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ASYMPTOTICS  OF  STIRLING  NUMBERS
OF THE SECOND KIND

W. E. BLEICK AND PETER C. C. WANG1

Abstract. A complete asymptotic development of the Stirling

numbers S(N, K) of the second kind is obtained by the saddle point

method previously employed by Moser and Wyman [Trans, Roy.

Soc. Canad., 49 (1955), 49-54] and de Bruijn [Asymptotic methods

in analysis, North-Holland, Amsterdam, 1958, pp. 102-109] for

the asymptotic representation of the related Bell numbers.

1. Introduction.   Hsu [1] has given the asymptotic expansion

(1) SiN, K) ~ i$KY-K 1 + g K-%iN -K) + OiK-*-1)^ jiN - K) !

for Stirling numbers SiN, K) of the second kind, where/s(A/—K) are poly-

nomials of argument N—Kandfsi0)—0. The expansion (1) is useful only

for N—K small, as is indicated in §3. We obtain a complete asymptotic

expansion of SiN,K) in powers of iN+l)-1, using the saddle point

method previously employed by Moser and Wyman [2] and de Bruijn [3]

for the asymptotic representation of the related Bell numbers. Con-

vergence is demonstrated for AT< (/V+1)2/3/ [77+(/V-f-1)_1/3]- The expan-

sion when divergent is still useful when used as an asymptotic series.

2. Asymptotics of SiN, K).   A generating function for S(A/, K) is

(2) pf^f.P.Klz«
\    z    I      t£KN\

Hence the Cauchy integral formula gives

(3) SiN, K) = -^- f (e* - l^z-"-1 dz
2ttiK\ jc

Presented to the Society, January 28, 1973; received by the editors November 6,

1972 and, in revised form, March 12, 1973.

AMS (MOS) subject classifications (1970). Primary 41A60; Secondary 05A10.
Key words and phrases. Asymptotic expansion, Stirling number of the second kind,

Bell number, saddle point method.

1 This work was partially supported by the Office of Naval Research under Contract

Number NR 042-286 at the Naval Postgraduate School.

© American Mathematical Society 1974

575

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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where the contour C encloses the origin. Equating the derivative of the

integrand to zero gives the equation

(4) (i - z)ez~t = te~',

where t=(N+l)/K, for the location of the saddle point of the modulus

of the integrand. The principal saddle point z=u is on the positive real

axis with t—l<.u<t. The quadratic approximation to xe~x at x=l shows

that uzü2¡N for K=N and large N. There are other subsidiary saddle

points at complex roots of (4), which we neglect in comparison with the

higher saddle point at z=u. Since there are no other roots of (4) for

\t—z|=i—u, we may apply the Lagrange inversion formula to obtain

(5) u = t-J4mm-1(te-t)mlm\
711=1

convergent for /> 1. Another form of (4) is the identity

(6) K = (N + 1)(1 - er*)\u

needed later. Since the axis of the saddle point is perpendicular to the

real axis, the part of the contour C descending from z=u is taken as the

line z=u+iy, \y\< co, parallel to the imaginary axis. The modulus of the

integrand in (3) is maximal at z=u on this path, since both (ez—l)K and

z-a-i nave tnjs pr0perty. The closed contour C is completed by a half circle

of infinite radius enclosing the origin. The contribution to the integral (3)

on this semicircular path is zero since N>0. The integral in (3) then

becomes

(7) i(e" - I)*«-*"1 f"exp v(« + iy) dy
J —00

where

(8) rp(z) = Kln[(e*- l)/(e" - 1)] - (N + l)ln(z¡u).

The contribution of the various parts of the z=u+iy path to the

integral must now be studied. As |exp y>(z)|=exp Re xp(z) we have to

study
Re ip(u + iy) = Kln[(e2u - 2eu cosy+lfl2\(eu - 1)]

-(N + l)In(l +y2u-2y'2.

We shall show that we can restrict ourselves essentially to the interval

\y\<7r. Since 1-f j2M_2_l+7r(2y—-n)u~2 foxy\%tr we have

(eu - l)*wK„-N-\

i
exp y(u + iy) dy

itl-N(eu + l)K

7T(N  -   1)(1   +  7T2U-y/2-1/2
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which is of 0(N~NeN) for K small and of 0(2N¡nNN) for K large. Since

