
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

1992-05

Federated database management

system: Requirements, issues and solutions

Kamel, Magdi N.

Database Management, Computer Communications, Vol. 15, No. 4, May 1992

http://hdl.handle.net/10945/46791

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36738894?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

database management _________ _

Federated database
management system:

Requirements, issues and
solutions

Magdi N Kamel and Nabil N Kamel* discuss the requirements and
objectives of a federated DBMS

The use of database management systems (DBMS) to
replace conventional file processing systems has drama
tically increased in the past years. Although the use of
DBMSs overcomes many of the limitations of file processing
systems, many important applications require access to
and integration of information among several and often
incompatible DBMSs. In this paper we discuss an approach,
known as the federated database approach, that allows
users and applications to access and manipulate data
across several heterogeneous databases while maintaining
their autonomy. We discuss the requirements and objectives
of a federated database management system, and outline
the major issues and challenges for building and using such
a system. In particular, we address the design issu~s from
three angles: transaction management, system archl.tecture,
and schema integration. Also, we present a fIVe-step
integration methodology followed by a comprehensive
example to illustrate the concepts and techniques involved
in this integration methodology.

Keywords: database management systems, fe.derated
databases, transaction management, system architecture,
schema integration

Department of Information Systems, Naval Postgraduate School,
Monterey, CA 93943, USA. 'Computer and Information Sciences
Department, University of Florida, Cainsville, FL 32611, USA

The use of database management systems (DBMS) to
replace conventional file processing systems has dra~a
tically increased in the past years. Today, a typical
organization maintains numerous separate and different
DBMSs, databases and their applications. Although the
use of DBMSs overcomes many of the limitations of file
processing systems, organizations soon discover the need
to access and share data among different databases for
decision support, overall control, corporate assessment,
and high level planning. This need is certain to accelerate
with the globalization of business, whereby the scope and
presence of organizations expand beyond their geo
graphical boundaries 1.

This situation has led to the emergence of the
heterogeneous distributed database scenario. In t~is
scenario, a variety of large and small computers, each With
its own autonomous and often incompatible DBMS, may
be tied together in a network. This network could consist
of local area, wide area and long-haul networks. Under
current technology, however, a user accessing any
database in this network must abide by the syntactic and
semantic rules of that database. Developing an application
that requires global access to data maintained by these
separate databases is quite difficult. First, the .data~~ses
that contain the data to be accessed are Identified.
Second, several queries in different languages are for
mulated and executed on different computers. Third, the
results are transferred to the requesting site. Fourth, the
results of the different sites are combined. Finally, the
result of the original request is extracted and formatted.

0140-3664/92/004270-09 © 1992 Butterworth-Heinemann Ltd

270 computer communications

Location 1 Location 2

Figure 1. Heterogeneous distributed database manage
ment system - a scenario

As an example, consider the heterogeneous database
depicted in Figure 1. In this depiction, three different
computers, tied together in a network, maintain three
different databases. At location 1, there is a database
managed by a relational DBMS. At location 2, there is a
second database managed by a hierarchical DBMS while
at location 3, a third database is managed by a network
DBMS.

The relational database at location 1 maintains
information on aircraft classes (ex. DC-10) and individual
aircrafts of each' class. The hierarchical database at
location 2 maintains information on airlines and their
respective airplanes. The local schemas of these databases
are shown in Figures 2 and 3, respectively.

To access the hierarchical database at location 2, a user
at location 1 or 3 must be familiar with or learn the
hierarchical data model. Similarly, a user at location 2 or 3
must be versed in the relational model to access the
relational database at location 1. An application requiring
data from two or more locations (for example, data that
relate airlines and aircraft classes) cannot be answered
easily in this environment.

To increase the degree of access and sharing among
the heterogeneous databases and allow applications that
access global data, a federated database approach has
been originally proposed by Hammer and Mcleod2

•

Under this approach each local database is considered a
logical component in the federation. These components
are tied together by one or more federal schemas that
represent the integration of several local schemas. The
federal schemas represent, therefore, information that
can be shared by the federation components. The
software that provides control and coordination of the
component databases is known as a federated database
management system (FDBMS)3 (see Figure 4).

