
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

1995

Formal Methods and Social Context in

Software Development

Goguen, Joseph A.

http://hdl.handle.net/10945/46123

Formal Methods and Social Context
in Software Development*

Joseph A. Goguen
Programming Research Group, Oxford University Computing Lab

Luqi
Naval Postgraduate School, Monterey California

Abs t rac t : Formal methods have not been accepted to the extent for
which many computing scientists hoped. This paper explores some rea-
sons for that fact, and proposes some ways to make progress. One major
problem has been that formal methods have not taken sufficient account
of the social context of computer systems. For example, social context
causes a continuous evolution of requirements for large complex systems.
This implies that designs, specifications and code must also evolve with
requirements, and that traceability is important. We discuss a traceability
technique called hyper-requirements. To better understand social context,
we discuss ethnomethodology, a branch of sociology, and situated abstract
data types, which help bridge the gap between the technical and the so-
cial. These attempt to provide a scientific basis for requirements capture.
Some case studies are briefly described. We distinguish between small,
large and huge grain formal methods, arguing that small grain methods
do not scale up. This motivates our discussions of software composition
and a new paradigm of "Domain Specific Formal Methods."

1 I n t r o d u c t i o n

Failures of large software development projects are common today, due to the
ever increasing size, complexity and cost of software systems. Although billions
are spent each year on software in the US alone, many software systems do not
actually satisfy users' needs. Moreover, many systems that are built are never
used, and even more are abandoned before completion. Many systems once
thought adequate no longer are. To remedy this situation, we recommend a
two-fold approach: take better account of the social context of computing; and
use formal models as a basis for computer support of software evolution.

Experience shows that many failures of large software projects arise from
social, political or cultural factors. Hence it is crucial to take account of the

*The research reported in this paper has been supported in part (for J. Goguen) by British
Telecommunications plc, the CEC under ESPRIT-2 BRA Working Group 6071, IS-CORE
(Information Systems COrrectness and REusability), and Fujitsu Laboratories Limited, and
(for Luqi) by the National Science Foundation and the Army Research Office under grant
numbers CCI~-9058453 and ARO-145-91.

63

social context of computer-based systems, in addition to the usual technical
factors. Social context appears in requirements, where the properties a system
must have in order to succeed are determined [11]. The requirements phase of a
large system development project is the most error-prone, and these errors are
the most expensive to correct [3, 5], so improvements here will have the greatest
economic leverage. Unfortunately, requirements are one of the least developed
areas of software engineering. Sections 2.2 and 3.1 discuss ethnomethodology, a
promising branch of sociology, and situated abstract data types, a new concept
that helps bridge the gap between computer technology and its social context.
These attempt to provide a scientific basis for requirements capture. Some case
studies are given in Section 3.2.

Taking better account of the social context of computing can also lead to
faster and more effective system development. For example, requirements for
large complex systems are usually wrong initially, and they evolve continually.
This has important implications for methodology: first, any methods used to
implement requirements should be flexible, so that they can accommodate the
ongoing flood of requirements changes, and second it should be easy to trace de-
sign changes back to the requirements that triggered them. Section 5.1 describes
a technique for traceability called hyper-requirements.

We distinguish between formal methods and formal models, in that formal
methods try to handle some large class of systems (such as information systems),
or even all possible systems, whereas formal models guide the construction and
use of a single system, or a narrow class. We suggest using mechanically pro-
cessable formal models for building and integrating tools to produce software
faster, cheaper, and more reliably, by increasing automation and decreasing in-
consistency. This contrasts with formal methods that call for mathematical rigor
throughout the development process, usually through a formal notation with a
precise mathematical semantics. Section 4.3 distinguishes between small, large
and huge grain formal methods, and explains why small grain methods, which
are the most common, fail to scale up. The Domain Specific Formal Methods in
Section 4.4 illustrate the use of formal models.

2 Social C o n t e x t and R e q u i r e m e n t s

Requirements are properties that a system should have in order to succeed in
the environment where it will be used [11]. This refers to the system's context
of use, and thus to the social as well as the technical. Much of the information
that requirements engineers need is embedded in the social worlds of users and
managers, and is extracted through interaction with them. This information is
informal and dependent on its social context for interpretation. Moreover, much
information needed for requirements is tacit, i.e., cannot be verbalized by the
members who have that information. On the other hand, the representations
that appear in constructing computer-based systems are defined by formal rules.
Both the formal, context insensitive, and the informal, socially situated aspects
of information are crucial to the success of requirements engineering; these two

64

aspects are called "the dry" and "the wet" in [11], which says that the essence
of requirements engineering is to reconcile them.

2.1 Video-Based Requirements Elicitation

The Video-Based Requirements Elicitation project the Centre for Requirements
and Foundations at Oxford University is exploring techniques from sociology to
reveal tacit, interactional work practices that are invisible to standard require-
ments methods. The following are some goals of this project:

1. To develop an effective new requirements method that can be used by
ordinary computer scientists in actual projects.

2. To reduce the risk of delivering inappropriate systems by discovering what
work practices must actually be supported.

3. To ease the introduction of new systems by understanding where disrup-
tions might and might not be tolerable.

4. To help manage user expectations by determining where users might want
a new system to give a better service than the old one, through analysis
of current work practices.

In this project, audio-visual recordings of actual work are analyzed using princi-
ples from ethnomethodology, to better understand social and interactional prac-
tices in the workplace.

