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The p-Competition Graphs of Strongly Connectedand Hamiltonian DigraphsLarry Langley, J. Richard Lundgren1, Patricia A. McKenna1, andSarah K. Merz2,University of Colorado at Denver, Denver, CO 80217-3364Craig W. Rasmussen1,Naval Postgraduate School, Monterey, CA 93949Abstract. Competition graphs were �rst introduced by Joel Cohen in the study of food webs andhave since been extensively studied. Graphs which are the competition graph of a strongly connectedor Hamiltonian digraph are of particular interest in applications to communication networks. Ithas been previously established that every graph without isolated vertices (exceptK2) which is thecompetitiongraph of a loopless digraph is also the competitiongraph of a strongly connecteddigraph.We establish an analogous result for one generalization of competition graphs, the p-competitiongraph. Furthermore, we establish some large classes of graphs, including trees, as the p-competitiongraph of a loopless Hamiltonian digraph. and show that interval graphs on n � 4 vertices are the2-competition graphs of loopless Hamiltonian digraphs.key words: competition graph, p-competition graph, strongly connected, Hamiltonian, trees,interval graph1. Introduction. Competition graphs were �rst introduced in 1968 by Cohen[3] in connection to the study of food webs and have since found many applications.One such example is the assignment of frequencies to transmitters in radio commu-nication networks. Since it is desirable that a message initiated somewhere in thenetwork be able to reach all stations, typically the digraphs for these networks arestrongly connected. Which graphs are the competition graphs of strongly connecteddigraphs? Answers to this question are provided by Fraughnaugh et al. [4]. The areaof competition graphs has been extensively researched, for example by Brigham andDutton [1, 2], Lundgren and Maybee [7], Raychaudhuri and Roberts [8], and Robertsand Steif [9] and has generated related topics such as niche graphs, tolerance competi-tion graphs and p-competition graphs. The p-competition graph was �rst introducedby Kim, McKee, McMorris, and Roberts [6]. This paper generalizes the work ofFraughnaugh et al. [4] in considering the question which graphs are the p-competitiongraphs of loopless strongly connected and Hamiltonian digraphs?For de�nitions not given here, the reader is refered to Golumbic [5]. We use V (G)and E(G) to denote the vertex set and edge set of a graph G respectively. We useV (D) and A(D) to denote the vertex set and arc set of a digraph D respectively. Welet InD(x) denote the inset of a vertex x in a digraph D and i(G) denote the set ofisolated vertices in a graph G.2. Preliminaries. The p-competition graph of a digraph D, denoted Cp(D), isa graph on the same vertex set with vertices x and y adjacent in Cp(D) if and only ifthere are k � p vertices, v1; : : : ; vk, such that (x; vi); (y; vi) are arcs in D for all i. Ifp = 1, then Cp(D) is called the competition graph ofD. A p-edge clique cover (p-ECC)of a graph G is a family of subsets of V (G), fS1; : : : ; Skg (repetitions allowed) suchthat (x; y) 2 E(G) if and only if x and y appear together in at least p of the sets.1 This research was partially supported by Research Contract N00014-91-J-1145 of the O�ce ofNaval Research2 This research was partially supported by Research Contract N00014-93-1-0670 of the O�ce ofNaval Research 1



