
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

2015-06

Evaluating the limits of network topology

inference via virtualized network emulation

Rye, Erik C.

Monterey, California: Naval Postgraduate School

http://hdl.handle.net/10945/45932

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

EVALUATING THE LIMITS OF NETWORK TOPOLOGY
INFERENCE VIA VIRTUALIZED NETWORK

EMULATION

by

Erik C. Rye

June 2015

Thesis Co-Advisors: Robert Beverly
Ralucca Gera

Second Reader: Justin Rohrer

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302, and
to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

06-19-2015
3. REPORT TYPE AND DATES COVERED

Master’s Thesis 07-08-2013 to 06-19-2015
4. TITLE AND SUBTITLE

EVALUATING THE LIMITS OF NETWORK TOPOLOGY INFERENCE VIA VIRTU-
ALIZED NETWORK EMULATION

5. FUNDING NUMBERS

N66001-2250-58231

6. AUTHOR(S)

Erik C. Rye

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Department of Homeland Security
245 Murray Lane SW, Washington, DC 20528

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this document are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government. IRB Protocol Number: N/A.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

The Internet measurement community is beset by a lack of “ground truth,” or knowledge of the real, underlying network in topology
inference experiments. While better tools and methodologies can be developed, quantifying the effectiveness of these mapping utilities
and explaining pathologies is difficult, if not impossible, without knowing the network topology being probed. In this thesis we present
a tool that eliminates topological uncertainty in an emulated, virtualized environment. First, we automatically build topological ground
truth according to various network generation models and create emulated Cisco router networks by leveraging and modifying existing
emulation software. We then automate topological inference from one vantage point at a time for every vantage point in the network.
Finally, we incorporate a mechanism to study common sources of network topology inference abnormalities by including the ability
to induce link failures within the network. In addition, this thesis reexamines previous work in sampling Autonomous System-level
Internet graphs to procure realistic models for emulation and simulation. We build upon this work by including additional data sets,
and more recent Internet topologies to sample from, and observe divergent results from the authors of the original work. Lastly, we
introduce a new technique for sampling Internet graphs that better retains particular graph metrics across multiple timeframes and
data sets.

14. SUBJECT TERMS

Network Emulation, Graph Sampling, Topology Inference, Network Measurement
15. NUMBER OF

PAGES 115
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2–89)

Prescribed by ANSI Std. 239–18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release; distribution is unlimited

EVALUATING THE LIMITS OF NETWORK TOPOLOGY INFERENCE VIA
VIRTUALIZED NETWORK EMULATION

Erik C. Rye
Captain, United States Marine Corps

B.S., U.S. Naval Academy, 2008

Submitted in partial fulfillment of the
requirements for the degrees of

MASTER OF SCIENCE IN COMPUTER SCIENCE
and

MASTER OF SCIENCE IN APPLIED MATHEMATICS

from the

NAVAL POSTGRADUATE SCHOOL
June 2015

Author: Erik C. Rye

Approved by: Robert Beverly
Thesis Co-Advisor

Ralucca Gera
Thesis Co-Advisor

Justin Rohrer
Second Reader

Peter Denning
Chair, Department of Computer Science

Craig Rasmussen
Chair, Department of Applied Mathematics

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

The Internet measurement community is beset by a lack of “ground truth,” or knowledge
of the real, underlying network in topology inference experiments. While better tools and
methodologies can be developed, quantifying the effectiveness of these mapping utilities
and explaining pathologies is difficult, if not impossible, without knowing the network
topology being probed. In this thesis we present a tool that eliminates topological uncer-
tainty in an emulated, virtualized environment. First, we automatically build topological
ground truth according to various network generation models and create emulated Cisco
router networks by leveraging and modifying existing emulation software. We then au-
tomate topological inference from one vantage point at a time for every vantage point in
the network. Finally, we incorporate a mechanism to study common sources of network
topology inference abnormalities by including the ability to induce link failures within
the network. In addition, this thesis reexamines previous work in sampling Autonomous
System-level Internet graphs to procure realistic models for emulation and simulation. We
build upon this work by including additional data sets, and more recent Internet topologies
to sample from, and observe divergent results from the authors of the original work. Lastly,
we introduce a new technique for sampling Internet graphs that better retains particular
graph metrics across multiple timeframes and data sets.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1
1.1 Motivation . 3

1.2 Research Questions and Contributions 3

1.3 Thesis Structure . 4

2 Background and Related Work 7
2.1 Topology Inference . 7

2.2 Real, Simulated, and Emulated Networks 14

2.3 Building Realistic Topologies 17

3 Automated Topology Inference Methodology 27
3.1 Limitations and Challenges Experienced in Developing ERIK 28

3.2 ERIK . 34

4 Internet Graph Reduction Methodology 45
4.1 Validation and Extension of Prior Graph Reduction Work 45

4.2 Novel Graph Reduction Algorithms 47

5 Results and Analysis 53
5.1 Analysis of ERIK Topologies 53

5.2 Internet Graph Reduction Results 58

5.3 Reduced Graphs Emulated on ERIK. 79

6 Conclusions and Future Work 83
6.1 Future Work . 84

List of References 89

Initial Distribution List 93

vii

THIS PAGE INTENTIONALLY LEFT BLANK

viii

List of Figures

Figure 2.1 Example misleading traceroute 10

Figure 2.2 Incorrect path inferred by traceroute 10

Figure 2.3 Importance of vantage point selection 13

Figure 2.4 Combined Layer-2 and Layer-3 topology 15

Figure 2.5 The effects of Layer-2 on inferred topology 15

Figure 2.6 A graph reduction by CRE . 22

Figure 2.7 A graph reduction by CRVE . 22

Figure 2.8 A graph reduction by DRV . 24

Figure 2.9 A graph reduction by DRVE . 24

Figure 2.10 A graph reduction by DRE . 25

Figure 2.11 A graph reduction by EDFS . 25

Figure 2.12 A graph reduction by EBFS . 25

Figure 3.1 Early Graphical Network Simulator – 3 (GNS3) based ERIK
prototype . 29

Figure 3.2 A link selected for failure in ERIK 34

Figure 3.3 A failed link in ERIK . 34

Figure 3.4 Topology generation with ERIK 36

Figure 3.5 Topology emulation with ERIK 37

Figure 3.6 An example Automator file . 38

Figure 3.7 An example Link Failure Set file 39

Figure 5.1 CDF of Autonomous System Numbers (ASNs) by fraction of missed
ASNs during second probing round with failures 55

ix

Figure 5.2 CDF of ASNs by fraction of missed ASNs during second probing
round with failures, separated by vantage point Autonomous System
(AS) tier . 55

Figure 5.3 CDF of vantage point ASNs by fraction of missed ASNs during the
final probing round with failures 56

Figure 5.4 CDF of vantage point ASNs by fraction of missed ASNs during the
final probing round, separated by vantage point AS tier 56

Figure 5.5 An example of a Border Gateway Protocol (BGP) policy disconnec-
tion . 58

Figure 5.6 The inferred topology using AS 89 as a vantage point in the third
round of probing. 59

Figure 5.7 Average degree performance of non-Deletion Hybrid (DHYB) meth-
ods – RouteViews 2001–1998 60

Figure 5.8 Average degree performance of DHYB methods – RouteViews
2001–1998 . 60

Figure 5.9 Spectra of reduction methods versus 24 January 1998 Internet graph
– RouteViews 2001–1998 . 60

Figure 5.10 Hop plot of reduction methods versus 24 January 1998 Internet
graph – RouteViews 2001–1998 60

Figure 5.11 Degree histogram – RouteViews 2001–1998 61

Figure 5.12 Average degree performance of non-DHYB methods – RouteViews
2014–1998 . 66

Figure 5.13 Average degree performance of DHYB methods – RouteViews
2014–1998 . 66

Figure 5.14 Spectra of reduction methods versus 1 January 1998 Internet graph
– RouteViews 2014–1998 . 66

Figure 5.15 Hop-plot of reduction methods versus 1 January 1998 Internet graph
– RouteViews 2014–1998 . 67

Figure 5.16 Degree histogram of reduction methods versus 1 January 1998 In-
ternet graph – RouteViews 2014–1998 67

x

Figure 5.17 Average degree performance of non-DHYB methods – CAIDA
2001–1998 . 69

Figure 5.18 Average degree performance of DHYB methods – CAIDA 2001–
1998 . 69

Figure 5.19 Spectra of reduction methods versus 1 January 1998 Internet graph
– CAIDA 2001–1998 . 69

Figure 5.20 Hop plot of reduction methods versus 1 January 1998 Internet graph
– CAIDA 2001–1998 . 69

Figure 5.21 Degree histogram of reduction methods versus 1 January 1998 In-
ternet graph – CAIDA 2001–1998 70

Figure 5.22 Average degree performance of non-DHYB methods – CAIDA
2014–1998 . 73

Figure 5.23 Average degree of DHYB methods – CAIDA 2014–1998 73

Figure 5.24 Spectra of reduction methods – CAIDA 2014–1998 73

Figure 5.25 Hop-plot of reduction methods – CAIDA 2014–1998 74

Figure 5.26 Degree distribution of reduction – CAIDA 2014–1998 74

Figure 5.27 KDD is the second best reduction method in terms of spectral anal-
ysis. 75

Figure 5.28 KDD and KKD are the second and third best spectral performers by
MAE. 75

Figure 5.29 Spectral analysis shows KDD to be the fourth best performing re-
duction method. 75

Figure 5.30 KDD and KKD are the second and third best performing reduction
methods in spectral analysis. 75

Figure 5.31 Five best reduction methods for hop-plot. KDD is the second best
performer. 76

Figure 5.32 Plot of five best reduction methods for hop-plot; KDD is the fourth
best. 76

xi

Figure 5.33 Hop-plot of five best reduction methods. KDD most closely matches
the Internet plot. 76

Figure 5.34 KDD is the seventh closest reduction method, or slightly better than
average. 76

Figure 5.35 KKD most closely matches the Internet degree distribution by MAE.
KDD comes in fourth. 77

Figure 5.36 KKD and KDD are the first and second most closely matching re-
duction methods, respectively. 77

Figure 5.37 KKD best follows the Internet degree histogram. 78

Figure 5.38 KKD and KDD are the fourth and fifth best performers, respectively. 78

Figure 5.39 CDF of AS vantage points by fraction of missed ASNs during sec-
ond probing round with failures. 81

Figure 5.40 CDF of AS vantage points by fraction of missed ASNs during sec-
ond probing round with failures, separated by vantage point AS tier. 81

xii

List of Tables

Table 2.1 A summary of prior work graph reduction algorithms 26

Table 5.1 RouteViews 2001–1998 Reduction Graphs 62

Table 5.2 RouteViews 2014–1998 Reduction Graphs 68

Table 5.3 CAIDA 2001–1998 Reduction Graphs 70

Table 5.4 CAIDA 2014–1998 Reduction Graphs 72

Table 5.5 Summary of best reduction methods per source-period considered 79

xiii

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

List of Acronyms and Abbreviations

Ark Archipelago

AS Autonomous System

ASN Autonomous System Number

BA Barabási-Albert

BGP Border Gateway Protocol

CAIDA Center for Applied Internet Data Analysis

CDF Cumulative Distribution Function

CDN Content Distribution Network

CPU Central Processing Unit

CRE Contraction of a Random Edge

CRVE Contraction of a Random Vertex-Edge

DARPA Defense Advanced Research Projects Agency

DNS Domain Name System

DRE Deletion of a Random Edge

DRV Deletion of a Random Vertex

DRVE Deletion of a Random Vertex-Edge

DHYB Deletion Hybrid

EBFS Exploration by Breadth-First Search

EDFS Exploration by Depth-First Search

ERIK Emulated Router Inference Kit

xv

FIB Forwarding Information Base

GNS3 Graphical Network Simulator - 3

ICMP Internet Control Message Protocol

IOS Internetwork Operating System

IP Internet Protocol

IPv4 Internet Protocol Version 4

IPv6 Internet Protocol Version 6

ISP Internet Service Provider

IXP Internet Exchange Point

KDD k-core decomposition/DRVE/DRE

KKD k-core decomposition/k-deletion/DRE

MAE mean absolute error

MERLIN MEasure the Router Level of the INternet

MIPS Microprocessor without Interlocked Pipeline Stages

OS operating system

OSPF Open Shortest-Path First

PoP Point-of-Presence

RIB Routing Information Base

RIP Routing Information Protocol

RIPE Réseaux IP Européens

SYN synchronization

xvi

TCP Transmission Control Protocol

TTL Time-to-Live

UDP User Datagram Protocol

UI user interface

UML User-Mode Linux

VIRL Virtual Internet Routing Lab

VM virtual machine

xvii

THIS PAGE INTENTIONALLY LEFT BLANK

xviii

Acknowledgments

First and foremost, I would like to acknowledge my wife Andrea’s support throughout our
time here at the Naval Postgraduate School. I truly could not have done it without her, and
I am deeply grateful for all of the sacrifices she made over the past two years. I am also
forever thankful my parents encouraged my love for science and learning.

My advisors, Rob Beverly and Ralucca Gera, as well as my reader Justin Rohrer, all pro-
vided me with an immeasurable amount of guidance, patience, and wisdom throughout my
time as a student. Rob, in addition to giving me an enormous amount of trust and latitude
to do real science, often provided sound “life advising,” and somehow got me through my
first marathon. I will always appreciate Ralucca for believing in me, and for broadening
my mathematical horizon into graph theory and network science — a world I didn’t even
know existed. Justin’s firm grasp of all things Internet and knack for asking hard questions
undoubtedly shaped the work I did here into a better product, although he did cause me to
form an irrational grudge against Matplotlib.

Many professors who were not directly involved in my thesis went above and beyond in
encouraging me throughout my studies at NPS, and I would be remiss without mentioning
them here. Peter Denning, Loren Peitso, Geoff Xie, and Michael McCarrin of the Com-
puter Science Department, and Pante Stanica, Carlos Borges, Craig Rasmussen, and David
Canright from the Applied Math Department, all influenced me in a positive way, making
me both a better student and individual. Many thanks to Jon Roginski, Thor Martinsen, and
Brian Kropa for providing solid examples of what I’d like to do next.

My classmates were a phenomenal source of knowledge and assistance throughout our time
together; I am appreciative of the friendships I made here that will doubtlessly continue
long after we have departed Monterey.

Finally, I would like to note that much of this work could not have been done without the
assistance of the Dynamips developers, who worked with us in quickly addressing issues
we experienced. I appreciate their dedication and the quality software they maintain.

xix

THIS PAGE INTENTIONALLY LEFT BLANK

xx

CHAPTER 1:
Introduction

Internet measurement is an important facet of the ubiquitous resource that has transformed
the way society conducts business, communicates, and consumes entertainment. Ascertain-
ing the way that the Internet is connected and organized, however, is a difficult undertaking.

In seeking to ascertain the design and structure of the interconnected devices, enterprises,
and organizations that constitute the Internet, the measurement community aims to expose
its underlying topology. With a better understanding of the topology of the Internet, design
choices can be made to increase the reliability of the network, its resiliency to attack or
disruption, and improve the throughput and latency of traffic. Weaknesses can be identified
and addressed, resulting a more robust network with an enhanced user experience. Further,
longitudinal studies are important to our understanding of the drivers of Internet growth
and our ability to make predictions about future Internet development. Network measure-
ment is essential to activities from identifying Internet censorship under oppressive regimes
and tracking the Internet’s penetration into previously unserved countries and markets, to
verifying compliance with policy, as in recent “network neutrality” rules established in the
United States.

The Internet is a network of networks; Internet Service Providers (ISPs), and more gener-
ally, Autonomous Systems (ASs), are privately or government-controlled entities that form
the basic building blocks of the global Internet as a whole, each with their own compet-
ing interests. In contrast to managed networks, like roadways and rail lines, there is no
governing authority for the Internet that manages the complex web of fiscal, political, and
engineering considerations that motivate the establishment of connections between ASs.
Thus, there is no central body to appeal for a complete picture of the Internet’s structure;
while ASs are aware of the structure of their own networks, they are generally unwilling to
divulge their network topology, because it is their source of revenue and could leave them
vulnerable to attack by nefarious actors. Operators themselves may not know the entirety
of their own topology, due to the magnitude of interconnections and rapidity with which
large networks change.

1

The Internet was never designed to be measured; when conceived by the precursor to to-
day’s Defense Advanced Research Projects Agency (DARPA), its designers put a premium
on resiliency under hardware and link failures [1]. Lacking a prescribed manner by which to
directly measure Internet topology, the community largely relies on inferences using tools
that imperfectly reveal topological information. Further complicating Internet measure-
ment is the sheer number of physical devices that comprise it, and the dynamics induced by
this hardware and the routing algorithms they employ. At the time of writing, the Internet is
comprised of more than 46,000 ASs, a more than 1300% increase from the approximately
3200 that were present in 1997 when Border Gateway Protocol (BGP) Routing Information
Base (RIB) data began to be compiled by the RouteViews project hosted by the University
of Oregon [2].

The exponential growth and rapidly changing structure of the Internet are due to a wide
variety of factors. The Internet is at its most fundamental level a collection of hardware
devices and the physical media that interconnect them; electricity may be shut off, hardware
components fail, and the cables between devices can be severed. These events are rarely
predictable but frequently occur and generate changes in paths available for Internet data to
traverse, which in turn affect measurement studies. Further, the paths that Internet routing
devices choose for received data are a function of routing protocols and policies, which
are chosen and implemented by network operators. Geographical proximity plays a role in
determining device interconnection as well; it is often more convenient and cost-effective
to connect routers that are closer together than to establish physical media links between
physically disparate devices. Preexisting infrastructure often plays a role in the formation
of connections between ASs; high-speed fiber optic cables are run along interstates and
railroad tracks to connect major cities and are bundled together to cross the Atlantic. This
leads to the formation of Points-of-Presence (PoP), Internet Exchange Points (IXPs), and
carrier hosting facilities where many Internet connections converge.

Measurement experiments are subject to the effects of these design choices. At a higher
level, the linkages between ASs are primarily motivated by economic concerns and profit.
For example, the operator of an AS may enter into a customer-provider relationship with
another AS because of an advantageous cost to transit their traffic, or form a “settlement-
free” peering link with another comparably sized AS to avoid paying their provider for

2

traffic between the two entities. These business relationships affect the paths available for
Internet traffic to traverse and often result in traffic generated from different sources on the
Internet being routed to the same destinations differently.

1.1 Motivation
The primary motivation in this thesis is to remove the limitations placed on network mea-
surement experiments by the lack of an understanding of the “ground truth”, or underlying
topology of the network being measured. Whether inferring a subnetwork or the entire
Internet, the measurement community relies on topology inference tools that will be dis-
cussed in more detail in Chapter 2. While these inference tools have been developed and
adapted for this particular purpose, they also suffer from many limitations. More funda-
mentally, the accuracy of topology inference tools is difficult to evaluate, as a comparison
against the true topology can only be made if the network structure is known, and the true
topology is rarely known. While experiments against networks owned by the experimenter,
or those with publicly published topologies, e.g., Internet2, can be performed, these net-
works are often small and immune to the complex policy and inter-AS interactions seen on
the broader Internet. Toward that end, we endeavored to create our own ground truth by
creating virtualized networks in an emulated environment, then using the state-of-the-art
inference tools to discern the differences between inferred and true topologies.

Further, because we are creating our own network structure in an emulated environment, we
endeavored to do this in a way that most realistically reflects true Internet characteristics.
We therefore study previous experiments performed with this goal in mind, but broaden
their results with more current data and from sources previously not considered.

1.2 Research Questions and Contributions
In our work, we investigate these primary questions:

1. Can we build an automated tool for network topology inference that combines net-
work creation, emulation, and inference testing?

2. With our automated tool, do we discover interesting topological anomalies during
inference experimentation?

3

3. Can we extend prior work that investigates Internet graph reduction techniques to
other and more recent sources of Internet topology data? Do we obtain the same
results?

4. Can we leverage graph characteristics to develop a novel reduction algorithm that
performs well across data sets, if it is discovered that prior work algorithms do not?

We believe that we contribute to and extend the state-of-the-art through the following con-
tributions:

1. We introduce a novel software tool that generates topological ground truth, emulates
this network, and infers the topology using state-of-the-art network inference utility.
Our program allows for several user defined parameters, including graph generation
algorithm, number of routers, and link failure scenarios.

2. Our topology inference tool discovers anomalous routing behavior; we describe these
pathologies and offer an explanation for their root cause.

3. We reevaluate Internet graph reduction work, and discover that its conclusions are
largely confined to the data set its authors studied. Our work questions the gener-
ality of the results obtained therein, and offers a broader picture of Internet graph
reduction.

4. Two new and novel graph reduction algorithms are introduced. These methods out-
perform previously studied algorithms in achieving desirable reduced graph char-
acteristics across multiple Internet topology sources and timeframes. We observe
increased performance with our reduction algorithms over a larger time period, with
higher average degree initial instances.

