“Lalhoun

Institutional Archive of the Naval Pastgraduate School

Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications Collection

2001

A comparison of eleven static heuristics for
mapping a class of independent tasks onto
heterogeneous distributed computing systems

Braun, Tracy D.

http://hdl.handle.net/10945/46432

‘: D U DLE Y Calhoun is a project of the Dudley Knox Library at MPS, furthering the precepts and
]ﬂ“‘ goals of open government and government transparency. All information contained

m KN DK herein has been approved for release by the NP5 Public Affairs Officer.
LIBRARY

Dudley Knox Library / MNaval Postgraduate School
411 Dyer Road / 1 University Circle

hittps/fwwwinps.edu/library Monterey, California USA 93943

Journal of Parallel and Distributed Computing 61, 810-837 (2001) ®
doi:10.1006/jpdc.2000.1714, available online at http://www.idealibrary.com on IDE %l.

A Comparison of Eleven Static Heuristics for
Mapping a Class of Independent Tasks onto
Heterogeneous Distributed Computing Systems'

Tracy D. Braun, Howard Jay Siegel,> and Noah Beck
School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907-1285
E-mail: tdbraun@ecn.purdue.edu, hj@ecn.purdue.edu, noah@ecn.purdue.edu
Ladislau L. B6loni
CPlane Inc., 897 Kifer Road, Sunnyvale, California 94086
E-mail: boloni@cplane.com
Muthucumaru Maheswaran
Department of Computer Science, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
E-mail: maheswar@cs.umanitoba.ca
Albert 1. Reuther
School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907-1285
E-mail: reuther@ecn.purdue.edu
James P. Robertson
Motorola, 6300 Bridgepoint Parkway, Bldg. #3, MD:OE71, Austin, Texas 78730
E-mail: robertso@ibmoto.com
Mitchell D. Theys

Department of Electrical Engineering and Computer Science, University of Illinois at Chicago, Chicago,
llinois 60607-7053
E-mail: mtheys@uic.edu

Bin Yao

School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907-1285
E-mail: yaob@ecn.purdue.edu

! This research was supported in part by the DARPA/ITO Quorum Program under NPS Subcon-
tracts N62271-98-M-0217 and N62271-98-M-0448, and under the GSA Subcontract GS09K99BH0250.
Some of the equipment used was donated by Intel and Microsoft.

2 Address as of August 2001: Department of Electrical and Computer Engineering, Colorado State
University, Fort Collins, Colorado 80523. E-mail: hj@colostate.edu.

0743-7315/01 $35.00 810
Copyright © 2001 by Academic Press
All rights of reproduction in any form reserved.

MAPPING INDEPENDENT TASKS 811

Debra Hensgen

OpenTV, 401 East Middlefield Road, Mountain View, California 94043
E-mail: dhensgen(@opentv.com

and

Richard F. Freund

NOEMIX, 1425 Russ Boulevard, Suite T-110, San Diego, California 92101
E-mail: rffreund @noemix.com

Received October 15, 1998; revised June 18, 2000; accepted November 15, 2000

Mixed-machine heterogeneous computing (HC) environments utilize a dis-
tributed suite of different high-performance machines, interconnected with
high-speed links, to perform different computationally intensive applications
that have diverse computational requirements. HC environments are well
suited to meet the computational demands of large, diverse groups of tasks.
The problem of optimally mapping (defined as matching and scheduling)
these tasks onto the machines of a distributed HC environment has been
shown, in general, to be NP-complete, requiring the development of heuristic
techniques. Selecting the best heuristic to use in a given environment,
however, remains a difficult problem, because comparisons are often clouded
by different underlying assumptions in the original study of each heuristic.
Therefore, a collection of 11 heuristics from the literature has been selected,
adapted, implemented, and analyzed under one set of common assumptions.
It is assumed that the heuristics derive a mapping statically (i.e., off-line). It
is also assumed that a metatask (i.e., a set of independent, noncommunicating
tasks) is being mapped and that the goal is to minimize the total execution
time of the metatask. The 11 heuristics examined are Opportunistic Load
Balancing, Minimum Execution Time, Minimum Completion Time, Min—
min, Max—min, Duplex, Genetic Algorithm, Simulated Annealing, Genetic
Simulated Annealing, Tabu, and A*. This study provides one even basis for
comparison and insights into circumstances where one technique will out-
perform another. The evaluation procedure is specified, the heuristics are
defined, and then comparison results are discussed. It is shown that for the
cases studied here, the relatively simple Min-min heuristic performs well in
comparison to the other techniques. © 2001 Academic Press

Key Words: A*; Genetic Algorithm; heterogeneous computing; mapping
heuristics; metatasks; simulated annealing; static matching; Tabu search.

1. INTRODUCTION

Mixed-machine heterogeneous computing (HC) environments utilize a distributed
suite of different high-performance machines, interconnected with high-speed links,
to perform different computationally intensive applications that have diverse com-
putational requirements [1, 14, 16, 18, 30, 37]. The matching of tasks to machines
and scheduling the execution order of these tasks is referred to as mapping. The

812 BRAUN ET AL.

general problem of optimally mapping tasks to machines in an HC suite has been
shown to be NP-complete [15, 23]. Heuristics developed to perform this mapping
function are often difficult to compare because of different underlying assumptions
in the original study of each heuristic [6]. Therefore, a collection of 11 heuristics
from the literature has been selected, adapted, implemented, and compared by
simulation studies under one set of common assumptions.

To facilitate these comparisons, certain simplifying assumptions were made. For
these studies, let a metatask be defined as a collection of independent tasks with no
intertask data dependencies. The mapping of the metatasks is being performed stati-
cally (i.e., off-line, or in a predictive manner). The goal of this mapping is to mini-
mize the total execution time of the metatask.

Metatasks composed of independent tasks occur in many situations. For example,
all of the jobs submitted to a supercomputer center by different users would constitute
a metatask. Another example of a metatask would be a group of image processing
applications all operating on different images.

Static mapping is utilized in many different types of analyses and environments.
The most common use of static mapping is for predictive analyses (e.g., to plan the
work for the next day and/or to meet a deadline). For example, assume a NASA
center knows it will have a 2-hour communication window with a probe tomorrow.
In those 2 hours, NASA center will have to analyze the data the probe sends back
and determine if the probe needs to be adjusted before communications blackout.
Therefore, the NASA center will want to plan the most efficient way to handle the
data a priori and determine if the deadline can be met. Another use of static map-
ping is for “what if” simulation studies. For example, a system administrator may
need to justify the benefits of purchasing another machine for an HC suite. Static
mapping is also used for post-mortem analyses. For example, a static mapper can
be used ex post facto to evaluate how well an on-line (i.e., dynamic) mapper is
performing. Future high-powered computational grids [16] will also be able to
utilize static mapping techniques to distribute resources and computational power.
The wide applicability of static mapping makes it an important area for ongoing
research.

It is also assumed that each machine executes a single task at a time (i.e., no mul-
titasking), in the order in which the tasks are assigned. The size of the metatask
(i.e., the number of tasks to execute), 7, and the number of machines in the HC
suite, u, are static and known beforehand.

This study provides one even basis for comparison and insights into circum-
stances where one mapping technique will out-perform another. The evaluation proce-
dure is specified, the heuristics are defined, and then comparison results are shown.
For the cases studied here, the relatively simple Min—-min heuristic (defined in
Section 3) performs well in comparison to other, more complex techniques
investigated.

The remainder of this paper is organized as follows. Section 2 defines the com-
putational environment parameters that were varied in the simulations. Descrip-
tions of the 11 mapping heuristics are found in Section 3. Section 4 examines
selected results from the simulation study. A list of implementation parameters and
procedures that could be varied for each heuristic is presented in Section 5.

MAPPING INDEPENDENT TASKS 813

This research was supported in part by the DARPA/ITO Quorum Program pro-
ject called MSHN (management system for heterogeneous networks) [21]. MSHN
was a collaborative research effort among the Naval Postgraduate School,
NOEMIX, Purdue University, and the University of Southern California. One
objective of MSHN was to design and evaluate mapping heuristics for different
types of HC environments.

2. SIMULATION MODEL

The 11 static mapping heuristics were evaluated using simulated execution times
for an HC environment. Because these are static heuristics, it is assumed that an
accurate estimate of the expected execution time for each task on each machine is
known prior to execution and contained within a © xu ETC (expected time to com-
pute) matrix. The assumption that these estimated expected execution times are
known is commonly made when studying mapping heuristics for HC systems (e.g.,
[19, 26, 40]). (Approaches for doing this estimation based on task profiling and
analytical benchmarking are discussed in [27, 30, 37].)

One row of the ETC matrix contains the estimated execution times for a given
task on each machine. Similarly, one column of the ETC matrix consists of the
estimated execution times of a given machine for each task in the metatask. Thus,
for an arbitrary task #; and an arbitrary machine m;, ETC(t;, m;) is the estimated
execution time of #; on m;.

The ETC(t;,m;) entry could be assumed to include the time to move the
executables and data associated with task ¢; from their known source to machine
m;. For cases when it is impossible to execute task 7, on machine m; (e.g., if spe-
cialized hardware is needed), the value of ETC(t;, m;) is set to infinity.

