
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

2014-08

Enhancing X3DOM Declarative 3D with

Rigid Body Physics Support

Stamoulias, Andreas

þÿ�W�e�b�3�D� �2�0�1�4�,� �A�u�g�u�s�t� �0�8�  �� �1�0�,� �2�0�1�4�,� �V�a�n�c�o�u�v�e�r�,� �B�r�i�t�i�s�h� �C�o�l�u�m�b�i�a�,� �C�a�n�a�d�a

http://hdl.handle.net/10945/46360



ACM acknowledges that this contribution was authored or co-authored by an employee,  
contractor or affiliate of the US government. As such, the US government retains a non-
exclusive, royalty-free right to publish or reproduce this article, or to allow others to do 
so, for Government purposes only. 
Web3D 2014, August 08 – 10, 2014, Vancouver, British Columbia, Canada. 
Copyright © ACM 978-1-4503-3015-2/14/08 $15.00 

Enhancing X3DOM Declarative 3D with Rigid Body Physics Support

Andreas Stamoulias, Athanasios G. Malamos,
Markos Zampoglou

Department of Informatics Engineering
Technological Educational Institute of Crete

Heraklion, Greece, GR 71004
andr.stamoulias@gmail.com

Don Brutzman
Naval Postgraduate School, Code USW/Br

Watkins 270, MOVES Institute
Monterey CA 93943-5000 USA

+1.831.656.2149
brutzman@nps.edu

Abstract

Given that physics can be fundamental for realistic and interactive
Web3D applications, a number of JavaScript versions of physics
engines have been introduced during the past years. This paper
presents the implementation of the rigid body physics component,
as defined by the X3D specification, in the X3DOM environment,
and the creation of dynamic 3D interactive worlds. We briefly re-
view the state of the art in current technologies for Web3D graphics,
including HTML5, WebGL and X3D, and then explore the signif-
icance of physics engines in building realistic Web3D worlds. We
include a comprehensive review of JavaScript physics engine li-
braries, and proceed to summarize the significance of our imple-
mentation while presenting in detail the methodology followed.
The results obtained so far from our cross-browser experiments
demonstrate that real-time interactive scenes with hundreds of rigid
bodies can be constructed and operate with acceptable frame rates,
while the allowing the user to maintain the scene control.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—;

Keywords: X3D, X3DOM, Web3D, HTML5, WebGL, Bullet
physics, Ammo.js, real-time, physics engines, rigid body, con-
straint, interactive 3D

1 Introduction

The technologies designed for 3D visualization within the web
started by HTML in 1995, when a text based meta-language in-
spired by HTML was proposed for describing 3D scenes in terms
of geometry and material properties, the so-called Virtual Reality
Modeling Language (VRML). The concept of real-time 3D content
rendering on the web was a reasonable next step following the first
2D multimedia content modalities introduced in HTML pages. In
these first implementations, it was required to install a platform-
specific plug-in for the rendering of the scene, either an open one,
such as VRML or its XML-based successor, X3D [Daly and Brutz-
man 2007], or a proprietary one, such as Flash, Silverlight, Shock-
Wave and Quicktime.

OpenGL is widely known as low-level programming language used
for direct communication with a system’s graphics card. A novel

variation of OpenGL, especially modified for JavaScript wrapping
and browser compatibility, called WebGL (Web Graphics Library)
[WebGL 2014], is a JavaScript API designed and maintained by the
non-profit Khronos Group, based on OpenGL ES 2.0. Using We-
bGL, the improved HTML5 canvas element can be used to display
3D environment on a browser. The successful mixing of the above
technologies has led to the advent of X3DOM [Behr et al. 2010],
a technology that allows for client-side rendering of a 3D virtual
world with no external plug-in requirements. The X3DOM frame-
work comprises the X3D API and WebGL capabilities to display a
dynamic and interactive 3D environment on a simple web page na-
tively, without the need for plugins. Furthermore, the X3D physics
component provides the ability to enhance a scene with a subset of
the laws of physics, known as Rigid Body Physics, in order to in-
fluence the elements of a 3D scene. This is essentially a process in
which, at each time point, the position and motion of all objects is
estimated from their previous parameters, the influence of various
physical forces on them (such as gravity or collisions) and a set of
natural laws - typically through the use of differential equations.

However, while X3D includes the specification of Rigid Body
Physics, there is no current X3DOM implementation. In truth,
there is little work in general, for Web3D physics running natively
on a browser. In this paper, we present our implementation of
a physics support framework for X3DOM, and our performance
evaluations of this framework for a range of platforms and scenar-
ios. Our work aims to produce an interactive 3D graphics system,
based on declarative, text-based 3D scenes and able to natively run
within a browser. The rest of the paper is organized as follows:
Section 2 gives the relevant background for our work. Section 3
presents our proposed and implemented system architecture, and
Section 4 presents the experimental evaluations of our framework.
Finally, Section 5 summarizes our conclusions, and Section 6 lays
the groundwork for our future steps.

2 Background

2.1 HTML5 and WEBGL

WebGL is a 2D rendering API designed as a drawing/rendering
context for the HTML Canvas element that provides rendering
functionalities similar to OpenGL ES 2.0, by giving access to the
GPU hardware from JavaScript. The HTML Canvas provides a des-
tination for programmatic rendering in web pages, which allows the
use of different rendering APIs for this task. The Canvas specifi-
cation comes only with the CanvasRenderingContent2D Interface,
which defines the 2D drawing context for the HTML canvas ele-
ment and provides a basic set of methods and properties that enables
us to draw and manipulate graphics on the canvas drawing surface.
WebGL, on the other hand describes another such interface, named
WebGL Rendering Context, which provides its own special proper-
ties and methods to allow 3D content rendering and manipulation
within an HTML canvas element.