1.3 Thesis Structure
This thesis is divided into six chapters as follows:

1. In Chapter 1, we motivate Internet measurement and topology inference, and discuss
why it is a difficult undertaking.

2. In Chapter 2, we survey Internet topology inference techniques and discuss methods
to perform Internet experiments in a laboratory environment. In addition, we dis-
cuss algorithms for constructing realistic Internet topologies for use in simulated or
emulated environments.

4

3. Chapter 3 describes a new and novel tool we designed for Internet topology measure-
ment experiments.

4. In Chapter 4, we describe our methodology for obtaining realistic Internet-like
topologies, as well as introduce a novel technique for doing so.

5. Chapter 5 discusses results obtained from runs of our automated topology inference
tool. We also evaluate the results of performing Internet graph reductions using our
own algorithms as well as applying prior work algorithms to new data sets.

6. In Chapter 6, we detail our conclusions and possibilities for future work in this do-
main.

5

THIS PAGE INTENTIONALLY LEFT BLANK

6

CHAPTER 2:
Background and Related Work

In this thesis, we present a platform to perform network topology inference on emulated
networks. As such, we first discuss previous work in the field of Internet topology inference
in Section 2.1. This includes various methods of obtaining inferred graphs of networks and
the Internet as a whole. Second, Section 2.2 motivates the choice of emulation for our
experiments, rather than simulation or building physical networks. Finally, in Section 2.3,
we discuss ways in which realistic, small-scale models of the Internet topology have been
generated.

2.1 Topology Inference
Significant work has been performed in the field of mapping Internet topology. Research in
network topology inference can be classified by two broad categories — those in which the
measurements of network topology are conducted in a passive manner, and those in which
the networks in question are actively probed. Within the passive topology measurement
domain, administrative messages such as BGP route advertisements and withdrawals are
collected. Compiling these messages over a period of time, perhaps through routers that
peer with others in various ASs around the world, provides a control-plane snapshot of the
Internet. The University of Oregon’s RouteViews project does this on a global scale; other
projects have involved gathering BGP advertisements and withdrawals from a university’s
border router [3].

Active topology inference involves sending data packets from monitors, or hosts designated
for this purpose, that are attached to a network via their particular vantage point, or gateway
to the wider Internet. Because active probes are generally constrained to follow data-plane
paths dictated by the routers, additional vantage points help reveal more of the topology.
The network mapping utilities that have been developed for this purpose usually build on
some variant of the well-known network diagnostic tool traceroute. While active probing
provides the benefit of being able to solicit Internet Protocol (IP)-layer path information for
networks on demand, there are many problems with traceroute-based tools as well.

7

2.1.1 Limits of traceroute
The traceroute utility is a useful tool to assist in resolving network connectivity issues ex-
perienced by users and network operators. Traceroute works by sending a series of User
Datagram Protocol (UDP), Internet Control Message Protocol (ICMP) Echo Requests, or
Transmission Control Protocol (TCP) synchronization (SYN) packets to a distant host. Ini-
tially, the IP Time-to-Live (TTL) value is set to one, and with each successive packet, the
TTL is increased by one. Intermediate routers decrement the IP TTL value at each hop, and
when it reaches zero, return an ICMP Time Exceeded message to the IP address that initi-
ated the traceroute. Because these ICMP Time Exceeded messages contain the IP address
of an interface on the router at which the packet’s TTL reached zero, the forward router in-
terface path from the traceroute originator to the destination IP address can be established
in an ideal scenario. In reality, however, there are many ways in which the results we obtain
from traceroute may not provide us with complete topological information.

1. traceroute results, even under ideal circumstances, only provide insight into the path
packets take from the probe’s source to the specified destination. The reverse path,
that taken by the ICMP Time Exceeded replies, or data traffic from the traceroute

destination to the machine that originated it, may be drastically different. The impli-
cation for topology inference is that a network graph obtained from a single monitor
represents only a snapshot of the topology, as “seen” from that source.

2. When a router receives a packet with a TTL of one, it decrements this value and
returns an ICMP Time Exceeded message to the source IP address of the original
packet, as described above. However, the IP address that it responds from, or lists as
the source in returned the ICMP Time Exceeded message, is often, but not always,
the IP address of the interface on which it received the time-expired packet. This
means that creating a router-level graph of the topology requires knowing which
IP addresses correspond to the same router. There has been much work into this
problem, known as alias resolution, as it consists of determining which IP addresses,
or aliases, correspond to a single device. Techniques for resolving IP addresses to
single routers include sending UDP packets with a high TTL to a high numbered port,
which may elicit a “UDP port unreachable” message from a common IP if the two
interfaces tested reside on the same machine [4]. More sophisticated and effective
methods involve exploiting properties of the returned IP identification field [5], [6].

8

Regardless of the method used to resolve IP addresses to individual routers, alias
resolution is an imperfect process, yet is required in addition to the IP-layer probing.

3. Because active probing methods require data to traverse the network to obtain topo-
logical information, these probes are subject to the same treatment as other network
traffic. This includes router behavior designed to reduce congestion along one partic-
ular path when many, equal cost paths are available — commonly referred to as “load
balancing.” Load balancing is typically performed on a per-flow basis. The effects
of load balancing on traceroute probes are well known. Consider the example topol-
ogy of Figure 2.1, and the incorrect traceroute inference in Figure 2.2. Figure 2.2
shows topological information inferred that does not exist in reality, while also miss-
ing edges along the true topology. A specialized version of traceroute known as
Paris-traceroute has been developed to mitigate the effects of per-flow router load
balancing [7] by varying only UDP, ICMP and TCP header information that is not
used by routers for flow determination. Nevertheless, because inference tools may
not leverage this optimization, router load balancing remains a source of erroneous
topological information.

4. Further, intermediate routers between the traceroute source and the target may be
configured in such a way that no useful topological information is received from
them at all. These routers, known as “anonymous routers,” have been configured to
ignore packets whose TTL is decremented to zero upon arrival, and do not respond
with an ICMP Time Exceeded message. Instead, the packet is merely discarded.
Results from a traceroute in which an anonymous router is encountered will display
a “*” in place of that hop. For topological inference experiments, the result is a
disconnected path, for we have no IP address information for the hops at which an
anonymous router was discovered.

5. Finally, many networks filter traffic in order to reveal as little as possible about their
own topology to outsiders. This tactic is often employed for security purposes; with-
out a topological understanding of a target network, attackers may find it more dif-
ficult to exploit weak or important devices within the network. In terms of topology
inference experimentation, the result is that traceroute or other inference tools may
not be able to return results beyond the “edge”, or Point-of-Presence (PoP), at which
inference traffic begins to be filtered.

9

S DR1

R2

R4 R5

R3

R6

Figure 2.1: A traceroute from S to D. The packet with TTL=2 traverses the upper path, which
is denoted in red. The packet with TTL=3 traverses the lower path due to load balancing at R1,
and is shown in green. The traceroute results would indicate a link connecting R2 to R5 when
in fact none exists.

S R1

R2

R5

Figure 2.2: The path through TTL=3 as seen by the traceroute initiator S.

2.1.2 Non-traceroute-based inference tools
Before describing current traceroute-based topology inference tools, we begin our discus-
sion with MEasure the Router Level of the INternet (MERLIN), which instead exploited a
control-plane management tool to obtain topological data.

MERLIN [8], used the multicast management utility mrinfo in order to infer topology.
Multicast-enabled Internet Protocol Version 4 (IPv4) routers, when queried by mrinfo,
would return results about neighboring multicast routers connected via the interfaces of
the router being queried. In a similar manner, mrinfo could then be used to query the
neighboring multicast routers to obtain their multicast neighbors, and so on. When applied

10

exhaustively, a complete topological picture of the multicast-enabled network could be ob-
tained. Further, because mrinfo identified unique routers, it had the distinct advantage of not
requiring alias resolution, unlike traceroute-based topological discovery techniques. Un-
fortunately for topology inference purposes, multicast routing is no longer widely used on
the Internet. Its disuse is mainly attributable to a lack of economic incentive for companies
operating multicast routers to replicate data for non-customers. Further, multicast rout-
ing can cause potentially devastating effects to networks called “multicast routing storms”
when not configured correctly. For these reasons, the methodology used in the MERLIN
project does not provide a feasible means to obtain topological data any longer.

2.1.3 Traceroute-based topology inference
Unlike MERLIN, skitter and its successor scamper are traceroute-based software probing
tools for active topology inference. Because scamper fully replaced skitter in large-scale
Internet mapping projects, we will focus on it here exclusively.

Scamper [9] is a parallel packet prober for topology inference. Scamper supports UDP,
UDP-paris, ICMP, ICMP-paris, and TCP probing methods, and will fill a per-second packet
probing rate specified by the user with probes. Like traceroute, scamper sends a series of
probe packets with increasing TTL values in order to elicit ICMP Time Exceeded responses
from intermediate routers along the path to a destination IP address. In order to combat
router load balancing along the path, the UDP-paris and ICMP-paris methods employ the
same mechanics as Paris-traceroute to allow every probe to traverse the same load balanced
path. The parallelizability of scamper makes it ideal for distributed topology inference;
an individual or organization with monitors located in disparate locations can simply run
scamper from these vantage points, and scamper will return when it has finished collecting
results. Finally, scamper writes probe response data in an compressed, binary format called
warts. Compressed result data are a requirement for large-scale inference projects in which
millions of destinations are probed, eliciting tens of millions of intermediate hops along the
way.

Organizations such as Center for Applied Internet Data Analysis (CAIDA) and Réseaux IP
Européens (RIPE) continuously probe and collect inferred snapshots of the global Internet
topology for both IPv4 and Internet Protocol Version 6 (IPv6). CAIDA’s Archipelago (Ark)

11

and RIPE’s Atlas networks consist of more than a hundred and thousands of monitor nodes,
respectively, located around the world. These monitors provide locations from which
to perform network measurement experiments, primarily using the ping, traceroute, and
scamper utilities as well as Domain Name System (DNS) record lookups. Of interest to
our study are the inferred topology graphs of the Internet created through repeated cycles
of probing from the monitor nodes run by CAIDA and RIPE.

Using scamper, CAIDA probes to an IPv4 address in each of the /24 prefixes of the routable
IPv4 space once approximately every 48 hours from their Ark monitors. The union of these
probe results forms a picture of the Internet during this two-day snapshot in time, which
can be considered a graph whose vertex-set consists of every IP address discovered and
whose edges are logical connections between them.

Unfortunately, there are many limitations with this inferred data, including those discussed
in Section 2.1.1. First, scamper relies on sending a series of UDP, TCP or ICMP packets to
elicit ICMP Time Exceeded responses from IP-layer devices. These probe packets are nat-
urally constrained by the data path; that is, they are forwarded from router to router by the
information contained in these devices’ Forwarding Information Bases (FIBs). Forwarding
information is often determined by the shortest path through the network, but network oper-
ators can also inject policy and design choices into the path selection logic. Those initiating
a trace via scamper or traceroute have no control over the path selection these intermediate
routers make once the probe packets have been sent into the network; the routing determi-
nation is entirely up to the algorithms and policy in place on these devices. Exacerbating
the problem, path selection may change over time due to design or policy changes. Further,
the vantage point from which active measurement probing is sourced limits our inference:
network policy may not allow probes to travel over certain physical paths due to the probe’s
source IP address, or certain paths may never be selected because they are deemed less de-
sirable by the routers along the data path. A trivial example of the differences in inferred
topologies is illustrated in Figure 2.3. The monitor inferring the three-router topology con-
nected to Router 1 does not discover the link between Routers 2 and 3 due to router path
selection, while the inferred topology from Router 2 discovers the link between Routers
2 and 3 but misses the link between Routers 1 and 3. While in practice route selection
is much more complicated, Figure 2.3 serves to motivate the problem. Additionally, link-

12

Figure 2.3: Two identical router topologies – one with a monitor using Router 1 as a vantage
point, the other using Router 2 as a vantage point. The inferred topology on the left captures
the link between Routers 1 and 3 but misses the link between Routers 2 and 3. Conversely, the
inferred topology on the right captures the link between Routers 2 and 3 but misses the link
between Routers 1 and 3.

layer topology may affect the inferred topology at the IP layer [10]. Figures 2.4 and 2.5
depict classic examples of these effects. Figure 2.4 shows a true topology, consisting of
one central switch connected in a star configuration to four routers. Figure 2.5, however,
displays the inferred topology using a IP layer tool, like scamper. Our inferred topology
not only discovers two additional links that are not present physically, but it also conveys a
much more robust architecture than is actually present.

Finally, we do not have underlying ground truth available for most networks, and certainly
not for the Internet. Thus, we have no way to ascertain the accuracy of inferred network
topologies, including the complete Internet graph. The unavailability of ground truth occurs
for several reasons. First, network diagrams and policy decisions are often a closely-held

13

secret for network operators and corporations. This is partly due to security concerns; as
mentioned previously, an attacker with an understanding of a network’s structure can focus
his resources on attacking the most vulnerable points to maximize the effects of his attack.
Economic interests also motivate decisions to keep network topology confidential. One
can imagine an ISP that has designed its network to maximize throughput and minimize
latency for its customers beyond the that of its competitors. Guarding this trade secret,
rather than allowing rivals to duplicate its superior service, is in the ISP’s best financial
interest. Finally, IP networks are dynamic; they respond to physical disconnections or
hardware failures by rerouting traffic, adapt to increased or decreased load on connections,
and are subject to the policy implemented by their operators, which can be modified at will.
For these reasons, any topological snapshot we obtain is almost certainly incomplete.

Because obtaining a complete picture of the underlying ground truth of real networks may
be impossible, we endeavor in this thesis to create our own ground truth for the purpose of
evaluating the results obtained by network measurement tools. In Section 2.2, we briefly
consider previous work in creating networks that may be used for this or similar purposes.

2.2 Real, Simulated, and Emulated Networks
Operators and researchers are interested in performing experimentation and testing on net-
works that closely or exactly model network topologies of interest. For example, engineers
working for an ISP may wish to study the effects that a change in policy may have on their
topology’s resiliency or latency. In order to guarantee that an acceptable quality of service
will continue uninterrupted to its customers, sets of link and router outages could be stud-
ied to quantify the impact of these failures with respect to network capacity and latency.
Further, so-called “flash crowds” are a phenomenon wherein a network or web site expe-
riences a sudden, unexpected surge in traffic [11]. Content Distribution Networks (CDNs)
operators and ISPs may wish to understand the volume of traffic they are capable of han-
dling, and take steps to mitigate weaknesses before experiencing a flash crowd event. With
the results of these experiments, design decisions could be rethought, or policy changes
implemented. In addition to the commercial benefits of modeling network topologies, re-
searchers may want to test the performance of a new protocol on a realistic, “Internet-like”
network.

14

SR1

R2

R3

R4

Figure 2.4: A network consisting of one central
switch connected to four routers. The presence
of the switch, a link-layer device, in this topol-
ogy can cause misleading inference results when
probed by an IP-layer tool like scamper.

R1

R2

R3

R4

Figure 2.5: The inferred topology of the single
switch, four router network to the left, obtained
by network mapping tools that operate at the
IP-layer.

Regardless of their motivation, many individuals have a need for large-scale network
topologies for testing and evaluation. Building topologies of non-trivial size in physical
hardware can be cost- and time-prohibitive. Even small to medium sized networks consist
of hundreds to thousands of routing and switching devices. In addition to the obstacle of
obtaining large quantities of routing hardware, hours or days of time can be necessary to
physically cable and configure the desired topology - an error-prone process in itself. And,
each new topology incurs this reconfiguration cost.

On the other end of the spectrum from physical networks, simulation provides an alterna-
tive that is far less expensive and time-consuming. Network simulation software, like the
open-source NS3 [12], the commercial product OPNET [13], and Cisco’s PacketTracer and
NetSim, fulfill the need to perform experimentation and testing on artificial networks in an
efficient, cost-effective way.

These tools, however, carry a significant disadvantage as well. Simulation software tools
abstract away the underlying processes and mechanisms as actually implemented by the

15

hardware and software systems they are simulating. For example, rather than running the
underlying operating system (OS) of a router, a network simulation program may actually
simply idealize the routing protocols the user wishes to observe. In effect, network sim-
ulation loses the real-world implementation specific details that are inherent in a physical
network in exchange for a time- and cost-effective model of a network topology’s charac-
teristics.

A third option, emulation, seeks to find middle ground between the extremes of network
modeling through physical hardware and pure simulation. In emulation, a network device,
such as a router, switch, or host, is run in a virtual environment. Further, the device’s real
software OS is emulated, i.e., it runs in this virtualized environment. Leveraging emulated,
virtualized network topologies provides the advantages of both building physical networks
and simulating networks. The emulated OS provides implementation-specific details, de-
fects, and bugs that are present in hardware networks, while virtualization allows the set-up
and configuration of many devices on a single host.

Graphical Network Simulator - 3 (GNS3) is one such emulation platform. GNS3 presents
a graphical interface through which users can build network topologies by dragging and
dropping network devices onto a canvas, then interconnecting them through virtual link-
ages. Underlying GNS3 is the software program Dynamips, which is an emulation plat-
form for Microprocessor without Interlocked Pipeline Stages (MIPS) instruction set Cisco
processors. GNS3 is widely used to build small-scale network topologies for instructional
purposes. Netkit is another emulation product [14]. Netkit works by creating a number of
emulated User-Mode Linux (UML) kernel devices, upon which other software is run to em-
ulate a particular device. The open-source Quagga software, with its associated daemons
for various routing protocols, could be installed to emulate a router, for example. Au-

toNetkit allows for the construction of networks from simple topology diagrams created in
yEd, an open-source network visualization tool. Additionally, AutoNetkit provides a high-
level programming language extension to Python to perform administrative tasks such as
forming collections of routers into ASs, creating routing process groups, and device con-
figuration. When the network has been configured, AutoNetkit provides a web-based user
interface (UI) to visualize the network and view the results of measurement tools, namely
traceroute. The program then provides output that can be used by emulation platforms like

16

Netkit for experimentation and testing [15], [16], [17]. AutoNetkit has recently been inte-
grated into Cisco’s Virtual Internet Routing Lab (VIRL) software, a competitor of GNS3,
to assist in quickly performing the administrative and configuration functions described
above. [18]

2.3 Building Realistic Topologies
In order to obtain realistic, Internet-like topologies, two distinct types of methodologies
have been proposed. The first is a constructive approach — beginning with a small graph,
then adding nodes and edges until an instance of the desired vertex-set cardinality has been
reached. Many methods have been proposed to accomplish this, including the Barabási-
Albert, Waxman, Inet, and LocGen generation models [19], [20], [21], [22]. Each is de-
scribed briefly below.

2.3.1 Barabási-Albert Generation Model
The Barabási-Albert (BA) generation model is a naïve approach to creating Internet-like
topologies, but it is well-known for its ability to create networks with a power law degree
distribution [19]. Following the proposal of this incremental growth, preferential attach-
ment network generation model, many biological, social and technological networks were
discovered to exhibit the power law degree distribution property of BA networks. Based on
data from the University of Oregon’s RouteViews project, Faloutsos et al. posited that the
Internet’s AS-level graph exhibits the power law properties that would be expected from
BA model generation [23]. However, this study was repudiated in [24], using a more com-
plete data set that included RIPE and AS Looking Glass BGP information in addition to the
RouteViews BGP data in the original paper. Further, while BA-generated topologies pro-
duce high-degree “hub” nodes, debate over their relationships to each other in the Internet
exists due to the incomplete picture we have from topological mapping [25]. Despite these
criticisms, we present BA-generated networks as a simplistic approach to Internet topology
generation.

Given an initial connected graph of k nodes, new nodes are added to the network individ-
ually, and preferentially form connections with a node ni already in the network with a
probability of

17

pi =
deg(ni)

Σ jdeg(n j)

for 0≤ j ≤ k−1.

2.3.2 Waxman Generation Model
The Waxman network generation model is useful for its ability to model the principle of
locality that exists within networks [20]. Because network operators are constrained by
cost and physical location, they are more likely to connect to the closest service provider
that has sufficient bandwidth or charges them the least, rather than selecting a provider to
connect to that is geographically remote.

With all points positioned in the plane, either randomly or by a heavy-tailed Pareto distri-
bution, the Waxman model assigns the probability of an edge connecting nodes u,v by

p(u,v) = αe
−d
βL

where 0 < α,β ≤ 1, d is the Euclidean distance between u and v, and L is the maximum
Euclidean distance between any pair of nodes on the plane. Waxman topologies, while
excellent at modeling the propensity for links to be established by entities in close physical
proximity to each other, fail to capture the extremely high degree of “hub” nodes observed
within the actual Internet [21].