For the simulation studies, characteristics of the ETC matrices were varied in an
attempt to represent a range of possible HC environments. The ETC matrices used
were generated using the following method. Initially, a 7 x 1 baseline column vector,
B, of floating point values is created. Let ¢, be the upper bound of the range of
possible values within the baseline vector. The baseline column vector is generated
by repeatedly selecting a uniform random number, x}, e[l,¢,), and letting
B(i) = x} for 0 <i<rt. Next, the rows of the ETC matrix are constructed. Each ele-
ment ETC(¢;, m;) in row i of the ETC matrix is created by taking the baseline
value, B(i), and multiplying it by a uniform random number, x:/, which has an
upper bound of ¢,. This new random number, x>/ e[1, ¢,), is called a row multi-
plier. One row requires u different row multipliers, 0 < j <u. Each row i of the ETC
matrix can then be described as ETC(t;, m;)=B(i)xx}/, for 0<j<u. (The
baseline column itself does not appear in the final ETC matrix.) This process is
repeated for each row until the 7 x ¢ ETC matrix is full. Therefore, any given value
in the ETC matrix is within the range [1, ¢, x ¢,) [29].

To evaluate the heuristics for different mapping scenarios, the characteristics of
the ETC matrix were varied based on several different methods from [4]. The
amount of variance among the execution times of tasks in the metatask for a given
machine is defined as task heterogeneity. Task heterogeneity was varied by changing
the upper bound of the random numbers within the baseline column vector. High

814 BRAUN ET AL.

TABLE 1

Sample 8 X 8 Excerpt from One of the 512 x 16 ETC Matrices with Consistent, High Task,
High Machine Heterogeneity Used in Generating Fig. 3

machines

25,1375 52,468.0 150,206.8 289,992.5 392,348.2 399,562.1 441,485.5 518,283.1
30,8026 42,7445 495783 505756 58,268.1 58,987.9 85,213.2 87,893.0
242,727.1 661,4985 796,048.1 817,7458 9152359 9258756 978,057.6 1,017,448.1
68,050.1 303,515.9 324,093.1 643,133.7 841,877.3 856,312.9 861,314.8 978,066.3
6,480.2 42,3967 98,1054 166,346.8 240,319.5 782,658.5 871,532.6 1,203,339.8
175,953.8 210,341.9 261,825.0 306,034.2 393,292.2 412,085.4 483,691.9 515,645.9
116,821.4 2405776 241,127.9 406,791.4 1,108,758.0 1,246,430.8 1,393,067.0 1,587,743.1
36,760.6 111,631.5 150,926.0 221,390.0 259,491.1 383,709.7 442,605.7 520,276.8

n X0 ~

task heterogeneity was represented by ¢, =3000 and low task heterogeneity used
¢, = 100. Machine heterogeneity represents the variation that is possible among the
execution times for a given task across all the machines. Machine heterogeneity was
varied by changing the upper bound of the random numbers used to multiply the
baseline values. High machine heterogeneity values were generated using ¢, = 1000,
while low machine heterogeneity values used ¢, =10. These heterogencous ranges
are based on one type of expected environment for MSHN. The ranges were chosen
to reflect the fact that in real situations there is more variability across execution
times for different tasks on a given machine than the execution time for a single
task across different machines.

To further vary the characteristics of the ETC matrices in an attempt to capture
more aspects of realistic mapping situations, different ETC matrix consistencies
were used. An ETC matrix is said to be consistent if whenever a machine m;
executes any task ¢; faster than machine m,, then machine m; executes all tasks
faster than machine m, [4]. Consistent matrices were generated by sorting each
row of the ETC matrix independently, with machine m, always being the fastest
and machine m, _,, the slowest. In contrast, inconsistent matrices characterize the
situation where machine m; may be faster than machine m, for some tasks and
slower for others. These matrices are left in the unordered, random state in which
they were generated (i.e., no consistency is enforced). Partially-consistent matrices
are inconsistent matrices that include a consistent submatrix of a predefined size.
For the partially-consistent matrices used here, the row elements in column posi-
tions {0, 2, 4, ...} of row i are extracted, sorted, and replaced in order, while the row

TABLE 2

Sample 8 X 8 Excerpt from One of the 512 x 16 ETC Matrices with Inconsistent, High Task,
High Machine Heterogeneity Used in Generating Fig. 5

machines

436,7359 815,308.1 891,469.0 1,722,197.6 1,340,988.1 740,028.0 1,749,673.7 251,140
950,470.7 933,830.1 2,156,144.2 2,202,018.0 2,286,210.0 2,779,663.0 220,536.3 1,769,184.5
453,126.6 479,091.9 150,3245 386,338.1 401,682.9 218,826.0 242,699.6 11,392.2
1,289,078.2 1,400,308.1 2,378,363.0 2,458,087.0 351,387.4 925,070.1 2,097,914.2 1,206,158.2
646,129.6 576,144.9 1,475908.2 424,4488 576,238.7 223,453.8 256,804.5 88,737.9
1,061,682.3 43,439.8 1,355,855.5 1,736,937.1 1,624942.6 2,070,705.1 1,977,650.2 1,066,470.8
10,783.8 7,453.0 3,454.4 23,720.8 29,817.3 1,143.7 44,249.2 5,039.5
1,940,704.5 1,682,338.5 1,978,5456 788,342.1 1,192,052.5 1,022,914.1 701,336.3 1,052,728.3

w X 0 QN o~

MAPPING INDEPENDENT TASKS 815

TABLE 3

Sample 8 X 8 Excerpt from One of the 512 x 16 ETC Matrices with Partially-Consistent,
High Task, High Machine Heterogeneity Used in Generating Fig. 7

machines

1,003,569.7 910,811.9 1,085,529.8 1,646,242.8 1,087,655.5 2,121,084.5 1,141,898.7 749,952.3
27.826.6 409,936.4 168,341.7 858,511.3 353,691.8 270,449.8 420,799.6 152,786.0
8,415.4 101,202.5 16,453.7 64,152.5 28,1728 36,738.5 61,1145 1424112
17,0505 195,067.8 79,175.8 787,263.3 173,233.2 438,599.0 378,563.4 7473054
32,2754 4344457 135,989.1 496,326.8 221,097.9 463,577.7 244,747.3 431,704.5
28,850.0 138,449.0 32,730.9 93,025.9 90,0444 2238279 96,7155 129,973.1
145,0385 350917.4 210,957.4 2655905 4862177 3179152 728,7324 6253655
11,763.0 460,975.2 214,456.3 821,904.1 296,960.4 459,109.0 350,026.7 54,926.4

n X 0 —~+

elements in column positions {1, 3, 5, ...} remain unordered (i.e., the even columns
are consistent and the odd columns are, in general, inconsistent).

Twelve combinations of ETC matrix characteristics were used in this study: high
or low task heterogeneity, high or low machine heterogeneity, and one type of con-
sistency (consistent, inconsistent, or partially consistent). Three sample ETC
matrices from these 12 possible permutations of the characteristics are shown in
Tables 1 through 3. (Examples of all 12 ETC matrices can be found in [5].) The
results in this study (see Section 4) used ETC matrices that had =512 tasks and
1 =16 machines. These results were taken as the average of 100 ETC matrices for
each case.

While it was necessary to select some specific parameter values for 7, u, and the
ETC entries to allow implementation of a simulation, the techniques presented here
are completely general. Therefore, if these parameter values do not apply to a
specific situation of interest, researchers may substitute in their own values and the
evaluation software of this study will still apply. For example, an alternative
method for generating ETC matrices that could be used with this evaluation
software is described in [2].

3. HEURISTIC DESCRIPTIONS

3.1. Introduction

The definitions of the 11 static metatask mapping heuristics are provided below.
First, some preliminary terms must be defined. Machine availability time, mat(m,),
is the earliest time machine m; can complete the execution of all the tasks that have
previously been assigned to it (based on the ETC entries for those tasks). The com-
pletion time for a new task ¢, on machine m;, ct(¢;, m;), is the machine availability
time for m; plus the execution time of task #; on machine m;, ie., ct(t;,,m;)=
mat(m;) + ETC(t;, m;). The performance criterion used to compare the results of the
heuristics is the maximum value of c#(¢;, m;), for 0 <i<t and 0 < j <u. The maxi-
mum ct(t;, m;) value, over 0<i<t and 0< j<u, is the metatask execution time,
and is called the makespan [32]. Each heuristic is attempting to minimize the
makespan, i.e., finish execution of the metatask as soon as possible.

The descriptions below implicitly assume that the machine availability times are
updated after each task is mapped. For heuristics where the tasks are considered in

816 BRAUN ET AL.

an arbitrary order, the order in which the tasks appeared in the ETC matrix was
used. Most of the heuristics discussed here had to be adapted for this problem
domain.

For many of the heuristics, there are control parameters values and/or control
function specifications that can be selected for a given implementation. For the
studies here, such values and specifications were selected based on experimentation
and/or information in the literature. Some of these parameters and functions are
mentioned in Section 5.

3.2. Heuristics

OLB: Opportunistic Load Balancing (OLB) assigns each task, in arbitrary
order, to the next machine that is expected to be available, regardless of the task’s
expected execution time on that machine [3, 17, 18]. The intuition behind OLB is
to keep all machines as busy as possible. One advantage of OLB is its simplicity,
but because OLB does not consider expected task execution times, the mappings it
finds can result in very poor makespans.

MET: In contrast to OLB, Minimum Execution Time (MET) assigns each
task, in arbitrary order, to the machine with the best expected execution time for
that task, regardless of that machine’s availability [3, 17]. The motivation behind
MET is to give each task to its best machine. This can cause a severe load
imbalance across machines. In general, this heuristic is obviously not applicable to
HC environments characterized by consistent ETC matrices.

MCT: Minimum Completion Time (MCT) assigns each task, in arbitrary
order, to the machine with the minimum expected completion time for that task [3].
This causes some tasks to be assigned to machines that do not have the minimum
execution time for them. The intuition behind MCT is to combine the benefits of
OLB and MET, while avoiding the circumstances in which OLB and MET perform
poorly.