Observe that if G = Cp(D), then fInD(x)jx 2 V (D)g is a p-ECC for G. When p = 1,a p-ECC is called an edge clique cover. One should be careful to make the followingdistinction between a 1-ECC and a p-ECC for p � 2. While in a 1-ECC the sets arenecessarily cliques in the graph, for p � 2, the sets in a p-ECC are not necessarilycliques. Every intersection of p sets in the family is either a clique or the empty set(see Figure 1).s1 s2 s 3s 4 s 5 s6 s7 s 8s 9 s 10@@@@@@���������@@@Fig. 1. The family of sets f1;2;3; 4g;f1;2g;f2;3g;f3;4g;f1;4g is a 2-ECC for the graph onthe left. The family of sets f6;7;8g;f6;8; 9g;f8;9;10g is a 1-ECC for the graph on the right.We let �pE(G) denote the minimum cardinality of a p-ECC for the graph G. Kim,et al. [6] proved that if G has n vertices and �1E (G) � n � p + 1, then G is thep-competition graph of an arbitrary digraph (possibly with loops). The same authorsalso proved that a graph G with n vertices is a p-competition graph of an arbitrarydigraph if and only if �pE(G) � n. This generalizes a result by Brigham and Dutton[1], who originally established the result for p = 1.3. The p-CompetitionGraphs of Strongly ConnectedDigraphs. If �pE(G) �n, is G necessarily the p-competition graph of a loopless strongly connected digraph?The following result of Fraughnaugh, et al.[4] tells us the answer is no.Proposition 3.1. For p = 1, G 6= K2 is the p-competition graph of a looplessstrongly connected digraph if and only if �pE(G) + i(G) � n.Recall that if a digraph is strongly connected, then every vertex has an incomingand an outgoing arc. Consider the graph in Figure 2. A 1-ECC for this graph has atleast 9 sets, thus every vertex in the digraph must have at least two incoming arcs, onefor each endpoint of an edge in the graph. The isolated vertex, is not in a minimum1-ECC but must have an outgoing arc in order that D be strongly connected. Thisoutgoing arc creates a competition between the isolated vertex and some other vertexin the graph, a contradiction. This graph is the 2-competition graph of a looplessstrongly connected digraph (see the digraph in Figure 2). Notice that by adding 9to the inset of 8 makes the digraph strongly connected, but 9 competes at most oncewith any other vertex.Theorem 3.2. Let p � 2 and G be a graph which is the p-competition graph ofsome loopless digraph. Then G is the p-competition graph of some strongly connectedloopless digraph.Proof. Observe that if G has jV (G)j isolated vertices then let D be a directedcycle on jV (G)j vertices and Cp(D) = G for D strongly connected. Therefore we mayassume G has at least one edge. 2
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 ��	- PPPPPPPi @@@@@@@I AAAAAAAAAK @@@@@@@I BBBBBBM6 �������) @@I�������������������������1Fig. 2. G is the 1-competition graph of a loopless digraph, but not one that is strongly con-nected. G is the 2-competition graph of a loopless strongly connected digraph. The digraph is notstrongly connected but G is its 2-competition graph. Adding the arc (9;8) makes the digraph stronglyconnected, but does not change its 2-competition graph.Let D be a loopless digraph with fewest number of strongly connected compo-nents such that Cp(D) = G. Let D1; D2; : : : ; Dk be the topologically ordered stronglyconnected components of D. Recall that an ordering of the strongly connected com-ponents of D, D1; D2; : : : ; Dk is topological if and only if whenever x 2 Di and y 2 Djexist such that there is an arc from x to y, then i � j (see Golumbic [5] for a proofthat such a topological ordering exists).If D1 = Dk we are done so assume k � 2. Since G has at least one edge, we canassume that D1 contains a vertex x with at least one outgoing arc (if D1 does notcontain such a vertex then D2; : : : ; Dk; D1 is a topological ordering of the stronglyconnected components). We then have three cases.Case 1: D1 = fxg. Then In(x) = ; and Out(x) 6= ;. Let y be a vertex suchthat there is an arc from x to y. Let Dy denote the strongly connected componentcontaining y. Create D0 by adding the arc (y; x) to D. The set of vertices competingwith x at least p times is unchanged. Since y is the only vertex with an arc to x, theset of vertices competing with y is unchanged. Thus Cp(D) = G implies Cp(D0) = Gand D0 has fewer strongly connected components than D, a contradiction.Case 2: jD1j � 2 and there exists y 2 Dk, x 2 D1 such that there is no arc fromx to y. Suppose