2.3.3 Inet Topology Generator
The Inet Topology Generator has undergone several iterations, most recently Inet-3.0 [21].
Inet is a Unix-based software program that takes user-defined parameters, and outputs a
text file containing an AS-level Internet topology. The parameters Inet defines for user-
specification are N ≥ 3037, the number of nodes desired in the topology, d, the fraction of
1-degree nodes in the topology, p, the size of the plane the topology should be built in, and
s, a random seed. The text output specifies the degree of each AS, each ASs position in the
plane, and each inter-AS link as a pair.

18

Inet topology generation begins by placing the N nodes in a plane, and assigning an out-
degree to the top 2% of nodes based on the equation

degout = ept+qrR

where p,q, and R are constant, e is Euler’s number, r is the rank of the vertex, and t is the
number of months that must have elapsed since November 1997 for an Internet instance
to have reached N nodes based on an exponential growth assumption. Following this, the
p percent of nodes the user specified as degree 1 are designated, and lastly, the remaining
vertices in the graph are assigned out-degrees based on the above equation.

The remaining steps of Inet are focused on producing a connected network, the details of
which we will not concern ourselves with here. More toward our purpose, Inet topologies
claim to follow the Internet’s characteristics better than other constructive models at node
numbers studied in [21], namely 6,000. This graph roughly corresponds to the Internet’s
vertex-set cardinality in October 1999. Inet’s superior performance relative to other models
belies the fact that its highest degree AS has an out-degree of approximately half that of
the Internet instance, and the authors themselves admit their model follows the spectral
behavior of the Internet graph poorly [21].

2.3.4 LocGen Topology Generation Model
Recognizing that cost and physical location of topology generation models are considered
secondarily or not at all, researchers at the University of Kansas endeavored to create a
model that accounts for these two properties [22]. Using three random link generation
models, pure random, locality, and Waxman, the authors incorporate a cost variable that
includes a fixed cost, plus a variable cost per unit of distance between two nodes, which
is multiplied by the Euclidean distance separating the two. Given node placements from
the Sprint router-level network as inferred by the Rocketfuel project [26], and a PoP-level
network of the European research network GEANT2, the authors compare graphs created
by the pure random, locality-based, and Waxman models to those generated by the same
models, with inclusion of the cost variable described above.

19

The results of comparing these generated graphs to the actual topologies of the Sprint and
GEANT2 networks is favorable toward their cost-inclusive models in the metrics of de-
gree distribution and average shortest path length. In particular, the cost-inclusive Waxman
model performed particularly well given the node-sets for these two topologies. With the
original Sprint topology, the cost-inclusive Waxman model generated the same average de-
gree of 5.04, and an average shortest path that differed by only 0.07 to the real network.
Similar performance was seen when compared to the GEANT2 network; only a 0.06 dif-
ference in average degree and 0.13 difference in average shortest path length was observed.

2.3.5 Hierarchical Internet Model
For the majority of our experimentation, however, we took a simplistic approach to gener-
ating hierarchical Internet-like graphs. These tiered models attempt to generally replicate
the high-level structure of the Internet by dividing each router, representing an AS, into one
of three categories - Tier 1 backbone, Tier 2 transit provider, or customer. Tier 1 ASs, as in
the actual Internet, are few in number and represent the core of the network in our model.
Tier 2 ASs are more numerous and are analogous to country or regional service providers
on the actual Internet, while customer ASs form the majority and represent enterprise net-
works. For this hierarchical model, input parameters include the number of ASs desired,
and the fraction to be Tier 1, Tier 2, and customer ASs. Further, a Tier 2 AS peering prob-
ability must be specified — this parameter determines the fraction of Tier 2 ASs that will
form settlement-free links to each other to transit traffic without first traversing the Tier 1
backbone. Further, the probability with which customer ASs will connect to multiple Tier
2 providers (known as dual-homed), and the probability that Tier 2 providers will form one,
two or three customer-provider links with Tier 1 ASs are specified. Our final parameter is a
Boolean value indicating whether link failure scenarios will be examined for this topology.
In Section 3.2.1, we will visit this tiered model for network generation again.

2.3.6 Graph Reduction Methods
A second approach topology generation is a reductive one — beginning with an initial
Internet instance, and reducing it until a graph of the desired vertex-set order is obtained,
retaining the properties that an Internet instance of the reduced order would have. This
approach was studied in detail in [27], and we undertake a reexamination of the graph
reduction methods introduced by the authors in order to evaluate their viability with current

20

Internet data. From these reductive methods, we explore our own, and choose the best to
reduce topologies to a node-set cardinality able to be emulated on our platform. We present
an overview of the work of [27] here.

Using data publicly available from the RouteViews BGP RIB data set, prior work investi-
gated the possibility of using known Internet graph instances to reduce to graph instances
of a specified node-set cardinality. In order to evaluate the effectiveness of these methods
in creating Internet like graphs, the authors of [27] begin with an Internet instance from
May 2001, reducing it to the node-set cardinality of an Internet instance inferred in January
1998. To quantify how well their reduction methods perform, the prior work authors chose
to evaluate the similarity of the method-reduced graphs to the Internet in January 1998 in
terms of average degree, spectral behavior, hop-plot, and power-law exponents.

Prior work has identified three different categories of graph reduction, namely contraction,
deletion, and exploration. Each provides a different avenue to reduce a large graph to one
of smaller order, and are briefly described here.

Contraction Methods

We examine two different types of contraction methods used in [27]. In Contraction of

a Random Edge (CRE), an edge in the graph is selected with a uniform probability. The
vertices incident to this edge are contracted, or merged into a single vertex, which now has
the union of edges incident to the original two vertices incident to itself (minus the edge
that has been contracted). We demonstrate CRE in Figure 2.6.

The Contraction of a Random Vertex-Edge (CRVE) [27] method first selects a vertex in
the graph with a uniform probability, then chooses an edge incident to that vertex with a
uniform probability. The endpoints of this edge are then contracted into a single vertex,
which has incident to itself the union of edges incident to the original two vertices minus
the edge that has been contracted. A small example of CRVE is given in Figure 2.7.

In both CRE and CRVE, the contraction process is repeated until a graph of the order of
the reduction target is obtained.

21

A

B C

D

EF

A

B

D

F G

Figure 2.6: A contraction by CRE. First, the edge (C,E) is randomly selected. Next, vertices
C and E are contracted into a single vertex, labeled G. Vertex G retains all edges that were
incident to the C and E, minus the edge (C,E), which has been removed.

A

C

D

EF

B C

D

EF

H

Figure 2.7: A reduction by the CRVE method. First, vertex B is randomly chosen. From the
edges incident to B, the edge (B,A) is randomly selected, and vertices B and A are contracted
into a new vertex H. H retains all edges that were incident to A and B, with the exception of
(B,A), which has been removed from the graph.

Deletion Methods

Within the deletion category, we consider three distinct methods and a hybrid of two of
these methods. The first method, Deletion of a Random Vertex (DRV) [27], involves select-
ing a random vertex with a uniform probability, then removes this vertex (and its incident
edges) from the graph. After each vertex removal, a check is performed to ensure that re-
sulting graph is still connected. If a disconnected graph is produced, the largest connected
component is retained, while all other components are removed. This process repeats until
the method produces a reduced graph of approximate order to the Internet instance to which
we are reducing. Equality of order between the reduced graph and the reduction endpoint
may not be realized, as a disconnection and the subsequent removal of disconnected com-

22

ponents may reduce the graph beyond the number of nodes desired. However, by checking
for disconnections after each vertex removal, we obtain a comparable number of vertices
in the reduced graph to the final Internet instance. A graphical example of DRV is given in
Figure 2.8.

Second, the Deletion of a Random Vertex-Edge (DRVE) [27] method begins by first choos-
ing a vertex at random from the Internet instance with a uniform probability. Then, an
edge incident to this vertex is selected with a uniform probability, and removed from the
graph. Again, the method checks for disconnections following each edge removal, and dis-
cards all but the largest connected component of the resultant graph. This process repeats
until it produces a reduced graph of comparable order to the target instance. Figure 2.9
demonstrates a reduction by DRVE.

The third method, Deletion of a Random Edge (DRE) [27], selects a random edge with
uniform probability, and removes it from the graph. As in DRV and DRVE, following the
removal of each edge, all but the largest connected component are removed if a disconnec-
tion results from the edge removal. This process repeats until it reaches the limit of our
reduction. An example of one edge deletion in DRE is given in Figure 2.10.

Finally, we examine a set of Deletion Hybrid (DHYB) [27] methods, which are hybrids of
DRE and DRVE. Specifically, each DHYB-p method chooses DRVE with a probability of
p and DRE with a probability of (1− p). Thus, when p = 1, this is equivalent to DRVE,
and when 0 = p, is equivalent to DRE. In our work, we examine values of p between 0 and
1 in one-tenth intervals.

Exploration Methods

We consider two distinct methods within the exploration category - Exploration by Depth-

First Search (EDFS) and Exploration by Breadth-First Search (EBFS) [27]. In EDFS, a
vertex in the initial Internet instance is selected randomly with a uniform probability. From
that vertex, the Depth-First Search algorithm [28] is run until the desired number of vertices
have been discovered. The result is the induced subgraph of the original Internet instance
induced by the node set of the Depth-First Search tree. A small example of an 8-vertex
graph reduced to a 5-vertex graph by EDFS is given in Figure 2.11.

23

A

C

D

EF

B

A

C

D

F

B

Figure 2.8: A reduction by the DRV method. Vertex E is randomly selected from the node-
set and removed from the graph with its incident edges. A check for connectedness follows, at
which point vertices D and F will also be removed, leaving only the largest connected component
consisting of A, B, and C.

A

C

D

EF

B

A

C

D

EF

B

Figure 2.9: A reduction by the DRVE method. First, a random vertex from the node-set is
selected, in this case, B. Next, the edge (B,A) is randomly chosen from the edges incident
to B, and removed from the graph. A check is done for graph connectedness, and only the
largest connected component is retained. In this example, the graph remains connected after
edge deletion.

In a similar fashion, EBFS begins by selecting a random start vertex uniformly, and run-
ning the Breadth-First Search algorithm [28] until the number of vertices desired has been
reached. The node set of the Breadth-First Search tree is then used to induce a subgraph of
the original Internet instance, which is the resultant graph obtained. Another small example
of an 8-vertex graph reduced to a 6-vertex graph is given in Figure 2.12.

Table 2.1 summarizes the reduction methods considered by prior work for quick reference.

24

A

C

D

EF

B

A

C

D

EF

B

Figure 2.10: A reduction by the DRE method. Edge (D,E) is randomly selected from the edge-
set, and removed. Following edge removal, a check for connectedness is performed, and only the
largest connected component is retained. In this case, the isolated vertex D will also be removed.

Figure 2.11: A reduction by the EDFS method.
Beginning with the top-most vertex, Depth-First
Search is performed until a specified number of
nodes have been visited, in this case, 5. The
subgraph of the original graph induced by the
visited nodes is retained.

Figure 2.12: A reduction by the EBFS method.
Beginning with the top-most vertex, a Breadth-
First Search is executed until the desired number
of vertices have been visited. In this case, the
specified number is 6. The subgraph of the orig-
inal induced by the visited nodes is retained.

Prior Work Results

The authors of [27] found, based on an examination of several graph metrics, that DHYB-
0.8 outperforms all other reduction methods. Metrics of interest to the authors were the
average degrees of the reduced graphs over time — from the original instance to the re-
duction end point, the spectral behavior of their reduced graphs compared to the Internet
instance from January 1998, and hop-plot, a cumulative function counting the fraction of
vertex pairs within k hops or less of each other along a geodesic of the most reduced graphs.
The data set studied in [27], however, was of limited scope, covering only RouteViews BGP

25

Graph Reduction Methods
Abbreviation Name Description

CRE Contraction of a Random Edge
A random edge is selected with uniform probability.
Adjacent nodes to that edge are contracted into one.

CRVE Contraction of a Random Vertex-Edge
A random vertex is selected, then a random edge

incident to that vertex. Adjacent nodes contracted.

DRE Deletion of a Random Edge
A random edge is selected with uniform probability,
then deleted from the graph. If disconnections occur,

keep largest connected subgraph.

DRV Deletion of a Random Vertex
A vertex is selected with uniform probability, then
deleted from the graph. If disconnections occur,

keep largest connected subgraph.

DRVE Deletion of a Random Vertex-Edge
A vertex is selected randomly, then an edge incident to

that vertex is selected randomly. This edge is then deleted.
If disconnections occur, keep largest connected subgraph.

DHYB Deletion Hybrid
DHYB-X chooses between DRVE with probability

X and DRE with probability (1-X)

EBFS Exploration by Breadth-First Search
A vertex in the graph randomly selected as the root node.

Breadth-First Search algorithm is run until desired number of
nodes visited; these nodes used to induce subgraph of original.

EDFS Exploration by Depth-First Search
A vertex in the graph randomly selected as the root node.

Depth-First Search algorithm is run until desired number of
nodes visited; these nodes used to induce subgraph of original.

Table 2.1: A summary of prior work graph reduction algorithms

RIB data from 1998 to 2001. Because of this, we view the results obtained with some trep-
idation unless proven to be consistent across multiple data sources and timeframes.

In this thesis, we endeavor to expand upon the body of work in this field by considering
additional sources of Internet AS-level topology information, and by reducing more recent
Internet instances to see whether they provide similar findings.

26

CHAPTER 3:
Automated Topology Inference Methodology

Recognizing the limitations and difficulties inherent in topology inference discussed in
Section 2.1, we endeavor to create our own “ground truth” in an emulated environment.
Specifically, by ground truth we mean several things. First, we know of each router in the
network, its interfaces, and the links that interconnect them. IP address allocation to the
routers interfaces are known, as well the subnetworks each router advertises. Further, we
know the routing protocols employed on the devices in the network, and the policies these
routing protocols are designed to implement. Of particular importance in this thesis, we
are aware of which links will fail during inference testing, and when they will fail.

In summary, our aims are to:

1. Automate the construction of ground truth, according to one of several known topol-
ogy generation models.

2. Automate the set-up of the emulated environment, leveraging existing emulation soft-
ware if possible.

3. Emulate a non-trivial number of routers, preferably on the order of several hundred,
with non-trivial connections between them.

4. Automate topology inference. Our platform should run the state-of-the-art inference
tool, scamper, to infer the path to an IP address on every router in the topology from
a virtual monitor.

5. Further, our emulation platform should use every router in the topology as a vantage
point, moving from one to the next exhaustively without human interaction.

6. Our platform should be able to simulate real-world conditions, such as link or router
failures, and record the inferred topology under these event sets.

7. Lastly, our platform should record all results for later analysis.

Toward this end, we develop a tool for emulated network topology inference called Em-

ulated Router Inference Kit (ERIK). ERIK is a Python-based program that accomplishes
the tasks outlined above, and we believe is a useful resource for network research. We first

27

outline the early stages of ERIK development, including our failed attempts at modifying
existing emulation software for our purposes. We believe it instructive to motivate the need
for developing our own software solution. Following that, we detail the current state of
ERIK, and lastly, introduce two of our own methods for reducing Internet graphs for the
purpose of emulation on ERIK.

3.1 Limitations and Challenges Experienced in Develop-
ing ERIK

Our first attempts at automatically building emulated networks for research in network
inference centered around GNS3, the graphical network emulator described in Chapter 2.
GNS3 topologies are simple to automatically construct via a script - they consist of a set of
Cisco router configuration files (one per router) and a “.net” topology file, which contains
metadata about the network. In particular, the .net file holds information pertaining to the
position of each router on the GNS3 graphical plane, the TCP port to connect to each router
on, and on which Dynamips hypervisor each router will run.

When we had reverse-engineered the parameters needed from the topology file to con-
struct our own GNS3 networks, we first selected Routing Information Protocol (RIP) as the
routing protocol we would use throughout our topology. Though RIP is no longer widely
deployed, its simplicity allowed us to focus less on routing protocol-specific issues and
more on network creation. In order to automatically generate these topologies in GNS3,
we first construct a graph according to the Barabási-Albert, Waxman, or Erdős-Rényi Ran-
dom graph generation models via the Python network package NetworkX [29].

From our NetworkX graph, it is a relatively minor task to create the router configuration files
for a pure RIP topology. ERIK simply iterates through the edges of our generated graph,
assigning IP addresses to available router interfaces and adding each router’s networks to
its RIP configuration. For our purposes, IP addresses were allocated out of a /24 network,
and each router to router link was given a /30 subnet.

After the router configuration files are generated and written to disk, our next task was to
generate the GNS3 .net topology file. This consists of allocating a TCP port per router to
communicate with our emulated routers, positioning each router on the GNS3 graphical

28

Figure 3.1: A 300-router GNS3 topology automatically generated by an early ERIK prototype.

plane, specifying which Cisco router Internetwork Operating System (IOS) to use for each
router, and allocating routers to Dynamips hypervisors for emulation. Further, each router
contains a list of its connections to other routers in the topology. Once this process was
completed, our topology file was written to disk, completing a valid GNS3 topology. Fig-
ure 3.1 depicts a 300-router GNS3 topology created via the automated process described
above.

After this proof-of-concept, the next logical step was to create a topology using a more
current, robust routing protocol like Open Shortest-Path First (OSPF). This change neces-
sitated only minor changes to the router configuration files - in place of the RIP configura-
tion commands, the analogous OSPF configurations are written. For simplicity, we chose

29

to build only one OSPF area, although one could foreseeably create different OSPF areas
by grouping routers by Euclidean distance, given x-y coordinates for each, without much
difficulty.

In both RIP and OSPF topologies, we tested our emulated topology generation with
Barabási-Albert, Waxman, or Erdős-Rényi Random network models initially on a small
scale - 10 to 30 routers on a relatively low-performance, commodity server. When we were
confident that our topology generation scheme was working as expected, we scaled up to
the order of several hundred routers on a host with more memory and computing resources.
At this point, we began to experience issues using GNS3 as a platform for ERIK. Initializ-
ing our topologies in GNS3 at our target scale took far longer than we thought reasonable -
approximately an hour was spent waiting for every router in the 300-router topology shown
in Figure 3.1 to boot on our emulation host, for example. During this hour, GNS3 allocated
memory for the routers to be emulated, initialized hypervisor instances, created the virtual
interfaces for the router-to-router connections, and graphically displayed the progress of
the topology’s startup.

Nevertheless, GNS3 was viewed as the most suitable candidate for creating an emulation
platform for network inference testing at the time, so we next moved on to implementing
the topology inference module for ERIK.

A useful feature of GNS3, and a reason for initially choosing it as our platform, is its ability
to interact with virtual machines over a network bridge, or tap, interface. For ERIK, we
intended to use a VirtualBox host to perform our topology inference probing. VirtualBox is
an Oracle product for virtualizing server and desktop OSs, and for our purposes, would be
the virtual environment in which our inference monitor would run. For our initial inference
testing, we created a minimal Linux Ubuntu virtual machine (VM) with scamper installed
for use as our monitor platform. This VirtualBox VM was then imported using GNS3’s
appliance import function. Once imported, our VM was connected to a predetermined
router within the topology that had been selected during the topology generation phase to
be the monitor’s vantage point, and a text file containing the IP addresses to probe was
copied to our VM. At this point, all of our infrastructure was in place and actual inference
testing could begin. Testing began by manually running scamper from the command line
of our Ubuntu VM, passing our IP address file in as an argument.

30

Despite our initial reservations about the boot-up time for our large GNS3 topologies, we
were able to successfully conduct inference tests in this manner from a single vantage
point. Our scamper results were copied from the VM monitor and analyzed following
completion. In accordance with our stated goals for ERIK, however, we recognized the
following limitations from our platform in its current state:

1. First, the overhead incurred using GNS3 was too significant during the router boot-
up phase. We recognized that at least some of this overhead was incurred from tasks
that mattered little to our project, namely the graphical UI that GNS3 provides.

2. Second, while we could easily automate the creation of GNS3 topologies, later in-
cluding the placement and connection of the monitor VM to its vantage point, we had
no easy way to script vantage point changes. This was important to our work because
we wanted to be able to infer the network topology from a larger-than-singular subset
of the routers, including using every router as a vantage point.

3. Lastly, this platform required too much human interaction. In addition to our diffi-
culties in scripting a solution to change the VM monitor’s vantage point, we were
forced to manually begin the topology inference tests by running scamper from the
command line of the VM. To be a valuable tool for research, we felt that this process
should be automated as well. In addition, simulating real-world scenarios like link or
router failures required too much user input. While GNS3 has the ability to remove
links or shut down routers using mouse clicks to affect these changes, this process
becomes exponentially more difficult as the number of routers and router-to-router
connections grows beyond a non-trivial number. Even locating a particular device on
the plane becomes a time-consuming effort.