WebGL technology is based on scripts called shaders that work to-

99



gether for the visual representation of an object on the screen. There
are essentially two shaders, the Vertex Shader and the Fragment
Shader. The former is responsible for vertex coordinate transfor-
mations and, as a result, estimation of the final vertex positions,
an operation that may include per-vertex projection matrix calcula-
tions, normal vector and texture coordinate generation and transfor-
mation, and lighting/color calculations. The minimum task for the
VS is to set the GL position of the object, which is then passed to
the GPU and stored internally in order to be then passed to FS. In
fact the two shaders, VS and FS, work together for the final render,
but, if needed, the values passed from the VS can be overridden. FS
is responsible for the final color of each pixel, but can optionally
perform texture lookups and discard fragments, in cases of objects
obscured by another object in the scene, an operation that takes into
consideration the viewport dimensions and the projection matrix.

2.2 X3D-X3DOM

X3D is a royalty-free ISO standard defining an XML-based file
format for representing Web3D computer graphics. It was first
accepted as an ISO standard in 2004, and was designed by the
Web3D consortium with the aim of replacing the then-dominant
Web3D standard language, VRML (Virtual Reality Modeling Lan-
guage), which was an ISO standard since 1997 (thus often known
as VRML97). X3D defines various data-encoding formats but still
maintains compatibility with its predecessor technology. There are
three ISO documents that compose the X3D specification, namely
Abstract Functionality [X3Da], Encodings [X3Db] and Language
Bindings [X3Dc]. The first document defines the architecture and
abstract definitions of all X3D components alongside the X3D ab-
stract API. The second defines the three different file encoding
types, namely XML, classic VRML and Binary, while the third doc-
ument defines the X3D language API bindings, which includes an
ECMA-Script API to the X3D Scene Access Interface (SAI) and
a Java API to SAI. The X3D standard supports a wide number of
advanced 3D graphics functionalities, such as multi-texture render-
ing, real-time reflections and lighting, shaders with texture, normal-
mapping, light-mapping, movie-texture, a deferred rendering archi-
tecture, animations, humanoid animations (H-Anim) and geospatial
positioning.

X3D was designed to deliver a lightweight and balanced web-based
application to offer easy to use and develop interactive real-time
3D content. To this end, Web3D Consortium introduced a pro-
file system which is used to group the various X3D components
into profiles. X3Ds component-based architecture is composed of
several profiles including Core, Interchange, Interactive, Immer-
sive, Full, MPEG-4 Interactive, CDF (CAD Distillation Format)
and Medical-Interchange. This profile/ component-based architec-
ture offers multiple advantages: For one, its possible to create or
extend specific X3D functionalities without affecting the rest of the
framework. Furthermore, we can add new components, and di-
rectly embed them in X3D. Finally, the profile system allows for
browser/player specialization. Since a scene always specifies the
profile it requires to play correctly, the browser is always aware in
advance of the component requirements of the specific scene, and
can only load the necessary functionalities.

X3D has already been proposed in the HTML5 specification as the
technology for declarative 3D scenes. At the same time, however,
the X3DOM framework has recently been created. X3DOM is an
open-source project implementing an HTML5-WebGL version of
the core X3D API. X3DOM operates as a connector, responsible
for the synchronization of the browser frontends and the X3D back-
end, by monitoring DOM updates in the X3D code. Alongside
the connector, X3DOMs architecture consists of the User Agent
responsible for composing the final rendering output and the X3D

runtime responsible for updating and rendering the scene, but also
handling user interactions. The X3DOM implementation supports
the X3D/SAI plugins and the WebGL backend renderer in its scene-
graph construction, which means that communication, rendering
and interaction are not managed by external plugins or applica-
tions, but natively handled within the web browser. Still, X3DOM
also features a fallback model that handles any potential browser
incompatibilities, offering the ability of switching the backend to
Flash [Behr et al. 2010].

In the past, we have explored the potential of interactive 3D col-
laborative games for the web using X3D-X3DOM technologies
[Kapetanakis et al. 2013a], [Kapetanakis et al. 2013b]. In our cur-
rent work, we are more interested in extending the current limits of
X3D technologies by incorporating physics functionalities, towards
enhanced realism and a broader field of potential applications for
interactive Web 3D graphics.

2.3 Physics Engines

The term physics engine refers to any software system that can sim-
ulate physical phenomena in the domains of graphics, video games,
the film industry, scientific simulation and research. A physics en-
gine provides an approximate simulation of certain physical sys-
tems, such as Rigid Body Dynamics, which treat all bodies as be-
ing solid, Soft Body Dynamics which can handle the physics of
deformable physical bodies, and Fluid Dynamics. There are gen-
erally two classes of physics engines: real-time and high-precision.
Real-time physics engines use simplified calculations, which can
consistently produce results within a desired frame rate by sacrific-
ing accuracy in their estimates. They are popular for video games
and other forms of real-time interactive computing. High-precision
physics engines, on the other hand, are usually used by scientists
and computer animation studios for difficult or critical physics cal-
culations. They require more processing power and completion
time than real-time physics engines, but can produce high-precision
results.

The main task of all physics engines is to solve the so-called for-
ward dynamics problem. Every physics engine has a set of specific
characteristics, such as the simulation paradigm, the collision de-
tection algorithms, the collision dispatcher, the memory pool size,
the simulation sub-steps and the error correction factor. The design
choices for all these characteristics can greatly influence the output
of a physics engine, and provide significantly different results, even
when attempting to simulate the exact same system.