2.2 Ethnomethodology

Traditional sociology is much influenced by what it considers to be orthodox
science, where the scientist first formulates a theory, on the basis of which pre-
dictions are made, and then tested empirically. The aim is to achieve objectivity,
in the sense that the desires and biases of the scientist cannot affect the conclu-
sions. Hence, there is a rigid separation between subject and object, between
observer and observed. Since modern physics has already moved far from this
kind of objectivity, it should not be surprising if sociology, and the social aspects
of computing, had to go even further. In particular, ff objective information is
replaced by situated information, then orthodox techniques for formulating and
testing hypotheses, e.g., statistical sampling, are not valid, because the events ob-
served can no longer be assumed statistically independent. However, statistical
methods are the foundation for much sociology, e.g., the design and evaluation
of questionnaires. This is not to say that statistics and questionnaires are never
useful, but that they are not always valid, and in particular, that they should
not be used where context plays a significant role.

Ethnomethodology can be seen as a reaction against the "scientific" approach
of traditional sociology. Ethnomethodology reconciles a radical empiricism with
the situatedness of social data, by looking closely at how competent members

65

of a group actually organize their behavior. A basic principle underlying eth-
nomethodology is that members are held accountable for certain actions by their
social groups; moreover, exactly those actions are considered socially significant
by those groups. A member performing such an action can always to be asked
for an account, that is, a justification 1. Let us call this the principle of account-
ability. From this follows the principle of orderliness, that social interaction is
orderly, in the sense that it can be understood. This follows from the fact that
the participants themselves understand it, because of accountability; therefore
analysts should also be able to understand it, if they can discover the methods
and categories that members themselves use to make sense of their interactions.
This implies it is important to use "naturally occurring" data, collected in a
situation where members are engaged in activities that they regularly and ordi-
narily do; otherwise, the basic principle of accountability will not apply, and we
cannot be sure that events in the data have any natural social significance. For
example, data collected from interviews cannot be used.

Ethnomethodology tries to determine the categories and methods that mem-
bers use to render their actions intelligible to one another; this contrasts with
presupposing that the categories and methods of the analyst are necessarily
superior to those of members. The methods and categories of members are iden-
tifiable through the ways that members are held socially accountable by other
members of their group. Through immersion in data from some particular social
group (such as stock brokers), particular competencies are gradually acquired
that enable an analyst to be a sensitive, effective "measuring instrument" in that
domain. In this way, subjectivity is harnessed rather than rejected.

Unfortunately, ethnomethodology can be hard to understand; relatively com-
prehensible expositions of some important points are in [16], [24], and [11], which
we have followed here. Conversation analysis studies details of timing, overlap,
response, interruption, repair, etc. in ordinary conversation [21], while interac-
tion analysis uses video data.

We can now be more precise about what it means to say that social interac-
tion is situated: it means that the events in some interaction can only be fully
understood in relation to the concrete situation in which they actually occur.
The following qualities of situatedness (from [11], inspired in part by Suchman
[24]) may help to further clarify this point:

1. Emergent: Social events cannot be understood at the level of the individual,
that is, in terms of individual (cognitive) psychology, because they are
jointly constructed as social events by the members of some group through
their on-going interactions.

2. Local: Actions and their interpretations are constructed in some particular
context, including a particular t ime and place.

3. Contingent: The construction and interpretation of events depends upon
the current situation (potentially including the current interpretation of

1This does not mean that such accounts are always, or even usually, requested by members
of the group, or that they are necessa~'ily given when requested.

66

prior events). In particular, interpretations are subject to negotiation, and
relevant rules are interpreted locally, and can even be modified locally.

4. Embodied: Actions are linked to bodies that have particular physical con-
texts, and to the particular way that bodies are embedded in a context
may be essential to the social interpretation of some events.

5. Open: Theories of social events cannot in general be given a final and
complete form, but must remain open to revision in the fight of further
analyses and further events.

6. Vague: Practical information is only elaborated to the degree that it is
useful to do so; the rest is left grounded in tacit knowledge.

We will see that these qualities give rise to basic limitations of formalization.

2.3 An Hypothesis and Some Consequences

The retrospective hypothesis [11] says that it only becomes clear what the re-
quirements really are when the system is successfully operating in its social and
organizational context. This explains why it can be so difficult to manage the
requirements of a large system. The retrospective hypothesis also explains why
it can be so difficult to enforce rigid process models on actual software projects:
it is difficult even to know what phase a given action fits into until some co-
herence has emerged retrospectively. Note that it takes work by members to
achieve a retrospective reconstruction, and that this work is often not done in
real projects because of the effort required.

We can now understand why it is impossible to completely formalize require-
ments: it is because they cannot be fully separated from their social context.
More specifically, the qualities of situatedness explain why the lifecycle phases
cannot be fully formalized or separated. Indeed, the activities that are necessary
for a successful system development project cannot be expected always to fit in
a natural way into any system of pre-given categories, and practising software
engineers often report that they have to spend much of their time circumventing
narrowly prescriptive plans and rules [4]. In general, abstract representations
have only a practical utility, and must be interpreted concretely in order for
that utility to be made manifest [24]; this includes software production plans
and process models.

These considerations have consequences for software engineering. Perhaps
the most important is that tools must provide very strong support for retro-
spective revision; in particular, they must be very flexible, to accommodate the
frequent changes in requirements and their links with other objects. Another
consequence is that degrees of formalization are needed, ranging from raw data
to mathematical formulae. Moreover, information that is heavily situated should
come with pointers into its context (e.g., background ethnographic information,
audio and video clips of work and interviews, questionnaires and their analy-
ses, sample documents from the work environment, etc.), in order to make it
understandable by those who have not had direct contact with the client group.

67

3 Requirements Elicitation

This section discusses a new approach (from [11]) for transferring information
from requirements analysts to system developers, using concepts from both so-
ciology and computing science. Two case studies are briefly described.

