo must precede the

command chmod in order to run the change mode program with the security privileges of

the superuser or root. The chmod command allows users to adjust access permissions for the

owner, a group, or the general public. The numerals 777 give different levels of permissions

for the different users as seen in Table 2, with the first digit being the owner, the second digit

being a group, and the third digit being the general public.

Table 2. Table of numerical permissions, with 7 being the most permissive
and 0 being the most restrictive.

Binary rwx

0 000 No permissions

1 001 Execute

2 010 Write

3 011 Write and execute

4 100 Read

5 101 Read and execute

6 110 Read and write

7 111 Read, write, and execute

C. OPENNI STACK

The packages responsible as the driver for the Microsoft Kinect and converting

raw depth, RGB, and infrared streams to depth images, disparity images, and point clouds

were openni_camera and openni_launch. Within the openni_camera package,

 26

the openni_node acts as the driver for a camera. After capturing the stream from a

camera, the openni_camera package publishes camera_info and image_raw data to

ROS topics for the RGB camera, depth camera, depth registered camera, and infrared

camera.

The openni_launch package contains the necessary launch files to

simultaneously start the device driver and the processing nodes which convert the raw RGB

and depth images to useful products such as point clouds [24]. Additionally, it produces

depth registered data. The depth and color images from the Microsoft Kinect are captured

from two, separate, slightly offset sensors; therefore, oftentimes, the pixels from the RGB

camera and the depth camera do not overlap perfectly. A registered depth image is built by

calculating, for each pixel in the depth image, the three-dimensional position and projecting

it onto the image plane of the RGB camera. The registered depth image has each pixel

aligned with its counterpart in the RGB image as shown in Figure 14.

Figure 14. The left image was captured by the Microsoft Kinect’s depth camera,
which shows pixels with maximum range marked as purple and

minimum range marked as red. The right image demonstrates depth
registration.

 27

The launch package for openni_camera senses the type of device utilized and adjusts

its parameters to match the device. The openni_camera package can interface with the

following depth sensors: ASUS Xtion PRO, ASUS Xtion PRO Live, and PrimeSense

PSDK 5.0, as well as the Microsoft Kinect [25].

The openni_tracker package detects and tracks a human within the field-of-

view of the Kinect. Utilizing openni_tracker, the Microsoft Kinect can track up to six

users and provide detailed, joint tracking for up to two user’s skeletons simultaneously.

Once the openni_tracker package has identified a human form, the user can initiate

skeleton tracking by performing the “psi pose.” The package publishes tracked skeletons

in the form of a set of transforms through the /tf topic, tracking head, neck, torso, and

left and right shoulders, elbows, hands, hips, knees, and feet. All openni_tracker

transforms are published from the camera frame as the parent frame, which is published

by openni_camera [26]. The commands that must be utilized in the shell command-

line interface in order to download and run openni_camera, openni_launch, and

openni_tracker are seen in Figure 15. The nodes can also be run from a roslaunch

file as seen in Appendix A. The transforms published by the openni_tracker package

can be visualized using Rviz as seen in Figure 16.

Figure 15. Commands utilized to download and run openni_camera,
openni_launch, and openni_tracker as the driver and processors

for the Microsoft Kinect.

 28

Figure 16. The transforms produced by the openni_tracker package. This is

the psi pose used for joint tracking calibration.

D. NAVIGATION STACK

The ROS navigation stack requires the robot to publish information about the

relationships between coordinate frames using the ROS /tf topic, a sensor publishing

data about the environment, and odometry information about the orientation, position,

and velocity of the robot.

1. Sensor Information

The gmapping package within the navigation stack is responsible for providing

laser-based SLAM. Since the openni_camera package provides point-cloud data from

the Microsoft Kinect, the depthimage_to_laserscan package was utilized to meet

the gmapping package’s requirements for laser-based range data. The

depthimage_to_laserscan package converts a horizontal slice of the point-cloud

 29

data into depth laser scan, formatted as a sensor_msgs/LaserScan.msg message as

demonstrated in Figure 17, where the range colored line is overlaid across the depth-

registered point cloud [27].

Figure 17. Depth registered point cloud with converted laser scan (red shows

minimum range and purple shows maximum range). The mesh of the
Pioneer P3-DX is created by the URDF.

The commands that must be utilized in the shell command-line interface in order

to download and run depthimage_to_laserscan are shown in Figure 18. To

properly convert point-cloud data to laser-scan data, the depthimage_to_laserscan

node must subscribe to the ROS topics with the camera’s depth image as well as the

camera’s info. For this thesis, those two topics were /kinect/depth/image_raw and

/kinect/depth/camera_info. The topics are included as arguments when the

depthimage_to_laserscan node is run within the command line, as in Figure 18, or

in a roslaunch file, as in Appendix A. The depthimage_to_laserscan node’s

output is published to the /scan topic as a sensor_msgs/LaserScan.msg message.

 30

Figure 18. Commands utilized to download, run, and view

depthimage_to_laserscan; the package that
converts point-cloud depth images to

range-finding laser scans.

2. Odometry Information

In robotics, odometry information refers to the estimated pose, position,

orientation, and velocity, of a robot in free space and is required by the navigation stack

in order to conduct SLAM. Odometry information is typically determined through

kinematics from the encoder counts of the robot’s motor shafts. In [28], the robot’s pose

, position and heading in the world coordinate frame, is calculated utilizing encoder

dead-reckoning. First, the distance each wheel rotates over the ground is calculated from

 / /
r

r l r l
rev

ws e
e
π

∆ = ∆ (1)

where /
r

r ls∆ is the change in distance that the right or left wheel rotates over the ground

since the last sample, /r le∆ is the change in encoder counts since the last sample, reve is

the number of encoder counts for one wheel revolution, and w is the diameter of the

wheel. Next, the distance the robot has traveled r s∆ since the last sample with respect to

the robot’s coordinate frame can be determined from

2

r r
r r ls ss ∆ + ∆

∆ = , (2)

and the change in the robot’s heading rψ∆ since the last sample with respect to the

robot’s coordinate frame can be determined from

p

 31

r r

r r ls s
a

ψ ∆ −∆
∆ = (3)

where a is the length of the wheel base. With Equations (2) and (3), the robot’s pose in

the world-coordinate frame can be determined from

()
()

2
1

1 1 2

1

cos

sin

r

r

r w
kw w

k k
w w w r w

k k k k
w w

rk k

s
x x

p y y s

y

y

y

y
yy y

∆

+
∆

+ +

+

 ∆ +
    
    = = + ∆ +    
     ∆      

 (4)

where wx and w y represents the robot’s position in the world coordinate frame and wψ

is the heading in the world coordinate frame. The subscript k denotes the last sample

taken.

The p2os_driver package extracts the encoder information from the Pioneer

P3-DX, calculates odometry data, and publishes the data over the /tf and /pose topic

as a nav_msgs/Odometry.msg message. Within the navigation stack, the node

slam_gmapping subscribes to the /tf topic and receives the data.