Real-time physics engines come in various license formats. Some
3D physics engines like Bullet [Bullet], Open Dynamics Engine
[Smit 2007] and Newton Game Dynamics [Newton] are open
source, while others like Havok [Havok] and PhysX [PhysX] are
closed source with limited free distribution. Recently, a number of
JavaScript physics engines have appeared. As we are interested in
physics for Web3D scenes, we compared all available JavaScript
physics engines and the JavaScript ported versions of the above
C/C++ open source physics libraries, in order to find the most suit-
able for our implementation purposes. The most popular JavaScript
physics library for WebGL is Ammo.js [Ammo]. Ammo.js is a di-
rect port of Bullet, a real-time physics simulation engine that sup-
ports rigid-body and soft-body dynamics as well as collision detec-
tion in 3D environments. Bullet was developed by Erwin Coumans
while he was at Sony Computer Entertainment. The engine is sup-
ported on a large number of platforms and most operating systems.
As a production physics engine, Bullet has wide support both in
games and movies and includes a rich API and an SDK.

The Bullet port to JavaScript named Ammo.js is built using Em-
scripten, and as a result it is not optimized for the web. Other than

100



that, Ammo.js is a very feature-rich library that includes many built-
in shapes, continuous collision detection, constraints, and a power-
ful vehicle system. The build-in shapes that Ammo.js offers can de-
scribe any primitive mesh such as sphere and box, but also provide
ConvexShape-type constructors for user-defined objects. Ammo.js
constraints can bind one object to a specific world position, or con-
strain two objects relative to each other. Each type of constraint has
its own settings, corresponding to the type of movement the con-
strained objects can perform and their limits. As for collision detec-
tion, Ammo.js, unlike any other library, does not support collision
events, but a contact manifold list of these events can be accessed
via the physics world, in order to search for collidable objects and
the point of contact. Ammo.js also offers methods to detect all the
rigid bodies and constraints in the world, so as to keep track of their
parameters such as position, rotation, or velocity. Ammo.js, being
a direct port of the Bullet engine does not come with its own API,
but uses Bullets instead. As a result, some knowledge of Bullets
library class structure is needed. Although Bullets API is not very
well-documented in all areas, it can cover most of the capabilities
Ammo.js can offer.

A second JavaScript physics library is JiglibJS2.js [JigLibJS2], a
port of yet another C++ library named JiglibFlash. JiglibJS2.js code
is automatically generated from the AS3, but with many hand-made
tweaks and optimizations for the web. Also, unlike Ammo.js where
there is only one file to import in a page, JiglibJS2.js offers a sepa-
rate file for each class. This customizations gives JiglibJS2.js better
performance and memory usage compared to Ammo.js. However,
it does not offer certain functionalities that Ammo.js does, includ-
ing constraints.

Another JavaScript physics library is Cannon.js [Cannon], which
is inspired by Ammo.js. Cannon.js is written by Stefan Hedman
and is described as a lightweight 3D physics engine for the web.
Cannon.js supports rigid-body simulation with primitive shapes and
custom convex polygons, constraints like point-to-point, motor and
hinge joints, but is still under development. Lastly there is one more
JavaScript physics library, named Physijs.js [PhysiJSa], based on
Ammo.js. In fact, Physijs.js is actually build on top of Ammo.js
and runs the physics simulation separately via a web worker, which
leads in better computational performance. As an overview, we
can see that Cannon.js and Physijs.js are based on either the ac-
tual Ammo.js or its features and class structure for their develop-
ment, while JigLibJS2.js is based on JiglibFlash but lacks certain
functionalities compared to Ammo.js. Ammo.js, even if it is a non-
trivial physics simulation engine, nor particularly well documented,
stands out as a complete and powerful physics engine that can sup-
port most of the features any other real-time physics engine comes
with.

As a direct result of the breadth of implementation choices and the
large number of physics engines (including multiple open and/or
free ones), the need to experimentally evaluate them has arisen from
relatively early on. An evaluation of a set of open source real-
time physics engines, was presented in [Boeing and Brunl 2007].
As Web 3D graphics at the time was not a visible prospect, no
JavaScript engines are considered. Bullet, however, in its origi-
nal C++ implementation is found to be the best performing engine
overall, although the results are far from conclusive with respect
to individual tasks. A more recent evaluation [Yogya and Kosala
2014] compares JavaScript-based engines, but the comparison is
limited between Cannon.js and Bullet.js (an older attempt to port
Bullet to JS). While Cannon.js is shown to be faster but less ac-
curate than Bullet.js, the absence of Ammo.js from the testbed is
problematic.

2.4 Related work

Recently a lightweight JavaScript library/API named Three.js
[PhysiJSb] was developed and released by Richard Cabello.
Three.js can be used to create and visually render animated 3D
graphics on a HTML5 Canvas element using SVG or WebGL. It
is a plugin-free library, thanks to WebGL, supporting various light-
ing techniques, shaders using the OpenGL shading language, basic
or custom geometry, and 3D math functions. Three.js is presented
as a very low-complexity library even for a beginner graphics cre-
ator. With respect to physics, Three.js inherently supports its own
limited library. However, one can achieve significantly more real-
istic and interactive results by combining Three.js with Ammo.js,
even though this combination is not officially supported. A sec-
ond example of Ammo.js usage in a WebGL visual engine is that
of CubicVR.js [CubicVR]. CubicVR.js is a lightweight and high-
performance JavaScript library/API, port of the CubicVR 3D En-
gine developed by Charles J. Cliffe, with a collection of built-in
features for the production of high quality real-time 3D graphics.
However, to our knowledge, no attempt to incorporate physics in
declarative Web3D graphics has been made so far.

Figure 1: X3D Rigid Body Physics component diagram.