jDkj < p. If there exists q 62 Dk such that (q; y) 2 A, create D0 byadding (y; q) to D. Since D is loopless, y competes at most (p � 1) times with anyvertex (namely at most (p � 2) times for a vertex in Dk and once for q). Thereforethe set of vertices competing with y at least p times is unchanged. Then Cp(D) = GimpliesCp(D0) = G. Letting Dq denote the strongly connected component containingq, we observe that Dk [Dq is strongly connected in D0, i.e., D0 has fewer stronglyconnected components than D, a contradiction.Thus all arcs incoming at y originate in Dk. Create D0 by adding (x; y) and (y; x)to D. Then the set of vertices competing with x at least p times in D has not changedsince at most (p � 1) vertices have arcs to y (namely at most (p � 2) vertices in Dkand x). The set of vertices competing with y at least p times in D has not changedsince y has at most (p � 1) outgoing arcs (namely to at most (p � 2) vertices in Dkand x). Thus Cp(D) = G implies Cp(D0) = G and D1 [Dk is strongly connected inD0, i.e., D0 has fewer strongly connected components than D, a contradiction.3



Thus jDkj � p. Since jD1j � 2, In(x) 6= ; and since jDkj � p � 2, In(y) 6= ;.Create D0 from D by switching the insets of x and y and leaving all other arcs thesame. No competitions have changed therefore Cp(D) = G impliesCp(D0) = G. SincejD1j � 2 and jDkj � 2, D1[Dk is strongly connected in D0, i.e.,D0 has fewer stronglyconnected components than D, a contradiction.Case 3: jD1j � 2 and for all x 2 D1 and all y 2 Dk there is an arc from x to y.Suppose jDkj < p. Create D0 by adding arc (y; x) to D. Then the set of verticescompeting with y at least p times has not changed since y has arcs to at most (p� 1)vertices (namely at most (p�2) inDk and x). Since the set of vertices competing withx at least p times has not changed, Cp(D) = G implies Cp(D0) = G. Since D1[Dk isstrongly connected in D0, D0 has fewer strong components than D, a contradiction.Thus jDkj � p. Since every vertex in D1 has an arc to every vertex in Dk, D1is a clique in G. Thus we can remove arcs between vertices strictly in D1 and thep-competition graph is unchanged. Pick an arbitrary vertex x 2 D1. Create D0by deleting all arcs incoming at x and adding arc (y; x) to D. The set of verticescompeting with y at least p times is unchanged since y is the only vertex with an arcto x. Thus Cp(D) = G implies Cp(D0) = G. Since jD1j � 2 and jDkj � 2, D1 [Dk isstrongly connected in D0, i.e., D0 has fewer strongly connected components than D,a contradiction.Since in each case the contradiction impliesD has fewer than k strongly connectedcomponents where k � 2, we must have k = 1, i.e.,D is strongly connected. Thereforeevery graph which is the p-competition graph of a loopless digraph is the p-competitiongraph of a strongly connected loopless digraph. 24. Hamiltonian Digraphs: Constructions. The following constructions willbe useful in characterizing several large classes of graphs as the p-competition graphsof loopless Hamiltonian digraphs.Lemma 4.1. Let G be a connected graph such that G is the p-competition graphof a loopless Hamiltonian digraph. Adding a pendant vertex x to G results in a graphG0 which is also the p-competition graph of a loopless Hamiltonian digraph.Proof. Let D be a loopless Hamiltonian digraph such that Cp(D) = G. Letv1; v2; : : : ; vn denote a Hamiltonian cycle in D. Create D0 from D as follows. Addvertex x. Let vi denote the vertex adjacent to x in G0. Let InD0(x) = InD(vi�1). LetInD0(vi�1) = fx; vig. Observe that v1; v2; : : : ; vi�2; x; vi�1; vi; : : : ; vn is a Hamiltoniancycle in D0. Since G is connected vi has outgoing arcs to at least p other vertices ofD. Let x have an outgoing arc to p � 1 of these vertices. Then Cp(D0) = G0, whereD0 is Hamiltonian. 2Corollary 4.2. Let T be a tree. If T has a subtree which is the p-competitiongraph of a loopless Hamiltonian digraph then T is the p-competition graph of a looplessHamiltonian digraph.Proof. This follows from Lemma 4.1, since we may add pendant vertices succes-sively to the subtree, obtaining T . 2Lemma 4.3. Let T be a tree which is the p-competition graph of a loopless Hamil-tonian digraph D. Then adding a pendant vertex x to a vertex of degree d � 2 resultsin a tree T 0 that is the (p+ 1)-competition graph of a loopless Hamiltonian digraph.Proof. Let D be a loopless Hamiltonian digraph such that C(D) = T . Letv1; v2; : : : ; vn denote a Hamiltonian cycle in D. Create D0 from D as follows. Add x4