In the next section we discuss the main requirements
for a federated database management system, and then
outline the different issues and design alternatives

vol 15 no 4 may 1992

database management

AIRCRAFT_CLASS (DESIGNATION, TYPE, LENGTH,
WINGSPAN, SPEED, RANGE)
AIRCRAFT (SERH. DESIGNATION, CONFIGURATION)

Figure 2. Relational schema at location 1

AIRLINE

CODE NAME REVENUE

AIRPLANE

TAIL# CLASS STATUS

Figure 3. Hierarchical schema at location 2

associated with this approach. An illustrative example is
given, and finally we conclude with a summary and
indicate directions for the future.

FEDERATED DBMS REQUIREMENTS

In this section we present the main requirements and
objectives that we feel should be met in a federated
database management system'(see also the discussion by
Kim4).

1. The user should be able to access a number of
heterogeneous databases as if accessing a single
database
As indicated in the previous section, this is a main
objective of a federated database management system.
The system should allow the definition of one or several
global schemas that represent the integration of individual
local schemas in the network. By issuing queries on a
global schema, a user can access a set of heterogeneous
databases as if he is accessing a single local database. In
other words, a FDBMS should provide distribution
transparency for the data being accessed.

2. The user should be able to access any database
using a familiar data model and language
In addition to distribution transparency, a FDBMS should
also provide for heterogeneity transparency. This means
that a FDBMS should hide the heterogeneity of different
data models and languages. A user should be able to
access other schemas in exactly the same way he is

271

database management __________ _

I ~
Computer Data

Base

Component DBMS1

Federated Database
Management System

(FDBMS)

Component DBMS2

accessing his local database using a familiar model and
language. Users should not be required to learn new data
models and languages to access other databases.

3. FOBMS should not require any significant
changes to existing database systems or applications
One of the major reasons behind the federated database
approach is to preserve the huge investment in existing
systems. This investment consists of the database
management systems, the databases, and the database
applications. A FDBMS should, therefore, not require any
significant changes to existing databases and applications.
Any changes that might be required to database manage
ment systems should be done in an incremental and
isolated fashion.

4 .. The system should accommodate the addition of
new databases to the network
Since there are many types of database systems, and since
organizations continually introduce new DBMS types to
meet their application requirements, a FDBMS should be
extensible. This means that a FDBMS should accommodate
the addition of new DBMS and their databases to the
network easily and with minimal changes.

5. The user should be able to access the databases
for both retrievals and updates
Users should be able to perform all types of operations,
including updates, on the global schema. To support
updates, both transactional integrity, which refers to the
consistency ofthe database in the presence of concurrent
access, and semantic integrity, which refers to the
consistency of the database with respect to integrity
constraints, needs to be maintained. Maintaining these
types of integrity in a federated environment is significantly
more difficult than in a homogeneous environment.

272

I I-EJ
Computer Data

Base

Component DBMS3

Figure 4. Federated database
management system and its
components

6. Performance of FOBMS should be comparable to
that of homogeneous distributed systems
Hiding the heterogeneity of the databases in the network
requires adding several layers of processing which would
considerably increase the overhead of FDBMS. To be
practical, the performance of a FDBMS should be at least
comparable to that of a homogeneous distributed
system. This is a difficult yet an essential requirement for
FDBMS.

We feel that we should strive to build a FDBMS that
meets all of the above requirements. Current research
prototypes satisfy some but not all of these requirements.
Examples of these prototype systems include DDTS5,
HD-DBMS6, Mermaid?, MULTIBASE8 and SERIUS-DELTA9.

FEDERATED DBMS DESIGN ISSUES

The functionality required for a FDBMS presents the
system designer and the system integrator with several

. complex design alternatives and integration challenges.
We classify these alternatives and challenges under three
categories: Transaction management, architecture and
schema integration. These issues are outlined below.

Transaction management issues

We divide transaction management issues into query
processing and update processing issues.

Query processing
To allow users to pose queries on a global schema, an
additional control component, known as the global or
federal controller, is required. The global controller

computer communications

maintains the definition of the global schemas and acts as
a coordinator and translator: it receives a global query in a
user specific language; translates it into an equivalent
query on a common-model global schema; decomposes
and translates the common-model query into subqueries
that operate on the local schemas; sends the subqueries
to the corresponding local database sites for processing;
collects and reformats the result; and sends it back to the
originating site. This process is summarized in Figure 5.
Dayal'O provides detailed information on query processing
in heterogeneous database environments.