3 .1 S i t u a t e d A b s t r a c t D a t a T y p e s

In ordinary social interaction, including cooperative work, there are many struc-
tures that participants use and represent in a variety of ways, e.g., with ver-
bal descriptions, drawings, tables, graphs, etc. For example, consider sporting
events. Figure 1 shows a table from a newspaper representing the order and
participants in a boat race, the Henley Regatta, while Figure 2 shows the same
information in the form of a tree. This structure could also be conveyed by a
table on a scoreboard, or a sequence of phrases in spoken English. Thus there
is a precise structure that is independent of how it happens to be represented;
i.e., we have an abstract data type, abbreviated ADT. As in [11], we use order
sorted initial algebra semantics (see [12]) to formalize this structure. A complete
formal specification of the Henley Regatta ADT is given in the appendix, us-
ing the specification language OBJ3 [14]. This specification has been executed.
(Experience shows it is necessary to test all but the most trivial specifications
in order to eliminate bugs.) The Henley Regatta example was inspired by Toul-
min [25], although Toulmin only used concrete representations without realizing
they were algebras, that different representations give isomorphic algebras, or
that there is no unique best representation.

Visitors' Cup. Heat 1: Jesus, Cambridge v. Christ Church; Heat
2: Oriel v. New College; ... Heat 8: Lady Margaret v. winner of
Heat 1; ... Heat 26: Winner of Heat 23 v. winner of Heat 24; Final:
Winner of Heat 25 v. winner of Heat 26.

Figure 1: A Draw for the Henley Regatta

Several different kinds of entity are involved in a regatta. Some of these can be
arranged in a hierarchical classification scheme according to the subsort relation.
Sorts correspond to an important class of members' categories, although not
every members' category is formalized by a sort; for example, heats are not
formalized this way. We will say that boats have sort Boat, completed regattas
have sort Reg, possibly not yet specified boats have sort Boat? (a supersort of
Boat), and possibly not yet completed regattas have the supersort Reg?; the
latter includes all draws. It is convenient to assume that Boat is a subsort of
Reg and that Boat? is a subsort of Reg?; these assumptions imply that there are
trivial regattas consisting of just one boat, which could even be the unknown
boat, denoted "?". Some sorts are built in, in the sense that they are already

68

/
Jesus,
Camb.

/
?

\ /\
Christ Lady Oriel New
Church Margaret College

Figure 2: Tree for the Henley Regatta Draw

defined. Two examples are integers and identifiers. The latter have sort Id from
the built in module qID that provides identifiers, here used for naming boats by
letting Id be a subsort of Boat.

Since members use a variety of representations, we should ask how to avoid
being tied to any particular representation. The key is to focus on the methods
that members use to describe (or construct) representations. We distinguish two
kinds of method: constructors, for building representations from more primitive
parts, and selectors, for extracting particular information 2. For regattas, the
most important method is a constructor that adds a new heat; it must specify the
two contestants, and also provide a slot for the winner. In Figure 2, each non-tip
node represents a heat, where the two contestants are the winners of subregattas,
or else are given boats; the query mark represents a not yet determined winner.
In general, ifR and R' are regattas and B is a boat, then hea t (R,R' ,B) constructs
a new regatta, by adding a heat in which the winners of the subreggatas 1~ and
R' race against each other, with B the winner of that heat. Selectors correspond
to certain categories used by members. For example, there is a selector that
extracts the winner of a given regatta by taking the winner of its final heat.

Methods respect the sorts of representations. For example, the h ea t method
takes three inputs, two of which are regattas, and one of which is a boat; it is
not meaningful to give a regatta, or an integer, for its third input. In addition,
there can be "constants" tha t do not have any inputs, but do have an output
sort; for example, the unknown boat "?" has output sort Boat?. We think of
these as methods with no input. For example, the method that adds a new heat
to a regatta is a hmction

hea t : Reg? Reg? Boat? -> Reg?
which takes two regatta representations and a boat, and constructs the new
regatta where the winners of the subregattas race against each other. Similarly,
the selector that gives the winner of a regatta is a function

winner : Reg? -> Boat?

from regattas to boats.

2In object oriented programming, "methods" are operations that can modify; this use
of "method" is roughly consistent with that of ethnomethodology. Also, "attributes" are
operations that extract information; here these are called "selectors."

69

Given a particular representation, say by trees, we can collect the possible
structures of that representation into an algebra, where each sort corresponds to
the set of representations of that sort, and the methods correspond to functions
that map representations to other representations (or else to built in values, such
as numbers). If A is a given algebra, then As is its set of representations of sort
s. If s' is a subsort of s, then As, is a subset of As (see [12]). Constant methods
(such as "?") designate particular representations in an algebra.

It is convenient to overload a method for not yet completed structures with
another for completed structures. For example, in addition to h ea t as defined
above, we may also have

he a t : Reg Reg Boat -> Reg
for constructing completed regattas.

A set of sorts (with their subsort relations) and a set of methods are together
called a signature Given a signature, we construct its terms as follows: all con-
stants are terms; and if m is a method with input sorts sl, ..., sn and tl, ..., tn
are terms such that ti has output sort si, then re(t1, ...,t,~) is a term, with the
same output sort as m. For example,

h e a t (h e a t (' J e s u s C a m , 'Ch r i s tCh , ?) , 'LadyM, ?)
is a term, using OBJ3-style identifiers as constants for the names of boats; these
begin with a quote and contain no spaces (also we have further abbreviated the
boat names).

Given any term t and algebra A over the same signature, that term denotes
a unique representation in A. This value or denotation of t is determined by
finding the values in A of any constants in t, then applying the functions in A that
correspond to the methods in t to those values, then applying further functions
to further values, etc., until a final value is obtained. For example, the above
term denotes the left subtree in the representation shown in Figure 2. More
technically, the denotation of terms is A is given by the unique homomorphism
from the term algebra to A.

Now we can say that two representation systems are "essentially the same,"
in the sense that they can represent exactly the same things, if and only if the
two algebras are isomorphic.

