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Abstract— To maximize the performance of a software-
defined network, a network observer must develop a state that 
can be tracked and controlled. We propose a novel method that 
uses the entire eigenspace of the Laplacian matrix to determine 
the state of a SDN. Our approach exploits the double 
orthogonality of the Laplacian matrix in order to define the dual 
basis. Each basis uses the entire reachability space with the 
objective of fully describing the centrality of each node over time. 
The reachability space is defined by the dual basis once the null 
space has been removed. The definition of the dual basis allows 
the network controller to observe the network state to determine 
which areas are most utilized and least utilized. Once the state 
has been estimated, the controller may choose to correct the 
network state by rerouting flows or preventing additional flows. 

Keywords—Software-defined network; Laplacian matrix; 
algebraic connectivity; spectral graph theory; control theory 

I. INTRODUCTION 
Software-defined networking (SDN) is poised to 

completely change the way large, complex networks are 
managed and controlled. Software-defined networking is first 
the concept that centralizes the controller, which provides 
unprecedented control over packet routes and collection of 
network statistics [1]. SDN is also the network that implements 
this concept. To implement closed loop control, the centralize 
controller measures network flows and determines the network 
state. The success of these algorithms is dependent on the 
ability of the observer to provide an accurate estimate of the 
current state.  

In the context of classical control theory, closed loop 
control requires an accurate observer in the system to measure 
network flows and to determine the system state. To close the 
control loop in a SDN, the observer must pass this information 
to the controller, which can adjust the flows to improve the 
network’s performance. The SDN switches are the devices 
where control signals are applied. The flows are the objects to 
be controlled [2]. The network traffic is the object that is 
measured. Optimal solutions have been developed for the 
determination of flows in a network, but it was not shown how 
the controller would develop a state for the network [3]. 

A. Closed Loop Control of SDNs 
A goal of SDN is to improve performance of a network by 

centralizing the controller, which allows the network to be 
modelled as a closed loop control system. Networks can now 

be considered a control system that requires optimal 
estimation and optimal control. Standard linear control system 
methods do not easily apply to complex networks. It is 
difficult to develop a linear model of a network because of the 
number of protocols that are present and coupling caused by 
physically attaching devices to each other. The development 
of a method to determine the state of a SDN has not been 
sufficiently explored. There is a need to develop an analytical 
method to determine the time-varying network state. 

B. SDN Network Observer 
To develop a network observer for an SDN, graph theory 

must be explored for possible solutions to the state 
determination problem. Graph theory is an analytical tool that 
is used to model complex networks. A state-dependent graph 
is one in which the network model includes time-varying 
weights [4]. In many cases, time-varying weights between 
nodes in the graph are based on measurements that are made 
within the network. Round-trip time, signal-to-noise ratio, and 
data rate are all examples of measurements that can be used to 
weigh each of the links [5]. However, the state-dependent 
graph does not provide the state of the network. Spectral graph 
theory provides the tools necessary to develop the state of the 
network. 

Spectral graph theory is a subfield of graph theory that 
uses the eigendecomposition of graph theory defined matrices 
to gain a better understanding of the properties of a given 
graph. One of the main applications of spectral graph theory 
has been to determine how to rearrange the links in the graph 
to maximize the robustness or connectivity of the graph. It has 
been shown the state provided by spectral graph theory is well 
correlated with robustness and performance of various 
networks [6] [7].  

Our method combines spectral graph theory and SDN to 
develop a network observer that produces the network state 
and passes that information to the controller. In our method, 
the state of the network is the dual basis, which is the 
eigenvector matrix of the state-dependent graph theory model 
[8]. Based on the eigenvector matrix, the observer is able to 
pass the congested and underutilized areas of the network to 
the controller. The controller’s routing function can then use 
that information to determine the optimal routes in a network 
to reduce congestion and improve performance. 

This paper is organized as follows. In section II, we 
describe how a SDN is modelled in matrix form, propose a 
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method to weigh each link and then describe the 
eigendecomposition of the weighted graph. Section III 
describes the dual basis, eigencentrality basis, and nodal basis. 
Section IV shows the simulations of the modeled network and 
analysis of the results. Section V provides our conclusions and 
future work. 