Update processing
There are four issues associated with update processing:
global concurrency control, global deadlock handling,
global data recovery, and global semantic integrity
enforcement. We briefly discuss each of these issues.

Global concurrency control: to ensure consistency of
transactions that reside on several sites, global concurrency
control is needed to ensure that transactions execute in a
serializable manner". There are two problems with
enforcing global concurrency control. First, different
DBMSs use different concurrency control methods to
ensure serializability of local transactions. While the
majority of commercial systems employ two-phase
locking, some may employ different techniques such as
timestamping or optimistic methods. Additionally, the
implementation of the same method of concurrency
control may differ from one system to another. For

(External)
Schema

Global Query _ ~
Decomposer

Global
Catalog!

Dictionary

Figure 5. Querying the global schema from a local site

vol 15 no 4 may 1992

database management

example, the granularity of locking may be at the file level
in one system and at the record level in another. Second,
the DBMS at the various sites were not designed to
communicate with each otherto coordinate their activities.
To accomplish global control, the FDBMS must ensure
that concurrency control is performed globally by
preventing, for example, a local DBMS from releasing
locks until updates at all other locations are complete.
Global serializability, however, provides a low degree of
concurrency, and therefore might be too strong a
requirement and alternative paradigms might be
needed12

•

Global deadlock handling: a second problem which must
be handled by the FDBMS is global deadlock detection. A
deadlock is a situation when each of two transactions is
waiting for the other to release locks on an item. Global
deadlock detection is inherently a difficult problem for
several reasons. First, a local process of a global transaction
has no knowledge of the non-local portions of the
transaction. Second, a global process has no knowledge
of the local transactions. A global wait-for graph needs to
be constructed and analysed forthe existence of cycles to
discover deadlocks. Unfortunately, the construction of a
global wait-for graph requires complex algorithms 13.

There is a general agreement that the most practical
solution is to use timeouts for global deadlock detection.

Global data recovery: to ensure global update atomicity, a
global recovery method is needed. The most commonly
used method in distributed environments is the Two
Phase Commit (2PC) protocol. The 2PC consists of two
phases. In the first phase a coordinator asks all participant
DBMS to prepare to commit; each participant answers
READY if it is ready to commit, or ABORT otherwise. If all
participants have answered READY, the coordinator
decides to commit the transaction. If some of the
participants has answered ABORT, it decides to abort the
transaction. In the second phase, the coordinator informs
all the participants of its decision, which is implemented
by the participants. The problem of implementing the
two-phase commit in a heterogeneous autonomous
environment is that local DBMSs do not have the
capabilities to inform the FDBMS of the prepare to
commit state. Current DBMSs do not provide an external
interface to perform the prepare to commit phase. This is
an area where future standardization could be beneficial
to facilitate integration.

It should be noted that the 2PC protocol automatically
satisfies global concurrency control, since the 2PC forces
local DBMSs to commit and release locks only after all
other DBMSs involved in the global update are prepared
to commit.

Global semantic integrity enforcement: one way to
prevent inaccuracies from being introduced in a database
is to enforce semantic integrity constraints. These con
straints are predicates that define consistent database
states. A semantic integrity system is responsible for
ensuring the consistency of the database by rejecting

273

database management _________ _

updates that would lead to an inconsistent state14
• The

problem of global semantic integrity enforcement is
intrinsically a problem of global transaction management,
since enforcing an integrity constraint may require access
to data at different sites. This is a complex and difficult
area where very little work has been done.

Architectural considerations

Several design alternatives must be addressed atthis level.
First, the number and organization of the global schemas.
This could range from a single schema to several global
schemas arranged in a complex structure. Second, the
location of the controller. The controller could reside on a
special node, on an existing node, or could be distributed
among all (or some) nodes of the network. Third, the
additional facilities that might be required for the local
database to interact with the global environment. This
could include concurrency control mechanisms to allow
the simultaneous access of data if this mechanism is
absent at the local level. It could also include a com
munication mechanism in the local sites to communicate
with the controller.

The choice of a particular architecture will depend on
many factors. These include the ease of changing and
maintaining the global schema, system performance,
system complexity, availability and reliability. Mcleod and
Heimbigner15 provide an extended discussion on the
design issues of distributed architectures.