to D; let InD0(x) = V . Let vi denote the vertex adjacent to x in T 0. Let vj and vkdenote two vertices adjacent to vi in T and T 0. Since vi and vj are adjacent in T , viand vj have arcs to at least p common vertices. Let x have an arc to these vertices.Since vi and vk are adjacent in T , vi and vk have arcs to at least p common vertices, atleast one of which, vm, has no arc from vj, since T is a tree. Let x have an arc to thisvertex. Then no previous competitions have changed since all vertices have arcs to x,while x and vi compete at least (p+ 1) times. Then v1; v2; : : : ; vm�1; x; vm; : : : ; vn; v1is a Hamiltonian cycle in D0. Therefore Cp(D0) = T 0, where D0 is Hamiltonian. 2A branch of a tree is a path of the tree with the vertex at one end adjacent to aninternal vertex (or a vertex with at least three neighbors including the vertex of thebranch). A maximal branch has the further property that the other end vertex is apendant vertex.Lemma 4.4. Let T be a tree which is the p-competition graph of a loopless Hamil-tonian digraph. Let T 0 be a tree produced from T by adding a branch of l new vertices(l � 2). Then T 0 is a k-competition graph of a loopless Hamiltonian digraph forp � k � p + l � 1.Proof. The proof is by induction on l. If l = 2, observe T 0 is a p-competitiongraph of a loopless Hamiltonian digraph by Corollary 4.2. To show T 0 is a (p + 1)-competition graph of a loopless Hamiltoniandigraph, add the �rst vertex of the branchas indicated in Lemma 4.3 creating a tree which is the (p + 1)-competition graph ofa loopless Hamiltonian digraph. Then by Corollary 4.2, T 0 is the (p+ 1)-competitiongraph of a loopless Hamiltonian digraph.Assume the statement is true for the addition of a branch on l < n new verticesand consider the addition of a branch on l = n new vertices. By the inductionhypothesis, the addition of the �rst (l � 1) vertices produces a tree that is the k-competition graph of a loopless Hamiltonian digraph for p � k � p + l � 2. Thenby Corollary 4.2, T 0 is the k-competition graph of a loopless Hamiltonian digraph forp � k � p+ l � 2. It remains to be shown that T 0 is a (p+ l � 1)-competition graphof a loopless Hamiltonian digraph.Let v1; v2; : : : ; vl denote the consecutively labeled vertices of the branch such thatv1 is adjacent to an internal vertex, v0, of T . Let D be a loopless Hamiltonian digraphsuch that Cp(D) = T . Create D0 from D as follows. Direct an arc from all vertices ofT to v1; : : : ; vl�1. Observe this preserves all adjacencies from Cp(T ) in Cp+l�1(T 0).Since v0 is an internal vertex, there exists vertices t and u adjacent to v0 in T .Let S denote a set of p+ 1 vertices, p of which t and v0 have arcs directed toward inD and 1 of which u and v0 have an arc directed toward, but t does not. Direct an arcfrom all vertices in the branch to all vertices of S.For i = 1; : : : ; l� 1, direct an arc from vi to all vertices vk (k = 0; 1; : : :; l) exceptvi and vi�1. Direct an arc from vl to all vertices vk (k = 0; 1; : : : ; l � 3). Observethat nonconsecutively labeled vertices of the branch, vi and vk, compete at most(p + 1) + (l + 1� 4) times in D0 (namely for (p + 1) vertices of S and all vertices ofthe branch except vi; vi�1; vk and vk�1). Consecutively labeled vertices of the branch,vi and vi+1, compete at least (p + 1) + (l + 1 � 3) times (namely for (p+ 1) verticesof S and all vertices of the branch except vi�1; vi and vi+1). Observe that v1 and v0compete at least (p+ 1) + (l � 2) times, while for all other vertices vi of the branch,vi and v0 compete at most (p+1)� (l� 3) times (since v0 has no arc to vl and vl hasno arc to vl�2).Now consider an arbitrary vertex v 2 T other than v0 and a vertex vi of the5