3.1.1 Dynamips Solution
As discussed in Section 2.2, Dynamips is the underlying emulation software with which
GNS3 interfaces. Following our assessment of the capability of GNS3 to serve our pur-
poses outlined at the start of this chapter, we instead chose to use Dynamips directly.

Dynamips is open-source, well-documented, and actively supported by the developers of
GNS3. Because of its ample documentation and because Dynamips hypervisors accept
commands sent over a control socket, we were able to conduct several quick experiments

31

manually creating small networks, leveraging only Dynamips without the GNS3 front-end.
We were assisted in this process by the GNS3 debugging feature, which provides the ex-
plicit command strings sent to the Dynamips hypervisors for GNS3 tasks.

As with our experiments using GNS3, our initial aim was to programmatically construct a
small network architecture, consisting of only three or four routers. Again, we implemented
our tests in Python, and sent commands to a single Dynamips hypervisor over its control
socket. Our tests were successful in creating small network topologies, so we again scaled
our topology generation to the order of several hundred Cisco 7200 routers. In contrast with
GNS3, we noticed significantly less boot-up time - on the order of five to ten minutes using
pure Dynamips, as opposed to about an hour with our GNS3 solution. Integration with
VirtualBox VMs with our Dynamips solution proved to be straightforward - our VirtualBox

host was configured with a bridged adapter to a tunnel interface connected to our topology.
Unlike GNS3, this tunnel interface is easily added and removed from a particular router
vantage point through a short sequence of commands provided to the Dynamips hypervisors
over their control socket. Lastly, the amount of human interaction necessary in this model
was greatly reduced; we simply run scamper as a daemon listening on the VM host address
on a particular port. In ERIK, we interact with this daemon by importing a Python-pure
implementation of an associated scamper program called sc_attach.

Dynamips Modifications
Though a Dynamips-pure implementation of ERIK had eliminated or reduced many of
the concerns our GNS3 model raised, we did experience two issues. First, automating
vantage point changes was hindered by a bug in a Dynamips provided method called vm

send_con_msg() that was not widely used or tested. This method’s function is to send
messages to the console of a virtualized router, and in our use case, was being used to push
new base64 encoded configuration files to routers to either:

• Prepare a router for use as a vantage point. This entails pushing a new configuration
file indicating a new interface for the connection to the VM monitor, assigning IP
addresses, and updating routing protocol configurations, in addition to retaining all
of the router to router connections this router had previously.
• Remove the router to monitor connection once all experiments had been run from

that vantage point. This entails removing the routing protocol-specific configuration

32

details, as well as removing the interface and IP address configuration for the link to
the monitor.

Initial experimentation with vm send_con_msg() proved that while this command would
successfully transmit the base64 configuration string to the console of the indicated router,
any trailing carriage return characters were not. This meant that the command would
still require an operator to telnet to the router on its control socket and manually execute
the command. Upon informing the Dynamips developers of this issue, a fix was imple-
mented [30], allowing us to easily automate vantage point changes.

Our last experiments with Dynamips were tailored to designing faults within our emu-
lated network. It is often useful to study the effects of various equipment or link failures
on overall reachability, and routing table churn can cause anomalous paths to be inferred
by scamper. Simulating a router failure is trivial with Dynamips; routers can easily be
shut down, or a configuration file that shuts all router interfaces can be pushed via the
vm send_con_msg() command, for example. As a design choice, however, we made the
decision to study link failures rather than router failures, and to implement the ability to
induce a set of link failures within ERIK. Our justification for this design decision was
based on our desire to maximize the effects of these failures while running topology infer-
ence testing. In a router to router connection, the failure of a one of these endpoints will
be quickly recognized by the other router due to the absence of an electrical signal over
the link. However, when simulating link failures between two routers, we can increase
the time it takes before this failure is discovered by placing intermediate switches between
the two, and removing the link connecting the two switches. Both routers will still detect
their physical connection to their associated switch, and only when a fixed period called
a “dead interval” has elapsed without receiving a “hello message” from the other router
will the routers detect that the link is down. Our link failure model is depicted graphically
in Figures 3.2 and 3.3. A final hurdle to implementing ERIK occurred when inducing a
number of link failures to occur in quick succession. During our tests, we caused a dead-
lock between two threads in Dynamips when removing links between Ethernet switches,
which resulted in ERIK hanging indefinitely [31]. Changing a blocking pthread lock to
a trylock ultimately resolved this issue, and was accepted as a patch by the Dynamips

developers.

33

R1 R2S1 S2

Figure 3.2: Initial state of a router to router connection selected to fail during ERIK topology
inference. Each router is connected to a Dynamips-provided Ethernet switch, which are connected
to each other by a third link. The third link connecting the two switches will fail; however, the
two routers will not detect the link failure until the window in which a “hello-message” from the
other router should have been received expires.

R1 R2S1 S2

Figure 3.3: The path between the two routers after the link has been cut. The interfaces
connected to the switch on each router will still be powered; each router assumes connectivity
to the other until the “dead timer” expires.

Having described the early experiments and initial attempts at creating a tool for automated
emulated network topology creation and inference, we now describe the current state of
ERIK, and compare it to similar software.

3.2 ERIK
While ERIK is a complete package for the automated topology inference experimentation,
it can be broken into two logical phases - the creation of the network to be emulated, and
the actual emulation and experimentation.

3.2.1 Network Topology Generation
The topology generation phase of ERIK takes several inputs. First, the network model
must be specified. Early phases of our work focused on creating “flat”, or intra-AS, topolo-
gies using the Barabási-Albert and Waxman models described in Sections 2.3.1 and 2.3.2,
and Erdős-Rényi random graphs as a baseline. For these network models, the number of
routers desired in the topology must also be specified, as well as the α and β constants
for the Waxman model. In later testing, we primarily used the tiered model described in
Section 2.3.5 for generating topologies, with its associated probability parameters. Regard-
less of the generation model, whether link failures will be studied is a mandatory boolean
parameter.

34

These parameters are fed into the topology creation module of ERIK. With these inputs, a
NetworkX graph is created in the following stages:

1. The number of Tier 1, Tier 2, and customer ASs are calculated given the number of
ASs and fractions specified.

2. Given n Tier 1 ASs, a random number of edges e is selected between n− 1 and
n(n−1)

2 . An Erdős-Rényi random graph is created with n vertices and e edges, and if
it is connected, we move to the next step. Otherwise, we repeat this process until a
connected Tier 1 backbone has been generated.

3. Tier 2 ASs are connected to the Tier 1 backbone one at a time. First, the number
of links a Tier 2 AS will form to Tier 1 nodes is calculated based upon the input
parameters; in practice, we select a number between one and three from a Gaus-
sian distribution. The Tier 1 nodes these connections will terminate at are selected
uniformly randomly, and these edges are added to the graph.

4. When all Tier 2 ASs have been connected to their Tier 1 providers, a random sample
of the Tier 2 nodes is selected to form peering links with each other based on the
input parameter. These edges are added to the graph.

5. Customer ASs are added to the graph one at a time, with one or two Tier 2 provider
links based on the input probability. These nodes and edges are added to the graph.

If link failures are to be studied, a final step occurs:

6. Edges in the graph are sorted by edge betweenness centrality, which measures the
fraction of shortest paths that contain an edge. The top x of these edges are identi-
fied to be link failures during the emulation phase of ERIK, where x is a predefined
parameter. Mathematically, edge betweenness centrality is defined in [29], [32] as:

b(ei) = ∑
s,t∈V (G)

σ(s, t|ei)

σ(s, t)

where σ(s, t) is a geodesic in a graph G between vertices s 6= t, and σ(s, t|ei) is a
geodesic between s 6= t containing the edge ei.

35

Graph Parameters
NetworkX

Graph
Generation

Dynamips
Config

Cisco
Router
Config

ERIK
Config

Automation Cmds

Link Failure Set

Probe IPs

Vantage Point IPs

Figure 3.4: The topology generation phase of ERIK takes various graph parameters as inputs,
creates a graph, and outputs a set of files. The Automator file lists the Dynamips commands
necessary to run the emulation and the VP IPs file lists the IP addresses for the inference vantage
point to take during experimentation. Probe IPs contains the set of IP addresses to be probed
by scamper and Link Failure Set contains the names of switches that will have link failures
during the emulation.

With our NetworkX graph created and set of link failures identified, we proceed to automat-
ing the configuration of the ASs. This is depicted graphically in Figure 3.5, and proceeds
in the following manner:

1. We iterate through each edge in the graph, classifying it based on the tier to which
its adjacent vertices belong, e.g., Tier 1 to Tier 2 customer-provider link, or Tier
2 to Tier 2 peering link. From these characterizations, we define route-maps that
allow us to create a BGP policy model that generalizes that found on the Internet - to
prefer routing to customers over peers, and to prefer routing to peers over providers.
Specifically, for Tier 2 ASs, we used the route-map syntax

ip as-path access-list 10 deny ˆx_

ip as-path access-list 10 permit .*

for outbound interfaces on connections to Tier 1 ASs ‘x’ and Tier 2 peers. Converted
to BGP routing configuration commands, this policy is stored individually for each
AS.

2. We allocate IPv4 addresses to each AS according to its tier. Tier 1 backbone networks
are assigned a Class A network, Tier 2 transit-provider networks are assigned a Class

36

Automation Cmds

Link Failure Set

Probe IPs

Vantage Point IPs

Results Linux VM

Automation Engine

Dynamips Hypervisors

Virtual Topology

Figure 3.5: The topology emulation phase of ERIK uses the outputs from the topology gen-
eration phase as inputs. The Automation Engine reads the file Automation Cmds to assign
routers to Dynamips hypervisors, and send the requisite commands to load these routers with
their configuration files and create links between them. During topology inference testing, the
Automation Engine sends the list of Probe IPs to the Linux VM to execute. During the second
round of probing, the Automation Engine also induces link faults by reading the Link Failure
Set file, and sending the appropriate Dynamips commands to the appropriate hypervisor. After
each vantage point has undergone the three probing rounds, the Automation Engine restores the
failed links, sends the next vantage point IP from file to the VM, removes the attachment to the
virtualized topology at the old vantage point, and reattaches the VM to the next vantage point.

B subnetwork within one of their provider’s Class A networks, and customer ASs
are assigned a Class C network within a Tier 2 provider’s Class B subnet. Customer-
provider links are addressed out of the provider’s network, and peering links are
addressed out of the private Class A network. These networks and IP addresses are
incorporated into the configurations started for each AS in step 1. For example, if a
Tier 1 ASs assigned the 13.0.0.0/8 subnetwork, its first Tier 2 would be given the
13.1.0.0/16 Class B subnetwork. In turn, the first customer AS to be allocated IP
space from that Tier 2 would be given 13.1.1.0/24.

37

Figure 3.6: A brief section of an Automator file used to emulate a 300-router topology. At the
bottom, the Dynamips command to push a base64-encoded Cisco router configuration file to a
device is shown.

3. Each AS is connected to one Ethernet switch; the interface connecting the AS to
this switch is assigned an IP address out of that ASs network. These IP addresses are
written to a Probe IP file that will be used as the destinations for our scamper probes
in the topology inference phase of ERIK. For convenience, all of the interfaces to the
switches are assigned the .1 address from the ASs network.

4. A list of vantage point IP addresses is generated using the .2 address from the ASs
network. During the emulation phase, the monitor will infer topology from each AS;
its connection to the emulated topology will be through each ASs single switch.

5. The links identified to fail during the emulation phase are created with two interme-
diate switches, as in Figure 3.2. The names of the connections between intermediate
switches are saved to a Link Failure Set file; Figure 3.7 shows an example in
which ten links have been selected for failure.

6. Each ASs configuration is converted into a Cisco router configuration file through
simple string manipulation. These files are converted to base64 encoding for use in
the following step.

7. Finally, a file consisting of the Dynamips hypervisor commands necessary to start
the topology and run inference experimentation is generated. This consists of a
bootup phase, in which each AS is allocated the appropriate virtual hardware, mem-
ory and configuration file, and an emulation phase that changes the virtual connec-

38

Figure 3.7: A full Link Failure Set file for a 300-router topology. In this file, the 20 entries
correspond to both directions of ten links that were selected to fail based on their edge between-
ness centrality. Dyamips uses a “Network Input/Output” (NIO) descriptor for each side of a
link.

tion from the monitor to each AS in the topology. These commands are written to
the Automator file; Figure 3.6 shows a small section of an Automator file used to
generate a 300-router topology.

The general outline of work flow is given in Figure 3.4.

3.2.2 Emulation and Topology Inference
Following the generation of the outputs from the topology generation phase of ERIK, we
begin the topology inference experimentation with scamper. Prior to the emulation start-
ing, a Linux VM is booted with VirtualBox; this VM will act as the monitor to probe
destination ASs within our virtual topology. We chose a minimal distribution of Ubuntu
in order to reduce the amount of Central Processing Unit (CPU) and memory utilized by
our monitor. A scamper daemon and a persistent netcat listener are started on predefined
ports, with the netcat daemon acting as a mechanism to pipe interface and route configura-
tion changes to the VM during testing. Further, a BIRD daemon is started that will inject
approximately 50,000 BGP routes into our virtualized topology for added realism and to
induce additional router RIB/FIB churn during link failures. Finally, this VM is allocated
two bridged connections to tap interfaces on the host.

39

The inputs to the emulation and inference module of ERIK consist of the outputs from
the generation step. Prior to any emulation, a number of Dynamips hypervisors must be
initialized. Through a trial and error process, we found that a set of fifteen hypervisors is
capable of emulating the 300 router topologies of interest to this thesis. Hypervisor alloca-
tion depends both on the number of routers and number of links between them, however;
this general guideline may not be sufficient in all cases. Regardless, the emulated routers
are spread evenly across the set of Dynamips hypervisors.

ERIK begins the emulation by reading the Automator file, which contains the Dynamips

commands necessary to initialize each router, allocate its memory, and create the links
between them. Further, the interfaces between the emulated topology and host are created
so that the Linux VM can conduct inference probing and inject BGP routes via BIRD.
The router bootup phase ends when a termination token is read in the Automator file, at
which point a predefined time period is allowed to elapse in order to allow for configuration
loading and topological convergence.

Following the bootup and convergence time, topology inference testing begins. With the
monitor VM connected to the first AS, we probe the topology in three phases. Regardless
of the phase, ERIK connects to the scamper daemon running on the Linux VM, and passes
it the list of IP addresses to probe contained in the Probe IPs file. We describe each of the
three probing rounds here:

1. The first round of probing occurs when the topology has converged. After the call
to the scamper daemon to probe returns, the first probing round has terminated. The
results are written in warts binary format for later analysis.

2. Following the first probing round, the second probing round begins. As with the
first round, it is initiated by ERIK connecting to the scamper daemon running on the
monitor VM, and passing it the IPs addresses to probe. During the probing, however,
a separate ERIK thread interfaces with the Dynamips hypervisors and removes the
links between routers identified during the topology generation phase; these are read
from the Link Failure Set file. When the call to scamper running on the VM
returns, the second round of probing is concluded; the VM writes the results to disk.

3. The final round of probing begins after an experimentally-defined time period has
elapsed in order to allow topological reconvergence following the link failures in

40

second probing round. Generally, we find fifteen minutes to be sufficient. After this
reconvergence period, the third probing round begins to capture the topology of the
network following the link failures. Finally, the monitor VM writes these results in
warts format.

After the final round of probing is complete, the links that have failed are reconnected, and
the routers are allotted a period of time to rediscover these links, and update their routing
tables. This resets the virtualized, emulated environment so that network inference probing
can be conducted at another vantage point, beginning with the first round described above.

These three rounds of probing provide a snapshot of the inferred topology before, during,
and after failure events as inferred from the monitor at its vantage point within the topol-
ogy. We capture these three snapshots for two reasons. First, the inferred graphs provide
insight into commonalities and differences between these three states; in essence, how do
various failures effect the structure of the inferred network, and what remains the same?
Second, because we generated topological ground truth when we created the topology, we
can compare the three inferred graphs against the actual physical structure of the network -
a comparison we cannot make for inferred Internet topologies.

Finally, ERIK performs these three probing rounds exhaustively - once completed at the
first vantage point, ERIK reads the appropriate commands from the Automator file and
sends them to the Dynamips hypervisors to move the monitor to the next vantage point. In
addition, ERIK passes the requisite interface configuration and default gateway changes to
the monitor from the VP IPs file. After these adjustments are complete, probing begins
anew.

After probing has been conducted at each vantage point, ERIK terminates, and the result
data from the inferred topologies can be analyzed, as we will see in Chapter 5. Because
ground truth is known, router alias resolution is trivial; we produce Gephi graphs for each
inferred topology for visualization purposes [33].

Finally, we present pseudocode of two subcomponents of ERIK, namely the topology gen-
eration and emulation automation phases. In Algorithm 1, we describe our tiered topol-
ogy generation model, given input parameters n1,n2 and n3 – the number of Tier 1, Tier

41

Algorithm 1 Tiered Topology Generation Pseudocode
do

Choose random integer m such that n1−1≤ m≤ n1(n1−1)
2

G = Erdős-Rényi random(n1,m)
while G disconnected
for node in Tier 2 nodes do

while deg(node)< tier2degree do
Randomly select node v1 in Tier 1 nodes
Add (node,v1) to E(G)

for node in Tier 2 nodes do
while Number of peers < tier2peers do

Randomly select node v2 in Tier 2 nodes
Add (node,v2) to E(G)

for node in customer nodes do
while deg(node)< custdegree do

Randomly select node v2 in Tier 2 nodes
Add (node,v2) to E(G)

return G

2 and customer ASs desired, tier2degree, the Tier 2 ASs to Tier 1 ASs average degree,
custdegree, the average customer ASs to Tier 2 ASs degree, and tier2peers, the Tier 2
ASs peering degree. In Algorithm 2, we detail the high-level idea of the ERIK automation
engine.

42

Algorithm 2 Network Emulation Pseudocode
//Topology Start-up Phase
do

Read next router’s Dynamips configuration
Send router configuration commands to appropriate hypervisor
for Link terminating at router do

Send link configuration commands to hypervisor
while !End start-up
Sleep while topology boots and converges
//Topology Inference Phase
for router in topology do

Attach VM monitor via tap interface
Initial probe of topology; write results
Begin second probe, sending commands to fail links during probing; write results
Sleep while topology reconverges with failed links
Probe topology; write results
Restore failed links, sleep while topology reconverges

43

THIS PAGE INTENTIONALLY LEFT BLANK

44

CHAPTER 4:
Internet Graph Reduction Methodology

In this section, we describe our methodology for extending previous work by Krishna-
murthy, Faloutsos, et al. in [27]. Recognizing that this work relied upon one data set,
namely the RouteViews BGP RIB tables from the 2001 to 1998 timeframe, we first en-
deavored to determine whether the graph reduction methods described in 2.3.6 were still
valid over a longer, more current timeframe, and whether using a different data set might
yield the same conclusions. Further, we develop two new graph reduction algorithms de-
signed to replicate Internet graph properties at a smaller scale.

4.1 Validation and Extension of Prior Graph Reduction
Work

In order to validate that our algorithms for the graph reduction methods described in Section
2.3.6 were correct, we first replicated the experiments in [27]. We start with an initial,
largest Internet instance from 7 May 2001, and reduce this graph to a graph with the same
number of nodes as the inferred Internet instance on 24 January 1998, using each of the
reduction methods described in Section 2.3.6. These dates were specifically chosen to
match the work of Krishnamurthy, Faloutsos, et al. in [27]. Our data, as in prior work, was
obtained from the RouteViews archives. Following the replication of previous experiments,
our work extends the body of knowledge in two ways.

First, we endeavored to determine whether our findings, and the findings of [27], extend
to more current Internet instances. Toward this goal, we conducted the same experiments
beginning with an initial, largest Internet instance from 1 December 2014 obtained from
the RouteViews archive. This graph was reduced to a graph composed of the same number
of vertices as the 24 January 1998 Internet instance. Again, we examine the results of
reducing this graph using all methods described in Section 2.3.6.

Secondly, we expand the data sets considered by reproducing these experiments leveraging
CAIDA-compiled AS-level topologies. Because the RouteViews and CAIDA AS-level

45

Internet graphs are obtained in distinct ways and imperfectly capture the topology of the
Internet, we believe that a reduction algorithm should reduce Internet graphs from both
data sources reasonably well in order to be considered an effective method for creating
Internet-like graphs.

To reduce terminology confusion, we refer to each of the different data source and time
period combinations as a distinct source-period. In particular, the four source-periods con-
sidered are the RouteViews data from 2001-1998 and 2014-1998, and the CAIDA data
from 2014-1998 and 2001-1998. In all four source-periods, we consider the graph reduc-
tion methods’ effectiveness in the following categories:

1. Average degree of the reduced graphs compared to Internet’s reduced graph over
time.

2. Spectral analysis of the 100 largest eigenvalues of the normalized adjacency matrix
of the most reduced graphs per reduction methods. These spectra are compared to
the Internet spectra from January 1998.