Schema integration considerations

A major challenge for integrating existing databases is the
construction of a global unified schema that represents
the integration of local schemas. Several problems arise in
schema integration in this environment due to the
structural and semantical differences of the schemas to be
merged. First, schemas at different locations are
represented in different data models. This situation
requires the use of a common data model to interconnect
these diverse data models. Second, many conflicts may
arise when integrating different schemas. These conflicts
include:

• Name conflicts, which involve synonyms, different
names for a construct representing the same fact, and
homonyms, different facts represented by the same
construct name;

• Different representation conflicts, which arise when the
same facts are represented by different constructs in
different schemas. For example, a real-world entity is
represented as an entity in one schema and as an
attribute in another schema;

• Conflicts in application semantics, which result due to
different perception by different users. For example, in
one schema a relationship between two entities is
characterized as one to one, while it is characterized as
one to many in another schema.

274

Conflict identification and resolution is, therefore, crucial
to the problem of integration. Third, when integrating
different schemas, hidden relationships that do not
appear in the individual schemas need be discovered. For
a general survey on view integration methodologies, see
Batini et al.16•

In the next section we present a five step methodology
for schema integration in a heterogeneous environment.
The methodology captures the essence of various
proposals in the literature. The objective of this
methodology is to provide the database integrator with a
systematic approach and an understanding of the issues
involved for successful integration. A comprehensive
example follows to illustrate the implementation of the
proposed methodology.

Five-step integration methodology

Step 1. Formulation of an integration policy
A policy of integration needs to be formulated before
integration can take place. This policy includes deciding
upon the subset. schema that each site is willing to share
with other sites, known as export schema, and the
tailored, integrated global view for each site.

These policy decisions will normally be made at a high
level of the organization with close interaction with
the database administrator at each site.

Step 2. Schema transformation
Once a policy of integration is formulated and an export
schema for each site is agreed upon, each local schema is
translated into an equivalent schema in an intermediate
common data model. This resulting schema is known as
the common-model local schema. Subsequently, the
export schema is specified as a subschema of the
common-model local schema.

The common data model should be semantically rich
enough to subsume all local data models. Object
oriented data models have recently been proposed as
good candidates for a common data model. They include
all key data modelling concepts found in current database
systems and the newly emerging object-oriented database
systems.

Step 3. Conflict identification
In this step, individual schemas are analysed and compared
to identify possible conflicts. A simple classification of
such conflicts was presented in the previous section. It is
also during this step that inter-schema relationships are
identified.

Step 4. Conflict resolution
Once conflicts are identified, attempts are made to
resolve them. It is during this step that the userfeedback is
crucial to clarify the semantics of each schema.

Step 5. Schema merging
This step involves merging export schemas of individual
sites into a global schema. The resulting schema is

computer communications

examined and, if necessary, restructured so that it has
these desirable qualities 16:

• Completeness and correctness: the resulting schema
must represent all the properties of the underlying
export schemas correctly;

• Minima/ity: concepts in the global schema should not
be duplicated;

• Understandability: the global schema should be easily
understandable by both the users and the designers.

The development process of this methodology' is
represented by the multilevel architecture of Figure 6.

COMPREHENSIVE EXAMPLE

Consider the heterogeneous database scenario of Figure 1
and a requirement to integrate the relational and
hierarchical schemas at locations 1 and 2. This requirement
stemmed from the desire to increase data sharing and
allow queries to span both schemas. Forexample, queries
that relate airlines and aircraft classes.

Step 1. Formulation of an integration policy
For simplicity, this example assumes that the integration
policy defines the entire schemas at locations 1 and 2 as
the export schema of each location. In other words, each
location is willing to share its schema in its entirety.
Generally, each site may wish to share only a subset of its
schema with other users. It is also assumed that after
integration, each location will have the total integrated
schema as its tailored global view rather than a subset
of it.

Step 2. Schema transformation
In this step, each local schema is translated into a
common-model schema and an export schema is defined

Internal
Schema

Internal
Schema

Internal
Schema

Figure 6. Architecture for developing a federated database
system

vol 15 no 4 may 1992

database management

on the common-model schema. We assume the entity
relationship model (ERM) as the intermediate common
model. A simplified symbol set of this model is shown in
Figure 7.

The relational and hierarchical schema, shown in
Figures 2 and 3, are transformed into their equivalent ERM
schema, as depicted in Figures 8 and 9.