3. Transform Configuration

When working with mobile robots, it is crucial that the robot is aware of itself as

well as the surrounding environment. To be able to sense an obstacle, it is not only

enough that the robot is able to see the obstacle, but it must be able to calculate its

geographical relationship to the obstacle. The openni_camera package gives the

location (x, y, z) of the obstacle with respect to the Microsoft Kinect’s coordinate frame,

but in order to navigate around an obstacle, the robot must be able to calculate the

obstacle’s location relative to the robot’s coordinate frame. The position of an object

relative to the coordinate frame of a sensor can be defined as the position vector

x

S
y

z

P
P P

P

 
 =  
  

 (5)

 32

where xP , yP , zP are the individual elements giving the orientation of the vector from

the sensor to the obstacle. To calculate the position vector in the robot’s coordinate

frame, that is, from the robot to the object, we must use a rotation matrix R
S R , which

defines the principal directions of a coordinate system relative to another. In this case, the

rotation describes the sensor’s coordinate frame to the robot’s coordinate frame. The

transformation of the position vector to the obstacle from the sensor’s coordinate frame to

the robot’s coordinate frame is given by

org

R R S R
S SP R P P= + (6)

() ()
() ()

cos sin 0
sin cos 0

0 0 1

R
S R

θ θ
θ θ

− 
 =  
  

 (7)

where RP is the position vector of the object relative to the robot, R
S R is the rotation

matrix from the sensor’s coordinate frame to the robot’s coordinate frame, S P is the

position vector to the object from the sensor’s coordinate frame, and
org

R
SP is the position

vector to the origin of the sensor’s coordinate frame from the robot’s coordinate frame.

Equation (6) can be compacted to

1 1

R S
R
S

P P
T

   
=   

   
 (8)

where

[]0 0 0 1

org

R R
S SR

S

R P
T

 
=  
  

 (9)

represents the position and orientation of the sensor coordinate frame’s origin relative to

the robot’s coordinate frame. In Equation (9), the position vectors and rotation matrix are

extended and made homogeneous. Utilizing transformation matrix multiplication

 C C B
A B AT T T= (10)

and Equation (8), we can find the position vector through multiple layers of coordinate

frames.

 33

 The p2os_urdf package is responsible for generating the relationships between all

joints and links of the Pioneer P3-DX. The p2os_driver package takes these

relationships from the Pioneer’s URDF and publishes them to the /tf ROS topic so all

other nodes can utilize them. Whenever a node desires to know the relationship between

two objects, it listens to the /tf topic and follows the transform tree, as seen in Figure 5,

between the two objects. When traveling up the tree, the inverse transform is used, and

when traveling down the tree, the value of the transform is used as in Equation (10).

In order for the p2os_driver package to broadcast the proper position and

orientation of the Microsoft Kinect relative to the Pioneer P3-DX, the Kinect must be

added to the p2os_urdf package’s XML file for the P3-DX. A generalized format for

the URDF’s XML file is shown in Figure 19. The portion of the code added to the

p2os_urdf/defs/pioneer3dx_body.xacro file is found in Appendix E.

Figure 19. An example of the XML format for a URDF of a generic robot with

a manipulator arm.

 34

4. SLAM – gmapping

In robotics, SLAM is the problem of utilizing sensors to construct a map of an

unknown environment while simultaneously keeping track of the robot’s location. For

humans, SLAM comes naturally. Even the most directionally challenged people can use

their senses to find recognizable landmarks from which they can identify their location;

however, designing a robot without the use of a GPS device to identify its location and

simultaneously building a map is a complex problem. For localization, a robot requires a

consistent and accurate map; for constructing a map, a robot needs a good estimate of its

location. Given a series of sensor observations, 1:tz , and odometry measurements, 0:tu , the

SLAM problem is to compute an estimate of the robot’s location, 1:tx , and a map, m , of

its environment. There are many popular statistical techniques to accomplish this problem

to include extended Kalman filter, particle filter, and range-scan matching. Within the

ROS community, several open-sourced SLAM implementations are available such as

hector_slam, cob_3d_mapping_slam, gmapping, and mrpt_slam. For this project,

the gmapping package was utilized.

The gmapping package uses a Rao-Blackwellized particle filter. In order to

reduce the common problem of particle depletion associated with the Rao-Blackwellized

particle filter, the gmapping package employs an adaptive resampling technique [29]

[30] [31]. The gmapping package used a two-dimensional occupancy grid method to

construct a map. Using sensor stream data, it either inserts an obstacle into a cell or clears

a cell. Clearing a cell consists of ray-tracing through a grid for each successful laser-scan

sample. GMapping also utilizes scan matching, comparing current laser scans to previous

laser scans in order to reduce and/or correct odometry drift errors. As the likelihood of

scan matching an obstacle with the same obstacle in a previous scan increases, the

slam_gmapping node registers that obstacle on the map, while those scans with a low

likelihood begin to clear the occupancy grid [32]. In order to insert data into a map, the

slam_gmapping node makes extensive use of the ROS /tf topic to identify the

geographical relationship of an obstacle, as seen from the sensor coordinate frame, and

place it in the correct position with respect to the map coordinate frame [33]. By its

 35

utilization of ROS /tf topic, the slam_gmapping node is able to construct and publish

the map to the /map topic. The gmapping package requires transforms from the sensor

source to the base_link and broadcasts the transform from the /map to the /odom

frames. The commands utilized in order to download and run the gmapping package are

shown in Figure 20. The code to run the slam_gmapping package from a roslaunch file

can be found in Appendix B, Section 2.

Figure 20. Command utilized to install and run gmapping package, subscribe
to the /scan topic and publish

the map in relation to the odometry frame.

5. Autonomous Navigation – move_base

The move_base package lies at the heart of the navigation stack. It maintains a

global and local costmap through the costmap_2d node as well as links together a

global and local planner to accomplish the global navigational task. It is also responsible

for publishing velocity commands to the robot via the /cmd_vel topic.

The costmap_2d package uses the developed map from the gmapping package,

via the move_base package, and data from sensor sources to develop a

global_costmap and a local_costmap. A costmap is a type of occupancy grid, but

unlike the occupancy grid developed by the slam_gmapping node, each cell of the

costmap not only is marked as free, occupied, or unknown but also has a cost value

between 0 and 254 associated with it [34]. As obstacles are identified and the associated

cells are marked as occupied, the surrounding cells are also given a cost based on the

shape, dynamics, and orientation of the robot. With costmaps, as in Figure 21, the

location of the robot is considered to be the size of a single cell and identified obstacles

 36

are inflated by increasing the cost of surrounding cells to account for the footprint of the

robot, depending on the robot’s orientation. This is often known as configuration space as

shown in Figure 22. The costmap_2d package publishes global and local occupancy

grid and occupancy grid updates to the move_base package.

Figure 21. Depiction of a costmap, where the cells marked in red are considered
to be obstacles, cells marked in blue represent obstacles inflated by the
inscribed radius and orientation of the robot, and cells marked in gray
are considered to be free space. To avoid obstacle collision, the center

point of the robot should never cross a blue cell, from [34].

Figure 22. The difference between work space and configuration
 space. Note the inflation of the obstacles and

compaction of the robot to a single reference point
in configuration space, from [35].

 37

With the global_costmap and a given goal position and orientation, the

move_base node creates a global path through the global_planner package. The

global_planner package can utilize several different path planning algorithms such as

Dijkstra’s algorithm, quadratic or non-quadratic potential field algorithms, and the A*

algorithm, examples of which can be found in Figure 23, depending on the parameters set

by the user. The global path is published by the global_planner package to the

/move_base/TrajectoryPlannerROS/global_plan topic via the ROS-standard

nav_msgs/Path.msg message.