3 Architecture

The X3D Rigid Body Physics component was proposed as a cus-
tom extension of Xj3D [Xj3D] some ten years ago. Xj3D is a Java
project focused on creating a toolkit for VRML97 and X3D con-
tent, which over time was used as one of the testing grounds for
the verification of the X3D specification. The proposed X3D Rigid
Body Physics component provided the ability to influence the vi-
sual output of the scene graph according to a Rigid Body Dynamics
(RBD) physics model. In RBD, an object is represented by a mass,
a density model, a world space position and orientation, both linear
and angular velocities, and any forces acting upon it. According to
the Rigid Body Physics component proposal [Matsuba et al. 2005],
it allows content developers to produce ”cutting edge” real-time in-
teractive 3D graphics applications. Our implementation of the rigid
body physics elements into X3DOM is based on that same specifi-
cation component.

Our work is composed of five phases: the rigid body element regis-
tration into X3DOM, the X3D scene parsing, the bullet world con-
struction, the bullet world constraining and the realism and interac-
tivity phase. The first phase of our work is the registration of rigid
body elements inside the X3DOMs core. The second phase is re-
sponsible for the X3D scene parsing of the HTML DOM. In this
phase the JavaScript collects all the CollidableShape nodes in the
X3D scene and procedurally creates the HTML objects by access-
ing the CollidableShape, Transform, RigidBody, RigidBodyCollec-
tion and CollisionCollection nodes added into X3DOM. In the case

101



of joint type nodes the JavaScript code collects all the available
information, in order to create the additional HTML objects that
represent them. The third and fourth phases are responsible for the
description of the subset of the law physics inside our scene, and the
construction of the rigid bodies and the constraints between them,
using bullet API. The last phase is where interactivity and realism
are applied. Here we define the physics simulation step for the Bul-
let physics, update our X3D objects that compose our scene using
the per-frame callback of the X3DOM runtime function, and lastly
we define the extra event listeners in the interactive objects of our
scene.

3.1 Rigid Body Physics Component at X3DOMs Core

Based on the X3D Rigid Body Physics component, we have
registered the nodes described in that component inside the
X3DOM core. The newly registered nodes are: Collid-
ableShape, X3DNBodyCollidableNode, RigidBody, RigidBody-
Collection, CollisionCollection, CollisionSensor, UniversalJoint,
BallJoint, SingleAxisHingeJoint, DoubleAxisHingeJoint, Slider-
Joint, X3DRigidJointNode and MotorJoint, as defined by the spec-
ification both in terms of name and structure. Following this step,
X3DOM became aware of these nodes, which can in turn allow an
internal method of accessing, comparing and traversing them. The
structure of the implemented components regarding the X3DOM
core can be seen in Figure 1.

The RigidBody node describes the properties of a body that can
be affected by physics. This body’s geometry shape is defined by
a CollidableShape element that the RigidBody node uses, which
in turn controls the appointed shape defined in a Transform node.
The RigidBody node defines properties like position and orientation
vectors, mass, center of mass and inertia, angular and linear velocity
vectors and damping factors in both linear and angular systems.

The Transform node is a grouping node that defines a local coor-
dinate system with a scale, a position and an orientation for all its
children. In order to connect a Transform node with a Collidable-
Shape we have to define a Transform node using the DEF attribute
and another Transform node, positioned as a child in the Collid-
ableShape node, using the USE attribute. The first Transform node
contains a child node that is responsible for rendering the visual rep-
resentation of a geometry shape. This is called the Shape node. The
Shape node has two fields that describe an object, namely appear-
ance and geometry, which contain respectively an Appearance node
and a geometry node. The Appearance node specifies the visual at-
tributes like material and texture of the object, while the geometry
node gives all the information about the shape of the geometry.

The RigidBodyCollection is used as a container for multiple Rigid-
Body nodes defined by the same properties, such as gravity, error
correction factors, surface thickness, or switching parameters like
”enable,” which tells our script if that group of objects will be con-
sidered as active.

The CollisionCollection node acts similar to the RigidBodyCollec-
tion node, but holds together multiple CollidableShape nodes under
the same properties. These properties define the bounce level of the
objects, the friction and the softness of the collision, slip factors,
and the surface speed.

The X3DNBodyCollidableNode is the CollidableShape’s abstract
node type that represents an interface between the visual object in
the scene and the rigid body collision geometry object.

The CollidableShape node is the one responsible for the representa-
tion of the collider’s geometry shape. Without it no physics can be
applied to an object, and as a result no interaction with the objects
can be performed. As we mentioned above, in order to match every

collider with the corresponding visual object that will be rendered
into the canvas element, we have appended a Transform child node
within the CollidableShape node, which USEs the already DEFined
Transform inside the scene. The first Transform, placed in the scene
wherever the X3D specification allows for a Transform node to be,
serves for the visualization of the object. The second transform,
placed inside the CollidableShape node and using the first one, has
to be placed below the first one in the XML tree, for the DEF-USE
relationship to work. The second Transform can either be used for
the representation of the physical shape of a rigid body by defining
a Shape node, or as a connection reference point to another previ-
ously defined CollidableShape node for the RigidBody element.

The X3DRigidJointNode is an abstract node type that represents all
the joint type nodes and defines basic attributes like the first and
second body children node fields. The joint type nodes defined into
X3DOM are:

• The BallJoint type node that represents a joint between two
rigid bodies, free from other constrains, that pivot about a
common anchor point.

• The UniversalJoint type node represents a joint between two
rigid bodies like the BallJoint node, but constrains an extra de-
gree of rotational freedom by keeping the axes perpendicular
to each other.

• The MotorJoint type node that can control the relative angular
velocities between two rigid bodies.

• The SliderJoint node that represents a joint between two rigid
bodies constrained along a single axis.