But we are still dealing with representations. How can we obtain structures
that are truly independent of how they are represented? The answer has two
steps. The first is to describe the equations that necessarily hold among the
given methods. For example, the fact that the winner of any regatta of the form
hea t (R,l%' ,B) is B is expressed by the equation

winner(heat(R,R' ,B)) = B .

This is a relationship between the category winner and the constructor hea t .
The second step has to do with limiting the possible models of these equa-

tions. So far, we have described an ADT by giving a set of sorts with subsort
relations, a set of methods, and a set of equations; let us call these three together
a specification. Then a model of such a specification is an algebra, providing sets
for sorts (with subsets for subsorts) and functions for methods, such that all the
equations are satisfied. The elements of such a model are a system of represen-

70

tations for the categories and methods in the signature. We now have a way of
specifying representations that is truly abstract, in that it says nothing at all
about the representations themselves. But unfortunately, there are too many
models, and they are not isomorphic to each other. We need one more principle
to get what we want; it is called initiality, and amounts to the following:

1. No junk: every representation in the algebra can be constructed using
methods in the given signature.

2. No confusion: two terms denote the same representation if and only if they
can be proved equal using the given equations.

So now we take as models only those algebras that satisfy not only the equations,
but also the two principles above. Such models are called initial models, and it
can be shown that any two initial algebras are necessarily isomorphic. This gives
us the representation independent way of specifying structures that we wanted.

We should distinguish between the object and meta levels of description of
this example; a different language is used at each level, for a different purpose.
The object level language involves boats, heats, and so on, and its terms con-
struct draws, announce winners, etc. The meta language involves sorts, methods,
equations, etc.; at this level we can add new methods, revise equations, etc.

The complexity of the specification in the appendix may seem surprising.
But the Henley Regatta really does have boats, heats, regattas, winners, not
yet determined boats, etc., and the relationships among them really are rather
complex. Also, we know from experience that it can take quite some effort to
learn how some unfamiliar sport is structured. It is clear that the methods for
constructing and restructuring regattas really are rather complex. Moreover,
this kind of complexity is not unique to this example, but is typical of sporting
events, games, and many other social phenomena.

Now let us consider what situatedness means for this example. First, we
must distinguish between the "actual" situated ADT and its formalization in
OBJ. The formal code is fixed: it has 3 modules, 32 lines, etc. The structure of
an actual Henley Regatta is much more elusive. No doubt there is a rule book;
but there are also disgreements, which are negotiated by Stewards and other
officials. Any actual Henley Regatta is emergent from the myriad interactions
among members of a large group, and much of what goes on is contingent upon
the local details of that particular context. It is open, in that we cannot hope to
formalize everything that could potentially occur, and it is vague, because much
of what goes on is unarticulated (tacit) and perhaps unarticnlatable.

The qualities of situatedness impose limits on the utility of any formal spec-
ification. It is doubtful if the Henley Stewards would be interested in the OBJ
code, and certainly the sports fans would not be. On the other hand, the code
could be useful in designing a computer system to store and display the results
of races. The trouble with the formal specification is that it is too precise and
rigid; it fails to incorporate the richness and flexibility of an actual sporting
event. But it does help bridge the huge gap between the rich situatedness of
social interaction and the needs of those who develop systems.

71

Finally, we consider how a situated ADT could be justified by ethnographic
data. Since we claim that members recognize that the "same information" is
present in different representations, it is natural to find support for the structure
in actual instances of such recognitions. Because these would likely be rare in
naturally occurring data, requirements engineers could provoke such events by
directly posing appropriate questions to members.

3 .2 T w o C a s e S t u d i e s

This section discusses two case studies done at Oxford using video-based require-
ments elicitation and situated abstract data types. They are based on live inter-
actions, as opposed to the artificial case study of the Henley Regatta sketched
above. The fieldwork was done by Marina Jirotka with help from Jonathan
Hindmarsh, and the analysis was done by them with Joseph Goguen, Christian
Heath, and Paul Luff. The situated ADT analyses are due to Goguen.

3.2.1 Financial Dealing Rooms

Financial dealers buy and sell financial instruments, such as stocks, bonds and
futures. The process of recording a deal is called "deal capture." In the sites
studied, this is done by the dealer writing the information on a ticket, often
in a very rapid and abbreviated script; this is both time consuming and error
prone. Moreover, errors in this task can be extremely costly to correct. A deal is
officially a 6-tuple, consisting of the stock (or other financial instrument) name,
quantity, date, buyer, seller, and price. Although this ADT is adequate for the
legal purpose of registering a deal, it was found to be far from adequate for
situations in the dealing room where one deal is part of a complex package of
deals negotiated simultaneously, e.g., buying the same stock on one market and
selling it on another, with a concomitant foreign exchange transaction.

Over the years, many technical systems have been proposed for making deal
capture more accurate and less time consuming. Unfortunately, most systems
have failed. These failures can be spectacular, as dealers, who may be angry,
tense and very busy, simply throw the new equipment at the wall and then re-
sume business in the old way. This has motivated increasingly radical suggestions
for new technology.

One group believed that voice recognition could be used to automate deal
capture, and was designing a system based on that technology. They claimed
that a very limited number of words needed to be recongized, including numbers
and some jargon. However, a detailed video-based analysis of several dealing
rooms showed that voice recognition could not support the complex interactions
that actually occur in this highly competitive environment [15]. This research
potentially saved about a million pounds for prototyping and testing a system
that could not succeed. A promising alternative is an active document system,
possibly based on a touch sensitive LCD desktop, and virtual reality is promising
for the long term.

72

3.2.2 A Telecommunica t ions Cen t ra l Opera t ions Unit

A second case study considered a new integrated database for the Fault Restora-
tion Office of a telecommunications Central Operations Unit. This office tries to
restore service when lines go down, by finding and connecting alternative fines.
Analysis showed that the new database being designed might actually make it
harder to get the required information and do the job. An interesting ADT was
found to be used by personnel, namely a directed labelled graph showing the
faulty route and possible alternatives, labelling edges and nodes with capacities,
locations, relevant phone numbers, etc.