Figure 23. Example images of path planning algorithms that can be used in the
global_planner package, from left to right, Dijkstra, potential field,

A*, from [36].

To edit the parameters of the global_costmap and local_costmap, parameter

files were created and accessed in the navigation launch file. Three .yaml parameter

files were created, one for common costmap configurations which apply to the global and

local costmaps, one for global costmap configurations, and one for local costmap

configurations. The configuration files can be found in Appendix C.

With the aid of odometry data and the local_costmap, the

base_local_planner package develops a local trajectory, serving as a connection

from the global path planner and the robot through the move_base package. Its end-state

is to provide dx , dy , and dθ velocities to the move_base package to send to the robot.

The internal process of the base_local_planner package is to discretely sample the

robot’s control space (dx , dy , dθ), perform forward simulation for each sampled

 38

velocity, evaluate each trajectory for characteristics such as proximity to obstacles,

proximity to goal, proximity to the global path, and speed, select the highest-scoring

trajectory, and send the associated velocity to the move_base package for the robot [37].

A parameter file, as found in Appendix C, was also used to configure the

base_local_planner package and how it produces trajectories for the robot.

Not only does the move_base node act as a central line to the global_costmap

package, the local_costmap package, the global_planner package, and the

base_local_planner as shown in Figure 24 but is also responsible for performing

recovery behaviors if the robot perceives itself as stuck [38]. If the robot goes into

recovery procedures, it first clears obstacles from the robot’s map in the surrounding area

and then attempts to perform an in-place rotation to ‘visually’ clear the surrounding space

with its sensors. Should the first action fail, it then clears obstacles in a larger area from

the robot’s map and conducts another clearing rotation. If the last action fails, then it

finally aborts the mission and reports to the user that the robot considers its goal

infeasible. These recovery procedures are shown in Figure 25.

Figure 24. Flow chart of the internal communications in the move_base
package, from [38].

 39

Figure 25. The navigation stack’s move_base package goes into recovery

procedures should the robot become stuck, from [38].

 40

THIS PAGE INTENTIONALLY LEFT BLANK

 41

IV. RESULTS

The integration of ROS with the Microsoft Kinect, the Pioneer P3-DX, and the

ROS packages that conduct SLAM and autonomous navigation are discussed in this

chapter, which is divided into three parts. First, the robot was remotely teleoperated by

keyboard while conducting SLAM in order to create a map of the environment. Second,

the robot conducted autonomous navigation with the pre-constructed map, avoiding

obstacles while achieving a goal position and orientation. Third, the robot utilized SLAM

and autonomous navigation in an unknown and dynamic environment, simultaneously

building a two-dimensional map of the surroundings while attaining the goal pose. All

data from the environment was obtained through the Microsoft Kinect, and motor

commands were given to the Pioneer P3-DX utilizing ROS.

A. MAPPING

The first phase in the integration of the Microsoft Kinect on a mobile robot

platform and ROS in conducting SLAM and autonomous navigation operations was to

test the ROS gmapping package in mapping an unknown environment. This was

accomplished by remote operating the control of the mobile robot platform and capturing

data of the environment with the Microsoft Kinect.

The teleoperation node, after [39], which can be found in Appendix D, received

keyboard inputs from the W, A, S, D, and SHIFT keys and published desired velocities to

the /cmd_vel topic. As the p2os_driver package received commanded velocities from

the /cmd_vel topic, it also produced odometry data, which was published over the /tf

topic in the form of a nav_msgs/odometry.msg message. The odometry data was

utilized by the gmapping package and paired with scan matching for self-localization.

The commands given to start the packages required to conduct teleoperated SLAM with

the Pioneer P3-DX can be found in Figure 26 and Appendices A and B.

 42

Figure 26. Command-line inputs to record data from environment, conduct

post-capture SLAM, and save map data.

The robot was wirelessly driven throughout the environment as the

openni_camera package extracted streaming depth and RGB images from the

Microsoft Kinect. The openni_camera package published the steaming depth image

and associated camera information via the topics /kinect/depth/image_raw and

/kinect/depth/camera_info. The /depthimage_to_laserscan node subscribed

to the topics and converted the point-cloud data to a sensor_msgs/LaserScan.msg

message published via the /scan topic as can be seen in Figure 27. With the estimated

position of the Pioneer P3-DX through the /tf topic and range data collected at 30 Hz

from the /scan topic, the slam_gmapping node was able to utilize particle filtering and

scan matching in order to conduct SLAM.

 43

Figure 27. Image depicting communication between nodes and topics utilizing

the tool rqt_graph.

It was found that smoother teleoperation control of the Pioneer P3-DX resulted in

more accurate results in the construction of the map. Additionally, several of the

parameters of the slam_gmapping node were optimized as can be found in the

navigation launch file in Appendix B, Section 1. The map, shown in Figure 28, was

constructed by recording the data from the /tf and /scan topics with the rosbag tool

utilizing the lines of code as found in Figure 26. Note the error in loop closure, which can

be attributed to odometry drift errors.

Figure 28. This image is a map of the interior of an office building created by
the teleoperated Pioneer P3-DX with Microsoft Kinect and gmapping

package.

 44

B. AUTONOMOUS NAVIGATION WITH MAP

The next phase in systematically integrating ROS with the Microsoft Kinect and

Pioneer P3-DX for SLAM and autonomous navigation was to test and configure the

move_base package by conducting autonomous navigation in a known environment.

This was accomplished by utilizing the map created from the previous phase for the

move_base package to utilize for autonomous navigation.

In order to utilize the map created from teleoperated SLAM, the map was loaded

through the map_server package. This was accomplished by running the map_server

package in the navigational launch file that can be found in Appendix B, Section 1. Since

the move_base package does not provide its own localization, the amcl package, a ROS

localization package, was utilized. The amcl package uses the adaptive Monte Carlo

localization, which uses a particle filter to track the pose of a robot against a known map

[40]. The commands given to start the required packages for the Pioneer P3-DX to

conduct autonomous navigation are shown in Figure 29.

Figure 29. Command-line inputs to load map and start autonomous navigation.

The goal position and orientation were input through Rviz and published to the

/move_base_msgs/MoveBaseActionGoal topic. The move_base package received

the initial position and goal data and its approximate location through particle filtering

from the amcl package. Through the global_planner, the move_base node

 45

developed a feasible path from its location to the goal utilizing the global costmap. Then

the local_planner, utilizing the local costmap, developed short-term trajectories and

determined the optimal velocities to send to the robot via the /cmd_vel topic in order to

get the robot on the global path while avoid obstacles. The map, goal, costmap, global

path, mesh of the robot, point cloud, and converted laserscan were able to be viewed in

real-time utilizing Rviz as can be seen in Figure 30 and Figure 31.

Figure 30. Image of Pioneer P3-DX conducting autonomous navigation on a
pre-constructed map.

Figure 31. Image of the Pioneer P3-DX with the point-cloud data from the

Microsoft Kinect on a known mapped environment.

 46

During navigation through a previously constructed map, the robot behaved as

expected with only a few shortfalls. When attempting to self-localize, the robot would

often go into recovery procedures, conducting several in-place rotations; however, these

in-place rotations would often distort the robot’s self-localization because of increasing

errors in the odometry data, resulting in a skewed view of the local map compared to the

global. The local_planner would then make trajectory determinations based on the

local costmap, even though its physical orientation concurred with the global costmap.