Min-min: The Min—min heuristic begins with the set U of all unmapped tasks.
Then, the set of minimum completion times, M = {min,,_,(ct(t;, m;)), for each
t; € U}, is found. Next, the task with the overall minimum completion time from M
is selected and assigned to the corresponding machine (hence the name Min-min).
Last, the newly mapped task is removed from U, and the process repeats until all
tasks are mapped (i.e., U is empty) [3, 17, 23]. Min—min is based on the minimum
completion time, as is MCT. However, Min—-min considers all unmapped tasks
during each mapping decision and MCT only considers one task at a time.

Min-min maps the tasks in the order that changes the machine availability status
by the least amount that any assignment could. Let ¢, be the first task mapped by
Min-min onto an empty system. The machine that finishes #; the earliest, say m;,
is also the machine that executes z; the fastest. For every task that Min—min maps
after #;, the Min-min heuristic changes the availability status of m; by the least
possible amount for every assignment. Therefore, the percentage of tasks assigned
to their first choice (on the basis of execution time) is likely to be higher for Min—
min than for Max-min (defined next). The expectation is that a smaller makespan

MAPPING INDEPENDENT TASKS 817

can be obtained if more tasks are assigned to the machines that complete them the
earliest and also execute them the fastest.

Max-min: The Max-min heuristic is very similar to Min—-min. The Max—min
heuristic also begins with the set U of all unmapped tasks. Then, the set of mini-
mum completion times, M, is found. Next, the task with the overall maximum com-
pletion time from M is selected and assigned to the corresponding machine (hence
the name Max-min). Last, the newly mapped task is removed from U, and the
process repeats until all tasks are mapped (i.e., U is empty) [3, 17, 23].

Intuitively, Max—min attempts to minimize the penalties incurred from perform-
ing tasks with longer execution times. Assume, for example, that the metatask being
mapped has many tasks with very short execution times and one task with a very
long execution time. Mapping the task with the longer execution time to its best
machine first allows this task to be executed concurrently with the remaining tasks
(with shorter execution times). For this case, this would be a better mapping than
a Min—-min mapping, where all of the shorter tasks would execute first, and then the
longer running task would execute while several machines sit idle. Thus, in cases
similar to this example, the Max—min heuristic may give a mapping with a more
balanced load across machines and a better makespan.

Duplex: The Duplex heuristic is literally a combination of the Min—-min and
Max-min heuristics. The Duplex heuristic performs both of the Min—-min and
Max-—min heuristics and then uses the better solution [3, 17]. Duplex can be per-
formed to exploit the conditions in which either Min—min or Max-min performs
well, with negligible overhead.

GA: Genetic Algorithms (GAs) are a technique used for searching large solu-
tion spaces (e.g., [22, 31, 40, 42, 44]). The version of the heuristic used for this
study was adapted from [44] for this particular problem domain. Figure 1 shows
the steps in a general GA.

The GA implemented here operates on a population of 200 chromosomes (possible
mappings) for a given metatask. Each chromosome is a 7 x 1 vector, where position
i (0<i<r7) represents task ¢;, and the entry in position i is the machine to which
the task has been mapped. The initial population is generated using two methods:
(a) 200 randomly generated chromosomes from a uniform distribution, or (b) one
chromosome that is the Min—-min solution (i.e., mapping for the metatask) and 199
random solutions. The latter method is called seeding the population with a

initial population generation;

evaluation;
while (stopping criteria not met) {
selection;
crossover;
mutation;
evaluation;
}

output best solution;

FIG. 1. General procedure for a Genetic Algorithm, based on [41].

818 BRAUN ET AL.

Min-min chromosome. The GA actually executes eight times (four times with
initial populations from each method), and the best of the eight mappings is used
as the final solution.

Each chromosome has a fitness value, which is the makespan that results from
the matching of tasks to machines within that chromosome. After the generation of
the initial population, all of the chromosomes in the population are evaluated based
on their fitness value, with a smaller fitness value being a better mapping. Then, the
main loop in Fig. 1 is entered and a rank-based roulette wheel scheme [41] is used
for selection. This scheme probabilistically duplicates some chromosomes and
deletes others, where better mappings have a higher probability of being duplicated
in the next generation. Elitism, the property of guaranteeing the best solution
remains in the population [33], was also implemented. The population size stays
fixed at 200.

Next, the crossover operation selects a random pair of chromosomes and chooses
a random point in the first chromosome. For the sections of both chromosomes
from that point to the end of each chromosome, crossover exchanges machine
assignments between corresponding tasks. Every chromosome is considered for
crossover with a probability of 60 %.

After crossover, the mutation operation is performed. Mutation randomly selects
a chromosome, then randomly selects a task within the chromosome, and randomly
reassigns it to a new machine. Every chromosome is considered for mutation with
a probability of 40%. For both crossover and mutation, the random operations
select values from a uniform distribution.

Finally, the chromosomes from this modified population are evaluated again.
This completes one iteration of the GA. The GA stops when any one of three condi-
tions are met: (a) 1000 total iterations, (b) no change in the elite chromosome for
150 iterations, or (c) all chromosomes converge to the same mapping. Until the
stopping criterium is met, the loop repeats, beginning with the selection step. The
stopping criterium that usually occurred in testing was no change in the elite
chromosome in 150 iterations.

SA: Simulated Annealing (SA) is an iterative technique that considers only
one possible solution (mapping) for each metatask at a time. This solution uses the
same representation as the chromosome for the GA. The initial implementation of
SA was evaluated and then modified and refined to give a better final version. Both
the initial and final implementations are described below.

SA uses a procedure that probabilistically allows poorer solutions to be accepted
to attempt to obtain a better search of the solution space (e.g., [10, 28, 31, 34, 45]).
This probability is based on a system temperature that decreases for each iteration.
As the system temperature “cools,” it is more difficult for poorer solutions to be
accepted. The initial system temperature is the makespan of the initial (random)
mapping.

The initial SA procedure implemented here is as follows. The first mapping is
generated from a uniform random distribution. The mapping is mutated in the
same manner as the GA, and the new makespan is evaluated. The decision algo-
rithm for accepting or rejecting the new mapping is based on [10]. If the new
makespan is better, the new mapping replaces the old one. If the new makespan is

MAPPING INDEPENDENT TASKS 819

worse (larger), a uniform random number z € [0, 1) is selected. Then, z is compared
with y, where

! 1
Y= old makespan-new makespan * ()
1 + 6(temperature)

If z> y the new (poorer) mapping is accepted; otherwise it is rejected, and the old
mapping is kept.

For solutions with similar makespans (or if the system temperature is very large),
y— 0.5, and poorer solutions are accepted with approximately a 50% probability.
In contrast, for solutions with very different makespans (or if the system tem-
perature is very small), y — 1, and poorer solutions will usually be rejected.

After each mutation, the system temperature is reduced to 90% of its current
value. (This percentage is defined as the cooling rate.) This completes one iteration
of SA. The heuristic stops when there is no change in the makespan for 150 itera-
tions or the system temperature approaches zero. Most tests ended when the system
temperature approached zero (approximated by 1072%),

Results from preliminary studies using the initial implementation described above
showed that the GA usually found the best mappings of all 11 heuristics. However,
the execution time of the SA heuristic was much shorter than that of the GA.
Therefore, to provide a fairer comparison, the following changes were made to the
final SA implementation. First, the stopping conditions were modified so that the
number of unchanged iterations was raised to 200 and two different cooling rates
were used, 80 and 90 %. Next, SA was allowed to execute eight times for each cool-
ing rate, using the best solution from all 16 runs as the final mapping. Last, four
of the eight runs for each cooling rate were seeded with the Min—min solution, just
as with the GA. The modifications gave SA an execution time as long as GA.

Even with the additional execution time and Min—-min seedings, SA still found
poorer solutions than Min—-min or GA. Because SA allows poorer solutions to be
accepted at intermediate stages, it allows some very poor solutions in the initial
stages, from which it can never recover (see Section 4).

GSA: The Genetic Simulated Annealing (GSA) heuristic is a combination of
the GA and SA techniques [7, 36]. In general, GSA follows procedures similar to
the GA outlined above. However, for the selection process, GSA uses the SA cooling
schedule and system temperature and a simplified SA decision process for accepting
or rejecting a new chromosome.

Specifically, the initial system temperature was set to the average makespan of
the initial population and reduced to 90% of its current value for each iteration.
Whenever a mutation or crossover occurs, the new chromosome is compared with
the corresponding original chromosome. If the new makespan is less than the
original makespan plus the system temperature, then the new chromosome is
accepted [7, 36]. Otherwise, the original chromosome survives to the next iteration.
Therefore, as the system temperature decreases, it is again more difficult for poorer
solutions to be accepted. The two stopping criteria used were either (a) no change
in the elite chromosome in 150 iterations or (b) 1000 total iterations. The most
common stopping criteria was no change in the elite chromosome in 150 iterations.

820 BRAUN ET AL.

Tabu: Tabu search is a solution space search that keeps track of the regions
of the solution space which have already been searched so as not to repeat a search
near these areas [12, 20, 31]. A solution (mapping) uses the same representation
as a chromosome in the GA approach.

The implementation of Tabu search used here begins with a random mapping as
the initial solution, generated from a uniform distribution. To manipulate the
current solution and move through the solution space, a short hop is performed.
The intuitive purpose of a short hop is to find the nearest local minimum solution
within the solution space. The basic procedure for performing a short hop is to con-
sider, for each possible pair of tasks, each possible pair of machine assignments,
while the other 7 —2 assignments are unchanged. This is done for every possible
pair of tasks. The pseudocode for the short hop procedure is given in Fig. 2.