II. EIGENDECOMPOSITION OF A SDN 
To gain the most benefit from using a SDN, the controller 

must have a monitoring function that determines the state of 
the network. In control theory, this function is known as the 
observer. A controller can request a large quantity of 
information from the network, but unless it is able to process 
the data in a useful manner, the benefit of having this data is 
lost. The state determination must be accomplished efficiently 
in order to ensure the computed state has not changed 
significantly from the current state. The eigendecomposition 
produces a state that is complete and uncorrelated [8]. A 
mathematical representation of the network is required first and 
then the eigendecomposition can be applied to this 
representation to determine the state. 

A. Graph representation of a SDN 
Fig. 1 shows the physical topology of a SDN. The 

controller network has been ignored, but the controller network 
needs to be represented and monitored as well. The focus of 
this paper will be on monitoring the production traffic network. 
In Fig. 1, there are seventeen SDN switches that are connected 
by 132 links. The full mesh network switches are the light blue 
circles, the switches with a various number of links are the 
green circles, the disconnected node is the red circle and the 
dark blue lines are the links connecting the nodes. The 
disconnected node is one that is either physically disconnected 
due to a network device failure or it has been overwhelmed by 
traffic such as in a denial-of-service attack. The full mesh is 
intended to model a service provider’s core network, and the 
outlying nodes are the access network onto which the 
customers are connected. 

 

Fig. 1. Seventeen node network with a ten node core network, six access 
network nodes, and one disconnected node 

The Laplacian matrix is a well-documented graph theory 
matrix representation of networks [9]. The Laplacian matrix is 
a combination of the adjacency matrix, A , which describes 
how nodes are connected, and the degree matrix, D , which 

describes how many links connect each node to the network 
[7]. In a weighed graph, ( , , )G N L W= , N  is the set of nodes 
that are connected by the links, ijl , in set L . Each link is given 
a weight, ijw , based on a link metric [4].  

For the purpose of monitoring the state of the SDN, we 
propose using link utilization as the link metric. Link 
utilization is a value between zero and one that represents the 
fraction of the bandwidth that is utilized at any given time. In 
general the link weight is defined as 

 
( )

max

1 m
ij

x t
w

x
= −  (1) 

where ( )mx t  is the network measurement as a function of 
time, and maxx  is the fixed, maximum allowed metric. For 
most applications, the denominator of (1) will not change, but 
in certain instances it could change. There are many 
applications in which the bandwidth may vary with time; these 
include wireless and military applications. The model allows 
for this variation by dynamically changing the denominator. 
We propose using link utilization, which would use maximum 
bandwidth as the denominator in (1), and the measured current 
data rate as the numerator. This choice of definition is used to 
ensure that the eigenvalues decrease as a function of increased 
network traffic, i.e. smaller eigenvalues are associated with 
less connectedness. These definitions follow the conventional 
approach to spectral graph theory. 

The Laplacian matrix is defined as 

 Q D A= −   (2) 
To define it directly, (2) can be restated as 
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Network traffic is dynamic, and therefore, the representation of 
the network must be dynamic. The Laplacian matrix alone does 
not provide any information, but it allows the monitoring 
function of the controller to sort and organize the information 
requested from the switches. 

B. Eigendecomposition of a Weighted Graph 
The Laplacian matrix is positive semi-definite; therefore, 

all eigenvalues are real, and there will always be at least one 
zero eigenvalue [9]. The eigenvalues are typically ordered from 
smallest to largest by  

 1 2 10 n nλ λ λ λ−= ≤ ≤ ≤ ≤   (4) 
Additional zero eigenvalues are interpreted as additional 
disconnected nodes. For each connected group within the graph 
model, there will be a zero eigenvalue [9].  

To improve performance, it has been proposed to maximize 
the smallest non-zero eigenvalue, algebraic connectivity [10]. 
Maximizing algebraic connectivity does lead to improved 



performance in some cases, but it is not enough to determine 
the state of the network. This maximization only minimizes the 
difference between the largest and smallest eigenvalues. In an 
unweighted graph, the largest eigenvalue is bound by [9] 

 n nλ ≤   (5) 
Eqn. (5) indicates that the maximum eigenvalue is bounded by 
the number of nodes, and not links or link weights. Using the 
smallest as a metric alone, only provides insight into the least 
connected area of the network. It provides no information 
about any other portion of the network. This could provide a 
false state of the network.  