branch. Since T is a tree, v can have at most p arcs to vertices of S, while vi has arcsto l�2 vertices in the set fv0; : : : ; vl�1g. Therefore v and vi compete at most p+ l�2times. Thus Cp+l�1(D0) = T 0. Furthermore if x1; x2; : : : ; xn denotes a Hamiltoniancycle inD and xi is any vertex of S, then x1; x2; : : : ; xi�1; v1; v2; : : : ; vl; xi; xi+1; : : : ; xn; x1is a Hamiltonian cycle in D0, completing the proof. 2The next lemma allows us to join two p-competition graphs of loopless Hamilto-nian digraphs.Lemma 4.5. Let p � 2. If G1 and G2 are the p-competition graphs of looplessHamiltonian digraphs, then G1[G2 is the p-competition graph of a loopless Hamilto-nian digraph.Proof. Let D1 and D2 be loopless Hamiltonian digraphs such that Cp(D1) = G1and Cp(D2) = G2. Let v1; v2; : : : ; vn1 and x1; x2; : : : ; xn2 denote a Hamiltonian cyclein each digraph respectively. Let vi be an arbitrary vertex in D1 and xi and arbitraryvertex in D2. Create digraph D from D1 and D2 as follows. Let InD(vi) be the insetof xi in D2; similarly, let InD(xi) be the inset of vi in D1. Then Cp(D) = G1[G2 andv1; v2; : : : ; vi�1; xi; xi+1; : : : ; xn2; x1; : : : ; xi�1; vi; vi+1; : : : ; vn1; v1 is a Hamiltonian cy-cle in D. 25. Utilizing the Constructions. Before we can utilize the constructions ofthe previous section, we must establish a few examples of graphs as the p-competitiongraphs of loopless Hamiltonian digraphs.Lemma 5.1. Let p � 2. If G is a cycle on n � p + 3 vertices, then G is thep-competition graph of a loopless Hamiltonian digraph.Proof. Let v1; v2; : : : ; vn denote the consecutively labeled vertices of G. Createdigraph D as follows. LetInD(vi) = fvi+1modn; vi+2modn; : : : ; vi+p+1modng:Then vi and vi+1modn compete p times, namely for vi+2modn; : : : ; vi+pmodn, andvi+p+1modn. Consider nonconsecutive vertices vi and vk. There are 4 vertices forwhich vi and vk do not compete, namely vi, vk, vi+1modn and vk+1modn. Thus vi andvk compete for at most p�1 vertices. Therefore Cp(D) = G and v1; vn; vn�1; : : : ; v2; v1is a Hamiltonian cycle in D. 2Lemma 5.2. The complete graph Kn on n � p + 2 vertices is the p-competitiongraph of a loopless Hamiltonian digraph.Proof. Let V = fv1; v2; : : : ; vng be the vertices of Kn. Create D as follows. LetInD(vi) = V � fvig. Then Cp(D) = G and that v1; v2; : : : ; vn; v1 is a Hamiltoniancycle in D. 2Lemma 5.3. The complete graph minus one edge on n � 2p + 1 vertices is thep-competition graph of a loopless Hamiltonian digraph.Proof. Let G be the complete graph minus one edge for n � 2p + 1. Labelthe vertices of G, v1; v2; : : : ; vn such that (v1; vn) is the missing edge. Create D asfollows. For 1 � i < dn2 e, let InD(vi) = V � fvi; v1g. For dn2 e < i � n, let InD(vi) =V (G) � fvi; vng. Let InD(vd n2 e) = V (G) � fvdn2 eg if n is odd, and V (G)� fvdn2 e; v1gif n is even. 6



Then all pairs compete at least dn2 e � 1 � p times except for v1 and vn whichcompete at most once andv1; vdn2 e+1; vdn2 e+2; : : : ; vn; vdn2 e; vdn2 e�1vd n2 e�2; : : : ; v1is a Hamiltonian cycle in D. 2Lemma 5.4. If G is a path on n � p + 3 vertices, then G is the p-competitiongraph of a loopless Hamiltonian digraph.Proof. We need only verify this result for n = p + 3 by Corollary 4.2. Letv1; v2; : : : ; vn be the consecutively labeled vertices of G. Create D as follows: for i 6=p+1, let InD(vi) = V (G)�fvi; vi+1modng; let InD(vp+1) = V (G)�fvi; vi+1modn; vi+2modng.Observe that v1; v2; : : : ; vn; v1 is a Hamiltonian cycle in D. Then vi and vi+1 competeat least p times, namely for vi+2modn; vi+3modn; : : : ; vi+(p+1)modn: Since vi does nothave an arc to vi or vi+1modp, the nonconsecutive vertices compete at most p � 1times, i.e., Cp(D) = G where D is Hamiltonian. 