These errors were most likely caused by errors in odometry data, as well as increasing

latency in the /tf, as the robot’s awareness of its location from odometry data did not

concur with sampled scans.

Several parameters were adjusted to optimize the navigation such as velocity

inputs, expected sensor sampling rates, planner frequency, controller frequency, and

weights for the goal, global path, and obstacle avoidance, which improved the ability of

the robot to achieve its goal while avoiding obstacles and increasing the accuracy

matching scans to the given map. In adjusting some of these parameters, the speed of the

robot and map update rate were exchanged in order to decrease latency, improve the

robot’s ability to avoid obstacles, and increase the controller frequency. Despite the

occasional local costmap errors, the move_base node, given a goal, map, and sensor data

from odometry and point-cloud converted laser scans, was able to effectively navigate

throughout a dynamic environment, navigating through doorways, around corners, and

moving obstacles.

C. SIMULTANEOUS LOCALIZATION AND MAPPING

In order to do autonomous navigation and SLAM in an unknown environment,

both the move_base and slam_gmapping nodes were run simultaneously. Rather than

the global_costmap node operating from a previously constructed map, the

global_costmap node received the map data and localization information as it was

being constructed from the /map topic, which was being published as a

nav_msgs/OccupancyGrid.msg by the slam_gmapping node. The

global_costmap node created a costmap from the map data, and, from the costmap and

 47

user-input goal, the global_planner calculated a global path. Additionally, the

local_costmap node received information from the converted laser scan and the global

costmap to develop a local costmap. The local_planner node, based on data from the

local costmap, conducted trajectory simulations, which translated to motor velocities that

the move_base node published on the /cmd_vel topic. The p2os_driver node, which

subscribed to the /cmd_vel topic, sent the appropriate motor commands to the Pioneer

P3-DX. The entirety of the system, nodes publishing and subscribing to topics, is shown

in Figure 32. The /map topic was visualized within Rviz in real-time from the base

laptop.

Figure 32. Graphical representation of active nodes communicating via topics

while the robot was conducting autonomous navigation
 and SLAM.

 48

Through the graphical interface, Rviz, the goal position and orientation were sent

to the robot through the /move_base_simple/goal topic. Using the slam_gmapping

node and move_base package, the robot was able to maneuver through the unknown

environment towards the goal, constructing the map as it identified obstacles with the

converted laser scans as seen in Figure 33 and Figure 34. The global costmap can be seen

in Figure 33, where yellow represents obstacles, red identifies where the robot would

strike identified objects if its center point intersected, and blue shows the cost inflation

radius of the obstacle. An input goal, the global path, and the local costmap, which is

highlighted around the robot in the lower-right corner of the image, and the entirety of the

environment mapped by the robot while conducting SLAM and autonomous navigation is

shown in Figure 34. The map in Figure 34 was created by the slam_gmapping node as

the robot autonomously navigated to goals which were input through Rviz. These goals

were given incrementally to the robot. As the robot achieved its navigational goal,

another goal was input through Rviz. The robot was able to autonomously navigate to

goals from one end of the hallway to the other, around corners, and through doorways. If

the robot found itself stuck between obstacles, it conducted recovery behaviors, making

several in-place rotations in an attempt to identify a feasible path towards the global path.

Navigation improved as more of the environment became a part of the map because the

robot was able to better estimate its location through scan matching. As can be seen when

comparing Figure 34 with Figure 35, which was created by teleoperated SLAM, it was

found the robot was able to create a fairly accurate map while conducting SLAM and

autonomous navigation.

 49

Figure 33. This image shows the global costmap while conducting autonomous

navigation and SLAM of the interior of an office building.

Figure 34. This image depicts the results of a SLAM constructed map of the

interior of an office building. Note the rolling local costmap highlighted
around the robot. Also, note the green global path leading to the goal

position and orientation.

 50

Figure 35. Image of same office building produced by teleoperation SLAM.

As with navigation utilizing the pre-constructed map, the robot still occasionally

lost track of its pose, specifically its orientation. As before, these errors can be attributed

to increasing odometry drift error over time. When conducting in-place rotations, the

orientational error due to odometry often got worse, causing the robot’s local costmap to

become skewed relative to the global costmap. When the local costmap became skewed,

it often cleared cells that were previously marked as an obstacle or placed an obstacle

where there was actually free space in the environment as in Figure 36. This caused the

global and local planners to create paths to go around obstacles that did not exist within

the environment or attempt to go through obstacles that the planner considered to be free

space.

 51

Figure 36. Image of costmap after the move_base package attempted in-place

rotations during recovery procedures. The false hallways, highlighted in
red, were produced from the skewed local map, placing inaccurate

obstacles.

In order to attempt to rectify this issue, the planner_frequency parameter was

changed. The default planner frequency is set so that the global planner only creates

a new global path when a new goal is received by the move_base package. It was

adjusted to recalculate the global path at a rate of 0.1 Hz. While this increased the

computational burden on the robot’s processor, it allowed for adjustments to the global

path to be made during operation. This allowed the robot to continually reevaluate its

global path so when false obstacles were cleared or obstacles were mistakenly cleared in

the local costmap, the robot could identify a new global path. Within the costmap nodes,

the obstacle_range and raytrace_range were adjusted specifically for the

capabilities of the Microsoft Kinect to better optimize the placement and removal of

obstacles from the costmaps. Additionally, some of the gmapping package’s parameters

were adjusted, specifically map_update_interval and minimumScore. The

map_update_interval parameter was changed to provide more frequent updates to

the slam_gmapping occupancy grid. The minimumScore parameter was adjusted to

 52

improve scan matching. Despite the issues with odometry errors, the robot was able to

successfully autonomously navigate to the desired goal in an unknown and dynamic

environment while conducting SLAM.

 53

V. CONCLUSIONS

A. SUMMARY

The processes of the integration of ROS with the Pioneer P3-DX mobile robot

platform and the Microsoft Kinect depth sensor to conduct SLAM and autonomous

navigation in an unknown and dynamic environment were investigated in this thesis. The

basic concepts of ROS and the capabilities of the hardware, namely the Pioneer P3-DX

mobile robot and the Microsoft Kinect depth sensor, were explored. The appropriate ROS

packages were downloaded, configured, and tested for the mobile robot, depth sensor,

SLAM, and autonomous navigation. The SLAM components were tested as the mobile

robot was wirelessly teleoperated from keyboard commands, creating a map of the

environment. Next, the autonomous navigation components were investigated using the

previously created map, the robot demonstrating the ability to avoid static and dynamic

obstacles and achieve its goal. And finally, with the integration of ROS, the Pioneer P3-

DX, and the Microsoft Kinect, autonomous navigation and SLAM in an unknown

environment were successfully conducted resulting in the robot achieving its goal while

identifying and mapping obstacles. As tests were conducted, parameters of the packages

were adjusted to improve the system.

In conclusion, autonomous navigation and SLAM using ROS and an affordable

depth sensor such as the Microsoft Kinect was achieved. ROS, with its modular

architecture and object-oriented programming, provided a simple, yet robust, framework

for the mobile robot platform, depth sensors, map construction packages, and

autonomous navigation controllers to work harmoniously together in order to accomplish

the objectives. Utilizing the slam_gmapping node, we constructed maps in real-time

through teleoperation and autonomous navigation. The move_base package was adept in

receiving information from a stored map, the slam_gmapping node, and scanned data,

generated costmaps, calculated optimal local and global paths, and controlled the robot

through a dynamic environment to reach its goal. With the modular aspect of ROS, as

long as messages are published to topics with the correct format, the results obtained in

this thesis research could be reproduced utilizing many different mobile robot platforms,

 54

including other commercial off-the-shelf or laboratory-built robots, as well as different

types of depth sensors.