It was also found that it would be counter-productive to use the huge video
wall in the Central Operations Unit, because this could not support the kind
of cooperative work that is actually done. For example, personnel often point
at particular items, but pointing at a distant image does not enable co-present
personnel to tell which item is indicated. A smaller display located on or above
a desk, such that information can be accessed by touching relevant parts of
the appropriate graph, should support cooperative work practices in a highly
productive way.

4 F o r m a l M e t h o d s

After discussing what formalization is, we discuss some limitations of formal
methods, building on our previous discussion of the social context of computing.
We then discuss the granularity of formal methods, and an emerging paradigm.

4.1 What is Formalization?

According to Webster's Dictionary, "formal" means definite, orderly, and me-
thodical; it does not necessarily entail logic or proofs of correctness. Everything
that computers do is formal in the sense that syntactic structures are manipu-
lated according to definite rules. Formal methods are syntactic in essence but
semantic in purpose.

The prototypical example of a formal notation is first order logic. This nota-
tion encodes the semantics of first order model theory with certain formal rules
of deduction that are provably sound and complete. Unfortunately, theorem
provers for first order logic can be difficult to work with. Formal notations can
also capture higher levels of meaning, e.g., they can express certain requirements,
but such notations will be much harder to work with, and will have fewer nice
properties. By contrast, equational logic is simpler and computationally easier
than first order logic, and has many pleasant properties.

The orderliness of social life (due to accountability, as discussed in Section
2.2) and the example in Section 3.1 suggest that social interaction might be
formafizable; but there are limits to how successful any such formalization can
be. In particular, it will not be easy to formalize domains where there are many
ad hoc special cases, or where much of the knowledge is tacit. Formalization will
be more successful on narrow and orderly domains, such as sporting events, that

73

have long traditions, rule books, referees, regulating bodies, etc. For example, it
would be more difficult to formalize a children's game than a boat race, and much
more difficult still to formalize human political behavior. There are degrees of
formalization, from dry to wet, and it can be important not to formalize beyond
the appropriate degree. Cooking recipes are an interesting example, showing
how an intermediate degree of formalization is possible and helpful, whereas a
very formal treatment would be unhelpful, if it were even possible.

In the driest formalizations, the meta language is also formalized, so that
the object level model is a formal theory in the meta language. In less fully
formalized models, the meta language may simply be a natural language, or
a somewhat stylized dialect. Note that there can be rules at both the object
and meta levels. Rules at the object level are part of the model, while rules
at the meta level define the language that is used for formalization. Any use
of a formalism is situated. Therefore the qualities of situatedness impose basic
limitations on any formalization: it will necessarily be emergent, contingent,
local, open, and vague. All this is illustrated by the Henley Regatta example.

4 .2 L i m i t s a n d P r o b l e m s

This section discusses six problems with formal methods:

(1) Formal notation is alien to most programmers, who have little training or
skill in higher mathematics. This problem seems to be worse in the U.S. than
Europe. For example, set theoretic notation is better accepted in Europe. This
may be due to the higher level of mathematics education in Europe.

(2) Another problem is that some advocates of formal methods take a very
dogmatic position, that absolutely everything must be proved, to the highest
possible degree of mathematical rigor; it must at least be machine checked by a
program that will not allow any errors or gaps, and preferably the proof should
be produced by a machine. However, mathematicians hardly ever achieve, or
even strive for, such rigor; published proofs in mathematics are highly informal,
and often have small errors; they never explicitly mention rules of inference from
logic (unless they are proving something about such rules). In fact, there are
various levels of formality, and the most rigorous levels are very expensive; such
efforts are only warranted for critical aspects of systems.

(3) A major problem is that formal methods tend to be inflexible; in particular,
it is difficult to adapt a formal proof of one statement to prove another, slightly
different statement. Since requirements and specifications are constantly chang-
ing in the real world, such adaptations are frequently necessary. But classical
formal methods have great difficulty in dealing with such changes; we might say
that they are a discontinuous function of how the hypotheses to be proved are
formulated.

(4) Another problem is that formal methods papers and training often deal
only with toy examples, and often these examples have been previously treated

74

in other formal methods papers. Although it may not be possible to give a
detailed treatment of a realistic example in a research paper or a classroom, it
is still necessary that such examples exist for a method to have credibility. To
be effective, training in formal methods should treat some parts of a realistic
(difficult) application.

(5) A technical deficiency of many formal methods is that first order logic is
inadequate for loop invariants, as noted long ago by Engeler [6]. However, second
order logic is adequate, and has been used by the authors for some years in
teaching and research at Oxford [10] and the Naval Postgraduate School [2].

(6) Finally, the fundamental limits imposed by the qualities of situatedness imply
that without human intervention, a formalization will often be inadequate for
its intended application.

4.3 Small, Large and Huge Grain M e t h o d s

It is useful to distinguish among small, large, and huge grain formal methods.
This distinction refers to the size of the atomic components that are used, rather
than the size of the system itself. The "classic" formal methods fall into the small
grain category. These methods have a mathematical basis at the level of individ-
ual statements and small programs, but rapidly hit a complexity barrier when
programs get large. In particular, pre- and post- conditions, Hoare axioms, weak-
est preconditions, predicate transformers and transformational programming all
have small size atomic units, and fail to scale up because they do not provide
structuring or encapsulation. In general, small grain methods have great dif=
ficulty handling change, and thus fit poorly into the lifecycle of large complex
projects. Transformational programming is less resistant to change than other
small grain methods, but has the particular problem that there is no bound
to the number of transformations that may be needed; this restricts its use to
relatively small and well understood domains (see Section 4.4).