• The SingleAxisHingeJoint node that represents a type of joint
like the traditional door hinge, which define a single axis
about which the rigid bodies rotate.

• The DoubleAxisHingeJoint node, just like the SingleAxis,
represents a hinge joint but this time with two independent
axes that are located around a common anchor point.

3.2 Parsing the X3D Scene

Initially our JavaScript searches the HTML body it is attached with,
for the X3D ¡Scene¿ element. Then it continues inside its children,
searching for CollidableShape nodes, being the ones responsible
for the representation of the collider’s geometry shape. At first we
collect all the CollidableShape nodes in the X3D scene and pro-
cedurally create an Array of JavaScript objects by accessing the
CollidableShape, RigidBody, RigidBodyCollection and Collision-
Collection nodes that we implemented into X3DOM. In the case
of existing joint type nodes, JavaScript collects all available infor-
mation and creates an additional JavaScript Object Array to store it.
The connection between those nodes is performed via the DEF/USE
attribute that is defined in all our rigid body elements. Specifically,
the CollidableShape uses an already defined Transform in our scene
and is used by the RigidBody and CollisionCollection node ele-
ments. In turn, RigidBody is defined as a child of a RigidBody-
Collection, while the CollisionCollection is defined as a child of
a CollisionSensor. In the case of a joint, there is one or more ex-
tra joint type nodes defined as siblings of the RigidBody. All joint
type nodes use two CollidableShape nodes that have to be already
defined into the scene and into their corresponding RigidBody.

3.3 Building the Physics Simulation World

The third phase of our implementation is defined as the ”simulation
world builder, as it is responsible for creating the physics world.
In order to add physics using Ammo.js, we first need to create and

102



set up several Ammo.js objects. We need a collision configuration,
which is responsible for the collision detection algorithms and the
collision manifold pool size, a collision dispatcher that can han-
dle collision pairs, and a broadphase that uses two dynamic AABB
bounding volume hierarchies, one for static objects and another for
moving objects. Also, we have to define a constraint solver and a
discrete dynamic world that controls the simulation of all rigid bod-
ies using the above Ammo.js objects and algorithms. This dynamic
world is used to append any rigid body, joint or collision object in
our simulation process.

All the JavaScript objects created in the previous phase are then
being used by Ammo.js classes for the construction of the physi-
cal geometry models. Ammo.js supports all the physical geome-
try models defined by the X3D specification, such as Box, Sphere,
Cone, Cylinder and complex user-defined shapes. For the construc-
tion of the shapes, our JavaScript provides Ammo.js with construc-
tors and their attributes, drawn during phase 2 from the RigidBody,
RigidBodyCollection, CollisionCollection and CollidableShape el-
ements.

All the objects that are being created at this phase and prior to ap-
pending them to our simulation world, follow the same method-
ology: We begin by defining a new transform object in Ammo.js,
that stores the position and orientation coordinates corresponding
to the X3D object’s translation and rotation. Then, we create a new
Ammo.js object based on the defined shape, and pass to it any rele-
vant attributes, such as size and radius. For this new shape, we can
set up margin options and calculate its local inertia. In order for
the object to be part of our simulation, we have to create a Rigid
Body Object, which will control the collision shape as a solid body.
The rigid body is created by passing to a RigidBody constructor all
the needed information, such as a motion state object based on a
Transform object, a mass, the local inertia and the shape’s physical
object. At this point, we can configure our rigid body according
to the attributes described in the RigidBody, RigidBodyCollection
and CollisionCollection elements in our X3D scene, like angular
and linear velocities, friction and restitution. All rigid bodies are
added into the dynamic world for the simulation, but we also keep
them in an Array so we can iterate over them and keep track of their
position and rotation coordinates when updating the scene graph.

3.4 Constraining the Rigid Bodies

The X3D rigid body specification under component support
level 2 defines multiple constraint types, like BallJoint, Uni-
versalJoint, SliderJoint, SingleAxisHingeJoint, DoubleAxisHinge-
Joint and MotorJoint. In the description of phase two in Section 3.2,
we mentioned that, if one or more joint type nodes exist, we keep
track of them in a separate Array. After the completion of the third
phase, the created objects can be constrained, either with the world
or with one another. We will consecutively proceed to present the
procedure followed to achieve this, but first we have to present the
class types used in every case.

The BallJoint joint type is defines a point-to-point constraint, which
takes two rigid bodies and constraints them along a common pivot
point. The pivot point functions as the centre of a ”ballsocket” in
local space coordinates. For the UniversalJoint type we use the
Ammo.js universal constraint, which defines two rotational degrees
of freedom based on two axes defined within the UniversalJoint
node, created to constrain the two rigid bodies. In the case of Slider-
Joint, we use the Ammo.js slider constraint, that constraints a rigid
body to rotate and translate on a single axis in conjunction with
another body. SingleAxisHingeJoints and DoubleAxisHingeJoints
are created using the hinge constraint, which constrain two rigid
bodies to act as a hinge -as the name implies. The only difference

between them is that for the latter we use two rotational degrees of
freedom while for the former we use only one. Lastly, in the Motor-
Joint type, we use the generic 6DoF constraint, which is a general
type of constraint that can be used in most cases. This type of con-
straint can be used to lock or free any of the six degrees of freedom.
By using this constraint we limit the rotation motor axis based on
our X3D MotorJoint element.

In order to achieve this constraining of the rigid bodies we iterate
over the joint array we created in a previous phase and based on
the joint type we call the corresponding class from Ammo.js. The
rigid bodies can be found by accessing the children elements and
all extra attributes like anchor point, axis freedom and angle limit
from the actual X3D joint type element. By iterating over our joint
object list and then over our rigid body object array we can find the
correct rigid bodies stored in the list compared with the RigidBody
children nodes of any joint. Then the only thing left is to create the
constraint and added in the simulation process by appending it in
our dynamic world.