B. FUTURE WORK

Since the field-of-view of the Microsoft Kinect is relatively narrow compared to a

laser range scanner, the results obtained in this thesis research could be improved upon

with the addition of multiple sensors, greatly improving the robot’s ability to sense its

environment. For example, the Pioneer P3-DX’s array of 16 range-finding sonar sensors

could be incorporated into the project, which would allow the robot to sense surrounding

obstacles. Additionally, another depth camera could be added to the robot or within the

environment of the mobile robot.

As well as increasing the number of sensors for the robot to sense its

surroundings, another direction for improvement could be a better division of labor

between the robot’s processing unit and the base laptop. With latency being partially

responsible for faulty navigation, a more effective spread loading of the large amount of

computations associated with point-cloud data, SLAM, and controlling autonomous

navigation should be investigated.

There are several three-dimensional SLAM packages available in ROS such as

cob_3d_mapping_slam, mrpt_ekf_slam_3d, RGBD SLAM, and octomap packages.

They were not chosen for this thesis research due the already strained computational load

on the robot’s processing unit; however, three-dimensional SLAM could be another

interesting way ahead with this project, an example of which is shown in Figure 37.

 55

Figure 37. Example of three-dimensional SLAM utilizing the octomap

package, from [41].

 56

THIS PAGE INTENTIONALLY LEFT BLANK

 57

APPENDIX A. MASTER LAUNCH CODE

Master launch file -

 (~/catkin_ws/src/follow_me_main/follow_me/launch/follow_me.launch)
<launch>
<!-- Defining the arguments -->
 <arg name=“urdf” default=“true” />
 <arg name=“P2OS_Driver” default=“true” />
 <arg name=“enableMotor” default=“true” />
 <arg name=“keyboard_control” default=“false” />
 <arg name=“Kinect” default=“true” />
 <arg name=“skeleton_tracking” default=“true” />
 <arg name=“ConvertToLaserScan” default=“true” />
 <arg name=“RViz_Robot_View” default=“false” />

 <arg name=“fwd_vel_test” default=“false” />

 <!-- Start p2os URDF -->
 <group if=“$(arg urdf)” >
 <include file =“$(find p2os_urdf)/launch/pioneer3dx_urdf.launch” />
 </group>

 <!-- Start the p2os ROS Driver -->
 <group if=“$(arg P2OS_Driver)” >
 <node pkg=“p2os_driver” name=“p2os_driver” type=“p2os_driver” />
 </group>

 <!-- Enable p2os Motor State -->
 <group if=“$(arg enableMotor)” >
 <node pkg=“follow_me” name=“p2os_enableMotor” type=“p2os_enableMotor” />
 </group>

 <!-- Start keyboard teleop -->
 <group if=“$(arg keyboard_control)” >
 <node pkg=“follow_me” name=“follow_me_teleop_keyboard”
type=“follow_me_teleop_keyboard” />
 </group>

 <!-- Start the Kinect (openni_camera) -->
 <group if=“$(arg Kinect)” >
 <include file=“$(find openni_launch)/launch/openni.launch”>
 <arg name=“camera” value=“kinect” />
 <param name=“depth_registration” value=“true” />
 </include>
 </group>

 <!-- Start Human Tracking (openni_tracker) -->
 <group if=“$(arg skeleton_tracking)” >
 <node pkg=“openni_tracker” name=“openni_tracker” type=“openni_tracker”
output=“screen” >
 <param name=“camera_frame_id” value=“kinect_depth_frame” />
 </node>
 </group>

 <!-- Start depthimage_to_laserscan -->
 <group if=“$(arg ConvertToLaserScan)” >
 <node pkg=“depthimage_to_laserscan” name=“depthimage_to_laserscan”
type=“depthimage_to_laserscan” args=“image:=/kinect/depth/image_raw” respawn=“true” >
 <param name=“scan_height” value=“200” />
 <param name=“scan_time” value=“0.125” />
 <param name=“range_min” value=“0.45” />

 58

 <param name=“range_max” value=“7.0” />
 <param name=“min_height” value=“0.05” />
 <param name=“max_height” value=“1.0” />
 <param name=“output_frame_id” value=“/kinect_depth_frame_laserscan” />
 </node>
 </group>

 <!-- Start Rviz for display of Robot Model with PointCloud -->
 <group if=“$(arg RViz_Robot_View)” >
 <node pkg=“rviz” name=“rviz” type=“rviz” args=“-d
/home/ecejames01/.rviz/robot_view.rviz” />
 </group>

 <!-- Start moving Pioneer forward at 0.5 m/s (Test node) -->
 <group if=“$(arg fwd_vel_test)” >
 <node pkg=“follow_me” name=“twist_test” type=“twist_test” />
 </group>

</launch>

 59

APPENDIX B. NAVIGATION LAUNCH CODE

Navigation launch file with pre-constructed map –

(~/catkin_ws/src/follow_me_main/follow_me_2dnav/launch/move_base_map.launch)

<launch>

 <!-- Start the map server -->
 <node pkg=“map_server” name=“map_server” type=“map_server” args=“`rospack find
follow_me_2dnav`/launch/mylaserdata_1503201800.yaml” />

 <!-- Run AMCL -->
 <include file=“$(find amcl)/examples/amcl_diff.launch”>
 <param name=“transform_tolerance” value=“0.2” />
 <param name=“recovery_alpha_slow” value=“0.001” />
 <param name=“use_map_topic” value=“false” />
 <param name=“laser_min_range” value=“1.0” />
 <param name=“laser_max_range” value=“7.0” />
 <param name=“laser_likelihood_max_dist” value=“2.0” />
 <param name=“odom_model_type” value=“diff” />
 <param name=“odom_frame_id” value=“odom” />
 <param name=“base_frame_id” value=“base_link” />
 <param name=“global_frame_id” value=“map” />
 </include>

 <!-- Start navigation stack -->
 <node pkg=“move_base” name=“move_base” type=“move_base” respawn=“false” output=“screen” >
 <rosparam command=“load” file=“$(find
follow_me_2dnav)/params/costmap_common_params.yaml” ns=“global_costmap”/>
 <rosparam command=“load” file=“$(find
follow_me_2dnav)/params/costmap_common_params.yaml” ns=“local_costmap” />
 <rosparam command=“load” file=“$(find
follow_me_2dnav)/params/local_costmap_params.yaml” />
 <rosparam command=“load” file=“$(find
follow_me_2dnav)/params/global_costmap_params.yaml”/>
 <rosparam command=“load” file=“$(find
follow_me_2dnav)/params/base_local_planner_params.yaml” />
 <param name=“controller_frequency” type=“double” value=“20.0” />
 <param name=“planner_patience” value=“5.0” />
 <param name=“controller_patience” value=“15.0” />
 <param name=“conservative_reset_dist” value=“5.0” />
 <param name=“recovery_behavior_enabled” value=“true” />
 <param name=“clearing_rotation_allowed” value=“true” />
 <param name=“shutdown_costmaps” value=“false” />
 <param name=“oscillation_timeout” value=“0.0” />
 <param name=“oscillation_distance” value=“0.5” />
 <param name=“planner_frequency” value=“0.0” />