Let the tasks in the pair under consideration be denoted ti and tj in Fig. 2. (The
machine assignments for the other 7 —2 tasks are held fixed.) The machines to
which tasks ti and tj are remapped are mi and mj, respectively. For each possible
pair of tasks, each possible pair of machine assignments is considered. Lines 1
through 4 set the boundary values of the different loops. Line 6 or 8 is where each
new solution (mapping) is evaluated, and line 9 is where the new solution is con-
sidered for acceptance. Each of these new solutions is a short hop. If the new
makespan is an improvement, the new solution is saved, replacing the current solu-
tion. (This is defined as a successful short hop.) When ti and tj represent the same
task (ti=tj), a special case occurs (line 5). In these situations, all machines for that
one task are considered.

0 LOOP: /*begin short hop procedure */
1 forti=0to 7 -1 /* first task in pair */
2 for mi = 0to p-1 /* first machine in pair */
3 fortj =tito r-1 /* second task in pair */
4 for mj=0to u-1 /* second machine in pair */
5 if (ti == tj)
6 evaluate new solution
with task tj on machine mj;
7 else
8 evaluate new solution with
task ti on machine mi and
task tj on machine mj;
9 if (new solution is better) {
10 replace old solution with new solution;
11 successful_hops = successful_hops + 1;
12 goto LOOP; /* restart from inital state */
13 if (successful_hops == limit,ps)
14 goto END; /* end all searching */
15 end for
16 end for
17 end for
18 end for
19 END:

FIG. 2. Pseudocode describing the short hop procedure used in Tabu search.

MAPPING INDEPENDENT TASKS 821

When any new solution is found to be an improvement (lines 9 to 12), the proce-
dure breaks out of the for loops, and starts searching from the beginning again. The
short hop procedure ends when (1) every pair-wise remapping combination has
been exhausted with no improvement (i.e., the bounds of all four for loops in Fig. 2
have been reached), or (2) the limit on the total number of successful hops
(limit,,) is reached.

When the short hop procedure ends, the final mapping from the local solution
space search is added to the tabu list. The tabu list is a method of keeping track
of the regions of the solution space that have already been searched. Next, a new
random mapping is generated, and it must differ from each mapping in the tabu list
by at least half of the machine assignments (a successful long hop). The intuitive
purpose of a long hop is to move to a new region of the solution space that has
not already been searched. After each successful long hop, the short hop procedure
is repeated.

The stopping criterion for the entire heuristic is when the sum of the total
number of successful short hops and successful long hops equals /imit,,,,,. Then, the
best mapping from the tabu list is the final answer.

Similar to SA, some parameters of Tabu were varied in an attempt to make Tabu
more competitive with GA, while also trying to provide a fairer comparison
between Tabu and GA. To this end, the value used for limit,,,, was varied depend-
ing on the type of consistency of the matrix being considered, as explained below.

Because of the implementation of the short hop procedure described above, the
execution time of the Tabu search depended greatly on the type of consistency of
the ETC matrix. Each time a new task is considered for remapping in the short hop
procedure, it is first considered on machine m,, then m,, etc. For consistent
matrices, these will be the fastest machines. Therefore, once a task gets reassigned
to a fast machine, the remaining permutations of the short hop procedure will be
unsuccessful. That is, because the short hop procedure begins searching sequentially
from the best machines, there will be a larger number of unsuccessful hops
performed for each successful hop for consistent ETC matrices. Thus, the execution
time of Tabu will increase.

Therefore, to keep execution times fair and competitive with GA, limit,,,, was set
to 1000 for consistent ETC matrices, 2000 for partially-consistent matrices, and
2500 for inconsistent matrices. When most test cases had stopped, the percentage
of successful short hops was high (90 % or more) relative to the percentage of suc-
cessful long hops (10% or less). But because there were always long hops being
performed, every pair-wise combination of short hops was being exhausted, and
new, different regions of the solution space were being searched.

A*: The final heuristic in the comparison study is the A* heuristic. A* has
been applied to many other task allocation problems (e.g., [9, 26, 31, 34, 35]). The
technique used here is similar to [9].

A* is a search technique based on a u-ary tree, beginning at a root node that is
a null solution. As the tree grows, nodes represent partial mappings (a subset of
tasks is assigned to machines). The partial mapping (solution) of a child node has
one more task mapped than the parent node. Call this additional task ¢,. Each

822 BRAUN ET AL.

parent node generates u children, one for each possible mapping of ¢,. After a
parent node has done this, the parent node becomes inactive. To keep execution
time of the heuristic tractable, there is a pruning process to limit the maximum
number of active nodes in the tree at any one time (in this study, to 1024).

Each node, n, has a cost function, f(n), associated with it. The cost function is
an estimated lower bound on the makespan of the best solution that includes the
partial solution represented by node n.

Let g(n) represent the makespan of the task—-machine assignments in the partial
solution of node n, ie., g(n) is the maximum of the machine availability times
(max< ;, mat(m;)) based on the set of tasks that have been mapped to machines
in node n’s partial solution. Let i(n) be a lower-bound estimate on the difference
between the makespan of node n’s partial solution and the makespan for the best
complete solution that includes node n’s partial solution. Then, the cost function for
node n is computed as

f(n) = g(n) + hin). (2)

Therefore, f(n) represents the makespan of the partial solution of node n plus a
lower-bound estimate of the time to execute the rest of the (unmapped) tasks in the
metatask (the set U).

The function /(n) is defined in terms of two functions, /, (n) and %, (n), which are
two different approaches to deriving a lower-bound estimate. Recall that M =
{min, _;_,(ct(t;, m;)), for each tr,e€ U}. For node n let mmct(n) be the overall
maximum element of M (i.e., the maximum minimum completion time). Intuitively,
mmct(n) represents the best possible metatask makespan by making the typically
unrealistic assumption that each task in U can be assigned to the machine indicated
in M without conflict. Thus, based on [9], /,(n) is defined as

hy(n) =max(0, (mmct(n) — g(n))). (3)

Next, let sdma(n) be the sum of the differences between g(n) and each machine
availability time over all machines after executing all of the tasks in the partial
solution represented by node n:

m—1
sdma(n) =Y. (g(n)—mat(m,)). (4)
j=0

Intuitively, sdma(n) represents the collective amount of machine availability time
remaining that can be mapped without increasing the final makespan.

Let smet(n) be defined as the sum over all tasks in U of the minimum expected
execution time (i.e., ETC value) for each task in U:

smet(n)= Y (min (ETC(t;, m;)). (5)

t;,eU 0<j<u
i

MAPPING INDEPENDENT TASKS 823

This gives a lower bound on the amount of remaining work to do, which could
increase the final makespan. The function /4, is then defined as

h,(n) =max(0, (smet(n) — sdma(n))/u), (6)

where (smet(n) — sdma(n))/u represents an estimate of the minimum increase in the
metatask makespan if the tasks in U could be ideally (but, in general, unrealisti-
cally) distributed among the machines. Using these definitions,

h(n) =max(h,(n), hy(n)), (7)

representing a lower-bound estimate on the time to execute the tasks in U.

Thus, after the root node generates u nodes for ¢, (each node mapping ¢, to a
different machine), the node with the minimum f(») generates its u children, and so
on, until 1024 nodes are created. From that point on, any time a node is added, the
tree is pruned by deactivating the leaf node with the largest f(n). This process con-
tinues until a leaf node representing a complete mapping is reached. Note that if the
tree is not pruned, this method is equivalent to an exhaustive search.

3.3. Concluding Remarks

This set of 11 static mapping heuristics is not exhaustive, nor is it meant to be.
It is simply a representative set of several different approaches, including iterative,
noniterative, greedy, and biologically-inspired techniques. Several other types of
static mapping heuristics exist. For example, other techniques that have been or
could be used as static mappers for heterogeneous computing environments include
the following: neural networks [8], linear programming [11], the Mapping
Heuristic (MH) algorithm [13], the Cluster-M technique [14], the Levelized Min
Time (LMT) algorithm [24], the k-percent best (KPB) and Sufferage heuristics
[29], the Dynamic Level Scheduling (DLS) algorithm [38], recursive bisection
[39], and the Heterogencous Earliest-Finish-Time (HEFT) and Critical-Path-on-a-
Processor (CROP) techniques [43]. The 11 heuristics examined here were selected
because they seemed among the most appropriate for the static mapping of
metatasks and covered a wide range of techniques.

4. EXPERIMENTAL RESULTS

4.1. Introduction

An interactive software application has been developed that allows simulation,
testing, and demonstration of the heuristics examined in Section 3, applied to the
metatasks defined by the ETC matrices described in Section 2. The software allows
a user to specify 7 and u, to select which type of ETC matrices to use, and to
choose which heuristics to execute. It then generates the specified ETC matrices,
executes the desired heuristics, and displays the results, similar to Figs. 3 through
8. The results discussed in this section were generated using this software.

824 BRAUN ET AL.

The makespans (i.e., the time it would take for a given metatask to complete on
the heterogeneous environment) from the simulations for selected cases of con-
sistency, task heterogeneity, and machine heterogeneity are shown in Figs. 3
through 8. Tables 1 through 3 show sample 8 x 8 subsections from three different
types of 512 x 16 ETC matrices. Results for all cases are in [5]. A representative set
of cases and results are discussed in this section. As indicated below, omitted cases
are similar to those discussed in the rest of this section.

All experimental results represent the average makespan for a metatask of the
defined type of ETC matrix. For each heuristic and each type of ETC matrix, the
results were averaged over 100 different ETC matrices of the same type (i.e., 100
mappings).