3.5 Realism and Interactivity

In this section, we will describe the functions that take place during
the final phase, when all the rigid bodies have been created and
constrained using the Bullet physics library API and appended into
our X3D scene. We first create an update function that is called at
every frame, using the X3DOM built-in function that is a common
operation to the WebGL per-frame callback. In this function we
define an internal simulation step that controls the flow of data that
we pass from Ammo.js in each frame. This step simulation is used
in order to iterate and update the position and rotation of all the
rigid bodies of the scene prior to rendering, which in turn control
a CollidableShape node. But this implementation is not only an
animation output of the computed physics: we have also added to
all the shapes that are not flagged as static, the appropriate event
listeners that can be triggered by the user’s mouse actions.

Mouse interactivity inside the X3DOM is now defined by the
X3DOM.moveable component that defines an internal method of
interactivity with the objects. That component is used in our work
as a sensor for the interactive elements of the user activity. User
interaction with the scenes rigid bodies is limited to grab, drag and
release. DOM element changes are triggering X3DOM to redraw
the scene, but for Bullet we have to manually recreate the scene
or -in the case of grab, drag, release- a part of it. We iterate over
the objects using the functions of phases 3 and 4, in order to re-
construct the rigid bodies that are being grabbed and moved along
with their siblings in the case of joint types, using the mouse posi-
tion to re-position and instantiate the same object inside the scene.
Recreating an object and its constraints is not the optimal way as
it leaves behind unused Ammo.js objects which have to be cleaned
up in order to maintain the scenes frame rate in high complexity
levels. Also, with this procedure we force Ammo.js to update the
position and rotation of the rigid bodies of any joint system based
on the Jacobian determinant function, while the user interacts with
one of the bodies associated with it.

4 Experimental Evaluation

For the purposes of our work with X3DOM we have created var-
ious scenario scenes, in order to cover every possible rigid body
state and all the constraining types. These examples were imple-
mented in both HTML and XHTML file formats, and are available
at our project website . For all the simulations and benchmark tests
we were using the following browser versions: Google Chrome
33.0, Mozilla Firefox 29.0, Opera 20.0 and Maxthon 4.3.2. The

103



benchmark computers characteristics were: CPU: Inter Core i7-
3630QM 2.40GHz, GPU: AMD Radeon HD 7600M Series 2GB,
RAM: 4GB, OS: Windows 8.1. In our benchmark test, we have
chosen to not include Microsoft Internet Explorer and Apple Safari
browsers as they do not support WebGL render functionalities in
X3DOM environments but rather fallback to the Flash renderer.

Figure 2: The first example: a scene of a pendulum created using
BallJoints.

For our tests, we have created four X3D scenes, which include basic
rigid body physics examples. The first scene, as seen in Figure 2,
comprises of 8 rigid bodies, constrained with BallJoints in doublets
in a way that they create a sort of chain. First we defined a starting
point for this chain by pinning the first rigid body, with zero mass,
to the world, which acts as a static Ammo.js object with no influ-
ence by other objects. All intermediate rigid bodies are set to ignore
world gravity, have a mass of 0.1 kg each and are being influenced
only by the last rigid body, which has a mass of 2 kg. The whole
pendulum system is created not in an equilibrium position but rather
with an amplitude, so it will start immediately simulating an oscil-
lation after the page finishes loading. This example comprises of
8 RigidBody and 7 BallJoint elements defined in a RigidBodyCol-
lection node. Also there are 8 CollidableShape nodes used by the
RigidBody elements, which control the position and rotation of 8
transform elements in our scene that drive our final visual output.

Figure 3: The second example: a scene of two colliding convex hull
rigid bodies constrained using the BallJoint and MotorJoint type.

The second example, Figure 3, used for our measurements is an
extended version of the previous example. We have replaced the
final sphere shape with an IndexedFaceSet, which was created in
Ammo.js as s convex hull model and, using the inline method, we
have imported an external X3D file into our scene node.

Figure 4: The third example: a motor joint constrained sphere
interacting with free rigid bodies dynamically created in real-time.

That X3D file that we have loaded in our scene is composed of 6
rigid bodies, one of which defined as static, and used as the sib-
ling rigid body for each of the four rigid bodies constrained by the
BallJoint node type and the one with the MotorJoint. We also apply
a torque along the Z axis in the last rigid body constrained by the
MotorJoint, which is also an IndexedFaceSet object, which forces
it to rotate around the static body and collide with the rest of the
bodies. Inside the X3D file we have also defined the appropriate
RigidBodyCollection and CollisionCollection nodes that complete
the X3D physics scene.

 

0

10

20

30

40

50

60

70

100 200 300 400 500 600 700 800 900 1000

Fr
am

es
 p

er
 S

ec
o

n
d

Number of Rigid Bodies

Chrome Mozilla Opera Maxthon

Figure 5: A cross-browser line chart showing the frames per sec-
ond in respect to the number of rigid bodies.

A third example (Figure 4) was constructed in order to measure the
fps rate with respect to the number of rigid bodies in a scene. For
that case we created a scene with a confined space where a Motor-
Joint constraint controls a ball by applying, in every single frame, a
torque along the Y axis. That confined space is constructed using 6
boxes which are placed in the right places in order to assemble the
walls of our hollow box. We then dynamically append new boxes
inside that area over time, to measure the browser capabilities in
respect to frame rate.