 </node>

</launch>

 60

Navigation launch file with pre-constructed map –

(~/catkin_ws/src/follow_me_main/follow_me_2dnav/launch/move_base.launch)

<launch>

 <!-- Start gmapping-->

 <node pkg=“gmapping” name=“slam_gmapping” type=“slam_gmapping” output=“$

 <param name=“map_update_interval” value=“8.0” />

 <param name=“maxUrange” value=“6.5” />

 <param name=“maxRange” value=“8.0” />

 <param name=“odom_frame” value=“odom” />

 </node>

 <!-- Start navigation stack -->

 <node pkg=“move_base” name=“move_base” type=“move_base” respawn=“false”$

 <rosparam command=“load” file=“$(find follow_me_2dnav)/params/c$

 <rosparam command=“load” file=“$(find follow_me_2dnav)/params/c$

 <rosparam command=“load” file=“$(find follow_me_2dnav)/params/l$

 <rosparam command=“load” file=“$(find follow_me_2dnav)/params/g$

 <rosparam command=“load” file=“$(find follow_me_2dnav)/params/b$

 </node>

</launch>

 61

APPENDIX C. NAVIGATION PARAMETER CODE

Common costmap parameter .yaml file
obstacle_range: 4.0
raytrace_range: 5.0

footprint: [[0.254, -0.0508], [0.1778, -0.0508], [0.1778, -0.1778], [-0.1905, -0.1778], [-0.254,
0], [-0.1905, 0.1778], [0.1778, 0.1778], [0.1778, 0.0508], [0.254, 0.0508]]
inflation_radius: 0.55

observation_sources: laser_scan_sensor

laser_scan_sensor: {sensor_frame: laser, data_type: LaserScan, topic: scan, marking: true,
clearing: true, expected_update_rate: 0.2, obstacle_range: 5.0, raytrace_range: 5.0}

Global costmap parameter .yaml file
global_costmap:
 global_frame: /map
 robot_base_frame: base_link
 transform_tolerance: 0.5
 update_frequency: 5.0
 publish_frequency: 10.0
 static_map: true

Local costmap parameter .yaml file
local_costmap:
 global_frame: odom
 robot_base_frame: base_link
 update_frequency: 5.0
 publish_frequency: 10.0
 static_map: false
 rolling_window: true
 width: 10.0
 height: 10.0
 resolution: 0.05

Base local planner parameter .yaml file
TrajectoryPlannerROS:
 max_vel_x: 0.8
 min_vel_x: 0.1
 max_rotational_vel: 0.8
 min_in_place_rotational_vel: 0.3
 escape_vel: -0.2
 acc_lim_x: 2.5
 acc_lim_y: 0.0
 acc_lim_th: 3.2
 holonomic_robot: false

 yaw_goal_tolerance: 0.15
 xy_goal_tolerance: 0.1
 latch_goal_tolerance: true

 sim_time: 2.0

 meter_scoring: true
 pdist_scale: 0.6
 gdist_scale: 0.8
 occdist_scale: 0.05
 dwa: true
 global_frame_id: odom

 62

THIS PAGE INTENTIONALLY LEFT BLANK

 63

APPENDIX D. KEYBOARD TELEOPERATION CODE

Keyboard teleoperation node –

(~/catkin_ws/src/follow_me_main/follow_me/src/follow_me_teleop_keyboard.cpp)

#include <termios.h>
#include <signal.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/poll.h>

#include <boost/thread/thread.hpp>
#include <ros/ros.h>
#include <geometry_msgs/Twist.h>

#define KEYCODE_W 0x77
#define KEYCODE_A 0x61
#define KEYCODE_S 0x73
#define KEYCODE_D 0x64
#define KEYCODE_Q 0x71
#define KEYCODE_E 0x65

#define KEYCODE_A_CAP 0x41
#define KEYCODE_D_CAP 0x44
#define KEYCODE_S_CAP 0x53
#define KEYCODE_W_CAP 0x57

class ErraticKeyboardTeleopNode
{
 private:
 double walk_vel_;
 double run_vel_;
 double yaw_rate_;
 double yaw_rate_run_;

 geometry_msgs::Twist cmdvel_;
 ros::NodeHandle n_;
 ros::Publisher pub_;

 public:
 ErraticKeyboardTeleopNode()
 {
 pub_ = n_.advertise<geometry_msgs::Twist>(“cmd_vel,” 1);

 ros::NodeHandle n_private(“~”);
 n_private.param(“walk_vel,” walk_vel_, 2.0);
 n_private.param(“run_vel,” run_vel_, 2.5);
 n_private.param(“yaw_rate,” yaw_rate_, 0.75);
 n_private.param(“yaw_rate_run,” yaw_rate_run_, 1.5);
 }

 ~ErraticKeyboardTeleopNode() { }
 void keyboardLoop();
 void stopRobot()
 {
 cmdvel_.linear.x = 0.0;
 cmdvel_.angular.z = 0.0;
 pub_.publish(cmdvel_);
 }
};

 64

ErraticKeyboardTeleopNode* tbk;
int kfd = 0;
struct termios cooked, raw;
bool done;

int main(int argc, char** argv)
{
 ros::init(argc,argv,”tbk,” ros::init_options::AnonymousName |
ros::init_options::NoSigintHandler);
 ErraticKeyboardTeleopNode tbk;

 boost::thread t = boost::thread(boost::bind(&ErraticKeyboardTeleopNode::keyboardLoop,
&tbk));

 ros::spin();

 t.interrupt();
 t.join();
 tbk.stopRobot();
 tcsetattr(kfd, TCSANOW, &cooked);

 return(0);
}

void ErraticKeyboardTeleopNode::keyboardLoop()
{
 char c;
 double max_tv = walk_vel_;
 double max_rv = yaw_rate_;
 bool dirty = false;
 int speed = 0;
 int turn = 0;

 // get the console in raw mode
 tcgetattr(kfd, &cooked);
 memcpy(&raw, &cooked, sizeof(struct termios));
 raw.c_lflag &=~ (ICANON | ECHO);
 raw.c_cc[VEOL] = 1;
 raw.c_cc[VEOF] = 2;
 tcsetattr(kfd, TCSANOW, &raw);

 puts(“Reading from keyboard”);
 puts(“Use WASD keys to control the robot”);
 puts(“Press Shift to move faster”);

 struct pollfd ufd;
 ufd.fd = kfd;
 ufd.events = POLLIN;

 for(;;)
 {
 boost::this_thread::interruption_point();

 // get the next event from the keyboard
 int num;

 if ((num = poll(&ufd, 1, 250)) < 0)
 {
 perror(“poll():”);
 return;
 }
 else if(num > 0)
 {
 if(read(kfd, &c, 1) < 0)
 {
 perror(“read():”);
 return;