3. Hop-plot or plot of cumulative vertex-pairs against the number of hops apart these
pairs are along a geodesic in the most reduced graph. This is compared to the January
1998 Internet hop-plot.

4. A sorted degree-distribution of the most reduced graphs versus the degree distribution
of the January 1998 instance.

Our methodology for evaluating these metrics follows:

1. For each source-period, we extracted a set of intermediate Internet instances between
the initial, most recent Internet instance, and the end point for the reduction in Jan-
uary 1998. These intermediate instances formed target vertex set cardinalities to save
partially reduced graphs at during the reduction process by the methods described in
Section 2.3.6. At each intermediate vertex count, we calculated the number of edges
contained in our graph reduced by each method to obtain an average degree. This
was then plotted against the Internet’s average degree over time. For example, in
the Routeviews 2001-1998 source-period, we chose intermediate Internet instances
equally spaced in time between May 2001 and December 1998. When our reduction
methods had reduced the May 2001 graph to the graph order, or number of vertices

46

in the vertex set, of these intermediate instances, we calculated the average degree
of our reduction-method graph. This average degree is then compared to the actual
Internet degree at that point in time.

2. In each source-period, we compute the 100 largest eigenvalues of the normalized
adjacency matrix for the reduction endpoint in January 1998, and plot these in de-
creasing order. For each reduction algorithm, we compute the eigenvalues of the
graph’s normalized adjacency matrix at the reduction endpoint - the graph of the or-
der of the January 1998 Internet instance - and plot the sorted eigenvalues against the
Internet’s.

3. For hop-plot, we calculate the cumulative fraction of vertex pairs that are within k

hops along a geodesic in the January 1998 Internet graph, where k ranges between
1 and the diameter of the Internet. We then compute the hop-plot curve for each of
the reduction methods’ most reduced graphs, i.e., those of order equivalent to the
January 1998 Internet graph. We plot these to compare similarity of shortest paths
between graphs.

4. Again, for degree distribution, we compare only the most-reduced graphs from each
reduction method against the values of the Internet graph at its chronologically earli-
est instance considered.

For each reduction method, we compute and plot the average of fifty trials using distinct
random seeds to reduce the statistical influence of outliers.

4.2 Novel Graph Reduction Algorithms
Motivated by previous work that found k-cores of AS-level Internet graphs to be self-
similar [34], we undertook development of new graph reduction algorithms that exploit
this self-similarity. The standard definition of a k-core of a graph is:

Definition Given a graph G with vertex set V (G), the k-core of G is the maximal connected
subgraph H of G such that

deg(v)≥ k, ∀v ∈V (H).

In other words, a graph k-core is a connected subgraph in which all nodes have degree at
least k; if multiple such subgraphs exist, the k-core is the largest such subgraph by number

47

of nodes. Given a graph G with n nodes, the complexity of finding the k-core of the graph
is O(n), as it can be obtained by repeatedly deleting nodes of degree less than k.

Unlike the sampling methods described in Section 2.3.6, our algorithms require a second
parameter in addition to the number of vertices to reduce a graph to; both require a target
edge number as well. This additional input parameter is both a benefit and a disadvantage;
in specifying a target edge number to attain, we ensure that the average degree of our re-
duced graph matches that of the January 1998 Internet graph. However, the edge parameter
is disadvantageous in that we now require a second parameter at all; when reducing graphs
for the purpose of emulation, we are at best providing an educated guess for the number
of edges. This could be accomplished by fitting a curve to the average degree of the Inter-
net line over time and extrapolating the data point at the desired number of ASs. Indeed,
even the CAIDA and RouteViews Internet graphs provide an incomplete picture of the AS-
level topology as well, as they suffer from the topology inference limitations discussed in
Chapter 2.

We describe our methods, termed k-core decomposition/DRVE/DRE (KDD) and k-core
decomposition/k-deletion/DRE (KKD), here.

4.2.1 KDD
The force behind the development of KDD stemmed from a desire to capture the most
topologically important, highest-degree ASs in the Internet graph, while removing less
significant nodes based on degree. While degree is an imperfect indicator of graph structure
and node importance, the highest-degree nodes most likely take part in the largest clusters
within the graph, which we considered a desirable graph property to maintain. Further, our
intuition was that relatively high-degree vertices were more likely to have existed in earlier
Internet graphs than lower-degree nodes, against which we ultimately compare our reduced
graphs. Motivated by this intuition, we examined k-cores of the Internet graphs.

Simply sampling the initial Internet graph by finding k-cores for increasing values of k,
however, resulted in several problems. First, a naïve k-core reduction is not fine-grained
in that we cannot specify an exact number of nodes to which to sample a graph – given
a number of nodes n desired in the reduced graph, it is unlikely that there exists a k for
which the number of nodes in the k-core is equal to n. For this reason, we cease reducing

48

the original graph by retaining k-cores at the smallest value of k for which the number
of nodes in the k-core is greater than the number of nodes we desire. At this juncture,
we may have to remove a non-trivial number of nodes in order to reach the desired node
count; for this purpose, we leverage DRVE, which selects a node from the node set with
a uniformly random probability, and removes an edge incident to that node. Alternative
methods could be considered for removal of the excess nodes before reaching the number
of nodes required in the reduced graph; in Section 4.2.2 we explore another.

In practice, our sampled Internet graphs had far too many edges at this point, though the
correct number of nodes required for our reduction. Ending our reduction without address-
ing the excess edges would result in a graph with an average degree several times that which
we were attempting to reach. Therefore, it was necessary to apply one further reduction to
only the edges in the graph. Because we achieve the desired node count in the second step
by DRVE, it was necessary to sample edges in a manner that did not result in disconnec-
tions of the graph and reduce the node count. To accomplish this task, we remove edges
by selecting an edge uniformly at random, and removing it only if the graph induced by
the edge removal remains connected, and repeating until the desired edge count has been
obtained.

In summary, KDD is composed of the following steps:

1. The first stage consists of computing k-cores of the initial graph for k = 1,2,3, . . .;
we stop when the (k+ 1)st-core contains fewer than the target number of nodes for
the reduced graph. Equivalently, we compute k such that the k-core of the initial
graph has more nodes than we want in our reduced graph, and the (k + 1)st-core
contains less nodes than we require in our reduced graph. We retain the smallest
k-core in terms of node count (largest k value) with more nodes than we require for
our reduction,

2. Next, we apply DRVE until we reach the number of nodes required in the reduced
graph.

3. Modified DRE; remove a randomly selected edge if it does not result in a graph
disconnection. Repeat until the required number of edges in the reduced graph has
been achieved.

49

Pseudocode for the KDD reduction method is given in Algorithm 3.

Algorithm 3 KDD graph reduction
Given an initial graph G and reduction endpoint graph T
//k-core reduction of G
k← 1
H← k-core(G)
while |V ((k+1)-core(G))|> |V (T)| do

k← k+1
H← k-core(G)

//DRVE phase to reduce node count
while |V (H)|> |V (T)| do

Apply DRVE
//DRE phase to reduce edge count
while |E(H)|> |E(T)| do

Apply modified DRE
return H

Complexity for KDD is O(|V |+ |V ||E|+ |E|). Finding k-cores is linear in the number
of nodes, as noted previously, while DRVE scales as O(|V ||E|) because it involves first
selecting a random vertex, then choosing an edge incident to that vertex. DRE scales with
O(|E|), as it entails removing a uniformly random edge from the graph.

4.2.2 KKD
In Section 4.2.1, we chose to utilize DRVE following a reduction of an original graph
instance by examining k-cores with increasing values of k. When we obtain the smallest
k-core of the initial graph that contains more nodes than the reduction endpoint graph, we
remove excess nodes via DRVE. In Section 4.2.1, we observe that this is by no means the
only method for achieving a reduction of nodes, and in this section, we present another
mechanism.

In KKD, we begin reduction of the initial graph instance G as before by obtaining progres-
sively smaller k-cores by increasing the value of k. This phase terminates when (k + 1)
would result in a core with less nodes than we require in our reduced graph.

At this point, KKD diverges from KDD. Rather than leveraging DRVE to reduce the node
count of the graph, KKD deletes nodes in the graph with degree k until the number of

50

nodes in the graph matches that of the reduced graph. The intuition for this approach was
to attempt to retain the highest-degree nodes in the graph while removing those of lower
degree, to examine an alternative method for node count reduction to DRVE used in KDD.

Finally, KKD suffers from the same excess number of edges problem we observed with
KDD, and we resolve it in the same manner as before – by removing random edges only
if their removal does not result in a disconnection of the graph. When the edge count is
reached, a reduction by KKD is complete.

The following is a brief summary of the KKD reduction algorithm, and the pseudocode for
KKD is given in Algorithm 4.

1. The first stage consists of computing k-cores of the initial graph for k = 1,2,3, . . .; we
stop when the (k+ 1)st-core contains fewer than the target number of nodes for the
reduced graph. Equivalently, we compute k such that the k-core of the initial graph
has more nodes than we want in our reduced graph, and the (k+ 1)st-core contains
less nodes than we require in our reduced graph. We retain the smallest k-core in
terms of node count (largest k value). This step is identical for KDD and KKD.

2. Next, we proceed by randomly removing nodes whose degree is exactly k from the
graph obtained from the prior k-core selection process. Nodes are removed until the
target node number is reached.

3. Finally, the last stage consists of removing the excess edges to reach the target edge
number. In order to preserve the required number of nodes we reached in the second
stage, only edges whose removal does not disconnect the graph are removed. Edge
removal is repeated until the desired edge count is reached. This stage is performed
in KDD as well.

As stated earlier, the complexity for finding k-cores of a graph is linear in the number
of nodes. The deletion of nodes with deg = k is linear in the number of nodes as well,
and the modifiedDRE phase scales with the number of edges in the graph. Therefore, the
complexity of KKD is O(2|V |+ |E|).

51

Algorithm 4 KKD graph reduction
Given an initial graph G and reduction endpoint graph T
//k-core reduction of G
k← 1
H← k-core(G)
while |V ((k+1)-core(G))|> |V (T)| do

k← k+1
H← k-core(G)

//deg = k deletion phase to reduce node count
while |V (H)|> |V (T)| do

Randomly select n ∈V (H), where degH(n) = k
Remove n and its incident edges from H

//DRE phase to reduce edge count
while |E(H)|> |E(T)| do

Apply modified DRE
return H

In the next chapter, we analyze our topology inference results obtained by ERIK, our Inter-
net graph reduction survey, and join the two by emulating a reduced Internet graph using
ERIK in the next chapter.

52

CHAPTER 5:
Results and Analysis

In this chapter we first describe some results obtained from running the state-of-the-art
Internet topology mapping software tool, scamper, on emulated topologies using ERIK.
We then detail our AS-level Internet graph reduction results, including the performance
of the novel techniques introduced in Section 4.2. Finally, we combine these these two
objectives in an analysis of topology inference using ERIK on a graph reduced by the
DHYB-0.7 reduction method introduced in Section 2.3.6.

5.1 Analysis of ERIK Topologies
Although ERIK is capable of and was designed to generate, emulate, and exhaustively
probe topologies, we focus here on a single network topology. We do this in order to
provide insight into the types of results can be obtained from ERIK, and the analyses we
can undertake using those results. In this section, we specifically look at the fraction of
network discovered via topology inference testing, and examine particular ASs that exhibit
pathologies during inference testing to determine their root causes.

Our first detailed analysis of a network generated and emulated by ERIK is a 300-AS
topology, in which each AS is modeled by a single Cisco 7200 series router. This topology
is composed of 15 Tier 1, 45 Tier 2, and 240 customer ASs, connected by 676 edges.
Following initialization and loading of the emulated routers, inference probing begins using
the methodology described in Chapter 3. In all three rounds of probing, we probe the
emulated network exhaustively from a single vantage point at a time, using scamper to
probe to an IP address associated with every AS.

In the first round of probing at each vantage point, every AS is discovered, though the edges
in the inferred topologies vary due to BGP policy. For example, a peering link connecting
two Tier 2 ASs is not discovered in the inference using a Tier 1 AS as the vantage point.
Discovery of all ASs in the first probing round is by design, and implemented in our BGP
policy rules described in Section 3.2.1 together with our tiered model in Section 2.3.5.

53

In the second round of probing from each vantage point, in which 10 links between ASs
fail, our inferences exhibit a wide range of ASs that go undiscovered, from 3 to 272. For
example, using Autonomous System Number (ASN) 11 as our vantage point in the link
failures round, our inference probing did not discover 10 Tier 2 ASs and 118 customer
ASs, for a total of 128 ASs missed. This is in marked contrast to the first inference probing
round, in which using ASN 11 as the vantage point discovered all 300 ASs. In contrast,
ASN 17, a Tier 2 AS, discovers all ASs in the first probing round, and all but three of the
ASs in the topology during the second round of probing, a difference of 125.

Figures 5.1 and 5.2 display Cumulative Distribution Functions (CDFs) of the fraction of
ASs that do not return an ICMP response when probed by scamper. In turn, when the
scamper output files are parsed into IP-layer paths, these ASs are missing from the inferred
graph. Figure 5.1 graphically depicts the churn caused by the link failures – 50% of the
nodes in the topology do not discover approximately 20% of the destinations during the
failures round compared with the original probing round. In Figure 5.2, the CDF is sepa-
rated by tier of the vantage point AS used for the topology probing. The long tail in both
plots indicates that a small fraction of inferences from particular vantage points miss a large
portion of the topology. For example, using ASN 22 during our testing leads to 272 missed
ASs, over 90% of the ASs in the topology.

In summary, we make several observations about the second round of probing, during
which link failures occurred:

• Every ASs, when used as a vantage point, does not discover at least some of the target
ASs.
• When a Tier 1 AS is used as a vantage point, it tends to miss much less of the

topology than Tier 2 or customer ASs. This is likely due to a greater diversity of
paths available to Tier 1 ASs than to the other tiers.
• A small fraction of Tier 1, Tier 2, and customer ASs miss nearly all of the topology

when used as a vantage point. This will be explored in more depth in Section 5.1.1.

In the final round of probing, after a period of time has expired to allow the routers within
the topology to receive updated BGP routes to refresh their RIBs, we see far less variation
in the number of ASs missed in the scamper probing. With the exception of three ASNs,

54

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Missed Destination ASNs

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
V

P
 A

S
N

s
Missed AS CDF Before-During Failures

Figure 5.1: CDF of ASNs by fraction of missed
ASNs during second probing round with failures

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Missed Destination ASNs

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
V

P
 A

S
N

s

Tier1

Tier2

Customer

Missed AS CDF by VP Tiers Before-During Failures

Figure 5.2: CDF of ASNs by fraction of missed
ASNs during second probing round with failures,
separated by vantage point AS tier

using nearly every other AS as a vantage point finds all but three ASs during probing. Our
previous example that missed 128 ASs in the second round, ASN 11, misses only three
ASs in this round. Because we wait a sufficient amount of time to allow the topology to
reconverge following link failures, these 297 AS vantage points that miss three ASs in the
final probing round do so because BGP policy prevents traffic from that vantage point to be
routed to the destination; we term this effect a policy disconnection and discuss further in
Section 5.1.2.

Figures 5.3 and 5.4 display the results of topology inference after the links have failed
and the topology has been given an allotted period of time to reconverge its routing tables.
Figure 5.3 shows 99% of the ASs used as vantage points discover all but 1% of the topology.
The long tail indicates the other 1% of monitor ASNs missing over 90% of the ASs in the
topology. Figure 5.4 displays the CDF separated by tier. In Figure 5.4, we observe that all
Tier 1 nodes discover nearly all of the topology; every one of the 15 Tier 1 nodes finds 297
ASs during the third probing round. The two ASs that miss the majority of the topology
come from the Tier 2 nodes, with a customer node failing to infer most of the topology as
well.

55

10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

Fraction of Missed Destination ASNs

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
V

P
 A

S
N

s
Missed AS CDF Before-After Failures

Figure 5.3: CDF of vantage point ASNs by frac-
tion of missed ASNs during the final probing
round with failures

10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

Fraction of Missed Destination ASNs

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
V

P
 A

S
N

s

Tier1

Tier2

Customer

Missed AS CDF by VP Tier Before-After Failures

Figure 5.4: CDF of vantage point ASNs by frac-
tion of missed ASNs during the final probing
round, separated by vantage point AS tier

Next, we more closely examine ASN 11 as an exemplar of the reason for the significant
change in number of ASs discovered between the first, second, and final inference rounds.

5.1.1 ASN 11 — A Closer Look
As noted previously, ASN 11 is a Tier 1 node within the topology, with a degree of 17 in
the network. Further, this AS is central in the topology – seven of the ten links connecting
ASs with the highest edge betweenness centrality (our criteria for selecting link failures)
are incident to ASN 11. All vantage points, including ASN 11, discover every AS during
the initial inference round, prior to link failures. In the second round, however, seven of
ASN 11’s 17 links fail. This induces a significant amount of routing table churn that must be
resolved before ASN 11 can continue to route traffic to many of the destination IP addresses
probed by scamper. Further, because ASN 11 is a Tier 1 AS in our topology, it must
forward BGP route updates to the 10 ASs that remain connected following its discovery of
the failed links. ASN 11 does not detect these link failures simultaneously, which increases
the time required to propagate route updates throughout the network and delays routing
convergence. During this period, probes to 128 ASs fail to reach their destinations due to
routing table churn.

56

In the final topology inference round, ASN 11 discovers all but three of the ASs in the
topology, a change of 125 ASs from the second probing round during which links failed.
The 10 remaining links provide a route to all but three of the remaining ASs in the topology.
The three ASs that remain missing in the final trace from ASN 11 are discussed further in
the next section.

5.1.2 Policy Disconnections
An overwhelming majority of ASs in our topologies of §5.1 miss three ASs during the
final inference probing; furthermore, these are the same three ASs missed from each van-
tage point. This is due to the effects of BGP policy, which is the focus of this section –
link failures causing correctly implemented BGP policy rules used to enforce economic
relationships to inadvertently disconnect ASs from the wider network.

ASNs 22 and 25, Tier 2 ASs, are both single-homed to different Tier 1 backbone ASs. In
addition, ASNs 22 and 25 peer with each other. As part of the emulated scenario, the link
from ASN 22 to its Tier 1 provider fails during the second round of inference probing.

Recall that an ASs advertises its customer routes over a peer link, but not any provider
routes – this prevents the peering link from becoming free transit (to the upstream Internet)
for the remote peer. Similarly, an ASs will not advertise routes learned from a peering link
to its own providers. These BGP peering behaviors represent standard policy-based routing
that is common on the Internet.

After the link failure, ASN 22 still has connectivity to ASN 25 over the peering link. As
ASN 25 is connected its Tier 1 provider, the network graph remains connected. However,
the graph is policy disconnected. No traffic from the Tier 1 backbone can reach ASNs
22 or 89, as depicted in Figure 5.5. Similarly, no single-homed customers of ASN 22 are
reachable from any point in the network other than ASN 25.

The result of this situation is three ASs that are in effect disconnected from the remainder
of the topology, despite the topology remaining connected when viewed as an undirected
graph.

A graphical depiction of the topology as inferred in the third round of probing (after the
topology has converged) at ASN 89, which has only ASN 22 as a Tier 2 provider, is shown

57

Tier 1

Tier 2

Customers

Peering
Link 22

89

Figure 5.5: Routes to ASN 22 are not advertised to the wider network from its Tier 2 peer;
therefore, it and its customers are not discovered when probed from ASs such as the Tier 1 at
the top of the figure. ASs discoverable from this Tier 1 vantage point are shown in green, while
those unable to be probed are colored red.

in Figure 5.6. ASN 22 is shown as the large node connected to ASN 89, while the other
large red node represents ASN 22’s Tier 2 peer, ASN 25. The only ASs discovered in the
final inference from ASN 89 are customers of one of these two Tier 2 peers.

5.2 Internet Graph Reduction Results
In this section, we examine the results of four distinct graph reductions:

• RouteViews BGP RIB topologies reduced from 2001 instances to 1998-sized graphs
(Section 5.2.1).
• RouteViews BGP RIB topologies reduced from 2014 instances to 1998-sized graphs

(Section 5.2.2).
• CAIDA BGP topologies reduced from 2001 instances to 1998-sized graphs (Sec-

tion 5.2.3).
• CAIDA BGP topologies reduced from 2014 instances to 1998-sized graphs (Sec-

tion 5.2.4).

In comparisons of reduction methods to the Internet in spectral analysis, hop-plot, and
degree distribution, including the summary in Table 5.5, we use the mean absolute error

(MAE) to rank reduction methods. Mean absolute error is defined as

58

89

Figure 5.6: The inferred topology using AS 89 as a vantage point in the third round of probing.

MAE =
1
n ∑

i
|mi− Ii|

where n is the total number of points compared, mi is the reduction method data point, and
Ii is the Internet data point value.