The main techniques of large grain programming involve module composition.
We briefly describe an approach based on module expressions, theories, views,
and a distinction among sorts for values, classes for objects, and modules for
encapsulation. This allows expressing designs and high level system properties
in a modular way, and allows the parameterization, composition and reuse of
designs, specifications, and code.

The main programming unit is the module, which allows multiple classes to
be declared together. Module composition features include renaming, sum, pa-
rameterizatiou, instantiation, and importation. These constitute parameterized
programming [8], which can be seen as functional programming with modules
as values, theories as types, and module expressions as (functional) programs.
Renaming allows the sorts, classes, attributes and methods of modules to get
new names, while sum is a kind of parallel composition of modules that takes
account of sharing. The interfaces of parameterized modules are defined by the-
odes, which declare both syntactic and semantic properties. Instantiation is

75

specified by a view from an interface theory to an actual module, describing
a binding of parts in the theory to parts in the actual module; default views
can be used to give "obvious" bindings. A design for a system (or subsystem)
is described by a module expression, which can be parameterized, and can be
evaluated to produce an executable version of the system. Importation gives
multiple inheritance at the module level. Parameterized programming is imple-
mented in OBJ [14], has a rigorous semantics based on category theory, and has
influenced the designs of ML and Ada. Much of the power of parameterized
programming comes from treating theories and views as first class citizens. For
example, it can provide a higher order capability in a first order setting.

A major advantage of parameterized programming is its support for design
in the same framework as specification and coding. Designs are expressed as
module expressions, and they can be executed symbolically if specifications of
a suitable form are available. This gives a convenient form of prototyping. Al-
ternatively, prototypes for the modules involved can be composed to give a
prototype for the system, again by evaluating the module expression for the
design. An interesting feature of the approach is to distinguish between horizon-
tal and vertical structuring. Vertical structure relates to layers of abstraction,
where lower layers implement or support higher layers. Horizontal structure is
concerned with module aggregation, enrichment and specialization. Both kinds
of structure can appear in module expressions, and both are evaluated when a
module expression is evaluated. We can also support rather efficient prototyp-
ing through built-in modules, which can be composed just like other modules,
and give a way to combine symbolic execution with access to an underlying
implementation language.

Parameterized programming is considerably more general than the module
systems of languages like Ada, CLU and Modula-3, which provide only limited
support for module composition. For example, interfaces in these languages
can express at most purely syntactic restrictions on actual arguments, cannot
be horizontally structured, and cannot be reused. LILEANNA [26] implements
many ideas of parameterized programmming, including horizontal and vertical
composition (following LIL [7]) for the Ada language. In [13], some further
features are described: dynamic binding with views, abstract classes, private
class inheritance, and dynamic integration of components from different libraries.

CAPS [19] is a rapid prototyping system with a data flow like semantics
supporting hard real time constraints. It has module composition and powerful
facilities to retrieve software components [17] and to support evolution [18].

Developing systems with huge grain components is qualitatively very different
from working with small and large grain components. For example, very different
ways to handle errors are needed. In systems with huge components, correcting
errors in the components is generally impossible; such errors must be accepted
and worked around. For example, a network protocol such as TCP/ IP may
have been obtained from an external vendor, so that the developers of the larger
system will not have access to the code. If the version being used has a bug,
there is no choice but to find some way to avoid that bug. This is often possible
because of the multiplicity of features provided in such components.

76

4.4 Domain Specific Formal Methods

There is much more to formal methods than suggested by the themes dominant
in the past, namely synthesis and correctness proofs for algorithms. Although
both remain interesting for theoretical research, their impact on the practice of
large scale software development is limited. A number of successful recent tools
suggest a new formal methods paradigm having the following attributes:

1. A narrow, well defined, well understood problem domain is addressed;
there may already be a successful library for this domain.

2. There is a community of users who understand the domain, have good
communication among themselves, and have potential financial resources.

3. The tool has a graphical user interface that is intuitive to the user com-
munity, embodying their own language and conventions.

4. The tool takes a large grain approach; rather than synthesizing procedures
out of statements, it synthesizes systems out of modules; it may use a
library of components and synthesize code for putting them together.

5. Inside the tool is a powerful engine that encapsulates formal methods con-
cepts and/or algorithms; it may be a theorem prover or a code generator;
users do not have to know how it works, or even that it is there.

Some systems that fit this description are: CAPS [19]; ControlH and MetaH
[27]; AMPHION [23]; Panel [22]; and DSDL [1]. This emerging paradigm might be
Domain Specific Formal Methods, in recognition of the role played by the user
community and their specific domain. This falls into the category of large grain
methods, and can potentially be extended to huge grain problems.

4.5 Educat ion

Teaching a formal method while ignoring the social, political and cultural prob-
lems that necessarily arise in real projects can have a negative impact. For
example, students may be taught programming from formal specifications, but
not that specifications come from requirements, and that requirements are al-
ways changing. As a result, they are not prepared for the rapid pace of evolution
found in real industrial work. A related problem is that many students feel that
formal methods turn programming from a creative activity into a boring formal
exercise. The failure of teachers to deal with these problems has caused students
to leave computing science.

Students need to know how to deal with real programs having thousands
or even millions of lines of code. Carefully crafted correctness proofs of simple
algorithms give an entirely misleading impression of what real programming is

77

like. Most of the examples in textbooks and the classroom are very small, and
most of the techniques are small grain.

Reliable formal method based tools can let students do problems that would
be impossible by hand; this should increase their confidence. Teachers could also
present methods and tools that work on large grain units, that is, on modules,
rather than on small grain units like statements, functions and procedures, be-
cause such methods can scale up, whereas the small grain methods can not. It
is desirable to develop suites of sample problems that systematically show how
and when to apply formal methods, and how to combine them with informal
approaches.