 65

 }
 }
 else
 {
 if (dirty == true)
 {
 stopRobot();
 dirty = false;
 }
 continue;
 }

 switch(c)
 {
 case KEYCODE_W:
 max_tv = walk_vel_;
 speed = 2;
 turn = 0;
 dirty = true;
 break;
 case KEYCODE_S:
 max_tv = walk_vel_;
 speed = -1;
 turn = 0;
 dirty = true;
 break;
 case KEYCODE_A:
 max_rv = yaw_rate_;
 speed = 0;
 turn = 1;
 dirty = true;
 break;
 case KEYCODE_D:
 max_rv = yaw_rate_;
 speed = 0;
 turn = -1;
 dirty = true;
 break;
 case KEYCODE_Q:
 max_tv = walk_vel_;
 speed = 1;
 turn = 1;
 dirty = true;
 break;
 case KEYCODE_E:
 max_tv = walk_vel_;
 speed = 1;
 turn = -1;
 dirty = true;
 break;

 case KEYCODE_W_CAP:
 max_tv = run_vel_;
 speed = 1;
 turn = 0;
 dirty = true;
 break;
 case KEYCODE_S_CAP:
 max_tv = run_vel_;
 speed = -1;
 turn = 0;
 dirty = true;
 break;
 case KEYCODE_A_CAP:
 max_rv = yaw_rate_run_;
 speed = 0;
 turn = 1;

 66

 dirty = true;
 break;
 case KEYCODE_D_CAP:
 max_rv = yaw_rate_run_;
 speed = 0;
 turn = -1;
 dirty = true;
 break;

 default:
 max_tv = walk_vel_;
 max_rv = yaw_rate_;
 speed = 0;
 turn = 0;
 dirty = false;
 }

 cmdvel_.linear.x = speed * max_tv;
 cmdvel_.angular.z = turn * max_rv;
 pub_.publish(cmdvel_);
 }
}

 67

APPENDIX E. MICROSOFT KINECT URDF CODE

Code added to p2os_urdf to include the Microsoft Kinect –

(~/catkin_ws/src/p2os/p2os_urdf/def/pioneer3dx_body.xacro)

 <!--Kinect Sensor-->

 <joint name=“kinect_joint” type=“fixed”>
 <origin xyz=“0.1397 0 0.2677” rpy=“0 0 0” />
 <parent link=“base_link” />
 <child link=“kinect_link” />
 </joint>

 <link name=“kinect_link”>
 <inertial>
 <mass value=“0.001” />
 <origin xyz=“0 0 0” />
 <inertia ixx=“0.0001” ixy=“0.0” ixz=“0.0”
 iyy=“0.0001” iyz=“0.0”
 izz=“0.0001” />
 </inertial>
 <visual>
 <origin xyz=“0 0 0.028575” rpy=“0 0 ${M_PI/2}” />
 <geometry>
 <box size=“0.27796 0.07271 0.0381” />
 </geometry>
 <material name=“Blue” />
 </visual>
 <collision>
 <origin xyz=“0 0 0” rpy=“0 0 0” />
 <geometry>
 <box size=“0.27796 0.07271 0.073” />
 </geometry>
 </collision>
 </link>

 <joint name=“kinect_rgb_joint” type=“fixed”>
 <origin xyz=“0.01905 -0.0125 0.02794” rpy=“0 0 0” />
 <parent link=“kinect_link” />
 <child link=“kinect_rgb_frame” />
 </joint>

 <link name=“kinect_rgb_frame”>
 <inertial>
 <mass value=“0.001” />
 <origin xyz=“0 0 0” />
 <inertia ixx=“0.0001” ixy=“0.0” ixz=“0.0”
 iyy=“0.0001” iyz=“0.0”
 izz=“0.0001” />
 </inertial>
 </link>

 <joint name=“kinect_rgb_optical_joint” type=“fixed”>
 <origin xyz=“0 0 0” rpy=“${-M_PI/2} 0 ${-M_PI/2}” />
 <parent link=“kinect_rgb_frame” />
 <child link=“kinect_rgb_optical_frame” />
 </joint>

 <link name=“kinect_rgb_optical_frame”>
 <inertial>
 <mass value=“0.001” />
 <origin xyz=“0 0 0” />
 <inertia ixx=“0.0001” ixy=“0.0” ixz=“0.0”

 68

 iyy=“0.0001” iyz=“0.0”
 izz=“0.0001” />
 </inertial>
 </link>

 <joint name=“kinect_depth_joint” type=“fixed”>
 <origin xyz=“0.01905 0.0125 0.02794” rpy=“0 0 0” />
 <parent link=“kinect_link” />
 <child link=“kinect_depth_frame” />
 </joint>

 <link name=“kinect_depth_frame”>
 <inertial>
 <mass value=“0.001” />
 <origin xyz=“0 0 0” />
 <inertia ixx=“0.0001” ixy=“0.0” ixz=“0.0”
 iyy=“0.0001” iyz=“0.0”
 izz=“0.0001” />
 </inertial>
 </link>

 <joint name=“kinect_depth_optical_joint” type=“fixed”>
 <origin xyz=“0 0 0” rpy=“${-M_PI/2} 0 ${-M_PI/2}” />
 <parent link=“kinect_depth_frame” />
 <child link=“kinect_depth_optical_frame” />
 </joint>

 <link name=“kinect_depth_optical_frame”>
 <inertial>
 <mass value=“0.001” />
 <origin xyz=“0 0 0” />
 <inertia ixx=“0.0001” ixy=“0.0” ixz=“0.0”
 iyy=“0.0001” iyz=“0.0”
 izz=“0.0001” />
 </inertial>
 </link>

 69

LIST OF REFERENCES

[1] H. Wei, Z. Huang, Q. Yu, M. Liu, Y. Guan, and J. Tan, “RGMP-ROS: a Real-
time ROS architecture of hybrid RTOS and GPOS on multi-core processor,” in
Proc. of 2014 IEEE International Conference on Robotics & Automation, Hong
Kong, China, 2014, pp. 2482–2487.

[2] T. K. Calibo, “Obstacle detection and avoidance on a mobile robotic platform
using active depth Sensing,” M.S. thesis, Dept. Elect. Eng., Naval Postgraduate
School, Monterey, CA, 2014. [Online]. Available: http://calhoun.nps.edu/handle/
10945/42591

[3] D. Thomas. (2014, May 22). ROS/introduction. [Online]. Available:
http://www.ros.org/wiki/ROS/Introduction

 [4] J. Bohern. (2014, Mar. 14). Packages. [Online]. Available:
http://wiki.ros.org/Packages

[5] A. Romero. (2014, Jan. 21). ROS/concepts. [Online]. Available:
http://wiki.ros.org/ROS/Concepts

[6] D. Thomas. (2014, Jan. 27). sensor_msgs/PointCloud2. [Online]. Available:
http://docs.ros.org/api/sensor_msgs/html/msg/PointCloud2.html

[7] D. Forouher. (2014, June 1). Topics. [Online]. Available:
http://wiki.ros.org/Topics

[8] K. Conley. (2012, Feb. 3). Services. [Online]. Available:
http://wiki.ros.org/Servies

[9] S. Bishop. (2015, Jan. 8). Roslaunch/XML. [Online]. Available:
http://wiki.ros.org/roslaunch/XML

[10] L. Joseph, Learning Robotics Using Python, Birmingham, UK: Packt Publishing,
2015, pp. 56-57.