5.2.1 RouteViews Data Set: 2001–1998
We first aim to replicate the results of the original graph reduction experiments in [27].
This is a useful endeavor, as it demonstrates the reproducibility of the Krishnamurthy et al.

results, which have not been reexamined in the literature since publication in 2007. Further,
though we made contact with one of the authors, we were unable to obtain the source code
used to produce the results of [27] – we make our source code available in order to aid
future research in Internet graph sampling work. To begin, we compile a set inferred of
Internet instances, beginning with the 7 May 2001 instance, and ending with the instance
observed on 24 January 1998 from the RouteViews archive. We select these dates to mirror
the dates selected by the original Krishnamurthy et al. study. Finally, RouteViews data is

59

0 10 20 30 40 50 60 70
Percent Reduced

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

A
v
e
ra

g
e
 D

e
g
re

e

CRE

CRVE

DRE

DRV

DRVE

EBFS

EDFS

Internet

Method Comparison - Routeviews 01-98

Figure 5.7: Average degree performance of non-
DHYB methods – RouteViews 2001–1998

0 10 20 30 40 50 60 70
Percent Reduced

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

A
v
e
ra

g
e
 D

e
g
re

e

DHYB1

DHYB2

DHYB3

DHYB4

DHYB5

DHYB6

DHYB7

DHYB8

DHYB9

Internet

Hybrid Method Comparison - Routeviews 01-98

Figure 5.8: Average degree performance of
DHYB methods – RouteViews 2001–1998

20 40 60 80 100
Order

0.75

0.80

0.85

0.90

0.95

1.00

E
ig

e
n
v
a
lu

e

CRE

CRVE

DHYB1

DHYB2

DHYB3

DHYB4

DHYB5

DHYB6

DHYB7

DHYB8

DHYB9

DRE

DRV

DRVE

EBFS

EDFS

Internet

Spectral Analysis - Routeviews 01-98

Figure 5.9: Spectra of reduction methods versus
24 January 1998 Internet graph – RouteViews
2001–1998

1 2 3 4 5 6 7 8 9 10
Hops

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

o
f

v
e
rt

e
x
 p

a
ir

s

CRE

CRVE

DHYB1

DHYB2

DHYB3

DHYB4

DHYB5

DHYB6

DHYB7

DHYB8

DHYB9

DRE

DRV

DRVE

EBFS

EDFS

Internet

Hop-plot - Routeviews 01-98

Figure 5.10: Hop plot of reduction methods ver-
sus 24 January 1998 Internet graph – Route-
Views 2001–1998

released in RIB snapshots in show ip route format; these files must be parsed to create
an AS-level Internet graph.

We note here that there is a choice to be made in how to measure the success or accuracy
with which a reduced graph achieves the characteristics we find desirable. First, we can
compare the reduced graph properties against the original graph instance – thus quantifying
how well the reduced graph represents the original with fewer nodes. The second method is

60

100 101 102 103 104

Degree

100

101

102

103

104

R
a
n
k

CRE

CRVE

DHYB1

DHYB2

DHYB3

DHYB4

DHYB5

DHYB6

DHYB7

DHYB8

DHYB9

DRE

DRV

DRVE

EBFS

EDFS

Internet

Degree Histogram - Routeviews 01-98

Figure 5.11: Degree histogram – RouteViews
2001–1998

to compare the reduced graph against an Internet graph of the same order, thereby judging
how well the reduced graph represents the “reverse-evolution” of the Internet [27]. We, as
with Krishnamurthy et al., choose the second method, in which we compare our reduced
graphs to an Internet instance with an equivalent AS count.

In our work, the 24 January 1998 graph serves as a target for each reduction to reach in
terms of graph order. Further, because this graph is a known Internet instance, it also
functions as a baseline to compare our reductions against. Pursuant to our goal of validat-
ing [27], we adopt their methodology of performing incremental reductions between initial
Internet instance and the endpoint for the reduction. This allows us to examine the perfor-
mance of the reduction algorithms as a function of total reduction percentage and permits
us to find points at which algorithms diverge from the reverse-growth of the Internet.

Krishnamurthy et al. do not state which intermediate points were chosen in their study; we
therefore select our own points interspersed between the 7 May 2001 and 24 January 1998
graphs. Our choice of intermediate instances, while arbitrary, does not influence the end
results of our study because overall performance of the reduction algorithms is based on
performance at the reduction endpoint of 24 January 1998.

For intermediate points, we choose instances on the first of December, June, and March
between the start and end points when possible, or as close to the first as is available. When

61

this data is compiled, a 25% difference in nodes between the initial May 2001 instance
and the first intermediate point was noticed; for this reason, we also include points from
January, February, March, and April 2001 for a more uniform sampling of inferred Internet
data. A summary is given in Table 5.1.

Graph Instance # Nodes # Edges Avg. Deg. % Reduction
5 May 01 10966 22536 4.11 0
19 Apr 01 10851 22736 4.19 1.05
1 Mar 01 10359 20757 4.01 5.54
1 Feb 01 8765 17694 4.04 20.07
1 Jan 01 8062 16515 4.10 26.48
1 Jun 00 7696 15362 3.99 29.82
1 Mar 00 6935 14100 4.07 36.76
4 Dec 99 6293 12186 3.87 42.61
1 Jun 99 5167 9891 3.83 52.88
1 Mar 99 4736 8882 3.75 56.81
1 Jun 98 3695 6714 3.63 66.30
1 Mar 98 3436 6114 3.56 68.67
24 Jan 98 3291 5784 3.52 69.99

Table 5.1: A summary of the RouteViews inferred graphs used for the 2001–1998 reduction. The
graph reduced by sampling algorithms is the 5 May 2001 graph; the reduction ends when the
reduced graph contains approximately 3291 nodes, the number of ASs in the 24 Jan 1998 graph.

Using the 7 May 2001 inferred topology as our starting point, we proceed to reduce by
all methods described in Section 2.3.6, taking averages of 50 different random seeds in
all metrics examined due to the non-deterministic nature of all reduction methods. The
number of random seeds averaged is chosen to match the work of Krishnamurthy et al..
When our reductions have reached a graph of order equivalent to one of our intermediate
Internet instances, we capture this graph before continuing on to reduce it to a graph of
approximately 3,291 nodes.

We first examine the average degree of the reduction algorithms as a function of percent of
the initial Internet instance reduced. This is plotted against the Internet average degree as a
function of the percent size difference between the intermediate points, and the 7 May 2001
graph. Because the percent difference of the Internet graphs is monotonically increasing
with the time difference from 7 May 2001 for our intermediate points, the Internet line is

62

can be viewed as the average degree over time, with the leftmost point representing the
initial Internet instance and rightmost the reduction endpoint. In Figure 5.7, we observe
results that are qualitatively the same as those observed in [27]. None of the non-DHYB
methods perform particularly well at the end reduction point, though DRVE visually tracks
the Internet line somewhat closely through 50% reduction in nodes, and is the closest to the
average degree of the Internet at the reduction endpoint. At a node count equivalent to the
24 January 1998 Internet instance, DRVE has an average degree of 4.25, compared with
the Internet average degree of 3.52.

When we examine the performance of the DHYB methods on this data set, we observe a
slight divergence from the conclusions drawn by the authors of [27]. While Krishnamurthy
et al. find that the performance of DHYB-0.8 most closely matches the Internet’s average
degree at 24 January 1998 instance, we find that DHYB-0.7 is even closer. Our results
find DHYB-0.8 to have an average degree of 3.73, compared to DHYB-0.7 with 3.47.
The average degree of the 24 January 1998 instance is 3.52. Despite our disagreement in
terms of best reduction method for average degree, the difference between DHYB-0.7 and
DHYB-0.8 is small, and may be attributable to variation due to the probabilistic nature of
the reduction algorithms; however, Krishnamurthy et al. do not list DHYB-0.7 at any point
in their results, making a determination difficult, if not impossible. The DHYB methods
plotted with the Internet’s average degree line is shown in Figure 5.8.

Next, we turn to an analysis of the spectra of the 24 January 1998 Internet instance, and
compare these to the average of the spectral behavior of our reduction methods of equiva-
lent order. As in [27], we examine the 100 largest eigenvalues of the normalized adjacency
matrix of these graphs. These spectra provide an insight into the amount of clustering that
occurs within these networks, as described in [35].

In Figure 5.9, we see that our average of DHYB-0.8 reduced graphs performs well through
eigenvalues of order 25-75, with some divergence from the Internet’s spectra among eigen-
values of order 5-25 and the higher ordered eigenvalues above 75. DHYB-0.8 has the
lowest MAE of any of the reduction algorithms; as such, we declare it the winner. While
finding DHYB-0.8 to be the best reduction method in terms of spectral behavior matches
the findings of [27], we see several differences between the analyses. First, a cursory look
at the data presented in the prior work shows our reduction methods plots to be far smoother

63

than those in [27]. Second, prior work shows DHYB-0.8-reduced eigenvalues to be consis-
tently higher than the Internet’s, while our work shows them to be frequently lower. Based
on an analysis of individual data points of our work, we believe that the authors of [27] have
hand picked a particular reduction seed, rather than plotting the average all of the reduced
graphs for a particular method.

Our next performance evaluation is hop-plot, which is defined as the CDF of the number
of pairs of nodes in a graph reachable within k or fewer “hops” along a geodesic. As with
spectral analysis, we look only at the average of the reduction methods at the most reduced
point and compare to the Internet graph’s earliest point, 24 January 1998.

Several methods perform well as measured by the hop-plot metric, as shown in Figure 5.10.
DHYB-0.7 performs best at k = 3; differing by only .5% from the Internet’s hop-plot line.
At k = 4, we find that DHYB-0.6 offers the best performance, with 75.7% of reachable
node-pairs compared to the Internet instance’s 77.7%. DHYB-0.7 is again the best reduc-
tion method at k = 5, at which point 94.6% of node-pairs are reachable contrasted with
the Internet graph’s 94.8%. Prior work states that DHYB-0.8 is the best reduction method
in terms of hop-plot; we find that DHYB-0.7 performs the best, as it has the lowest MAE
of any reduction method. As with average degree, our difference in best method com-
pared with Krishnamurthy et al. could be due to the probabilistic nature of the reduction
algorithms; however, they do not mention DHYB-0.7 in their work.

Finally, we examine the degree distribution of the Internet inferred on 24 January 1998 as
compared to the average degree distributions of the reduced graphs. This data appears in
Figure 5.11.

While it is difficult to declare an absolute “winner” in terms of replicating the degree dis-
tribution of the Internet, we note here that several methods perform well at various points.
First, CRVE comes the closest to matching the degree of the highest degree vertex of the In-
ternet plot. It performs poorly throughout the rest of the vertices, however, producing con-
sistently higher degrees than the Internet plot. Of the other methods, DHYB-0.5,0.6,0.7
all match the Internet degree distribution closely through the 10-100-degree vertex range.
By MAE, DHYB-0.7 is the reduction method that most closely follows the Internet curve.

64

Because this metric is not studied in [27], we have no baseline against which to compare
our results.

In summary, our results largely validate our implementation of our reduction algorithms.
The shapes of our plots are effectively the same as those in [27], and the results, while not
identical, are within the bounds of what can be considered reasonable given the randomness
inherent in the reduction methods. Our average degree and hop-plot best methods were
DHYB-0.7, compared to DHYB-0.8 found by Krishnamurthy et al. and we agree that
DHYB-0.8 is the method that most closely matches the 24 January 1999 Internet spectra.
In this source-period, we contribute the addition of the degree distribution analysis, and
find that the best method agrees with our other results.

5.2.2 RouteViews Data Set: 2014–1998
Our novel work begins with considering RouteViews BGP RIB data over a longer period
of time. In this source-period, our most recent Internet instance is from 1 December 2014 -
an inferred AS-level graph of order 49,185 and edge-set cardinality 107,517, for an average
degree of 4.37. Our reduction end point is the order of the Internet instance inferred on 1
January 1998, and intermediate instances are evenly distributed on the first of June and first
of December for all years available. Our reduction end point is a graph consisting of 3,211
vertices and 5,611 edges, which is a node reduction of approximately 93.5%. This is a much
larger reduction by absolute number of nodes and percentage than the Krishnamurthy et al.

work; the original source-period represents an over 8,000 node reduction, or about 70%.
The sources of our data for this source-period are summarized in Table 5.2.

We consider the same metrics over this source-period as we did in our reproduction of the
original work.

In this second source-period, plotted in 5.12, we again see that none of the non-DHYB
methods track the Internet’s average degree plot well, and that none come close to arriving
at the most reduced instance’s average degree of approximately 3.6. The best performing
non-DHYB method, DRV, has an average degree difference of approximately 1 from the
Internet at the most reduced point; DRVE, the closest non-DHYB method in the Krishna-
murthy et al. source-period, has an average degree of 7.92 – more than double that of the
Internet at the most reduced point. DRVE tracks the Internet curve the most closely until

65

0 20 40 60 80
Percent Reduced

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0
A

v
e
ra

g
e
 D

e
g
re

e

CRE

CRVE

DRE

DRV

DRVE

EBFS

EDFS

Internet

Method Comparison - Routeviews 14-98

Figure 5.12: Average degree performance of
non-DHYB methods – RouteViews 2014–1998

0 20 40 60 80
Percent Reduced

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

A
v
e
ra

g
e
 D

e
g
re

e

DHYB1

DHYB2

DHYB3

DHYB4

DHYB5

DHYB6

DHYB7

DHYB8

DHYB9

Internet

Hybrid Method Comparison - Routeviews 14-98

Figure 5.13: Average degree performance of
DHYB methods – RouteViews 2014–1998

20 40 60 80 100
Order

0.75

0.80

0.85

0.90

0.95

1.00

E
ig

e
n
v
a
lu

e

CRE

CRVE

DHYB1

DHYB2

DHYB3

DHYB5

DHYB6

DHYB7

DHYB8

DHYB9

DRE

DRV

DRVE

EBFS

EDFS

Internet

Spectral Analysis - Routeviews 14-98

Figure 5.14: Spectra of reduction methods ver-
sus 1 January 1998 Internet graph – RouteViews
2014–1998

approximately a 70% reduction, at which point it reaches an inflection point and increases
average degree at an increasing rate. This behavior was not observed in the first source-
period, but the reduction endpoint was at approximately the same point at which DRVE
diverged from the Internet in that reduction.

Of the DHYB methods, we see the best performance at the reduction endpoint from DHYB-
0.6. The average of the DHYB-0.6 reduced average degrees is 3.56, which aligns closely

66

1 2 3 4 5 6 7 8 9 10
Hops

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
o
f

v
e
rt

e
x
 p

a
ir

s

CRE

CRVE

DHYB1

DHYB2

DHYB3

DHYB4

DHYB5

DHYB6

DHYB7

DHYB8

DHYB9

DRE

DRV

DRVE

EBFS

EDFS

Internet

Hop-plot - Routeviews 14-98

Figure 5.15: Hop-plot of reduction methods ver-
sus 1 January 1998 Internet graph – RouteViews
2014–1998

100 101 102 103 104

Degree

100

101

102

103

104

R
a
n
k

CRE

CRVE

DHYB1

DHYB2

DHYB3

DHYB4

DHYB5

DHYB6

DHYB7

DHYB8

DHYB9

DRE

DRV

DRVE

EBFS

EDFS

Internet

Degree Histogram - Routeviews 14-98

Figure 5.16: Degree histogram of reduction
methods versus 1 January 1998 Internet graph
– RouteViews 2014–1998

with the average degree of the 1 January 1998 instance, 3.49. None of the curves is a good
fit overall, however. DHYB-0.7, our best performer in Section 5.2.1, differs in average
degree by approximately 0.84 from the Internet at our endpoint. We note, however, that
DHYB-0.8 and DHYB-0.7 track the Internet curve well through 50-70%, which is consis-
tent with the results in the original source-period studied in [27]. The results of the DHYB
reduction methods are shown in Figure 5.13.

Turning now to spectral behavior, we observe again that DHYB-0.6 outperforms all metrics
in replicating the Internet’s spectra, evaluated by MAE. DHYB-0.8, our winner in the
original 2001–1998 source-period, comes in fifth by MAE, after DHYB-0.7, EDFS, and
DHYB-0.5. The spectral plot for this data set is seen in Figure 5.14.

Next, we compare the hop-plot performance of the reduction methods. While, as in section
5.2.1, we see that both DHYB-0.6 and DHYB do well, when k = 4, we observe the perfor-
mance of EDFS most closely matching the percentage of reachable pairs within 4 hops in
the Internet instance. Indeed, EDFS is the closest to the Internet line by MAE, followed by
DHYB-0.7, -0.6 and -0.8. DHYB-0.7 was the best method in our evaluation of hop-plot,
while DHYB-0.8 was the winner in Krishnamurthy et al.’s study. Figure 5.15 displays our
results.

67

Graph Instance # Nodes # Edges Avg. Deg. % Reduction Graph Instance # Nodes # Edges Avg Deg. % Reduction
1 Dec 14 49185 107517 4.37 0 1 Dec 05 21246 45343 4.27 56.80
1 Jun 14 47449 99904 4.21 3.53 1 Jun 05 19984 42688 4.27 59.37
1 Dec 13 45974 96192 4.18 6.53 1 Dec 04 18769 40325 4.30 61.84
1 Jun 13 44517 93062 4.18 9.49 1 Jun 04 17647 38046 4.31 64.12
1 Dec 12 43011 88961 4.14 12.55 1 Dec 03 16439 35387 4.31 66.58
1 Jun 12 41457 85745 4.14 15.71 1 Jun 03 15450 34744 4.50 68.59
1 Dec 11 39693 83204 4.19 19.30 1 Dec 02 14397 29665 4.12 70.73
1 Jun 11 37996 79269 4.17 22.75 1 Jun 02 13361 27747 4.15 72.84
1 Dec 10 36289 75985 4.19 26.22 1 Dec 01 12396 25325 4.09 74.80
1 Jun 10 34406 72832 4.23 30.05 1 Jun 01 11219 23682 4.22 77.19
1 Dec 09 33100 70771 4.28 32.70 1 Dec 00 8260 17000 4.12 83.21
1 Jun 09 31655 66096 4.18 35.64 1 Jun 00 7696 15362 3.99 84.35
1 Dec 08 30492 62609 4.11 38.01 1 Oct 99 5854 11311 3.86 88.10
1 Jun 08 28890 59198 4.10 41.26 1 Jun 99 5167 9891 3.83 89.49
1 Dec 07 27064 55456 4.10 44.98 1 Dec 98 4369 8020 3.67 91.12
1 Jun 07 25591 52554 4.11 47.97 1 Jun 98 3695 6714 3.63 92.49
1 Dec 06 24051 49393 4.11 51.10 1 Jan 98 3211 5611 3.49 93.47
1 Jun 06 22607 47858 4.23 54.04

Table 5.2: A summary of the RouteViews inferred graphs used for the 2014–1998 reduction.
The graph reduced by sampling algorithms is the 1 Dec 14 graph; the reduction ends when the
reduced graph contains approximately 3211 nodes, the number of ASs in the 1 Jan 1998 graph.

Lastly, for the more modern RouteViews data set, we again examine the results of the
degree distributions produced by the various graph reduction methods in Figure 5.16. Of
interest in this plot is that again CRVE performs well only at the highest degree vertex;
similar to our results in Section 5.2.1, we again see that several DHYB reductions perform
well throughout the distribution of vertices between 10 and 100. In this case, DHYB-0.4,-
0.5, and -0.6 most closely follow the Internet degree distribution. By MAE, DHYB-0.5 is
the winner, with DHYB-0.6 and DHYB-0.4 close behind.