In the context of a SDN, each eigenvalue describes a level 
of connectedness that ranges from zero for a disconnected node 
to n  for a fully connected node with zero link utilization. To 
illustrate this point, Fig. 2 shows the eigenvalues of the Fig. 1 
network as the link weights for node six approach zero. The 
physical meaning of the values approaching zero is that all the 
links are load balanced and the utilization is increasing; the link 
weight is inversely proportional to the link utilization.  

 

Fig. 2. Eigenvalues of  the 17 node network in Fig. 1 as the links to node six 
go to zero 

Similar to graph partitioning methods [11], large gaps 
between eigenvalues are indicative of distinct sets of nodes. 
The eigenvalues belonging to the mesh core in Fig. 1 are 
associated with the larger eigenvalues, and the smaller 
eigenvalues are associated with the access network. From this 
perspective, the overall SDN consists of two distinct networks, 
but all of which is managed by a logically centralized 
controller [12]. 

From Fig. 2, one can also see the reduction of node six’s 
links to zero in the structure of eigenvalues three through eight. 
Eigenvalues nine through 17 also change due to the 
relationship between the access and core networks. At the end 
of the simulation, all of the affected eigenvalues have shifted 
down by one. The number of zero eigenvalues has increased 
from two to three because there are now three separate 
networks:  nodes six, node seventeen and the remaining 

connected nodes. The slope of the line that connects all of the 
transition phases of each eigenvalue is 

 deg( )k o
d

node
dw

λ λ≈ − +  (6) 

The degree of node k  determines the approximate slope of 
each eigenvalue as it shifts from its current value to the next 
value down, and the starting value, oλ , determines the y-
intercept . In this case, node six has a degree of six, which 
means that the slope is six and the starting value is six. In Fig. 
2, the dashed gray line is the plot of (6) in this case. 

By tracking the eigenvalues over time, the controller can 
dynamically calculate the state of the network. All the 
eigenvalues must be considered in order to fully determine the 
state. The next step for the controller is to determine which 
node or nodes are associated with each eigenvalue. By 
calculating the dual basis, the controller can analytically relate 
the nodes in the network to their associated eigenvalue. In 
other words, the observer can determine which node is most 
influential over which eigenvalue. 

III. DUAL BASIS OF A SDN  
Spectral graph theory uses the eigendecomposition of the 

Laplacian matrix to describe characteristics of the network. 
The characteristics that are described are dependent upon how 
the links are modeled. Our objective is to determine the state 
of the network by measuring the link utilization of each link 
and then determining the Laplacian matrix’s dual basis. The 
results of the eigendecomposition are the robustness of the 
network and the reachability within the network. These 
characteristics are fully described by the dual basis, the 
reachability space and null space. 

A. Double Orthogonality 
The eigenvector associated with each eigenvalue creates 

an orthogonal basis for the network model. Because the 
Laplacian matrix is a symmetric matrix, a self-dual basis or 
simply a dual basis is always created [13]. A dual basis is 
defined as  

 TV V I=   (7) 
where V  is an orthonormal matrix of eigenvectors, and I  is 
the identity matrix.  

The dual basis, in this case, is a result of solving for the 
eigenvector, v , in the equation  

 ( ) 0Q I vλ− =   (8) 
By solving (6) for all eigenvalues and eigenvectors, the 
matrices and VΛ  can be defined and used to recreate Q . In 
most applications, only one eigenvector matrix is required, the 
right eigenvector. Transformations using the right eigenvector 
can be demonstrated by rearranging  

 TQ V V= Λ   (9) 

 ( )TQV V V V V= Λ = Λ   (10) 

 1QV z=   (11) 



The right eigenvector’s dual is the left eigenvector which can 
be demonstrated by rearranging (9) to result in  

 ( )T T T TV Q V V V V= Λ = Λ   (12) 

 2
TV Q z=   (13) 

Together the left and right eigenvector matrices create a 
self-dual basis for the network. The dual basis provides two 
orthogonal bases in which the network can be defined. V  
transforms Q  into the eigencentrality space [8], which is the 
space where each column vector of V  is associated with one 
eigenvalue. TV  transforms Q  into the nodal space, which is 
the space where each column vector of TV  is associated with 
a specific node in the network. These two transformations 
allow an analysis of the network from an eigencentrality 
perspective or a nodal perspective. Both of which are useful 
depending on the specific application of the model. 