Step 3. Conflict identification
By examining the export schemas at locations 1 and 2,
shown in Figures 8 and 9, in preparation for merging, we
discover several conflicts. First, the entity AIRCRAFT in the
first schema and the entity AIRPLANE in the second
schema correspond to the same concept. Similarly, the
attributes SER# and TAl L# in the first and second schema,
respectively, are equivalent. Second, Aircraft Class is
represented in the two schemas differently: it is an entity
in the first schema and an attribute in the second. The
reason for having this different representation comes from
the different relevance that Aircraft Class has in the two
schemas. These conflicts need to be resolved before a
global schema can be constructed.

Step 4. Conflict resolution
This step resolves the conflicts identified in the previous
step. First, names of the same concept should be unified

DO o

Entity Relationship Atuibute

Figure 7. Entity Relationship Model symbols

LENGTH

WINGSPAN

SPEED

'SER#' .,

AIRCRAFf

CONFIGURATION

Figure 8. Equivalent ERM schema of relational schema at
location 1

275

database management _________ _

CODE

NAME

REVENUE

TAIL#

CLASS

STATUS

Figure 9. Equivalent ERM schema of hierarchical schema
at location 2

into a single name. We do this by changing the names of
the entity AIRPLANE and attribute TAIL# in the second
schema into AIRCRAFT and SER#, respectively. Second,
we have to conform the different representations of
Aircraft Class in the two schemas. We accomplish this by
transforming the attribute Class into an entity in the
second schema and add a new attribute, Type, to it. These
changes are reflected in the modified schema at location
2, depicted in Figure 10.

Step 5. Schema merging
This is the final step in the integration process whereby
the local export schemas are integrated in a unified

TYPE CODE

AIRLINE NAME

REVENUE

SER#

STATUS

Figure 10. Modified ERM schema of hierarchical schema
at location 2

common-model global schema. The unified global ERM
schema for this example is shown in Figure 11.

This common-model unified global schema is mapped
to the appropriate data model for each user. For example,
a user of the relational database at location 1 views the
unified global schema as the relational schema of
Figure 12. Similarly, a user of the hierarchical database at
location 2 will view the unified global schema as a
hierarchical schema.

Now, consider a query issued at location 1 on the
global schema. This query requests the serial number and
status of Egypt Air aircrafts with a range greater than 1000
miles. The formulation of this query using the relational

CODE

1----nNAME

REVENUE

CONFIGURA nON

STATUS

276

Figure 11. Global ERM schema of local
schemas at locations 1 and 2

computer communications

AIRCRAFT_CLASS (DESIGNATION, TYPE, lENGTH,
WINGSPAN, SPEED, RANGE)
AIRLINE (CODE, NAME REVENUE)
AIRCRAFT (SERH, DESIGNATION, CONFIGURATION)

Figure 12. Relational schema equivalent of the global
schema in Figure 11

language SQL of a user at location 1 is shown in
Figure 13.

The controller translates this query into an equivalent
one on the global intermediate schema of Figure 11. It
then decomposes and translates the resulting query into
two queries that operate on the local schemas at locations
1 and 2. The first one, shown in Figure 14a, is written in
SQL and operates on the relational database at location 1.
The second query, shown in Figure 14b, is written in DL/I
and operates on the hierarchical database at location 2.
The results of queries 14a and b, saved in $STEMP and
$TIEMP, respectively, are sent back to the controller
where they are joined on serial (tail) number to produce
the answer to the query. This result is reformatted and
sent to the originating site, location 1.

As indicated earlier, a user gets the results of his query
without being aware of the location, distribution, or
heterogeneity of the databases being accessed.

SUMMARY AND CONCLUSIONS

Information integration will be a key factor in the survival
and prosperity of organizations in the 1990s 17. Many

SELECT SER#, STATUS
FROM AIRCRAFT_CLASS, AIRLINE, AIRCRAFT
WHERE AIRCRAFT_CLASS.DESIGNATION = AIRCRAFT.
DESIGNATION AND

AIRCRAFT.CODE = AIRLlNE.CODE AND
NAME = "EGYPT AIR" AND
RANGE>l,OOO

Figure 13. Relational query on the global schema

SELECT SER# INTO $STEMP
FROM AIRCRAFT_CLASS, AIRCRAFT
WHERE AIRCRAFT_CLASS.DESIGNATION = AIRCRAFT.