5.2.3 CAIDA Data Set: 2001–1998
In this section, we turn our attention to the data collected by CAIDA over the same time-
frame as the initial study done by the authors of [27]. This is the first source-period we
analyze that was obtained using CAIDA-derived data, and is an AS-level Internet topology
that was obtained in a distinct manner from RouteViews. CAIDA compiled data was not
studied in [27]. Our initial instance comes from 1 May 2001, the closest data point com-
piled by CAIDA to the original analysis in Section 5.2.1. This graph consists of 11,045
nodes and 24,485 edges, for an average degree of approximately 4.43. It should be noted
that while the order of the graph is similar to that obtained from the RouteViews data, the
edge-set cardinality of the graph is larger by about 2000 edges. The reduction end point for
this data set is the inferred Internet instance from 1 January 1998. The reduction end point

68

0 10 20 30 40 50 60 70
Percent Reduced

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

A
v
e
ra

g
e
 D

e
g
re

e

CRE

CRVE

DRE

DRV

DRVE

EBFS

EDFS

Internet

Method Comparison - CAIDA 01-98

Figure 5.17: Average degree performance of
non-DHYB methods – CAIDA 2001–1998

0 10 20 30 40 50 60 70
Percent Reduced

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

A
v
e
ra

g
e
 D

e
g
re

e

DHYB1

DHYB2

DHYB3

DHYB4

DHYB5

DHYB6

DHYB7

DHYB8

DHYB9

Internet

Hybrid Method Comparison - CAIDA 01-98

Figure 5.18: Average degree performance of
DHYB methods – CAIDA 2001–1998

20 40 60 80 100
Order

0.75

0.80

0.85

0.90

0.95

1.00

E
ig

e
n
v
a
lu

e

CRE

CRVE

DHYB1

DHYB2

DHYB3

DHYB4

DHYB5

DHYB6

DHYB7

DHYB8

DHYB9

DRE

DRV

DRVE

EBFS

EDFS

Internet

Spectral Analysis - CAIDA 01-98

Figure 5.19: Spectra of reduction methods ver-
sus 1 January 1998 Internet graph – CAIDA
2001–1998

1 2 3 4 5 6 7 8 9 10
Hops

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

o
f

v
e
rt

e
x
 p

a
ir

s

CRE

CRVE

DHYB1

DHYB2

DHYB3

DHYB4

DHYB5

DHYB6

DHYB7

DHYB8

DHYB9

DRE

DRV

DRVE

Internet

Hop-plot - CAIDA 01-98

Figure 5.20: Hop plot of reduction methods ver-
sus 1 January 1998 Internet graph – CAIDA
2001–1998

graph contains 3,233 nodes and 5,773 edges, with an average degree of about 3.57. As in
the prior data sets, we chose intermediate data points from the first of June and December
between the start and end of our reduction time frame if possible; if not, an inferred graph
close to those dates was selected. Table 5.3 provides a summary of the CAIDA inferred
graphs that were used.

69

100 101 102 103 104

Degree

100

101

102

103

104

R
a
n
k

CRE

CRVE

DHYB1

DHYB2

DHYB3

DHYB4

DHYB5

DHYB6

DHYB7

DHYB8

DHYB9

DRE

DRV

DRVE

EBFS

EDFS

Internet

Degree Histogram - CAIDA 01-98

Figure 5.21: Degree histogram of reduction
methods versus 1 January 1998 Internet graph
– CAIDA 2001–1998

Graph Instance # Nodes # Edges Avg. Deg. % Reduction
1 May 01 11045 24484 4.43 0
1 Feb 01 10134 22037 4.35 8.25
1 Dec 00 9581 21312 4.45 13.25
1 Jun 00 7807 17024 4.36 29.32
1 Jan 00 6518 12741 3.91 40.99
1 Jun 99 5206 10123 3.89 52.87
1 Dec 98 4404 8242 3.74 60.13
1 Jun 98 3732 6903 3.70 66.21
1 Jan 98 3233 5773 3.57 70.73

Table 5.3: A summary of the CAIDA inferred graphs used for the 2001–1998 reduction. The
graph reduced by sampling algorithms is the 1 May 01 graph; the reduction ends when the
reduced graph contains approximately 3233 nodes, the number of ASs in the 1 Jan 1998 graph.

In this source-period, our average degree experiments show that none of the non-DHYB
reduction methods perform well; none approximate the Internet graph from January 1998
well. DRV is the best non-DHYB reduction algorithm for this source-period – its average
degree at the most reduced point differs from the Internet graph by about 0.5. DRVE, the
winner of the non-DHYB methods in the original source-period, comes in second, differing
by about 1.3. As with prior source-periods, we note that DRVE tracks the Internet plot fairly
well through 30% reduction, however. See Figure 5.17.

70

Of the DHYB reduction methods, we find that DHYB-0.6 performs the best at the most
reduced point. Again, none of the curves fit the Internet’s plot throughout the whole time
period considered, however. Figure 5.18 displays these findings. This is similar to our
results in the original RouteViews data set in Section 5.2.1, in which we found DHYB-
0.7 to be the winner of the average degree comparison, and the same as the more modern
RouteViews data set in Section 5.2.2.

When evaluating spectral behavior, DHYB-0.7 is the clear winner by MAE. This reduction
method tracks the sorted eigenvalues extremely well throughout the majority of the top 100
considered. This is the first data set in which DHYB-0.7 has performed the best in this
metric, but it is between the DHYB-0.8 and DHYB-0.6 found in Sections 5.2.1 and 5.2.2,
respectively. Our data is displayed in Figure 5.19.

Our analysis of hop-plot data shows several reduction methods track with the Internet data
at various k−hop distances. At k = 2, DRV, DHYB-0.8 and DHYB-0.9 all fall within 6%
of the Internet’s data point of 0.095. As k increases, DHYB-0.6 and DHYB-0.7 bound the
Internet line, with DHYB-0.6 offering marginally better performance. By MAE, DHYB-
0.7 performs the best, as in our spectral analysis for this source-period. This can be seen in
Figure 5.20.

Finally, we examine the Internet’s degree distribution at the 1 January 1998 reduction end
point versus the averaged degree distributions of our reduced graphs. For the third source-
period, CRVE most closely matches the highest degree node in the Internet instance, though
it tracks the rest of the Internet line poorly. Further, as in Section 5.2.4, we find that DHYB-
0.4,-0.5 and -0.6 track the Internet’s degree distribution most closely through the vertices of
degree 10-100. By the MAE metric, DHYB-0.5 is the best performer overall. Our results
are displayed in Figure 5.21.

5.2.4 CAIDA Data Set: 2014–1998
Lastly, we examine the CAIDA data set from 1 December 2014 to 1 January 1998. Our
largest Internet instance is a graph comprised of 46,177 nodes, with 177,391 edges for
an average degree of 7.68. This average degree is the first major difference between this
data set and those studied earlier in this section; it is far higher than the roughly 3.5 of the
other data sets. This graph is then reduced, using our reduction methods, to graphs that

71

Graph Instance # Nodes # Edges Avg. Deg. % Reduction Graph Instance # Nodes # Edges Avg Deg. % Reduction
1 Dec 14 46177 177391 7.68 0 1 Dec 05 21298 55351 5.20 53.88
1 Jun 14 45767 167156 7.30 0.89 1 Jun 05 20106 51327 5.11 56.46
1 Dec 13 45427 159049 7.00 1.62 1 Dec 04 18827 48532 5.16 59.23
1 Jun 13 44611 151434 6.79 3.39 1 Jun 04 17662 44603 5.05 61.75
1 Dec 12 43109 137031 6.36 6.64 1 Dec 03 16470 41232 5.01 64.33
1 Jun 12 41580 128040 6.16 9.96 1 Jun 03 15488 37363 4.82 66.46
1 Dec 11 39902 121969 6.11 13.59 1 Dec 02 14370 30775 4.28 68.88
1 Jun 11 38162 115098 6.03 17.36 1 Jun 02 13381 29536 4.41 71.02
1 Dec 10 36396 103185 5.67 21.18 1 Dec 01 12468 27668 4.44 73.00
1 Jun 10 34832 100272 5.76 24.57 1 Jun 01 11286 24557 4.35 75.56
1 Dec 09 33339 95299 5.72 27.80 1 Dec 00 9581 21312 4.45 79.25
1 Jun 09 31778 89214 5.61 31.18 1 Jun 00 7807 17024 4.36 83.09
1 Dec 08 30404 85126 5.60 34.16 1 Oct 99 5882 11564 3.93 87.26
1 Jun 08 28683 79372 5.53 37.88 1 Jun 99 5206 10123 3.89 88.73
1 Dec 07 27147 74710 5.50 41.21 1 Dec 98 4404 8242 3.74 90.46
1 Jun 07 25693 70097 5.46 44.36 1 Jun 98 3732 6903 3.70 91.92
1 Dec 06 24128 63807 5.29 47.75 1 Jan 98 3233 5773 3.57 93.00
1 Jun 06 22641 59670 5.27 50.97

Table 5.4: A summary of the CAIDA inferred graphs used for the 2014–1998 reduction. The
graph reduced by sampling algorithms is the 1 Dec 2014 graph; the reduction ends when the
reduced graph contains approximately 3233 nodes, the number of ASs in the 1 Jan 1998 graph.

have a comparable number of nodes to the Internet instance from 1 January 1998, which
has order 3,233 and edge-set cardinality of 5,773. This is the same reduction endpoint as
Section 5.2.3; a summary of the graphs used in this source-period is given in Table 5.4.

In our examination of the average degree performance of non-DHYB methods, we see that
DRV comes within about 10% of the average degree of the most reduced Internet instance
- DRV with 3.97, and the final Internet instance with 3.57. This matches our other CAIDA
source-period, but differs from the RouteViews Internet graphs in that DRVE is not the best
performing non-DHYB method. Our non-DHYB data is shown in Figure 5.22.

In the DHYB methods, we see for the first time very different results. DHYB-0.1 and
DHYB-0.2 are clearly the best reduction methods, and bound the January 1998 instance.
With average degrees of 3.06 and 4.06, respectively, DHYB-0.1 and DHYB-0.2 do not
match the end point’s average degree as well as DRV. See Figure 5.23.

In our spectral analysis, plotted in Figure 5.24, the graphs reduced by the DHYB-0.2 re-
duction method exhibit the most similarity to the January 1998 Internet instance by MAE.
Though the curve is slightly higher than that of the Internet for most of the 100 largest
eigenvalues, the DHYB-0.2 slope easily bests all other methods. Further, in Figure 5.24,
we note that all but four of the reduction methods (DHYB-0.1, DHYB-0.2, DRE, and

72

0 20 40 60 80
Percent Reduced

2

4

6

8

10

12

14

A
v
e
ra

g
e
 D

e
g
re

e

CRE

CRVE

DRE

DRV

DRVE

EBFS

EDFS

Internet

Method Comparison - CAIDA 14-98

Figure 5.22: Average degree performance of
non-DHYB methods – CAIDA 2014–1998

0 20 40 60 80
Percent Reduced

2

4

6

8

10

12

14

A
v
e
ra

g
e
 D

e
g
re

e

DHYB1

DHYB2

DHYB3

DHYB4

DHYB5

DHYB6

DHYB7

DHYB8

DHYB9

Internet

Hybrid Method Comparison - CAIDA 14-98

Figure 5.23: Average degree of DHYB methods
– CAIDA 2014–1998

20 40 60 80 100
Order

0.75

0.80

0.85

0.90

0.95

1.00

E
ig

e
n
v
a
lu

e

CRE

CRVE

DHYB1

DHYB2

DHYB3

DHYB4

DHYB5

DHYB6

DHYB7

DHYB8

DHYB9

DRE

DRV

DRVE

EBFS

EDFS

Internet

Spectral Analysis - CAIDA 14-98

Figure 5.24: Spectra of reduction methods –
CAIDA 2014–1998

DRV) produce spectral plots with normalized eigenvalues that quickly decrease below the
.75 mark. This indicates that the amount of clustering is dramatically less than the Internet
graph at the most reduced point for these reduction methods.

The hop-plot results for the extended CAIDA data set indicate interesting results as well,
as seen in Figure 5.25. DRV most closely matches the CDF of node-pairs reachable within
k-hops through k = 5, with EDFS bounding the Internet curve above. By MAE, DHYB-0.3

73

1 2 3 4 5 6 7 8 9 10
Hops

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
o
f

v
e
rt

e
x
 p

a
ir

s

CRE

CRVE

DHYB1

DHYB2

DHYB3

DHYB4

DHYB5

DHYB6

DHYB7

DHYB8

DHYB9

DRE

DRV

DRVE

EBFS

EDFS

Internet

Hop-plot - CAIDA 14-98

Figure 5.25: Hop-plot of reduction methods –
CAIDA 2014–1998

100 101 102 103 104

Degree

100

101

102

103

104

R
a
n
k

CRE

CRVE

DHYB1

DHYB2

DHYB3

DHYB4

DHYB5

DHYB6

DHYB7

DHYB8

DHYB9

DRE

DRV

DRVE

EBFS

EDFS

Internet

Degree Histogram - CAIDA 14-98

Figure 5.26: Degree distribution of reduction –
CAIDA 2014–1998

is the best method in hop-plot, followed by DRV. This is in stark contrast to the CAIDA
source-period, in which DHYB-0.7 matches the Internet hop-plot most closely.

Lastly, we examine the degree distributions of our reduced graphs compared with the In-
ternet instance end point. Again in Figure 5.26, we see results that significantly differ from
those seen in previous sections. No method performs particularly well; CRVE again best
matches the highest degree vertex, and DRE and DRV follow the distribution of vertices of
degree 30 and less fairly closely, but no method can realistically be called effective. The
closest method by MAE is DHYB-0.1, followed by DRE and DRV. This is the first metric
in any source period in which DRE performs significantly above average.

5.2.5 KDD and KKD Results
We first note that we have no average degree plots to present; this is because, as noted
earlier, KDD and KKD take the target edge count as an input parameter. Requiring an edge
count allows us to reach our target average degree precisely.

Next, we present the plots of KDD and KKD reduced graph spectra against those of the
reduction end points across both data sets and time periods. We note here that in both
data sets, the longer timeframe from 2014 to 1998 exhibits better performance than in the
shorter timeframe from 2001 to 1998. This is likely the case because more k-cores could

74

20 40 60 80 100
Order

0.75

0.80

0.85

0.90

0.95

1.00

E
ig

e
n
v
a
lu

e

DHYB7

DHYB8

DHYB9

EDFS

Internet

KDD

Spectral Analysis - Routeviews 01-98

Figure 5.27: KDD is the second best reduction
method in terms of spectral analysis.

20 40 60 80 100
Order

0.75

0.80

0.85

0.90

0.95

1.00

E
ig

e
n
v
a
lu

e

DHYB6

DHYB7

EDFS

Internet

KDD

KKD

Spectral Analysis - Routeviews 14-98

Figure 5.28: KDD and KKD are the second and
third best spectral performers by MAE.

20 40 60 80 100
Order

0.75

0.80

0.85

0.90

0.95

1.00

E
ig

e
n
v
a
lu

e

DHYB6

DHYB7

DHYB8

EDFS

Internet

KDD

Spectral Analysis - CAIDA 01-98

Figure 5.29: Spectral analysis shows KDD to be
the fourth best performing reduction method.

20 40 60 80 100
Order

0.75

0.80

0.85

0.90

0.95

1.00

E
ig

e
n
v
a
lu

e

DHYB1

DHYB2

DRV

Internet

KDD

KKD

Spectral Analysis - CAIDA 14-98

Figure 5.30: KDD and KKD are the second and
third best performing reduction methods in spec-
tral analysis.

be taken in the data sets over the larger time period – in both the CAIDA and RouteViews
data sets beginning in 2014, we stopped our k-core reduction process at k = 8; in the data
sets beginning in 2001, however, we had to stop at k = 2, and reduce much further using
the k-deletion or DRVE phases. The ability to obtain k-cores for higher k values causes the
more central ASs to be separated from the lower degree, lower clustering periphery. The
difference in gaps between the Internet curve and the KKD and KDD curves in Figures 5.27

75

1 2 3 4 5 6 7 8 9 10
Hops

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
o
f

v
e
rt

e
x
 p

a
ir

s

DHYB6

DHYB7

DHYB8

DHYB9

Internet

KDD

Hop-plot - Routeviews 01-98

Figure 5.31: Five best reduction methods for
hop-plot. KDD is the second best performer.

1 2 3 4 5 6 7 8 9 10
Hops

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
o
f

v
e
rt

e
x
 p

a
ir

s

DHYB6

DHYB7

DHYB8

EDFS

Internet

KDD

Hop-plot - Routeviews 14-98

Figure 5.32: Plot of five best reduction methods
for hop-plot; KDD is the fourth best.

1 2 3 4 5 6 7 8 9 10
Hops

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
o
f

v
e
rt

e
x
 p

a
ir

s

DHYB6

DHYB7

DHYB8

DRV

Internet

KDD

Hop-plot - CAIDA 01-98

Figure 5.33: Hop-plot of five best reduction
methods. KDD most closely matches the In-
ternet plot.

1 2 3 4 5 6 7 8 9 10
Hops

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

o
f

v
e
rt

e
x
 p

a
ir

s

DHYB2

DHYB3

DHYB5

DRV

EDFS

Internet

KDD

Hop-plot - CAIDA 14-98

Figure 5.34: KDD is the seventh closest reduc-
tion method, or slightly better than average.

and 5.28 and Figures 5.29 and 5.30 demonstrate this phenomenon. For these reasons,
we believe that our reduction methods KDD and KKD are better suited to initial Internet
instances with either a higher degree, or over a longer time period, using more modern data.

Further, we see the spectra of KDD outperform KKD in all four plots; the spectra of KKD
are higher on average than those of both the Internet and KDD. We believe this is caused
by the removal of only the k-degree vertices and their incident edges in the second step

76

100 101 102 103

Degree

100

101

102

103

104

R
a
n
k

DHYB6

DHYB7

DHYB8

Internet

KDD

KKD

Degree Histogram - Routeviews 01-98

Figure 5.35: KKD most closely matches the In-
ternet degree distribution by MAE. KDD comes
in fourth.

100 101 102 103

Degree

100

101

102

103

104

R
a
n
k

DHYB4

DHYB5

DHYB6

Internet

KDD

KKD

Degree Histogram - Routeviews 14-98

Figure 5.36: KKD and KDD are the first and
second most closely matching reduction meth-
ods, respectively.

of KKD; in doing so, we tend to preserve the largest, most connected clusters within the
graph. In addition to being the better performer of our two novel reduction methods, we
find that KDD does well across all time periods. In three of the four (RouteViews 2014–
1998, RouteViews 2001–1998, and CAIDA 2014–1998), KDD is the second best reduction
method using the MAE between its plot and the Internet plot for comparison. In the fourth,
CAIDA 2001–1998, it is the fourth closest reduction method. We believe these results
make KDD a valuable tool for reducing Internet topologies across varied data sets and time
periods, especially when the accuracy of spectral properties is important. For example,
KDD is the second best performing method in both of the 2014–1998 data sets, despite the
top performers differing in their DHYB probability value by 40%.

In Figures 5.31, 5.32, 5.33, and 5.33, we show the hop-plot performance of KDD and KKD.
Unlike our spectral results, we see above-average performance for KDD and KKD in the
data sets from 2001–1998, while our plots do not follow the Internet curve nearly as well
in the 2014–1998 period. In the CAIDA data from the shorter time period, KDD is the best
performing reduction method, while in the 2001–1998 RouteViews comparison, it is the
second closest reduction method to the Internet plot. The longer timeframes decrease the
utility of our new k-core based reduction methods; in the 2014–1998 RouteViews study, it
is the fourth best method, while it comes in seventh in the CAIDA 2014–1998 time period.

77

100 101 102 103

Degree

100

101

102

103

104

R
a
n
k

DHYB4

DHYB5

DHYB6

DRV

Internet

KKD

Degree Histogram - CAIDA 01-98

Figure 5.37: KKD best follows the Internet de-
gree histogram.

100 101 102 103

Degree

100

101

102

103

104

R
a
n
k

DHYB1

DRE

DRV

Internet

KDD

KKD

Degree Histogram - CAIDA 14-98

Figure 5.38: KKD and KDD are the fourth and
fifth best performers, respectively.

Across all time periods and data sources, we note that KDD performs better than KKD; in
no case does KKD enter the top five most closely-matching methods.

Finally, in Figures 5.35, 5.36, 5.37, and 5.38, we show the degree histograms of KDD
and KKD reduced graphs against the Internet reduction end point. In both data sets and
time periods, our reduction methods produce highest-degree vertices of several hundred
less than in the Internet instance. This is somewhat common across many of the reduction
methods, as we have seen previously. In three of these plots, Figures 5.35, 5.36, 5.37, we
observe above-average performance from the 100-1 degree range from our reduction meth-
ods, KDD in particular. In Figure 5.38, however, both KKD and KDD reduction methods
exhibit a tendency to create vertices of higher degree than the Internet through the 20-
110 rank range. Unlike the metrics examined previously, KKD follows the Internet curve
slightly better than KDD throughout much of the degree range; KDD tends to produce a
slightly higher degree high-degree vertex, however. In general, KDD and KKD perform
exceptionally well in terms of matching the degree distribution of the target Internet graph.
In three of the four data sets (CAIDA 2001–1998 and both RouteViews time periods), KKD
is the best-performing metric by the MAE. In the fourth, CAIDA 2014–1998, KKD and
KDD are the fourth and fifth plots most closely following the Internet curve, respectively.
Again, we believe this points to the utility of our novel reduction methods. The best re-

78

RV 01-98 RV 14-98 CAIDA 01-98 CAIDA 14-98

Avg. Deg DHYB-0.7 DHYB-0.6 DHYB-0.6
DRV
DHYB-0.1,0.2

Spectral
DHYB-0.8
KDD

DHYB-0.6
KDD

DHYB-0.7
DHYB-0.8

DHYB-0.2
KDD

Hop Plot
DHYB-0.7
KDD

EDFS
DHYB-0.7

KDD
DHYB-0.7

DHYB-0.3
DRV

Deg.Dist.
KKD
DHYB-0.7

KKD,KDD
DHYB-0.5

KKD
DHYB-0.5

DHYB-0.1
DRE

Table 5.5: Summary of best reduction methods per source-period considered

duction methods studied by prior work are DHYB methods whose probability value range
from 0.1 to 0.7 across the data sets.