B. Eigencentrality Basis 
The eigencentrality basis is the basis that defines how 

influential a specific node is at a given eigenvalue. Fig. 3 
shows a three-dimensional representation of the 
eigencentrality basis. Each eigencentrality vector will be an n-
dimensional vector. In this example, the eigencentrality 
vectors are 17-dimensional vectors; one value for each node. 
Plotting the first three eigencentrality vectors typically 
produce good visual representation of the network because 
they place the least connected nodes at the edge and the most 
connected nodes at the center [14]. Networks are typically 
drawn this way; the core of the network is in the center of the 
diagram, and the access network is at the edge. Any 
disconnected nodes are placed at the origin, which in Fig. 3 is 
denoted by the red circle. 

 
Fig. 3. Eigencentrality basis plotted using the three eigenvectors associated 
with the three smallest, non-zero eigenvalues with nodes one, two, and three 
as the least central nodes in the network 

The network could be as easily plotted using the three 
eigenvectors associated with the three largest eigenvalues. 
This representation would place the most connected nodes at 
the edge of the graph and the least connected in the center as 
shown in Fig. 4. Humans have difficulty visualizing beyond 

three dimensions, but the controller does not have this 
limitation, and it can use arbitrarily large vectors that are 
required to describe the network’s state.  

 

Fig. 4. Eigencentrality basis plotted using the three eigenvectors associated 
with the three largest eigenvalues with nodes seven, eight and nine as the most 
central nodes in the network 

Our method decouples nodes in a network to the extent 
possible. Notice in Fig. 3 and Fig. 4 that there is a single node 
that dominates each x, y, and z-axis. The result of the 
eigendecomposition of the network is that nodal behavior is 
isolated to as small of a set of nodes as possible. This is an 
important feature of our approach that allows analysis of nodal 
behavior in isolation. 

Laplacian eigencentrality is a measure of how important a 
node is to the network and what the impact is of its removal. 
The Laplacian eigencentrality is defined as  

 ( )2j j
k kE v=   (14) 

or as the square of the thk  eigenvector’s thj   value, [8]. This 
value indicates how influential each node is at each 
eigenvalue. Larger eigenvalues are associated with greater 
connectivity, and smaller eigenvalues are associated with less 
connectivity. 

C. Nodal Basis 
The nodal basis is the basis that defines how influential a 

specific node is across the entire eigenspectrum. This basis 
defines the magnitude of each value in this basis based on the 
Laplacian eigencentrality [15]. From this basis, a node’s 
importance to the rest of the graph can be determined. 

To see the nodal space more clearly, (2) shows that the 
Laplacian matrix is formed using two more fundamental 
matrices. The degree matrix is solely related to the nodes in 
the network. The adjacency matrix is solely related to the links 
in the matrix. When the matrix V  is decomposed into 



individual vectors and related back to the matrix Q , the 
vector form of the degree matrix is 

 ( ) ( ) ( )2 2 21 2
, , 1 2

n
i i i i i i i nD Q v v vλ λ λ= = + + +   (15) 

where the ,i iD  is the thi  node in the degree matrix, which 

corresponds to the thi  value along the diagonal of Q . Eqn. 
(15) show that any node’s degree is only a function of one 
eigenvector and all eigenvalues. Eqn. (15) can be simplified to 

 ( ) ( )2 22
, , 2

n
i i i i i i nD Q v vλ λ= = + +   (16) 

because 1λ  is always zero. Eqns. (15) and (16) demonstrate 
the reason for the definition of eigencentrality in (14). 

The nodal basis of node six has 15 values because there 
are 15 non-zero eigenvalues, and the eigenspectrum is shown 
in Fig. 5. The nodal basis of node six clearly indicates that it 
has the most influence over 8λ . The magnitude response 
across the eigenspectrum demonstrates a node’s importance at 
each eigenvalue. The magnitude spectrum explains why the 
first eigenvalue to change in the access network is 8λ . In the 
beginning of the simulation, it is expected that 8λ  will change 
first because it is most closely related to the behavior of node 
six. This is an example of the decoupling effect due to the 
eigendecomposition. Node six’s links only affect the 
eigenvalues of the nodes to which it is directly connected. All 
other eigenvalues remain constant until node six’s nodal basis 
changes and it has influence over a different eigenvalue, 
which occurs at approximately 0.2 seconds.  

Our novel method of state determination decouples nodes 
in a network to the extent possible. Node six is clearly 
decoupled from all other nodes. The behavior of node six does 
not directly affect any other access network node. The 
reduction is seen in the core network, but this is to be expected 
because the links being reduced are connected to the core 
network.  