2We now establish a result for two special classes of trees. A caterpillar is a treesuch that the removal of all pendant vertices results in a path (the spine).Theorem 5.5. If G is a caterpillar on n � p + 3 vertices, then G is the p-competition graph of a loopless Hamiltonian digraph.Proof. We need only verify this result for n = p + 3 by Corollary 4.2. Letv1; v2; : : : ; vq denote the consecutively labeled vertices of the spine of G. Observeq � 3. Since a path on 3 vertices is the competition graph of a loopless Hamiltoniandigraph D, if q = 3 create D0 by successively adding all but one of the remainingpendant vertices as in Lemma4.3. Then add the �nal pendant vertex as in Lemma4.1.Then D0 is Hamiltonian and Cp(D0) = G. If q > 3, then the spine of G is the r-competition graph of a loopless Hamiltonian digraph D by Lemma 5.4, where r =q � 3. Create D0 by successively adding the remaining pendant vertices to D0 as inLemma 4.3. Then D0 is Hamiltonian and Cp(D0) = G. 2Theorem 5.6. Let p � 2. If T is a tree on n � 2p vertices, then T is thep-competition graph of a loopless Hamiltonian digraph.Proof. By Corollary 4.2 we need only consider the case n = 2p. The case p = 2can be veri�ed by examination of all possible trees so p > 2. Let q be the length ofthe longest path P in T . If q � p + 3, T is the p-competition graph of a looplessHamiltonian digraph by Lemma 5.4 and Corollary 4.2. If q � 4, T is a caterpillar andwe are done by Theorem 5.5.Saving the case q = 5, consider the case that q � 6. Then n = 2p � 2p � q + 6.Thus, if we can show that a tree on 2p� q+6 vertices is the p-competition graph of aloopless Hamiltonian digraph, we are done by Corollary 4.2. Assume T is such a treewith maximum path P .By Lemma 5.4, P is the (q � 3)-competition graph of a loopless Hamiltoniandigraph. Construct a sequence of subtrees T0; T1; : : : ; Tk where T0 is a path, Tk is Tand Ti is constructed from Ti�1 by the addition of a maximal branch. Let ni be thenumber of vertices added to Ti�1 to get Ti. Lemmas 4.1, 4.3 and 4.4 guarantee thatTi is a (q � 3 +Pil=1 kl)-competition graph where ki = maxfni � 1; 1g. The worstcase occurs when each additional branch adds two new vertices. In this case, T is a(q � 3 + j)-competition graph, where j is half the number of vertices added to T0.7



Since there are q vertices in T0, we add 2p � q + 6 � q = 2(p � (q � 3)) vertices toobtain T , and conclude T is a (q � 3) + (p� (q � 3)) = p competition graph.If q = 5, T must have a maximal branch with one vertex; otherwise all branches ofT are of length 2, i.e., T has an odd number of vertices, a contradiction since n = 2p.Remove this branch. The resulting tree has 2p � 1 = 2p � 2 � q + 6 vertices and istherefore, by the previous case, a (p�1)-competition graph of a loopless Hamiltoniandigraph. Using Lemma 4.3 we conclude T is the p-competition graph of a looplessHamiltonian digraph. 2Corollary 5.7. Let p � 2. If G is a forest and all maximal subtrees of G haven � 2p vertices, then G is the p-competition graph of a loopless Hamiltonian digraph.Proof. This follows from Theorem 5.6 and Lemma 4.5.6. Classes of 2-Competition Graphs. Using Lemmas 5.2 and 5.3 of the pre-vious section, we prove a result for chordal (hence interval) graphs.s1 s2 s 3s 4 s 5@@@@@@������HHHHHH s1 s2 s 3s 4 s 5�������������������:? -@@@@@@RXXXXXXXXXXXXz� ?������	 6@@@@@@I ������*�����������9 XXXXXXXXXXXyFig. 