5 So f tware E v o l u t i o n

A traditional view is that software evolution only occurs after initial development
is completed. For example, software evolution has been defined to consist of the
activities required to keep a software system operational and responsive after it
is accepted and placed into production; this is synonymous with maintenance,
but avoids the deadly negative connotation of that word. Evolution has the con-
notation of life, and if used in the context of an alternative software lifecycle like
prototyping, it captures the dynamic aspects of all activities from requirements
specification and system construction to updating operational systems [18].

Difficulties associated with evolution are not purely technical; social, politi-
cal and cultural factors are important, and can dominate cost. Tools based on
formal models can help with both technical and management tasks. They can
maintain the integrity of a software development project by scheduling tasks,
monitoring deadhnes, assigning tasks to programmers, keeping on-line docu-
mentation, maintaining relations among system components, tracking versions,
variations and dependencies of components, and merging changes to programs.
These problems are especially important when a large group of programmers
work concurrently on a large complex system.

An important practical problem is dealing with so-called "legacy code," i.e.,
old code that is poorly structured, poorly documented, and often in an obsolete
language. For example, many banks depend on huge COBOL programs, but find
it extremely difficult to modify these programs when business conditions change.

5 .1 H y p e r - R e q u i r e m e n t s

The Centre for Requirements and Foundations at Oxford has a project on im-
proving the traceability, accessibility, modularity, and reusability of the numerous
objects that arise and are manipulated during software development. An initial
study administered a detailed two-stage questionnaire to requirements engineers
at a large firm. Analysis of the results showed that there are many different
traceability problems. Major distinctions are between pre-RS (Requirements
Specification) traceability and post-RS traceability, and between forward and
backward traceability. Analysis also showed that "access to users" was a very

7~

common difficulty. Further investigation revealed certain policies and traditions
that restrict communication within the firm, so that requirements engineers of-
ten could not discover what users really needed. One problem was an "internal
market" which restricted communication between "vendors" and "clients" within
the firm. Abolition of the internal market for requirements projects and improv-
ing the openness of information could potentially save enormous sums for such
firms.

A major aspect of the traceability problem is the difficulty of maintaining the
huge mass of dependencies among components in a large system development
effort. Often the components are not adequately defined, e.g., module bound-
aries may be incorrectly drawn, or not even explicitly declared; also, module
interfaces may be poorly chosen and badly documented. Without formal models
of dependencies and tool support for managing them, it is impossible to know
what effect a change to a component will have, and in particular, to know what
other components may have to be changed to maintain consistency.

The second phase of this project is designing a flexible object oriented data-
base to support links among related objects [20], in order to ground decisions in
the prior objects that justify them, and to track module dependencies. These
links may be of a variety of different kinds, which are user-definable, and the
objects may be in different media. Particular subproblems include formalizing
dependencies, developing methods to calculate dependencies, and propagating
the implications of a change. We intend to support the situatedness of require-
ments decisions, as well as their traceability through an idealized chain of stages.
This associates related objects into what are called module clusters in hyper-
programming [9]. Techniques of parameterized programming, as described in
Section 4.3, should improve reuse, and a generalized notion of view should help
with organizing links. These techniques should be useful for design, when spec-
ifications are produced from requirements, as well for coding and maintenance.

A Formal Specification for the Henley Regatta

This appendix gives a formal specification for the Henley Regatta, using the
executable part of the programming and specification language OBJ3, which is
described in detail in [14]. First we give a rough overview of the specification
below. There are three modules, beginning with the keyword "oh j" and ending
with the keyword "endo." Immediately after "obj" comes the name of the
module. Sorts, operations (for methods), subsorts, variables, and equations
are declared after fairly obvious keywords; also, "cq" indicates a conditional
equation, while "pr" and "dfn" indicate module importations, the latter with a
renaming of the principle sort (in this case, from Li s t to Index).

The first module, named "12", merely introduces two constants, "1" and
"2", used to indicate the two boats in a heat. Note that this is an abstract data
type, in the sense that we could have chosen different representations for the two
boats, such as "h" and "B", or "1st" and "2rid"; any such choice will yield an
isomorphic (two element) initial algebra. The second module, named "LIST",

79

is a parameterized module for forming lists of anything; the list constructor has
the syntax " _" for placing a new element at the head of a list; n i l is the
empty list. Inside the third module, we form and import the module LIST [12],
renaming its principal sort L i s t to be Index; these lists are used for picking out
particular instances of a boat racing in a regatta; a typical term of sort Index
is "1 1 2 n i l " . This module also introduces the constructor h ea t for regattas,
the method swin for setting winners of heats, and the selector winner.

obj 12 is sort 12 .

ops 1 2 : -> 12 .

endo

obj LIST[X :: TRIV] is sort List .

op nil : -> List .

op _ _ : Elt List -> List .

endo

obj HENLEY is

sorts Boat Reg Boat? Reg?

pr QID .

subsorts Id < Boat < Reg Boat? < Reg? .

dfn Index is LIST[12].

op ? : -> Boat? .

op heat : Reg? Reg? Boat? -> Reg?

op heat : Reg Reg Boat -> Reg.

var B B' : Boat? .

vats R R' R'' : Reg? .

vat I : Index .

op

eq

eq

eq

eq

cq

wlnner : Reg? Index -> Boat? .

winner(heat(R,R',B), nil) = B .

winner(heat(R,R',B), 1 I) = winner(R,I) .

winner(heat(R,R',B), 2 I) = winner(R',I)

winner(B,nil) = B .

winner(B,I) = ? if I =/= nil .

op
eq
eq
eq
cq

cq

eq

endo

swin : Reg? Index -> Reg? .

swin(heat(R,R'

swin(heat(R,R'

swin(heat(R,R'

swin(heat(R,R'

swin(heat(R,R'

swin(B,I) = 7

,B), n i l) = h e a t (R , R ' , B) .
,B) , 1 n i l) = h e a t (R , R ' , w i n n e r (R , n i l)) .
,B), 2 n i l) = h e a t (R , R ' , w i n n e r (R ' , n i l)) .
,B), 1 I) = heat(swin(R,I),R',B) if I =/= nil .