 
Fig. 5. Eigenspectrum of node six at time zero of the simulation 

All of the nodes in the example network have similar 
eigenspectrum to the one shown in Fig. 5. The shape of the 
eigenspectrum is unique for each node due to the requirement 
that each vector in the basis is orthogonal to all others.  

D. Null and Reachability Space 
There will always be one or more zero eigenvalues of the 

Laplacian. The zero eigenvalues define the null space of the 
Laplacian. The null space is mathematically and physically 
interpreted as a part of the solution space or network that is 
unreachable. The reachability space is defined as the space in 
which there is guaranteed to be a route from all nodes to all 
other nodes. The reachability space is fully defined by the dual 
basis of and TV V  after the null space has been removed. 

The number of non-zero eigenvalues and the size of the 
reachability space is equal to ( )rank Q . The size of the null 

space is equal to ( )rankn Q− . The size of the null space 
determines the length of the vectors in the nodal space; the 
nodal space eigenvectors will have dimensionality equal to the 

( )rank Q . The eigencentrality basis vectors will always have a 
length equal to n  [8]. 

A goal of the SDN controller should be to ensure that nodes 
do not become disconnected from the network and enter the 
null space. As a function of time, the null space will grow and 
shrink. Nodes within the null space may be able to reach each 
other, but they are not useful because they are not able to 
connect to the larger SDN. 

IV. MODELING AND ANALYSIS SIMULATIONS 
In the previous sections, we have laid out the analytical 

groundwork to describe the application of the dual basis to 
determine the state of the network. The simulations we have 
developed demonstrate that the state of the network is a 
dynamic entity similar to that of the state vector in control 
theory. In the dual basis, the state is not a single vector, but it is 
actually a basis in a multi-dimensional space.  

Fig. 1 shows the network we chose to simulate. The 
network is a model of a core network that is a fully connected 
mesh and an access network that has a range of links from one 
to six. The network was designed this way in order to 
demonstrate the utility of our approach. In order to show the 
dynamic behavior of our approach, the links of three nodes 
were reduced to zero in a similar fashion. From zero to one 
second, all of the links of node six are reduced to zero at a 
constant rate. From one to two seconds, all of the links of node 
five are reduced to zero at a constant rate. From two to three 
seconds, all of the links of node four are reduced to zero a 
constant rate.  

A. Eigenvalue Results as Three Nodes are Disconnected 
Fig. 6 shows the change in eigenvalues as the three nodes 

are consecutively dropped. The first significant result observed 
in Fig. 6 is the behavior of the core network’s eigenvalues with 
the removal of three non-core nodes. The largest eigenvalues 
all have a negative slope until 10 is reached, which is the 
smallest degree of the nodes in the core mesh network. The 
reduction of the largest eigenvalue is because of (5) and is 
bounded on the lower end by minimum degree of the mesh. 
The maximum eigenvalue is bounded by the total number of 
connected nodes. In this case, the total starts at 16 and is 
reduced to 13 at the end of the simulation. The lower bound is 



10 because the minimum degree of the mesh network is 10. 
Once an eigenvalue reaches 10, it becomes a repeated 
eigenvalue. 

 

Fig. 6. Eigenvalues as all the links for nodes six, five and four go to zero 

The second major result is the behavior of the access 
network’s eigenvalues, which demonstrate the removal of the 
three nodes. Eqn. (6) holds for all three transitions. The slope 
of the first transition is -6, the second is -5, and the third is -4. 
The structure of the transitions between eigenvalues is the 
reason we propose using the full eigenspectrum of a network as 
opposed to simply using the algebraic connectivity. The full 
spectrum provides the controller with information about how 
the values are changing relative to the others. The link 
utilizations of node six are more than 80% prior to seeing any 
change in the algebraic connectivity, 3λ . By looking at all of 
the values, the controller can determine how the network is 
being loaded.  

Because of use of (1), smaller eigenvalues are associated 
with greater traffic loads in the network. The eigenspectrum 
characterizes how the network is loaded and how well it is 
managing the traffic. As node six becomes disconnected from 
the network, the algebraic connectivity begins to change. This 
is an indication that the network is receiving more traffic than 
it can handle in at least one location. This pattern is repeated 
for the next two nodes. The controller can use this information 
to determine that there is too much traffic in an area of the 
network. The controller must next use the dual basis to 
determine which node or nodes in the network are driving the 
algebraic connectivity down. 