DESIGNATION AND RANGE>l,OOO

GU AIRLlNE(NAME = "EGYPT AIR")
DO WHilE data remains

GNP AIRPLANE
write TAll#, STATUS into $TTEMP

END-DO

Figure 14. Decomposition of the global query into local
queries. Local query on (a) relational database at location
1; (b) hierarchical database at location 2

vol 15 no 4 may 1992

database management

important applications will require access and sharing of
data among mUltiple heterogeneous databases. Regard
less of their size and structure, organizations will
increasingly look to information technology to integrate
their numerous existing information systems.

In this paperwe have discussed an approach, known as
the federated database approach, that allows users and
aplications to access and manipulate data across several
heterogeneous databases as if they are accessing a single
database while maintaining the autonomy of the data
bases in the network. We present our view of what the
requirements and objectives of a federated database
management system should be, and outline the major
issues and challenges that face the designers and users for
building and using such a system. A comprehensive
example was used to illustrate the concepts and techniques
involved in integrating databases in a federated environ
ment. We believe that federated database management
systems will be a major trend for distributed data
processing in the years to come.

REFERENCES

1 Madnick, S E and Wang, Y R 'ClSL: Composing
answers from disparate information systems' Position
Papers of 1989 Workshop on Heterogeneous Data
bases, Evaston, IL, USA (December 1989)

2 Hammer, M and Mcleod, D On the architecture of
database management systems, Computer Science
Department Technical Report 79-4, University of
Southern California, USA (April 1979)

3 Sheth, A P and Larson, J A 'Federated database
systems for managing distributed, heterogeneous,
and autonomous databases' ACM Com put Surv.,
Vol 22 No 3 (September 1990) pp 183-236

4 Kim, W 'Research directions for integrating hetero
geneous databases' Position papers of 1989 Workshop
on Heterogeneous Databases, Evanston, IL, USA
(December 1989)

5 Dwyer, P and Larson, J 'Some experiences with a
distributed database testbed system' Proc. IEEE,
Vol 75 No 5 (May 1987) pp 633-648

6 Cardenas, A 'Heterogeneous distributed database
management: The HD-DBMS' Proc. IEEE, Vol 75 No 5
(May 1987) pp 588-600

7 Templeton, M, Brill, D, Chen, A, Dao, S and Lund,
E'Mermaid - Experiences with network operation'
Proc. 2nd Int Conf. on Data Engineering, Los Angeles,
CA, USA (February 1986) pp 292-300

8 Landers, T and Rosenberg, R 'An overview of
MULTI BASE', in Schneider, H J (ed) Distributed
Databases, North Holland, Netherlands (1982)
pp 153-183

9 Ferrier, A and Stangret, C 'Heterogeneity in the
distributed database management system SIRIUS
DELTA' Proc. 8th Int Conf. Very large DataBases,
Mexico City, Mexico (1982)

10 Dayal, U 'Processing queries over generalization
hierarchies in a multidatabase systems' Proc. 9th Int

277

database management _________ _

Cont. Very large Databases, Florence, Italy (1983)
11 Bernstein, P, Hadzilacos, V and Goodman, N

Concurrency Control and Recovery in Database
Systems, Addison-Wesley, New York (1987)

12 Du, Wand Elmagarmid, A K 'Quasi serializability: A
correctness criterion for global concurrency control in
InterBase' Proc. 15th Int Cont. Very Large Databases,
Amsterdam, Netherlands (1989) pp 347-355

13 Obermarck, R 'Distributed deadlock detection
algorithm' ACM Trans. Database Syst, Vol 7 No 2
Oune 1982)

14 Kamel, M and Davidson, S 'Redundancy: an approach

278

to the efficient implementation of semantic integrity
assertions' Proc. 23rd Ann. Int Cont. on Syst Sci.,
Kailua-Kona, HI, USA Oanuary 1990) pp 393-399

15 Mcleod, D and Heimbigner, D 'A federated
architecture for database systems' Proc. Nat Comput
Cont., (1980) pp 283-289

16 Batini, C, Lenzerini, M and Navathe, S 'A comparative
analysis of methodologies for database schema
integration' ACM Comput SUN., Vol18 No 4
(December 1986) pp 323-364

17 The Landmark MIT Study: Management in the 1990s,
Arthur Young, UK (1989)

, I

, I

! ,
_I

computer communications

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10