The range bars for each heuristic (in Figs. 3 through 8) show the 95% confidence
interval [25] (min, max) for the average makespan. This interval represents the
likelihood that makespans of mappings for that type of heterogeneity and heuristic
fall within the specified range. That is, if another ETC matrix (of the same type)
was generated, and the specified heuristic generated a mapping, then the makespan
of the mapping would be within the given confidence interval with 95% certainty.

4.2. Heuristic Execution Times

When comparing mapping heuristics, the execution time of the heuristics them-
selves is an important consideration. For the 11 heuristics that were compared, the
execution times varied greatly. The experimental results discussed below were
obtained on a Pentium II 400 MHz processor with 1 Gbyte of RAM. The heuristic
execution times are the average time each heuristic took to compute a mapping for
a single 512 task x 16 machine ETC matrix, averaged over 100 different matrices
(all for inconsistent, high task, high machine heterogeneity).

The first three heuristics described, OLB, MET, and MCT, each of which has
asymptotic complexity of O(ut), executed for less than 1 us per ETC matrix. Next,
the Min—-min, Max—min, and Duplex heuristics, each with asymptotic complexity
O(ut?), executed for an average of 200 ms. The GA, which provided the best results
(in terms of makespan), had an average execution time of 60s. GSA, which uses
many procedures similar to the GA, had an average execution time of 69s. As
described in the previous section, SA and Tabu were adapted to provide a fairer
comparison with the results of the GA, so their average execution times were also
approximately 60 s per ETC matrix. Finally A*, which has exponential complexity,
executed in an average of over 20 min (1200 s).

4.3. Consistent Heterogeneity

The results for the metatask execution times for two consistent cases are shown
in Figs. 3 and 4. Results for both cases of high machine heterogeneity (i.e., high and
low task heterogeneity) were similar. Results for both cases of low machine
heterogeneity were also similar. Therefore only one figure from each type of
machine heterogeneity is shown. The differences in magnitude on the y-axis among
the graphs are from the different ranges of magnitude used in generating the dif-
ferent types of ETC matrices.

MAPPING INDEPENDENT TASKS 825

1.7e+07

1.6e+07
1.5e+07 |
1.4e+07 |

G 1.3e+07 T
2 |
o T
- 1.2e+07 ’[‘ %
g
2 1.1e+07 |
X
g tes07 |
9e+06 |
8e+06 :
7e+06 | ‘
6e+06 - : .. % <‘(<’ -
m [c = x *
— O £ e ° 0] 5] %] o <
o x §{ § 8 s &
s £ =

FIG. 3. Consistent, high task, high machine heterogeneity (7 =512) and (u=16).

For the two high machine heterogeneity cases, the relative performance order of
the heuristics from best to worst was: (1) GA, (2) Min—min, (3) Duplex, (4) A*,
(5) GSA, (6) MCT, (7) Tabu, (8) SA, (9) Max—min, (10) OLB, and (11) MET. For
both cases of low machine heterogeneity, the relative performance order of the
heuristics from best to worst was: (1) GA, (2) Min—-min, (3) Duplex, (4) GSA, (5)
A*, (6) Tabu, (7) MCT, (8) SA, (9) Max-min, (10) OLB, and (11) MET. For con-
sistent ETC matrices, the MET algorithm mapped all tasks to the same machine,
resulting in the worst performance by an order of magnitude. Therefore, MET is
not included in the figures for the consistent cases. The performance of the
heuristics will be discussed in the order in which they appear in the figures.

For all four consistent cases, OLB gave the second worst results (after MET). In
OLB, the first u tasks get assigned, one each, to the u idle machines. Because of the
consistent ETC matrix, there will be some very poor initial mappings (tasks u —2

230000

220000 | i
i

210000 | ‘ ‘

—~ 200000 + |l %

o | I

w 1 |

< 190000 | —L ﬁ {

g —

Q.

g 180000 f M | T

3 | .

E 470000 | | ‘
160000 + [\
150000 | { ‘

| 1
140000 1L : - L
m — c (=g x < 5 x
=] g E < 0] Ie] <
© = c > s -
s £ °

FIG. 4. Consistent, high task, low machine heterogeneity (r=1512) and (u = 16).

826 BRAUN ET AL.

and p — 1, for example, get their worst machines). Because task execution times are
not considered, OLB may continue to assign tasks to machines where they execute
slowly, hence the poor makespans for OLB.

MCT always performed around the median of the heuristics, giving the sixth best
(low machine heterogeneity) or seventh best (high machine heterogeneity) results.
MCT only makes one iteration through the ETC matrix, assigning tasks in the
order in which they appear in the ETC matrix; hence it can only make mapping
decisions of limited scope, and it cannot make globally intelligent decisions like
Min-min or A*.

The Min-min heuristic performed very well for consistent ETC matrices, giving
the second best result in each case. Not only did Min—min always give the second
best mapping, but the Min—min mapping was always within 10% of the best map-
ping found (which was with GA, discussed below). Min—-min is able to make
globally intelligent decisions to minimize task completion times, which also results
in good machine utilization and good makespans. Similar arguments hold for the
Duplex heuristic.

In contrast, the Max-min heuristic always performed poorly, giving only the
ninth best mapping. Consider the state of the machine ready times during the
execution of the Min—min and Max-min heuristics. Min—min always makes the
assignment that changes the machine ready times by the least amount. In general,
the assignment made by Max—min will change the machine ready times by a larger
amount. Therefore, the values of the machine ready times for each machine will
remain closer to each other when using the Min—-min heuristic than when using the
Max-min heuristic. Both Min—min and Max-min will assign a given task to the
machine that gives the best completion time. However, if the machine ready times
remain close to each other, then Min—min gives each task a better chance of being
assigned to the machine that gives the task its best execution time. In contrast, with
Max-min, there is a higher probability of there being relatively greater differences
among the machine ready times. This results in a load balancing effect, and each
task has a lower chance of being assigned to the machine that gives the task its best
execution time.

For the heterogeneous environments considered in this study, the type of special
case where Max—min may outperform Min-min (as discussed in Section 3) never
occurs. Min—-min found a better mapping than Max-min every time (i.e., in each of
the 100 trials for each type of heterogeneity). Thus, Max—min performed poorly in
this study. As a direct result, the Duplex heuristic always selected the Min—-min
solution, giving Duplex a tie for the second best solution. (Because Duplex always
relied on the Min—min solution, it is listed in third place.)

GA provided the best mappings for the consistent cases. This was due in large
part to the good performance of the Min—-min heuristic. The best GA solution
always came from one of the populations that had been seeded with the Min—-min
solution. However, the additional searching capabilities afforded to GA by perform-
ing crossover and mutation were beneficial, as the GA was always able to improve
upon this solution by 5 to 10%.

SA, which manipulates a single solution, ranked eighth for both types of machine
heterogeneity. For this type of heterogeneous environment, this heuristic (as

MAPPING INDEPENDENT TASKS 827

implemented here) did not perform as well as the GA, which had similar execution
time, and Min—min, which had a faster execution time. While the SA procedure is
iterative (like the GA procedure), it appears that the crossover operation and selec-
tion procedure of the GA are advantageous for this problem domain.

The mapping found by GSA was either the fourth best (low machine
heterogeneity) or the fifth best (high machine heterogeneity) mapping found, alter-
nating with A*. GSA does well for reasons similar to those described for GA. The
average makespan found by GSA could have been slightly better, but the results
were hindered by a few very poor mappings that were found. These very poor map-
pings result in the large confidence intervals found in the figures for GSA. Thus, for
these heterogeneous environments, the selection method from GA does better than
the method from GSA.

Tabu was always the sixth or seventh best mapping (alternating with MCT). As
noted in the previous section, because of the short hop procedure implemented and
the structure of the consistent matrices, Tabu finds most of the successful short
hops right away and must then perform a large number of unsuccessful short hops
(recall machine m; outperforms machine m;,_ ; for the consistent cases). Because the
stopping criterium is determined by the number of successful hops, and because
each short hop procedure has few successful hops, more successful long hops are
generated, and more of the solution space is searched. Thus, Tabu performs better
for consistent matrices than for inconsistent ones.

Considering the order of magnitude difference in execution times between A* and
the other heuristics, the quality of the mappings found by A* (as implemented here)
was disappointing. The A* mappings alternated between fourth and fifth best with
GSA. The performance of A* was hindered because the estimates made by /4, (n)
and £,(n) are not as accurate for consistent cases as they are for inconsistent and
partially-consistent cases. For consistent cases, /;(n) underestimates the competi-
tion for machines and /,(n) overestimates the number of tasks that can be assigned
to their best machine.

4.4. Inconsistent Heterogeneity

Two inconsistent test cases are shown in Figs. 5 and 6. For the two high machine
heterogeneity cases (i.e., high and low task heterogeneity), the relative performance
order of the heuristics from best to worst was: (1) GA, (2) A*, (3) Min-min,
(4) Duplex, (5) MCT, (6) MET, (7) SA, (8) GSA, (9) Max-min, (10) Tabu, and
(11) OLB. For both cases of low machine heterogeneity, the relative performance
order of the heuristics from best to worst was: (1) GA, (2) A*, (3) Min—min, (4)
Duplex, (5) MCT, (6) MET, (7) GSA, (8) SA, (9) Tabu, (10) Max-min, and (11)
OLB.

MET performs much better than in the consistent cases, while the performance
of OLB degrades. The reason OLB does better for consistent than inconsistent
matrices is as follows. Consider, for example, machines m, and m, in the consistent
case. By definition, all tasks assigned to m, will be on their best machine, and all
tasks assigned to m; will be on their second best machine. However, OLB ignores
direct consideration of the execution times of tasks on machines. Thus, for the

828

3e+07

2.5e+07

makespan (sec.)