In conclusion, we observe that KDD and KKD tend to perform well across all source-
periods we consider, with increased benefits occuring over the longer timeframes. While
these methods are infrequently the best reduction algorithm, they are within the top five
reduction methods considered in every metric, with the lone exception of hop-plot in the
CAIDA data from 2014–1998, in which KDD remains above average. We believe that
this indicates our methods offer a better technique for sampling large Internet topologies
than using purely probabilistic reduction algorithms, as they leverage a property of these
graphs. Table 5.5 summarizes the best performers across the four distinct source-periods
considered.

5.3 Reduced Graphs Emulated on ERIK
The impetus behind sampling large Internet topologies in order to obtain smaller, represen-
tative graphs in Section 5.2 is to obtain topologies that are realistic, but able to be emulated
or simulated. Beginning with a 2001 RouteViews Internet topology, we reduced it to an or-
der of 300 nodes, and emulated this topology using ERIK. DHYB-0.7 was selected as the
reduction method, as this was the sampling method that most closely matched the Internet
graph characteristics at the reduction endpoint in Section 5.2 for this source-period. The
results of this emulation are the subject of this section.

79

In order to successfully implement the BGP policy model outlined in Section 3.2.1, we
made several modifications to ERIK when configured to constructively create tiered, hier-
archical topologies. First, we categorize the ASs in our topology in the following manner:

1. The five ASs with the highest degree were selected to be Tier 1 nodes in our network.
2. Next, all degree-one ASs in the topology were categorized as customer ASs.
3. Finally, remaining nodes were chosen to be Tier 2 nodes, and given the BGP policy

we defined for Tier 2 nodes in Section 3.2.1.

The resulting network created by this modification differs from the tiered model in several
regards. These choices preclude any customer nodes from being dual-homed, though it
does result in the creation of Tier 2 nodes that are dual-homed to Tier 1 ASs without
customers themselves. This choice was made in order to accommodate situations in which
the shortest path from a customer node to a Tier 1 node was greater than length 2, an
impossibility in the tiered model. Several of these paths occur in the reduced topologies,
and for this reason, reduction results in far more Tier 2 ASs than in our other emulation
experiments.

The sampled topology we examine here consists of 5 Tier 1 ASs, 126 Tier 2 ASs, and 169
customer ASs, connected by 497 edges. In the first inference round before failures occur,
we discover a complete AS-level topology from every AS vantage point, as before.

In our second round of inference probing, during link failures, paints a different picture than
in Section 5.1. While link faults again induce routing table churn, and cause many ASs to
go undiscovered during probing, this occurs less often in this topology. In Figure 5.39,
we show the CDF of vantage point ASs by fraction of the topology that was missed during
inference probing during the second probing round. Over half of the AS vantage points miss
very little of the topology; approximately 5%, or 15 ASs, is the median AS count missed.
Figure 5.40 breaks down the vantage points by tier; here, we see that Tier 1 ASs have a
higher median fraction of the topology missed than Tier 2 or customer ASs. However,
in this topology, we observe the same long tails seen in Section 5.1 for both Tier 2 and
customer ASs. These tails terminate at approximately 50% of ASs missed, as opposed to
the 90% not discovered in Section 5.1.

80

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Missed Destination ASNs

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
V

P
 A

S
N

s
Missed AS CDF Before-During Failures

Figure 5.39: CDF of AS vantage points by frac-
tion of missed ASNs during second probing round
with failures.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Missed Destination ASNs

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
V

P
 A

S
N

s

Tier1

Tier2

Customer

Missed AS CDF by VP Tiers Before-During Failures

Figure 5.40: CDF of AS vantage points by frac-
tion of missed ASNs during second probing round
with failures, separated by vantage point AS tier.

The results of our third, final probing round after routing table reconvergence differ from
the emulated topology studied in Section 5.1 as well. At each AS vantage point, we dis-
cover the entire topology once again, obviating any need for CDFs for this probing round.

In light of these results, we conclude that this topology is more robust to failures than the
first topology examined in Section 5.1, despite having 179 fewer edges. We make this
conclusion based on the number of ASs not discovered in the first topology during the
second inference round, compared with the results of the second round of probing in the
sampled topology. Figures 5.1 and 5.40 detail this difference in resilience to link failures.
Further, we note that because all ASs were discovered from all vantage points in the final
round of probing, the sampled topology contains no policy disconnections after the link
failures have occurred.

In the next chapter, we conclude, and offer our suggestions for future work that builds on
our methodology and analysis discussed previously.

81

THIS PAGE INTENTIONALLY LEFT BLANK

82

CHAPTER 6:
Conclusions and Future Work

In this thesis, we proposed and developed a tool, called ERIK, to automate:

1. The construction of network topological ground truth, or knowledge of the router/AS-
level graph of a network, including routing policy and IP address assignment.

2. Creation and set-up tasks to emulate these network topologies.
3. Topology inference experimentation – exhaustive probing of the topology from each

possible vantage point in the network.
4. Events, such as router-to-router link failures, that induce pathologies in topology

inference.

Our methodology for creating this utility involves generating a network graph, according to
a well-known or our own topology generation algorithm, and creating Cisco configuration
files for each router, according to a predefined policy model. In addition, we create the se-
ries of Dynamips commands necessary to run the emulation. When the emulated topology
has been initialized, we manage the inference of the network topology through an emulated
Linux VM.

Chapter 5 details results obtained from exhaustively inferring an example topology from
each vantage point in the network. We see a wide variance in the amount of topology that
is discovered from each vantage point when the topology is probed during a set of link
failures. Our results show that the dynamic nature of the wider Internet, with hardware and
physical connections between ASs failing, can influence the outcome of inference probing
significantly.

In addition, we undertake a reexamination of prior work in Internet graph sampling by
Krishnamurthy et al., and expand upon their work by considering more modern Internet
topologies and Internet topological data from a different source. Our Internet graph sam-
pling methodology mirrors that of [27]; we begin with an initial Internet instance from
RouteViews or CAIDA, and sample this graph until we obtain a graph with a target num-

83

ber of nodes. We then compare graph properties such as average degree, adjacency matrix
eigenvalues, and degree distribution to an Internet instance of the reduced graph’s order.

We perform graph sampling on four data source/time period combinations, and see a wider
variety of results than were obtained in prior work. We conclude that the probabilistic
reduction methods studied in [27] are not sufficient to effectively sample the Internet graph
across source-periods, and develop two of our own graph sampling methods, known as
KDD and KKD, that involve taking successive k-cores of the Internet topology. We show
that for several metrics, these reduction algorithms outperform the probabilistic algorithms
across source-periods.

6.1 Future Work
In this section, we detail our suggestions for work that builds on our results and analysis.

Increase ERIK scale

At present, using a commodity server, we are able to emulate virtualized router topologies
that contain several hundred routers with complex interconnections. We believe that with
several interconnected servers, ERIK can be scaled up to emulate virtualized router topolo-
gies consisting of over a thousand routers by physically interconnecting these machines.

The primary obstacle to increasing the scale of ERIK is determining the underlying Dy-

namips commands and configurations necessary to achieve such an emulated topology over
a distributed architecture. Further, as the emulated networks grow in scale and complexity,
our models for generating these networks should be reevaluated to ensure we are generating
topologies consistent with our goals.

Increasing the number of emulated routers could provide many benefits. Of them, the
ability to emulate larger, more realistic networks is the most promising. AS-level Internet
topology data began being collected by CAIDA and RouteViews when the Internet con-
sisted of approximately 3,000 ASs; an increase of one order of magnitude would allow us
to emulate the entire AS-level graph, abstracting each AS as a router. Further, increased
scale allows for the construction of topologies that avoid this AS-to-router abstraction, as
we discuss in the next topic.

84

Intra-AS Topology Emulation

In Chapter 5, we demonstrate the power of using ERIK to emulate AS-level topologies in
which each AS is represented by a single emulated Cisco 7200 series router. This is an
abstraction of the complex and dynamic intra-AS topology found in ASs on the Internet,
which can consist of hundreds or thousands of routers. The decision to remove the internal
AS structure and contract each AS to one router was made with the goal of creating the
largest AS-level topologies in mind. However, with increased scale, ERIK could be used to
design intra-AS topologies in addition to the inter-AS connections described in this thesis.

JunOS-Pure and Mixed Topologies

The results obtained in Chapter 5 using ERIK were collected from inferences of purely
Cisco router topologies. We believe it would be useful to perform the same experimentation
on the same network topologies in which each router runs Juniper’s OS, JunOS, in order to
determine whether similar results are obtained. For example, JunOS may handle BGP route
updates in a different manner than Cisco IOS. Direct comparison to Cisco-pure topologies
could easily be made using the same network generation model and the same random seed.

Barriers to emulating these types of topologies are practical – while Dynamips provides a
software platform for emulating Cisco routers, there is no analog for JunOS. Thus, creating
JunOS-pure or mixed topologies would require much more significant development of the
behind-the-scenes infrastructure that Dynamips enables us to ignore.

Inferred Topology Sensitivity to BGP Load and Network Model

In Chapter 5, we examine the number of ASs that were not discovered during topology in-
ference tests from all vantage points. In future studies, we propose studying the sensitivity
of these undiscovered ASs to the BGP load injected into the topology by our Linux VM
using bird to determine whether there is a correlation between the amount of churn in the
emulated routers’ RIB tables and the number of prefixes carried.

Additionally, comparing the fraction of the topology not discovered during inference test-
ing by varying the network generation model is another topic for future work. Do certain

85

network models better lend themselves to being discovered by topology inference tools?
Conversely, are some network generation models less amenable to discovery?

Source of Loss Determination

In Section 5.1.1, we discuss an ASN in an emulated topology that experiences a significant
amount of routing table churn, causing it to miss a substantial portion of the network during
the link failures scenario. We believe it useful to determine whether the root cause of these
missed ASs during inference probing is due to an incorrect FIB, or whether a FIB entry did
not exist for the probe’s destination prefix.

Emulated Topology Convergence

Throughout our experiments, we allow a fixed period of time to expire before beginning to
probe our emulated topology in the first and third rounds. This is done to allow the rout-
ing tables of the routers in the network to converge; we rely, however, on our experience
in determining the requisite amount of time this requires and add several more minutes
for increased certainty. Because the vast majority of the time elapsed during our exhaus-
tive network inference testing is spent during these wait periods, developing an accurate
mechanism for determining whether routing table convergence has been achieved would
undoubtedly improve efficiency.

Inference Under Different Fault Scenarios

In this thesis, we concern ourselves only with link failures that occur after a set interval has
elapsed in our second probing round. One area for future research could involve spread-
ing these failures over an interval of time according to some probability distribution, with
random seeding for determinism and reproducibility. Alternatively, rather than use edge
betweenness centrality as the metric for link failure selection, another measure could be
utilized. Another possibility is to study router failures in which a router ceases to oper-
ate entirely or reboots, or perhaps just a number of interfaces on a particular router stop
functioning. These faults could also be combined, in order to simulate a scenario in which
failures are not constrained to one particular type.

Integration into Topology Deception Work

86

Much work has been done in the field of network topology deception – causing incoming
probes to respond to their source with misleading responses, which in turn influences the
inferred path as viewed from the source. Techniques for implementing this deception center
around returning replies to probes from a single host, rewriting certain fields of the IP
header according to a predetermined set of rules to force a particular inferred path on the
probe source. With ERIK, however, traffic could be forwarded into the emulated network
and achieve a similar purpose, eliminating the need to return probes from a host. Further,
the emulated network used for this deception could be reconfigured at certain intervals,
which would increase the difficulty for the probe source to determine that deception is
occurring when compared to a static, standard reply.

Internet Graph Sampling Improvements

The graph sampling algorithms described in [27] rely upon random selections of nodes and
edges to achieve a reduction of graph order. We introduce two new and novel methods for
reducing AS-level Internet graphs in Chapter 4 that leverage graph properties – namely, the
k-core of the graph. We believe that further study into utilizing Internet graph properties
provides the most potential for sampling the Internet, and that new reduction algorithms
should seek to exploit these graph metrics.

Internet Graph Prediction

We believe that experimenting with the inverse process of our reduction algorithms, or
graph construction, may prove fruitful. That is, given the set of graph sampling methods
studied in Chapter 2 and Chapter 4, applying the opposite logic and increasing the number
of nodes and edges in a initial, chronologically earlier Internet instance. This methodology
may provide a means to effectively create larger Internet approximations, and therefore be
useful for predicting the growth of the Internet at the AS-level.

87

THIS PAGE INTENTIONALLY LEFT BLANK

88

List of References

[1] D. Clark, “The Design Philosophy of the DARPA Internet Protocols,” SIGCOMM
Computer Communication Review, vol. 18, no. 4, pp. 106–114, 1988.

[2] RouteViews, Oregon, “University of Oregon RouteViews project,” Eugene,
OR.[Online]. Available: http://www. routeviews. org.

[3] D. G. Andersen, N. Feamster, S. Bauer, and H. Balakrishnan, “Topology Inference
from BGP Routing Dynamics,” in Proceedings of the 2nd SIGCOMM Workshop on
Internet Measurement.

[4] R. Govindan and H. Tangmunarunkit, “Heuristics for Internet Map Discovery,” in
INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings., vol. 3. IEEE, 2000, pp. 1371–1380.

[5] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies with Rocket-
fuel,” in SIGCOMM Computer Communication Review, vol. 32, no. 4. ACM, 2002,
pp. 133–145.

[6] A. Bender, R. Sherwood, and N. Spring, “Fixing Ally’s Growing Pains with Velocity
Modeling,” in Proceedings of the 8th SIGCOMM Conference on Internet Measure-
ment. ACM, 2008, pp. 337–342.

[7] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Friedman, M. Latapy, C. Mag-
nien, and R. Teixeira, “Avoiding Traceroute Anomalies with Paris Traceroute,” in
Proceedings of the 6th SIGCOMM conference on Internet measurement. ACM,
2006, pp. 153–158.

[8] P. Mérindol, B. Donnet, J.-J. Pansiot, M. Luckie, and Y. Hyun, “MERLIN: MEasure
the Router Level of the INternet,” in Proceedings of the 2011 7th EURO-NGI Con-
ference on Next Generation Internet (NGI). IEEE, 2011, pp. 1–8.

[9] M. Luckie, “Scamper: a Scalable and Extensible Packet Prober for Active Measure-
ment of the Internet,” in Proceedings of the 10th SIGCOMM conference on Internet
measurement. ACM, 2010, pp. 239–245.

[10] P. Mérindol, B. Donnet, O. Bonaventure, and J.-J. Pansiot, “On the Impact of Layer-
2 on Node Degree Distribution,” in Proceedings of the 10th SIGCOMM Conference
on Internet Measurement. ACM, 2010, pp. 179–191.

[11] I. Ari, B. Hong, E. L. Miller, S. A. Brandt, and D. D. Long, “Managing Flash
Crowds on the Internet,” in Modeling, Analysis and Simulation of Computer

89

Telecommunications Systems, 2003. MASCOTS 2003. 11th International Symposium
on. IEEE, 2003, pp. 246–249.

[12] G. F. Riley and T. R. Henderson, The NS-3 Network Simulator. New York City, NY:
Springer, 2010.

[13] X. Chang, “Network Simulations with OPNET,” in Proceedings of the 31st Confer-
ence on Winter Simulation: Simulation—a Bridge to the Future-Volume 1. ACM,
1999, pp. 307–314.

[14] M. Pizzonia and M. Rimondini, “Netkit: Easy Emulation of Complex Networks
on Inexpensive Hardware,” in Proceedings of the 4th International Conference on
Testbeds and Research Infrastructures for the Development of Networks & Commu-
nities. ICST (Institute for Computer Sciences, Social-Informatics and Telecommuni-
cations Engineering), 2008, p. 7.

[15] S. Knight, A. Jaboldinov, O. Maennel, I. Phillips, and M. Roughan, “AutoNetkit:
Simplifying Large Scale, Open-Source Network Experimentation,” in Proceedings
of the SIGCOMM 2012 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication. ACM, 2012, pp. 97–98.

[16] S. Knight, “Automated Configuration and Measurement of Emulated Networks with
AutoNetkit,” SIGCOMM Computer Communication Review, vol. 43, no. 4, pp. 471–
472, 2013.

[17] H. Nguyen, M. Roughan, S. Knight, N. Falkner, O. Maennel, and R. Bush, How
to Build Complex, Large-Scale Emulated Networks. New York City, NY: Springer,
2011.

[18] J. Obstfeld, S. Knight, E. Kern, Q. S. Wang, T. Bryan, and D. Bourque, “VIRL:
the Virtual Internet Routing Lab,” in Proceedings of the 2014 Conference on SIG-
COMM. ACM, 2014, pp. 577–578.

[19] S.-H. Yook, H. Jeong, and A.-L. Barabási, “Modeling the Internet’s Large-Scale
Topology,” Proceedings of the National Academy of Sciences, vol. 99, no. 21, pp.
13 382–13 386, 2002.

[20] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: An Approach to Univer-
sal Topology Generation,” in Proceedings of the Ninth International Symposium on
Modeling, Analysis and Simulation of Computer Telecommunication Systems. IEEE,
2001, pp. 346–353.

90

[21] C. Jin, Q. Chen, and S. Jamin, “Inet: Internet Topology Generator,”
2000, University of Michigan, Ann Arbor, MI. [Online]. Available:
http://topology.eecs.umich.edu/inet/inet-2.0.pdf.

[22] J. P. Sterbenz, J. P. Rohrer, and E. K. Çetinkaya, “Multilayer Network Resilience
Analysis and Experimentation on GENI,” The University of Kansas, Lawrence,
KS, ITTC Technical Report ITTC-FY2011-TR-61349-01, July 2010. [Online].
Available: http://www.ittc.ku.edu/resilinets/reports/Path_Diversity_Experiments_
TR_public.pdf

[23] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On Power-Law Relationships of the
Internet Topology,” in SIGCOMM Computer Communication Review, vol. 29, no. 4.
ACM, 1999, pp. 251–262.

[24] Q. Chen, H. Chang, R. Govindan, and S. Jamin, “The Origin of Power Laws in Inter-
net Topologies Revisited,” in INFOCOM 2002. Proceedings of the Twenty-First An-
nual Joint Conference of the IEEE Computer and Communications Societies, vol. 2.
IEEE, 2002, pp. 608–617.

[25] L. Li, D. Alderson, W. Willinger, and J. Doyle, “A First-Principles approach
to Understanding the Internet’s Router-Level Topology,” SIGCOMM Computer
Communication Review, vol. 34, no. 4, pp. 3–14, 2004.

[26] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP Topologies with Rocket-
fuel,” in SIGCOMM Computer Communication Review, vol. 32, no. 4. ACM, 2002,
pp. 133–145.

[27] V. Krishnamurthy, M. Faloutsos, M. Chrobak, J.-H. Cui, L. Lao, and A. G. Percus,
“Sampling Large Internet Topologies for Simulation Purposes,” Computer Networks,
vol. 51, no. 15, pp. 4284–4302, 2007.

[28] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein et al., Introduction to Algo-
rithms. Cambridge, MA: MIT Press, 2001, vol. 2.

[29] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring Network Structure,
Dynamics, and Function using NetworkX,” in Proceedings of the 7th Python in
Science Conference (SciPy2008), Pasadena, CA, Aug. 2008, pp. 11–15.

[30] Dynamips Github Issues Board, July 2014, Dynamips. [Online]. Available:
https://github.com/GNS3/dynamips/issues/50.

[31] Dynamips Github Issues Board, Nov. 2014, Dynamips. [Online]. Available:
https://github.com/GNS3/dynamips/issues/59.

91

[32] M. Newman, Networks: an Introduction. Oxford, United Kingdom: Oxford Univer-
sity Press, 2010.

[33] M. Bastian, S. Heymann, M. Jacomy et al., “Gephi: an Open Source Software for
Exploring and Manipulating Networks,” ICWSM, vol. 8, pp. 361–362, 2009.

[34] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani, “k-core Decom-
position of Internet Graphs: Hierarchies, Self-Similarity and Measurement Biases,”
arXiv preprint cs/0511007, 2005.

[35] C. Gkantsidis, M. Mihail, and E. Zegura, “Spectral Analysis of Internet Topologies,”
in INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer
and Communications. IEEE Societies, vol. 1. IEEE, 2003, pp. 364–374.

92

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

93