For our benchmark we built a setup, where we create one rigid body
at every frame in a random position inside the container, then pass
it to the simulation process by adding it to the Ammo.js dynamic
world and to the X3D scene by appending the appropriate node
elements. We collected the frame rate at each time we added a
body in our scene, a process followed for the 1000 bodies. We
repeated the same simulations five times in each browser in order
to get an average score between the measurements. Our benchmark

104



 

0

10

20

30

40

50

60

70

10 Rigid Bodies 50 Rigid Bodies 100 Rigid Bodies 200 Rigid Bodies 500 Rigid Bodies

Fr
am

e
s 

p
e

r 
Se

co
n

d

Chrome Mozilla Opera Maxthon

Figure 6: A cross-browser column chart showing the frames per
second in cases of 10, 50, 100, 200 and 500 rigid bodies.

statistics are being visualized in Figure 5 and Figure 6, where we
can clearly see that Google Chromes performance is better than that
of every other browser we tested, closely followed by the Opera
browser. Firefoxs performance seems to be significant lower than
the previous two, but a lot better than Maxthons fps rate.

Figure 7: The fourth example: dynamic real-time creation of con-
strained rigid bodies using single axis hinge joint.

As soon as simulation starts, the two X3D scene systems, the one
defined in our HTML page and the other inside the inline X3D start
colliding. The results shown in Figure 5 were collected from 10
continuous simulations for every case and in each browser. Specif-
ically, for the fps rate of each browser we measured the average
frame rate for the first 2000 frames of each simulation in each test
example scene and then we computed the average rate of all those
simulations.

For our test we captured the average frame rate in each browser
by simulating the scene in total 10 times. The first 5 were used in
order to measure the X3DOM frame rate using its built-in function,
whereas with the last 5 simulations we measured Ammos average
frame rate, using the clock built-in function that returns the time
in milliseconds. Figures 8 and 9 show the cross-browser fps rate
in respect to the number of rigid bodies constrained with a joint.
In Figure 10 we can see five snapshots of our captured data in a
comparison of physics and render fps rate of the same scene as
measured in our tests in the case of Chrome browser.

The final example that completes our benchmarking tests is com-
prised of a fully dynamic scene, starting only with two static rigid
bodies, one for the ground representation and the other for the defi-
nition of the first link of a joint. In this test (Figure 7) we dynami-
cally append rigid bodies in our scene and in our simulation, which

 

0

10

20

30

40

50

60

70

Fr
am

e
s 

p
e

r 
Se

co
n

d

Number of Joints

Chrome Mozilla Opera Maxthon

Figure 8: A cross-browser line chart showing X3DOMs frame rate
in respect to the number of joints.

 

0

10

20

30

40

50

60

70

80

Fr
am

e
s 

p
e

r 
Se

co
n

d

Number of Joints

Chrome Mozilla Opera Maxthon

Figure 9: A cross-browser line chart showing Ammos frame rate in
respect to the number of joints.

are first linked and constrained by a single axis hinge joint, limited
to a Y-axis rotational freedom. Newly created rigid bodies are be-
ing constrained with the last object appended in the scene. Ammo.js
now has to take into consideration the movement of every single ob-
ject in the scene and uses the Jacobian determinant function to solve
the differential equation systems near the equilibrium point. Rigid
bodies are created in every frame and in parallel measure X3DOMs
frame rate as well as the time (in milliseconds) needed by Ammo.js
to calculate the physics. Those two measurements have been col-
lected separately, as in the second case we turned off every visually
rendered moving object, in order to measure the Ammo.js frame
rate in every browser, using the same internal step for all the physics
simulation.

Measurements show that there is no significant difference between
the HTML and XHTML file formats regarding X3DOM’s FPS rate
(Figure 11). Furthermore in Figure 12 we observe a small delay
in scene loading time in the case of XHTML files in Mozilla Fire-
fox. With respect to the loading time, we should note that we had
disabled the cache of each browser when our tests were measured.

5 Conclusions

WebGL has brought about a new fascinating world where interac-
tive and realistic 3D applications for the web can be easily achieved.
Although WebGL has been a big leap forward in 3D visualization, it
is still in its early stages and there is a lot of work that has to be done
in order to tackle many fundamental problems, from security is-
sues to performance drawbacks. As technology advances more and
more, desktop-like applications can be expected to become avail-

105



 

0

10

20

30

40

50

60

70

80

50 100 200 500 1000

Fr
am

e
s 

p
e

r 
Se

co
n

d

Number of Joints

Chrome physics fps Chrome render fps

Figure 10: Physics and render frame rate comparison in chrome
browser in cases of 50, 100, 200, 500 and 1000 joints.

 

54 54,5 55 55,5 56 56,5 57 57,5 58 58,5

HTML Example 1

XHTML Example 1

HTML Example 2

XHTML Example 2

Frames per Second

Chrome Mozilla Opera Maxthon

Figure 11: A cross-browser X3DOM frame rate comparison in
HTML and XHTML cases.

able for the web. Our integration of an efficient and feature-rich
JavaScript physics library named Ammo.js into the X3DOM frame-
work, paves the way for X3DOM-based applications with high lev-
els of interactivity, incorporating powerful real-time physics models
that can lead to deeply immersive, real-time, interactive VR expe-
riences for users, directly within web contexts, without the need
for additional software besides a standard web browser. Our exper-
iments showed us that real-time interactive X3DOM scenes with
hundreds of rigid bodies can be constructed and function smoothly.
Prior to our implementation, such a potentiality could only be an
object of speculation: besides demonstrating its feasibility, we have
also set up an experimental framework for evaluating different set-
ups, platforms and scenarios, in terms of responsiveness and per-
formance.