5e+06

FIG. 5.

inconsistent case, none of the tasks assigned to m, may be on their best machine,
and none of the tasks assigned to m; may be on their second best machine, etc.
Therefore, for each of the inconsistent cases, it is more likely that OLB will assign
more tasks to poor machines, resulting in the worst mappings. In contrast, MET
improves and finds the sixth best mappings because the best machines are dis-
tributed across the set of machines; thus, task assignments will be more evenly
distributed among the set of machines avoiding load imbalance.

Similarly, MCT can also exploit the fact that the machines providing the best
task completion times are more evenly distributed among the set of machines. Thus,
by assigning each task, in the order specified by the ETC matrix, to the machine
that completes it the soonest, there is a better chance of assigning a task to a

BRAUN ET AL.

2e+07 +

1.5e+07 ¢

1e+07

|

—

. —

oLB

MET | -
MCT |

Min-min ¥ﬁr

Max-min

Duplex }‘

10

|

‘

(

]
<<
]
0]

Tabu t

machine that executes it well, decreasing the overall makespan.

300000

250000 |

makespan (sec.)

50000 r

FIG. 6.

X

200000 |

150000

100000 r

+

Inconsistent, high task, high machine heterogeneity (r =512) and (u = 16).

I P 1
Mmoo ‘ o
LM sl R I ey
oo | \1;““;;
[| : I
o . i I
N oo 3
“i“ ‘ \‘\“‘ }
L B I R D I I A B A

[0 JRN SR c = x << < < 3

= W O g E 2 5 v u £ <

o = 3 E E =3 g =

= £ ©

Inconsistent, high task, low machine heterogeneity (z=512) and (

=16).

MAPPING INDEPENDENT TASKS 829

Min—min continued to give better results than Max—min (which ranked ninth or
tenth), by a factor of about two for all of the inconsistent cases. In fact, Min—min
was again one of the best of all 11 heuristics, giving the third best mappings, which
produced makespans that were still within 12% of the best makespans found. As
noted earlier, Duplex selected the Min—min solution in every case and so ranked
fourth.

GA provided the best mappings for the inconsistent cases. GA was again able to
benefit from the performance of Min—min, as the best solution always came from
one of the populations seeded with the Min—min solution. GA has provided the
best solution in all consistent and inconsistent cases examined, and its execution
time is largely independent of any of the heterogeneity characteristics. This makes
it a good general-purpose heuristic, when mapper execution time is not a critical
issue.

SA and GSA had similar results, alternating between the seventh and eighth best
mappings. For the high machine heterogeneity cases, SA found mappings that were
better by about 25%. For the low machine heterogeneity cases, GSA found the better
mappings, but only by 3 to 11%.

Tabu performs very poorly (ninth or tenth best) for inconsistent matrices when
compared to its performance for consistent matrices (sixth or seventh best). The
sequential procedure for generating short hops, combined with the inconsistent
structure of the ETC matrices, results in Tabu finding more successful short hops
and performing fewer unsuccessful short hops. Many more intermediate solutions of
marginal improvement exist within an inconsistent ETC matrix. Therefore, the hop
limit is reached faster because of all the successful short hops (even though the hop
limit is higher). Thus, less of the solution space is searched, and the result is a poor
solution. That is, for the inconsistent case, the ratio of successful short hops to suc-
cessful long hops increases, as compared to the consistent case, and fewer areas in
the search space are examined.

A* had the second best average makespans, behind GA, and both of these
methods produced results that were usually within a small factor of each other. A*
did well because if the machines with the fastest execution times for different tasks
are more evenly distributed, the lower-bound estimates of /4, (n) and /,(n) are more
accurate.

4.5. Partially-Consistent Heterogeneity

Finally, consider the partially-consistent cases in Figs. 7 and 8. For the high task,
high machine heterogeneity cases, the relative performance order of the heuristics
from best to worst was: (1) GA, (2) Min—min, (3) Duplex, (4) A*, (5) MCT, (6)
GSA, (7) SA, (8) Tabu, (9) Max-min, (10) OLB, and (11) MET. The rankings for
low task, high machine heterogenecity were similar to high task, high machine
heterogeneity, except GSA and SA are switched in order. For both cases of low
machine heterogeneity (i.e., high and low task heterogeneity), the relative perfor-
mance order of the heuristics from best to worst was: (1) GA, (2) Min—min, (3)
Duplex, (4) A*, (5) MCT, (6) GSA, (7) Tabu, (8) SA, (9) Max-min, (10) OLB,
and (11) MET.

830 BRAUN ET AL.

3e+07
2.5e+07 ;
!
/«,26+O7>+J
(]
(9]
a
C
g_1.59+07
7]
]
X
o
E 1e+07 |
s | h
5e+06 "‘r,iﬂw&ﬁ;?
P [‘
AERRRRRRREARANRENE
. RIRERERERERN) AL
T g g £ 585 3 3«
© = = { : 5 [GIG
= I A
=z >

FIG. 7. Partially-consistent, high task, high machine heterogeneity (v =>512) and (u = 16).

The MET performed the worst for every partially-consistent case. Intuitively,
MET is suffering from the same problem as in the consistent cases: half of all tasks
are getting assigned to the same machine.

OLB does poorly for high machine heterogeneity cases because bad assignments
will have higher execution times for high machine heterogeneity. For low machine
heterogeneity, the bad assignments have a much lower penalty. In all four cases,
OLB was the second worst approach.

MCT again performs relatively well (fifth best) because the machines providing
the best task completion times are more evenly distributed than the consistent case
among the set of machines. Max-min continued to do poorly and ranked ninth.
The Duplex solutions were the same as the Min—min solutions and tied for second

700000
i
600000 JT
500000
G
(5}
2. 400000 +
c
[v]
[= N
v
3 300000 |]
[9]
£
200000 |
- !
a | 5 0
| ol =
L | " — ! i
100000}1 mﬁiisﬁigl‘“‘
RERERERERE RN NER N
0 P U A0 0
o — [c c x < < < 3 p
4 W o E E =2 I B
5 5 2 B §f g © I
= o (=)
= s

FIG. 8. Partially-consistent, high task, low machine heterogeneity (z =512) and (u =16).

MAPPING INDEPENDENT TASKS 831

best. The rankings for SA, GSA, and Tabu were approximately the averages of
what they were for the consistent and inconsistent cases, as might be expected.

The best heuristics for the partially-consistent cases were GA (best) and Min—min
(second best), followed closely by A* (fourth best, after Duplex). This is not sur-
prising because these were among the best heuristics from the consistent and incon-
sistent cases, and partially-consistent matrices are a combination of consistent and
inconsistent matrices. Min—min was able to do well because its approach assigned
a high percentage of tasks to their first choice of machines. A* was robust enough
to handle the consistent components of the matrices and did well for the same
reasons mentioned for inconsistent matrices. GA maintained its position as best
heuristic. The execution time and performance of GA is largely independent of
heterogeneity characteristics. The additional regions of the solution space that are
searched by the GA mutation and crossover operations are beneficial, as they were
always able to improve on the Min—min solution by 5 to 10 %.

4.6. Summary

To summarize the findings of this section, for consistent ETC matrices, GA gave
the best results, Min—min the second best, and MET gave the worst. When the
ETC matrices were inconsistent, OLB provided the poorest mappings while the
mappings from GA and A* performed the best. For the partially-consistent cases,
GA still gave the best results, followed closely by Min-min and A*, while MET had
the slowest. All results were for metatasks with 7=3512 tasks executing on u =16
machines, averaged over 100 different trials.

For the situations considered in this study, the relative performance of the map-
ping heuristics varied based on the characteristics of the HC environments. The GA
always gave the best performance. If mapper execution time is also considered,
Min—min gave excellent performance (within 12% of the best) and had a very small
execution time. The confidence intervals derived from the mappings for these two
heuristics were among the best (smallest) of any of the 11 heuristics. GA was always
within +9% of its mean and Min—min was always within + 13% of the mean for
all 12 cases. This means that, for any future metatask to be mapped, these two
heuristics will generate a good makespan (within the confidence interval) 95% of
the time.

5. ALTERNATIVE IMPLEMENTATIONS

The experimental results in Section 4 show the performance of each heuristic
under the assumptions presented. For several heuristics, specific control parameter
values and control functions had to be selected. In most cases, control parameter
values and control functions were based on the references cited and/or preliminary
experiments that were conducted. However, for these heuristics, several different,
valid implementations are possible using different control parameters and control
functions. Some of these control parameters and control functions are listed below
for selected heuristics.

832 BRAUN ET AL.

GA: Several control parameter values could be varied in the GA, including
population size, crossover probability, mutation probability, stopping criteria, and
number of initial populations considered per result. Specific functions within GA
controlling the progress of the search that could be changed are initial population
seed generation, mutation, crossover, selection, and elitism.

SA: Parameter values with SA that could be modified are system temperature,
cooling rate, stopping criteria, and the number of runs per result. Adaptable control
procedures in SA include the initial population seed generation, mutation, and the
equation for deciding when to accept a poorer solution.

GSA: Like the two heuristics it is based upon, GSA also has several parameters
that could be varied, including population size, crossover probability, mutation
probability, stopping criteria, cooling rate, number of runs with different initial
populations per result, and the system temperature. The specific procedures used for
the following actions could also be modified: initial population seed generation,
mutation, crossover, selection, and the equation for deciding when to accept a
poorer solution.

Tabu: The short hop method implemented was a first descent (take the first
improvement possible) method. Steepest descent methods (where several short hops
are considered simultaneously, and the one with the most improvement is selected)
are also used in practice [12]. Other techniques that could be varied are the long
hop method, the order of the short hop pair generation-and-exchange sequence,
and the stopping condition. Two possible alternative stopping criteria are when the
tabu list reaches a specified number of entries or when there is no change in the best
solution in a specified number of hops.