B. Eigenvector Results as Three Nodes are Disconnected 
Fig. 7 and Fig. 8 are plots of eigenvector components as a 

function of time. Fig. 7 are the components associated with 
eigenvectors three, four and five. Fig. 8 are the components 
associated with eigenvectors 15, 16, and 17. The 
eigencentrality values are the components of each vector. 
Eigenvectors one and two are in the null space of the dual basis 
and therefore, they do not provide any useful information about 
how the network is performing.  

The three smallest eigenvector components depict the 
transitions of nodes between the separate vectors within each 
basis. The red line in Fig. 7 is node six’s component value. The 

transition just after 0.5 seconds in Fig. 7(a) coincides with the 
transition in Fig. 6 at the same time. As node six becomes more 
disconnected its eigencentrality magnitude changes in each 
vector. Notice how it peaks in the fifth eigenvector and then in 
the fourth and finally in the third. At the end of one second, 
node six enters the null space and its eigencentrality value 
jumps to one while all the others are zero. The physical 
meaning of a one in the vector and all remaining values equal 
to zero is that the node has become disconnected and can no 
longer reach any other node in the network. This same 
behavior is demonstrated by node five (green) and similarly 
node four (cyan).  

The 15th, 16th, and 17th eigenvectors provide insight into the 
behavior of the core network. As shown in Fig. 8, the 
eigencentrality values of the nodes seven, eight, and nine do 
not change as nodes four, five and six are removed. Fig. 6 
predicted this behavior. There are no transitions between 
eigenvalues and therefore, there is no change in the 
eigencentrality metrics of the three most connected nodes. The 
eigenvectors of the core network are isolated from the 
eigenvectors of the access network.  

 

Fig. 7. Plot of the third, fourth and fifth eigencentrality components as all the 
links to nodes six, five and four go to zero. Node one is blue. Node two is 
black. Node three is magenta. Node four is cyan. Node five is green. Node six 
is red. 

 

Fig. 8. Plot of the 15th, 16th, and 17th eigencentrality components as all the 
links to nodes six, five and four go to zero. Node 14 is magenta. Node 15 is 
black. Node 16 is blue. 



Putting Fig. 3 into motion using the values as shown in Fig. 
7 provides a useful way to look at the basis. Fig. 9 shows this 
movement in two-dimensions. To start, node one and node two 
are separated by 90°. This is due to the fact that the 
eigendecomposition ensures that the nodal vectors will be 
orthogonal to each other. Next notice that as node six’s links 
are reduced to zero, the vector that points to node six first 
translates in the negative direction down the y-axis and then 
rotates over to the x-axis. This translation and rotation are also 
demonstrated as the other two nodes are removed from the 
network. The state of each node can be described in terms of a 
magnitude and angle about the center of the basis [16]. It is 
more difficult to visualize these rotations in multi-dimensional 
space, but these rotations can be computed in the multi-
dimensional space that is described by the dual basis. The 
angles provide the controller with information about how 
nodes are switching between eigenvalues. These switches are 
described by the rate of change of the magnitude and angle of 
the node to any vector in the eigenspace. 

 

Fig. 9. Two-dimensional plot of the network as node six replaces nodes one 
and two as the primary node in each eigenvalue 

V. CONCLUSIONS 
Our novel approach shows that the SDN observer is able to 

dynamically determine the state of a SDN. We have 
demonstrated our approach both and in simulation. The 
proposed SDN observer determines which areas of the network 
are most utilized and which areas are least utilized. This 
information is passed to the controller, which can adapt flows 
to reduce congestion and load balance the network. In a 
network where the maximum bandwidth varies, the weighted 
graph can be dynamically updated to allow the controller to 
have greater understanding of the true network dynamics. 

We have shown that the eigenvalues are an effective 
method to determine the state of the network and in 

combination with the eigenvectors, the observer can calculate 
the complete representation of the network. To close the 
control loop, the observer passes this information to update the 
controller on the current network state. The controller can then 
use optimal control methods to improve the performance of the 
network.  

Our future research will focus on how to use this 
information to close the control loop in order to increase the 
performance of the network. We will explore how our state 
representation can be used by the controller to determine the 
difference between the ideal state and the current state. Once 
the difference is calculated, the controller must update flows to 
decrease that difference. The control algorithm must take into 
account that the controller may not have control over how 
much traffic is associated with each flow.   
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