,B), 2 I) = heat(R,swin(R',I),B) if I =/= nil .

This code, with many test cases, has actually been run in OBJ3.

80

References

[1] Jeffrey Bell, Richard Kieburtz, et al. Software design for reliability and reuse:
a proof-of-concept demonstration. Technical report, Department of Computer
Science and Engineering, Oregon Graduate Institute, 1994.

[2] Valdis Berzins and Luqi. Software Engineering with Abstractions. Addison-Wesley,
1990.

[3] Barry Boehm. Software Engineering Economics. Prentice-Hall, 1981.

[4] Graham Button and Wes Sharrock. Occasioned practises in the work of implement-
ing development methodologies. In Marina Jirotka and Joseph Goguen, editors,
Requirements Engineering: Social and Technical Issues, pages 217-240. Academic
Press, 1994.

[5] Alan M. Davis. Software Requirements: Analysis ~ Specification. Prentice-Hall,
1990.

[6] Erwin Engeler. Structure and meaning of elementary programs. In Erwin En-
geler, editor, Symposium on Semantics of Algorithmic Languages, pages 89-101.
Springer, 1971. Lecture Notes in Mathematics, Volume 188.

[7] Joseph Goguen. Reusing and interconnecting software components. Computer,
19(2):16-28, February 1986. Reprinted in Tutorial: Software Reusability, Pe-
ter Freeman, editor, IEEE Computer Society, 1987, pages 251-263, and in Do-
main Analysis and Software Systems Modelling, Ruben Prieto-Diaz and Guillermo
Arango, editors, IEEE Computer Society, 1991, pages 125-137.

[8] Joseph Goguen. Principles of parameterized programming. In Ted Biggerstaff and
Alan Perlis, editors, Software Reusability, Volume I: Concepts and Models, pages
159-225. Addison Wesley, 1989.

[9] Joseph Goguen. Hyperprogramming: A formal approach to software environ-
ments. In Proceedings, Symposium on Formal Approaches to Software Environ-
ment Technology. Joint System Development Corporation, Tokyo, Japan, January
1990.

Joseph Goguen. Proving and rewriting. In Hdl~ne Kirchner and Wolfgang Wech-
ler, editors, Proceedings, Second International Conference on Algebraic and Logic
Programming, pages 1-24. Springer, 1990. Lecture Notes in Computer Science,
Volume 463.

Joseph Goguen. Requirements engineering as the reconciliation of social and tech-
nical issues. In Marina Jirotka and Joseph Goguen, editors, Requirements Engi-
neering: Social and Technical Issues, pages 165-200. Academic Press, 1994.

Joseph Goguen and Jos~ Meseguer. Order-sorted algebra I: Equational deduction
for multiple inheritance, overloading, exceptions and partial operations. Theoret-
ical Computer Science, 105(2):217-273, 1992.

Joseph Goguen and Adolfo Socorro. Module composition and system design for
the object paradigm. Journal of Object Oriented Programming, to appear 1995.

Joseph Goguen, Timothy Winkler, Jos~ Meseguer, Kokichi Futatsugi, and Jean-
Pierre Jouannaud. Introducing OBJ. In Joseph Goguen, editor, Algebraic Speci-
fication with OBJ: An Introduction with Case Studies. Cambridge, to appear.

[lOl

[lll

[12]

[13]

[14]

81

[15] Christian Heath, Marina Jirotka, Paul Luff, and Jon Hindmarsh. Unpacking
collaboration: the interactional organisation of trading in a city dealing room. In
European Conference on Computer Supported Cooperative Work '93. IEEE, 1993.

[16] Steven Levinson. Pragmatics. Cambridge University, 1983.

[17] Luqi. Normalized specifications for identifying reusable software. In Proceedings
of the 1987 Fall Joint Computer Conference, pages 46-49. IEEE, October 1987.

[18] Luqi. A graph model for software evolution. IEEE Transactions on Software
Engineering, 16(8):917-927, 1990.

[19] Luqi. Real-time constraints in a rapid prototyping language. Journal of Computer
Languages, 18(2):77-103, 1993.

[20] Francisco Pinheiro. TOOR: An object oriented tool for hypermedia requirements,
1994.

[21] Harvey Sacks, Emanuel Schegloff, and Gail Jefferson. A simplest systematics of
the organization of turn-taking in conversation. Language, 504:696-735, 1974.

[22] Jacob T. Schwartz and W. Kirk Snyder. Design of languages for multimedia appli-
cations development. In Proceedings of 1994 Monterey Workshop: Increasing the
Practical Impact of Formal Methods for Computer-Aided Software Development,
pages 46-55, 1994.

[23] Mark Stickel, Richard Waldinger, Michael Lowry, T. Pressburger, and I. Under-
wood. Deductive composition of astronomical software from subroutine libraries.
In Conference on Automated Deduction, volume 12, 1994.

[24] Lucy Suchman. Plans and Situated Actions: The Problem of Human-machine
Communication. Cambridge University, 1987.

[25] Stephen Toulmin. The Uses of Argument. Cambridge University, 1958.

[26] Will Tracz. Parameterized programming in LILEANNA. In Proceedings, Second
International Workshop on Software Reuse, March 1993. Lucca, Italy.

[27] Steve Vestal. Integrating control and sopftware views in a CACE/CASE toolset.
In Proceedings, Symposium on Computer-Aided Control Systems, 1994.