A*: Several variations of the A* method that was employed here could be
implemented. Different functions could be used to estimate the lower bound A(n).
The maximum size of the search tree could be varied, and several other techniques
exist for tree pruning (e.g., [34]).

In summary, for the GA, SA, GSA, Tabu, and A* heuristics there are a great
number of possible valid implementations. An attempt was made to use a
reasonable implementation of each heuristic for this study. Future work could
examine other implementations.

6. CONCLUSIONS

Static mapping is useful in predictive analyses, impact studies, and post-mortem
analyses. The goal of this study was to provide a basis for comparison and insights
into circumstances when one static technique will out-perform another for 11 dif-
ferent heuristics. The characteristics of the ETC matrices used as input for the
heuristics and the methods used to generate them were specified. The implementa-
tion of a collection of 11 heuristics from the literature was described. The results of
the mapping heuristics were discussed, revealing the best heuristics to use in certain
scenarios. For the situations, implementations, and parameter values used here, GA
consistently gave the best results. The average performance of the relatively simple
Min—min heuristic was always within 12% of the GA heuristic.

MAPPING INDEPENDENT TASKS 833

The comparisons of the 11 heuristics and 12 situations provided in this study can

be used by researchers as a starting point when choosing heuristics to apply in dif-
ferent scenarios. They can also be used by researchers for selecting heuristics against
which to compare new, developing techniques.

of

ACKNOWLEDGMENTS

The authors thank Shoukat Ali and the anonymous referees for their comments. A preliminary version
portions of this document appear in the proceedings of the 8th IEEE Workshop on Heterogeneous

Computing.

10.

12.

REFERENCES

. S. Ali, T. D. Braun, H. J. Siegel, and A. A. Maciejewski, Heterogeneous computing, in “Encyclopedia
of Distributed Computing” (J. Urbana and P. Dasgupta, Eds.), Kluwer Academic, Norwell, MA, to
appear, 2001.

. S. Ali, H. J. Siegel, M. Maheswaran, D. Hensgen, and S. Ali, Modeling task execution time behavior
in heterogeneous computing systems, Tamkang J. Science and Engineering 3, (Nov.2000), 195-207.

. R. Armstrong, D. Hensgen, and T. Kidd, The relative performance of various mapping algorithms
is independent of sizable variances in run-time predictions, in “7th IEEE Heterogeneous Computing
Workshop (HCW 98),” pp. 79-87, 1998.

. R. Armstrong, “Investigation of Effect of Different Run-Time Distributions on SmartNet
Performance” (D. Hensgen, advisor), Master’s Thesis, Department of Computer Science, Naval
Postgraduate School, 1997.

. T. D. Braun, H. J. Siegel, N. Beck, L. L. B61oni, M. Maheswaran, A. 1. Reuther, J. P. Robertson,
M. D. Theys, B. Yao, D. Hensgen, and R. F. Freund, “A Comparison Study of Eleven Static
Heuristics for Mapping a Class of Independent Tasks onto Heterogeneous Distributed Computing
Systems,” Technical Report TR-ECE-00-4, School of Electrical and Computer Engineering, Purdue
University, Mar. 2000.

. T. D. Braun, H. J. Siegel, N. Beck, L. B6l6ni, M. Maheswaran, A. I. Reuther, J. P. Robertson,
M. D. Theys, and B. Yao, A taxonomy for describing matching and scheduling heuristics for mixed-
machine heterogeneous computing systems, in “17th IEEE Symposium on Reliable Distributed
Systems,” pp. 330-335, 1998.

. H. Chen, N. S. Flann, and D. W. Watson, Parallel genetic simulated annealing: A massively parallel
SIMD approach, IEEE Trans. Parallel Distrib. Comput. 9, 2 (Feb. 1998), 126-136.

. R.-M. Chen and Y.-M. Huang, Multiconstraint task scheduling in multi-processor systems by neural
networks, in “10th IEEE Conference on Tools with Artificial Intelligence,” pp. 288-294, 1998.

. K. Chow and B. Liu, On mapping signal processing algorithms to a heterogeneous multiprocessor
system, in “1991 International Conference on Acoustics, Speech, and Signal Processing (ICASSP
’91),” Vol. 3, pp. 1585-1588, 1991.

M. Coli and P. Palazzari, Real time pipelined system design through simulated annealing, J. Systems
Architecture 42, 67 (Dec. 1996), 465-475.

. T. H. Cormen, C. E. Leiserson, and R. L. Rivest, “Introduction to Algorithms,” MIT Press,
Cambridge, MA, 1992.

I. De Falco, R. Del Balio, E. Tarantino, and R. Vaccaro, Improving search by incorporating evolu-

tion principles in parallel tabu search, in “1994 IEEE Conference on Evolutionary Computation,”
Vol. 2, pp. 823-828, 1994.

834 BRAUN ET AL.

13

14
15

16.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

. H. El-Rewini and T. G. Lewis, Scheduling parallel program tasks onto arbitrary target machines,
J. Parallel Distrib. Comput. 9, 2 (June 1990), 138-153.

. M. M. Eshaghian, Ed., “Heterogeneous Computing,” Artech House, Norwood, MA, 1996.

. D. Fernandez-Baca, Allocating modules to processors in a distributed system, /EEE Trans. Software
Engrg. 15, 11 (Nov. 1989), 1427-1436.

I. Foster and C. Kesselman, “The Grid: Blueprint for a New Computing Infrastructure,” Morgan
Kaufman, New York, 1998.

. R. F. Freund, M. Gherrity, S. Ambrosius, M. Campbell, M. Halderman, D. Hensgen, E. Keith,
T. Kidd, M. Kussow, J. D. Lima, F. Mirabile, L. Moore, B. Rust, and H. J. Siegel, Scheduling
resources in multi-user, heterogeneous, computing environments with SmartNet, in “7th IEEE
Heterogeneous Computing Workshop (HCW ’98),” pp. 184-199, 1998.

R. F. Freund and H. J. Siegel, Heterogeneous processing, IEEE Comput. 26, 6 (June 1993),
13-17.

A. Ghafoor and J. Yang, Distributed heterogeneous supercomputing management system, /EEE
Comput. 26, 6 (June 1993), 78-86.

F. Glover and M. Laguna, “Tabu Search,” Kluwer Academic, Boston, MA, 1997.

D. A. Hensgen, T. Kidd, M. C. Schnaidt, D. St. John, H. J. Siegel, T. D. Braun, M. Maheswaran,
S. Ali, J-K. Kim, C. Irvine, T. Levin, R. Wright, R. F. Freund, M. Godfrey, A. Duman, P. Carff,
S. Kidd, V. Prasanna, P. Bhat, and A. Alhusaini, An overview of MSHN: A management system for
heterogeneous networks, in “8th IEEE Workshop on Heterogeneous Computing Systems (HCW
’99),” pp. 184-198, 1999.

J. H. Holland, “Adaptation in Natural and Artificial Systems,” University of Michigan Press, Ann
Arbor, MI, 1975.

O. H. Ibarra and C. E. Kim, Heuristic algorithms for scheduling independent tasks on nonidentical
processors, J. Assoc. Comput. Mach. 24, 2 (Apr. 1977), 280-289.

M. Iverson, F. Ozguner, and G. Follen, Parallelizing existing application in a distributed
heterogeneous environment, in “4th IEEE Heterogeneous Computing Workshop (HCW ’95),”
pp. 93-100, 1995.

R. Jain, “The Art of Computer Systems Performance Analysis Techniques for Experimental Design,
Measurement, Simulation, and Modeling,” Wiley, New York, 1991.

M. Kafil and 1. Ahmad, Optimal task assignment in heterogeneous distributed computing systems,
IEEE Concurrency 6, 3 (July—Sept. 1998), 42-51.

A. A. Khokhar, V. K. Prasanna, M. E. Shaaban, and C. L. Wang, Heterogeneous computing:
Challenges and opportunities, /EEE Comput. 26, 6 (June 1993), 18-27.

S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, Optimization by simulated annealing, Science
220, 4598 (May 1983), 671-680.

M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund, Dynamic mapping of a class
of independent tasks onto heterogeneous computing systems, J. Parallel Distrib. Comput. 59, 2
(Nov. 1999), 107-121.

M. Maheswaran, T. D. Braun, and H. J. Siegel, Heterogeneous distributed computing, in
“Encyclopedia of Electrical and Electronics Engineering” (J. G. Webster, Ed.), Vol. 8, pp. 679-690,
Wiley, New York, 1999.

Z. Michalewicz and D. B. Fogel, “How to Solve It: Modern Heuristics,” Springer-Verlag, New York,
2000.

M. Pinedo, “Scheduling: Theory, Algorithms, and Systems,” Prentice—Hall, Englewood Cliffs, NJ,
1995.

G. Rudolph, Convergence analysis of canonical genetic algorithms, /EEE Trans. Neural Networks 5,
1 (Jan. 1994), 96-101.

S. J. Russell and P. Norvig, “Artificial Intelligence: A Modern Approach,” Prentice-Hall, Englewood
Cliffs, NJ, 1995.

MAPPING INDEPENDENT TASKS 835

35. C.-C. Shen and W.-H. Tsai, A graph matching approach to optimal task assignment in distributed
computing system using a minimax criterion, /EEE Trans. Comput. 34, 3 (Mar. 1985), 197-203.

36. P. Shroff, D. Watson, N. Flann, and R. Freund, Genetic simulated annealing for scheduling data-
dependent tasks in heterogeneous environments, in “5th IEEE Heterogeneous Computing Workshop
(HCW °96),” pp. 98-104, 1996.