3. An example of a chordal graph, G, on �ve vertices and loopless Hamiltonian digraphD such that C2(D) = G. Note that the insets of the vertices in the digraph form a 2-ECC for thegraph.Lemma 6.1. If G is chordal on n � 5 vertices and not complete, then G is the2-competition graph of a loopless Hamiltonian digraph D, in which every maximalclique of G is contained in at least one inset of D.Proof. (by induction on n) If n = 5, we verify the result by considering all possiblegraphs (see Figure 3). Assume the statement is true for chordal graphs which are notcomplete on n = k � 5 vertices and let G be such a chordal graph on n = k + 1vertices. Let x be a simplicial vertex in G (a vertex is simplicial if its neighborhoodinduces a complete subgraph; every chordal graph has at least two simplicial vertices[5]). Consider G0 = G� fxg.Case 1: G0 is complete. Suppose there is exactly one vertex in G0 that is notadjacent to x in G. Then G is Kn minus one edge and by Lemma 5.3, is the 2-competition graph of a loopless Hamiltonian digraph. Suppose there are at least twovertices, xi and xj of G0 that are not adjacent to x in G. Let C be the maximalclique in G containing x. Create D as follows. Let In(x) = V (D) � fxg. LetIn(xi) = In(xj) = C. For all x0, x0 6= x; x0 6= xi; x0 6= xj ; let In(x0) = V (D)�fx0; xg.Then G is the 2-competition graph ofD. Since the digraphD�fxi; xjg has all possiblearcs, x has an arc to xi, xi has an arc to some vertex x0 of V (G) � fx; xi; xjg, x0has an arc to xj, and xj has an arc to some vertex x1 of V (G) � fx; xi; xj; x0g, weconclude that D is Hamiltonian. Furthermore C � In(xi) and V (G0) � In(x), soevery maximal clique is contained in at least one inset of D.8



Case 2: G0 is not complete. By induction hypothesis, G0 is the 2-competitiongraph of a loopless Hamiltonian digraph D0 such that every maximal clique of G0 iscontained in at least one inset of D0. Let x1; x2; : : : ; xn�1 denote the Hamiltoniancycle of D0. Let C be the maximal clique containing x in G. Let C 0 = C \ V (G0).By the inductive hypothesis there is a vertex xj such that C 0 is contained in In(xj)in D0. Create digraph D as follows. Add arc (x; xj) to D0. Observe that since D0 isloopless, xj is not adjacent to x in G.Suppose there is a vertex xi 6= xj that is not adjacent to x in G. Then letInD(x) = InD0(xi) and InD0(xi) = C. Observe that x competes with the othervertices of C in D at xi and xj, while x competes at most once with any other vertexin D, namely at xj. Since no other competitions have changed, C(D) = G andx1; : : : ; xi�1; x; xi; : : : ; xn�1 is a Hamiltonian cycle in D.Suppose xj is the only vertex that is not adjacent to x in G. Then G0 � fxjg isa clique and G� fxjg is a clique. Since this implies xj is simplicial in G and G� xjis complete, we are in case one, completing the proof. 2From Lemma 6.1 and Lemma 5.2 we have the following results.Theorem 6.2. If G is a chordal graph on n � 5 vertices, then G is the 2-competition graph of a loopless Hamiltonian digraph.Corollary 6.3. If G is interval on n � 5 vertices, then G is the 2-competitiongraph of a loopless Hamiltonian digraph.REFERENCES[1] R.C. Brigham and R.D. Dutton. A characterization of competition graphs. Discrete AppliedMathematics, 6:315{317, 1983.[2] R.C. Brigham and R.D. Dutton. On neighborhood graphs. Journal of Combinatorics, Informa-tion and System Sciences, 12(1-2):75{85, 1987.[3] J.E. Cohen. Interval graphs and food webs: A �nding and a problem. Document 17696-PR,RAND Corporation, 1968.[4] K. Fraughnaugh, J.R. Lundgren, J.S. Maybee, S.K. Merz, and N.J. Pullman. Competitiongraphsof strongly connected and Hamiltonian digraphs. SIAM Journal on Discrete Math, 1993.submitted.[5] M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York,1980.[6] S.R. Kim, T.A. McKee, F.R. McMorris, and F.S. Roberts. p-competition graphs. to appear inLinear Algebra and its Applications, 1994.[7] J.R. Lundgren and J.S. Maybee. Food webs with interval competition graphs. In Graphs andApplications: Proceedings of the First Colorado Symposium on Graph Theory. Wiley, NewYork, 1984.[8] A. Raychaudhuri and F.S. Roberts. Generalized competition graphs and their applications.Methods of Operations Research, 49:295{311, 1985.[9] F.S. Roberts and J.E. Steif. A characterization of competition graphs of arbitrary digraphs.Discrete Applied Mathematics, 6:323{326, 1983.9