[11] D. Thomas. (2013, Aug. 7). Parameter server. [Online]. Available:
http://wiki.ros.org/Parameter%20Server

[12] I. Saito. (2015, May 2). Remapping arguments. [Online]. Available:
http://wiki.ros.org/Remapping%20Arguments

[13] I. Saito. (2015, Feb. 21). Urdf/Tutorials/Create Your Own URDF File. [Online].
Available:
http://wiki.ros.org/urdf/Tutorials/Create%20your%20own%20urdf%20file

 70

[14] D. Stonier. (2014, Sep. 1). ROS/ tf. [Online]. Available: http://wiki.ros.org/tf

[15] B. Chretien. (2014, June 2). ROS/rviz. [Online]. Available: http://wiki.ros.org/rviz

[16] MobileRobots Inc. (2006). Pioneer 3 Operations Manual, MobileRobots Inc.,
Amherst, NH.

[17] H. M. Kahily, A. P. Sudheer, and M. D. Narayanan, “RGB-D sensor-based human
detection and tracking using an armed robotic system,” in Proc. of the 2014 Int.
Conf. on Advances in Electronics, Computers and Communications, Delhi, India,
2014.

[18] A. Oliver, S. Kang, B. C. Wünsche, and B. MacDonald, “Using the Kinect as a
navigation sensor for mobile robotics,” in Proc. of 27th Conf. on Image and
Vision Computing, Dunedin, New Zealand, 2012.

[19] Y. Wang, C. Shen, and J. Yang, “Calibrated Kinect sensors for robot
simultaneous localization and mapping,” in Proc. of 19th International Conf. on
Methods and Models in Automation and Robotics, Miedzyzdroje, Poland, 2014,
pp. 560-565.

[20] K. Kamarudin, S. M. Mamduh, A. Y. M. Shakaff, S. M. Saad, and A. Zakaria,
“Method to convert Kinect’s 3D depth data to a 2D map for indoor SLAM,” in
Proc. of IEEE 9th International Colloquium on Signal Processing and its
Applications, Kuala Lumpur, Malausia, 2013, pp.247-251.

[21] nav_msgs/Odometry Message. (2013, Jan. 11). [Online]. Available:
http://docs.ros.org/diamondback/api/nav_msgs/html/msg/Odometry.html

[22] H. Allen, D. Feil-Seifer, A. Synodinos, B. Gerkey, K. Stoy, R. Vaughan, A.
Howard, and T. Hermans. (2012, Sep. 29). ROS/ p2os_driver. [Online].
Available: http://wiki.ros.org/p2os_driver

[23] T. Sweet. (2014, Feb. 15). p2os/Tutorials/p2os with local computer USB
communication. [Online]. Available:
http://wiki.ros.org/p2os/Tutorials/p2os%20with%20local%20computer%20USB
%20communication

[24] J. Kammerl and J. Binney. (2013, Nov. 14). ROS/openni_launch. [Online].
Available: http://wiki.ros.org/openni_launch

[25] P. Mihelich, S. Gedikli, and R. B. Rusu. (2014, Oct. 24). ROS/ openni_camera.
[Online]. Available: http://wiki.ros.org/openni_camera

[26] T. Field. (2013, Mar. 5). ROS/openni_tracker. [Online]. Available:
http://wiki.ros.org/openni_tracker

 71

[27] K. Franke. (2013, Mar. 10). ROS/depthimage_to_laserscan. [Online]. Available:
http://wiki.ros.org/depthimage_to_laserscan

[28] R. Siegwart and I. R. Nourbakhsh, Introduction to Autonomous Mobile Robots,
Cambridge, MA: The MIT Press, 2004.

[29] R. Tang, X. Chen, M. Hayes, and I. Palmer, “Development of a navigation system
for semi-autonomous operation of wheelchairs,” in Proc. of the 8th IEEE/ASME
Int. Conf. on Mechatronic and Embedded Systems and Applications, Suzhou,
China, 2012, pp. 257-262.

[30] G. Grisetti, C. Stachniss, and W. Burgard, “Improving grid-based SLAM with
Rao-Blackwellized particle filters by adaptive proposals and selective
resampling,” in Proc. of the 2005 IEEE Int. Conf. on Robotics and Automation,
Barcelona, Spain, 2005, pp. 2432-2437.

[31] N. Kwak, I. Kim, H. Lee, and B. Lee, “Analysis of resampling process for the
particle depletion problem in FastSLAM,” in Proc. of 16th IEEE Int. Conf. on
Robot & Human Interactive Communication, Jeju, Korea, 2007, pp. 200-205.

[32] H. W. Keat and L. S. Ming, “An investigation of the use of Kinect sensor for
indoor navigation,” in Proc. of the 2012 IEEE Region 10 Conf. on Sustainable
Development through Humanitarian Technology, Cebu, Philippines, 2012.

[33] J. Santos. (2014, Aug. 6). ROS/gmapping. [Online]. Available:
http://wiki.ros.org/gmapping?distro=hydro

[34] W. Woodall. (2015, May 6). ROS/costmap_2d. [Online]. Available:

http://wiki.ros.org/costmap_2d

[35] Geometric reasoning and applications: robot motion planning. (n.d.). [Online].
Available: http://www-scf.usc.edu/~peiyingc/gra_planning.html. Accessed May
5, 2015.

[36] Motion planning. (n.d.). Wikipedia. Available:
http://en.wikipedia.org/wiki/Motion_planning. Accessed May 5, 2015.

[37] D. V. Lu and M Ferguson. (2014, Oct. 5). base_local_planner. [Online].
Available: http://wiki.ros.org/base_local_planner

[38] E. Marder-Eppstein. (2014, Aug. 1). ROS/move_base. [Online]. Available:
http://wiki.ros.org/move_base

[39] arebgun/erratic_robot. (2011, Jan. 3). GitHub. [Online]. Available:
https://github.com/arebgun/erratic_robot/blob/master/erratic_teleop/src/keyboard.
cpp

 72

[40] B. P. Gerkey. (2015, Feb. 28). ROS/amcl. [Online]. Available:
http://wiki.ros.org/amcl

[41] (2013, Aug. 22). “3D SLAM on Simulated Multirotor UAV.” [YouTube video].
Available: https://www.youtube.com/watch?v=quqF5_ZE_fI. Accessed May 5,
2015.

 73

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	NAVAL
	POSTGRADUATE
	SCHOOL
	I. Introduction
	A. Motivation for Research
	B. Background
	C. Purpose and Organization of Thesis

	II. Design
	A. Robot Operating System
	1. Filesystem Level
	2. Computation Graph Level
	3. Community Level
	4. Other ROS Concepts
	a. Unified Robot Description Format
	b. Coordinate Frames and Transforms.
	c. Visualization

	5. Basic ROS Commands

	B. Hardware
	1. Pioneer P3-DX
	2. The Microsoft Kinect
	3. Computer Processing Units

	III. System development and integration
	A. Installing and configuring ros
	B. p2os Stack
	C. Openni Stack
	D. Navigation Stack
	1. Sensor Information
	2. Odometry Information
	3. Transform Configuration
	4. SLAM – gmapping
	5. Autonomous Navigation – move_base

	IV. Results
	A. Mapping
	B. Autonomous Navigation with map
	C. Simultaneous localization and mapping

	V. Conclusions
	A. Summary
	B. Future Work

	Appendix A. Master Launch Code
	Appendix B. Navigation Launch Code
	Appendix C. Navigation Parameter Code
	ApPendix D. Keyboard Teleoperation Code
	Appendix E. Microsoft Kinect URDF Code
	List of References
	Initial Distribution List