37. H. J. Siegel, H. G. Dietz, and J. K. Antonio, Software support for heterogeneous computing, in “The
Computer Science and Engineering Handbook” (A. B. Tucker, Jr., Ed.), pp. 1886-1909, CRC Press,
Boca Raton, FL, 1997.

38. G. C. Sih and E. A. Lee, A compile-time scheduling heuristic for interconnection-constrained
heterogeneous processor architectures, IEEE Trans. Parallel Distrib. Systems 4 (Feb. 1993), 175-186.

39. H. D. Simon and S.-H. Teng, How good is recursive bisection? SIAM J. Sci. Comput. 18, 5
(Sept. 1997), 1436-1445.

40. H. Singh and A. Youssef, Mapping and scheduling heterogeneous task graphs using genetic
algorithms, in “5th IEEE Heterogeneous Computing Workshop (HCW °96),” pp. 86-97, 1996.

41. M. Srinivas and L. M. Patnaik, Genetic algorithms: A survey, IEEE Comput. 27, 6 (June 1994),
17-26.

42. Y. G. Tirat-Gefen and A. C. Parker, MEGA: An approach to system-level design of application
specific heterogeneous multiprocessors, in “Sth IEEE Heterogeneous Computing Workshop (HCW
’96),” pp. 105-117, 1996.

43. H. Topcuoglu, S. Hariri, and M.-Y. Wu, Task scheduling algorithms for heterogeneous processors,
in “8th IEEE Heterogeneous Computing Workshop (HCW °99),” pp. 3-14, 1999.

44, L. Wang, H. J. Siegel, V. P. Roychowdhury, and A. A. Maciejewski, Task matching and scheduling
in heterogeneous computing environments using a genetic-algorithm-based approach, J. Parallel
Distrib. Comput. 47, 1 (Nov. 1997), 1-15.

45. A. Y. Zomaya and R. Kazman, Simulated annealing techniques, in “Algorithms and Theory of Com-
putation Handbook” (M. J. Atallah, Ed.), pp. 37-1-37-19, CRC Press, Boca Raton, FL, 1999.

TRACY D. BRAUN is a Ph.D. student and research assistant in the School of Electrical and Computer
Engineering at Purdue University. He received a Bachelor of Science in electrical engineering with
honors and high distinction from the University of Towa in 1995. In 1997, he received an MSEE from
the School of Electrical and Computer Engineering at Purdue University. He received a Benjamin
Meisner Fellowship from Purdue University for the 1995-1996 academic year. He is a member of the
IEEE, IEEE Computer Society, and Eta Kappa Nu honorary society. He is an active member of the
Beta Chapter of Eta Kappa Nu at Purdue University and has held several offices during his studies at
Purdue, including chapter president. He has also been employed at Silicon Graphics Inc./Cray Research.
His research interests include heterogeneous computing, algorithm design, computer security, and
biological simulation. Beginning April 2001, he will be a senior research scientist at NOEMIX.

HOWARD JAY SIEGEL is a professor in the School of Electrical and Computer Engineering at
Purdue University; beginning August 2001, he will hold the endowed chair position of Abell Distinguished
Professor of Electrical and Computer Engineering at Colorado State University. He is a fellow of the
IEEE and a fellow of the ACM. He received two BS degrees from MIT, and an MA, MSE, and Ph.D.
from Princeton University. Professor Siegel has coauthored over 280 technical papers, has coedited
seven volumes, and wrote the book Interconnection Networks for Large-Scale Parallel Processing. He
was a Coeditor-in-Chief of the Journal of Parallel and Distributed Computing and was on the Editorial
Boards of the IEEE Transactions on Parallel and Distributed Systems and the IEEE Transactions
on Computers. He was Program Chair/Co-Chair of three conferences, General Chair/Co-Chair of four
conferences, and Chair/Co-Chair of four workshops. He is an international keynote speaker and tutorial
lecturer and a consultant for government and industry.

NOAH BECK is an UltraSPARC Verification Engineer at the Sun Microsystems Boston Design
Center. He received a Bachelor of Science in computer engineering in 1997 and a Master of Science in
electrical engineering in 1999 from Purdue University. His research interests include microprocessor
architecture and verification, parallel computing, and heterogeneous computing.

836 BRAUN ET AL.

LADISLAU L. BOLONI is a Ph.D. student and research assistant in the Computer Sciences
Department at Purdue University. He received a Diploma Engineer degree in computer engineering with
honors from the Technical University of Cluj-Napoca, Romania in 1993. He received a fellowship from
the Hungarian Academy of Sciences for the 1994-95 academic year. He is a member of the ACM and
the Upsilon Pi Epsilon honorary society. His research interests include distributed object systems,
autonomous agents, and parallel computing.

MUTHUCUMARU MAHESWARAN is an assistant professor in the Department of Computer
Science at the University of Manitoba, Canada. In 1990, he received a BSc in electrical and electronic
engineering from the University of Peradeniya, Sri Lanka. He received an MSEE in 1994 and a Ph.D.
in 1998, both from the School of Electrical and Computer Engineering at Purdue University. He held
a Fulbright scholarship during his tenure as an MSEE student at Purdue University. His research
interests include computer architecture, distributed computing, heterogeneous computing, Internet and
World Wide Web systems, metacomputing, mobile programs, network computing, parallel computing,
resource management systems for metacomputing, and scientific computing. He has authored or
coauthored 15 technical papers in these and related areas. He is a member of the Eta Kappa Nu
honorary society.

ALBERT I. REUTHER is a Ph.D. student and research assistant in the School of Electrical and
Computer Engineering at Purdue University. He received his Bachelor of Science in computer and electrical
engineering with highest distinction in 1994 and received a Masters of Science in electrical engineering
in 1996, both at Purdue. He was a Purdue Andrews Fellowship recipient in the 1994-95 and 1995-96
academic years. He is a member of the IEEE, IEEE Computer Society, ACM, and Eta Kappa Nu
honorary society and has been employed by General Motors and Hewlett-Packard. His research
interests include multimedia systems, heterogeneous computing, parallel processing, and educational
multimedia.

JAMES P. ROBERTSON currently works for Motorola’s PowerPC System Performance and Model-
ing group. He received a Bachelor of Science in computer engineering with honors from the school of
Electrical and Computer Engineering at Purdue University in 1996. As a student, he received an NSF
undergraduate research scholarship. In 1998, he received an MSEE from Purdue University. He is a
member of IEEE, IEEE Computer Society, and Eta Kappa Nu honorary society. While attending
Purdue University he was an active member of the Beta Chapter of Eta Kappa Nu, having held several
offices including chapter Treasurer.

MITCHELL D. THEYS is currently an assistant professor at the University of Illinois at Chicago in
the Electrical Engineering and Computer Science Department. Dr. Theys received a Ph.D. in 1999 from
the School of Electrical and Computer Engineering at Purdue University. In addition, he received a
Master of Science in electrical engineering in 1996, and a Bachelor of Science in computer and electrical
engineering in 1993, both from Purdue University. His current research interests include distributed
computing, heterogeneous computing, parallel processing, VLSI design, and computer architecture.
Dr. Theys has published several journal papers and also had several documents reviewed and accepted
at conferences such as the International Conference on Parallel Processing and the Heterogeneous
Computing Workshop. Dr. Theys has received support from Defense Advanced Research Projects
Agency (DARPA), Intel, Microsoft, and the Armed Forces Communications and Electronics Associa-
tion (AFCEA). Dr. Theys is a member of the IEEE, IEEE Computer Society, Eta Kappa Nu, and Tau
Beta Pi.

BIN YAO is a Ph.D. student and research assistant in the School of Electrical and Computer
Engineering at Purdue University. He receive Bachelor of Science in electrical engineering from Beijing
University in 1996. He received an Andrews Fellowship from Purdue University for the academic years
1996-1998. He is a student member of the IEEE. His research interests include distributed algorithms,
fault tolerant computing, and heterogeneous computing.

DEBRA HENSGEN is a member of the Research and Evaluation Team at OpenTV in Mountain
View, California. OpenTV produces middleware for set-top boxes in support of interactive television.
She received her Ph.D. in the area of distributed operating systems from the University of Kentucky.
Prior to moving to private industry, she was an associate professor in the systems area at Naval
Postgraduate School. She worked with students and colleagues to design and develop tools and systems
for resource management, network rerouting algorithms and systems that preserve quality of service
guarantees and visualization tools for performance debugging of parallel and distributed systems. She

MAPPING INDEPENDENT TASKS 837

has published numerous papers concerning her contributions to the Concurra toolkit for automatically
generating safe, efficient concurrent code, the Graze parallel processing performance debugger, the
SRAM path information base, and the SmartNet and MSHN resource management systems.

RICHARD F. FREUND is a founder and CEO of NOEMIX, a San Diego based startup to commer-
cialize distributed computing technology. Dr. Freund is also one of the early pioneers in the field of dis-
tributed computing, in which he has written or co-authored a number of papers. In addition he is a
founder of the Heterogeneous Computing Workshop, held each year in conjunction with IPPS/SPDP.
Freund won a Meritorious Civilian Service Award during his former career as a government scientist.

	1. INTRODUCTION
	2. SIMULATION MODEL
	TABLE 1
	TABLE 2
	TABLE 3

	3. HEURISTIC DESCRIPTIONS
	FIG. 1
	FIG. 2

	4. EXPERIMENTAL RESULTS
	FIG. 3
	FIG. 4
	FIG. 5
	FIG. 6
	FIG. 7
	FIG. 8

	5. ALTERNATIVE IMPLEMENTATIONS
	6. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