6 Future work

Our implementation of physics support for X3DOM aims in en-
abling the development of highly realistic Web-based simulations
and interactive real-time 3D applications and games based on X3D
technology. X3DOM physics support creates a new testing ground
for several potential physics-driven systems. Based on our imple-
mentation, some of the future work that can be done could be the
implementation of a physics-driven particle system based on the
Particle Systems component of the extensible 3D (X3D) specifica-
tion into X3DOM. Another potential research direction could be the
creation of different physics sub-system inside X3DOM, that of a
Soft Body simulation system. Such a system is already supported
by Ammo.js: by registering new X3D(OM) nodes and attributes

 

HTML Example 1

XHTML Example 1

HTML Example 2

XHTML Example 2

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8

Loading Time in Seconds

Chrome Mozilla Opera Maxthon

Figure 12: A cross-browser X3D scene loading time comparison in
HTML and XHTML cases.

that describe deformable bodies, and in collaboration with our cur-
rent work, we can create even more complex and realistic simu-
lation applications. Finally, an implementation of Fluid Dynamics
could also be incorporated, either based on the aforementioned Soft
Body system, or as a separate autonomous system. In the meantime,
however, we should keep in mind that the core of our engine is Bul-
let 2.82, which is written in C++, and the Ammo.js implementation
is merely a JS port. To the extent that C++ remains the de facto lan-
guage for such frameworks, for our code to be properly maintained,
new Bullet versions (including the upcoming Bullet 3.0) will have
to be systematically ported to JS. We can honestly expect, however,
that in the future a pure, native JS physics engine will appear, as
more and more technologies become web-oriented. In any case,
X3DOM can now claim to feature a working real-time interactive
physics component, which brings it yet another step closer to sup-
porting fully immersive 3D games for the web.

Acknowledgements

The research of this paper is granted by the European Union and
the Hellenic General Secretary of Research and Technology under
the COOPERATION 2009 / 09SYN-72-956 Framework.

References

AMMO. Ammo.js home page. [accessed May 2014].
https://github.com/kripken/ammo.js.

BEHR, J., JUNG, Y., KEIL, J., DREVENSEK, T., ZÖLLNER, M.,
ESCHLER, P., AND FELLNER, D. W. 2010. A scalable ar-
chitecture for the HTML5/X3D integration model X3DOM. In
Web3D, ACM, D. G. Aliaga, M. M. Oliveira, A. Varshney, and
C. Wyman, Eds., 185–194.

BOEING, A., AND BRUNL, T. 2007. Evaluation of real-time
physics simulation systems. In In Proceeding of the 5th inter-
national conference on Computer graphics and interactive tech-
niques in Australia and Southeast Asia. GRAPHITE ’07, ACM,
281–288.

BULLET. Real-Time Physics Simulation. Bullet Physics Library,
2013. [Online]. http://bulletphysics.org/wordpress/.

CANNON. Cannon.js home page. [accessed May 2014].
http://schteppe.github.io/cannon.js/.

CUBICVR. CubicVR home page. [accessed May 2014].
http://www.cubicvr.org/.

106



DALY, L., AND BRUTZMAN, D. 2007. X3D: Extensible 3D graph-
ics standard (standards in a nutshell). IEEE Signal Processing
Magazine 24, 6 (November), 130–135.

HAVOK. Havok. [accessed May 2014]. http://www.havok.com/.

JIGLIBJS2. JigLibJS2 home page. [accessed May 2014].
http://www.brokstuk.com/jiglibjs2.

KAPETANAKIS, K., ANDRIOTI, H., VONORTA, H., ZOTOS, M.,
TSIGKOS, N., AND PACHOULAKIS, I. 2013. Collaboration
framework in the EViE-m platform. In In Proceedings of the
24th European Association for Education in Electrical and In-
formation Engineering, EAEEIE Annual Conference, 178–183.

KAPETANAKIS, K., PANAGIOTAKIS, S., AND MALAMOS, A. G.
2013. HTML5 and websockets; challenges in network 3D col-
laboration. In 17th Panhellenic Conference on Informatics, PCI
2013, Thessaloniki, Greece - September 19 - 21, 2013, ACM,
P. H. Ketikidis, K. G. Margaritis, I. P. Vlahavas, A. Chatzigeor-
giou, G. Eleftherakis, and I. Stamelos, Eds., 33–38.

MATSUBA, N. S., HUDSON, D. A., AND COUCH, J. 2005. The
rigid body physics component: A proposed amendment to the
x3d specification. In In Proceeding ACM SIGGRAPH 2005 Web
program. SIGGRAPH ’05, ACM.

NEWTON. Newton Game Dynamics. [accessed May 2014].
http://newtondynamics.com/forum/newton.php.

PHYSIJS. PhysiJS.js home page. [accessed May 2014].
http://chandlerprall.github.com/Physijs/.

PHYSIJS. Three.js home page. [accessed May 2014].
http://threejs.org/.

PHYSX. Nvidia PhysX, GeForce. [accessed May 2014].
http://www.geforce.com/hardware/technology/physx.

SMIT, R., 2007. Open Dynamics Engine. [accessed May 2014].
http://www.ode.org/.

WEBGL, 2014. Khronos Group, WebGL
specification, editor’s draft, March 2014.
http://www.khronos.org/registry/webgl/specs/latest/1.0/.

X3D. ISO/IEC 19775:2004 Extensible 3D (X3D).

X3D. ISO/IEC 19776:2005 X3D encodings (XML and Classic
VRML).

X3D. ISO/IEC FDIS 19777:2005 X3D language bindings (EC-
MAScript and Java).

XJ3D. Xj3D home page. [accessed May 2014].
http://www.xj3d.org/.

YOGYA, R., AND KOSALA, R. 2014. Comparison of physics
frameworkds for webgl-based game engine. In International
Conference on Advances Science and Contemporary Engineer-
ing.

107