Re y(u+iy) is even, the part of the integral (7) for |j|>7r tends toward

zero as N—»cc. We now direct our attention to the interval |_y|<7r where

the saddle point at y=0 gives the main contribution. The Taylor expansion

of %p(u+iy), convergent for |_y|<«, is

v> = -
N +

(9)
2u \u      eu - 1/

& iiy)i+2 (dV+1

'¿x(j + 2y.\dzJ

1 - «— 1'
+ (Af + l)_

[_u(e — 1)

where the identity (6) has been used. We now make the substitutions

(10) w= [(N+ 1)I2Y'2[\ - u¡(eu - l)]1/2y¡u

and

(iwu)i+2(dldzy+l[(l - e-)/«(/' - 1) - 1/zL,«

Ü + 2)! [J-*«/(«"-!)] 5/2+1
(11) a,=

to obtain

(12) SiN, K) = B ¡™ exp{-w2 + f[(N + 1)-1/2]} dw
J —00

where

(13) B = N\(eu - 1)kItt(2(N + l))ViK\uNil + u/(l -exp«))1/2

and fis the analytic continuation of

(14) f[(N + l)~m] = J afiN + l)-'72.

To find an upper bound to |a,| we note that iez—\)~1=Jik=xe-kz for-

Rez>0. Then

(didur(eu-\yi = (-ir2gix)
1=0

where g(x)=xne~ux. On using the Euler-Maclaurin sum formula [5] we

find

•£■> n\
2 six) = -hrx + Rn.
x=0 u

The remainder Rn=$0x (x— [x]—l)g'(x) dx may be evaluated by a Laplace

transform [6] to be

Rn = (-l)"-i[/tF<«-i)(a) + uF^iu)]
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where F(u)=u~2—iw1 coth \u. We conclude that |/î„|«n!/«n+1 for

small u and tends to zero for large u. Since (l—e~u)¡u is less than unity

we have

(15) \at\ < o'+2lj

where

(16) a = w21'2l(l - u¡(eu - 1))1/2 = y(N + 1)1/2/m.

Remembering that we need not integrate (7) beyond |jri=7r for large N,

we see by (15) and (16) that the series (14) is convergent for tt¡u<1. We

now expand expf[(N+l)~1/2] in a Taylor series of the form

(17) exp/[(JV + 1)-1/2] = 2 b¿N + O- 3/2

where Z>0=1 and bi are polynomials in w of the degree and parity of 3/

By a lemma of Moser and Wyman [4]

(18) |¿>,.| = o-'+2(l + o2y-\

Using (17) we may write (12) in the form

S(N, K) = b[2 (N + I)"' f "\-"b2i dw + r\.
- 3=0 J—CO J

The absolute value of the remainder Rs is found from (18) to be

(19) |R5| = (JV + I)"5 Í " e""X(kl) dw/M
J—oo

where fs(|w|) is a polynomial in \w\ and

M = 1 - a2(l + o-2)2/(;V + 1).

On limiting the integration in (7) to \y\ <tr we see that the remainder Rs

exists if

(7t/m)[1 + (N + l)(ir¡u)2] <1.

Since «+1X^+1)1 K convergence occurs for

*<(#+ 1)2/3/[tt + (#+ l)-i/3]

approximately. For these values of K we conclude that

(20) S(N, K) ~ b{ J (N + Vf')    e-"b2j dw + 0[(N + 1)-]).
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The first two terms of (20) have been calculated to be

Nl(eu-l)K
S(N,K)

(21)

(27r(A/ + l))1/2/C!«iV(l-G)1/2

18G - 20GV + 1)

L 2

+

where by [5]

24(N + 1)(1 - Gf

3G3(e2u + 4e" + 1) + 2G4(e2u - e" + 1)1

24(A/+l)(l-G)3 J

G = «i/(e« - 1) = 1 - \u + £ B2ku2kl(2k)\.
fc=l

The bracketed expression in (21), argumented by an additional inverse

power of N+1, is approximated by

for small u and by

1 -

1

1 1

6u(N + 1)     72u2(JV + l)2

—^+-i-
12(N + I)     288(A7 + l)2

for large u. These are the leading terms of an alternating asymptotic

series.

3. Numerical example. The 6-significant-figure Table 1 compares the

exact values of 5(100, K) with the values computed from (20) and (1) for

several K. The excellent results obtained from (20) for values of K outside

the interval of convergence show that the expansion gives useful results

when used as an asymptotic series.

2
25
50

75
99

5(100, K)
Exact

6.33825 10"
2.58320 IO"4
4.30983 10101

1.82584 10M
4.95000 103

TABLE 1

5(100, K)
1 term of (20)

6.34348 10"
2.58496 10'"
4.30900 10101

1.82671 10"
5.14199 10»

5(100, K)
2 terms of (20)

6.33825 10"
2.58321 10114

4.30977 10101

1.82579 10«
4.94451 103

5(100, K)
4 terms of (1)

1.81186 10-"6
2.94696 1083

1.51529 10»4

5.32626 10«
4.95000 103
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