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and Hamiltonian Digraphs
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Sarah K. Merz?,
University of Colorado at Denver, Denver, CO 80217-3364

Craig W. Rasmussen?!,

Naval Postgraduate School, Monterey, CA 93949

Abstract. Competition graphs were first introduced by Joel Cohen in the study of food webs and
have since been extensively studied. Graphs which are the competition graph of a strongly connected
or Hamiltonian digraph are of particular interest in applications to communication networks. It
has been previously established that every graph without isolated vertices (except K>) which is the
competition graph of a loopless digraph is also the competition graph of a strongly connected digraph.
We establish an analogous result for one generalization of competition graphs, the p-competition
graph. Furthermore, we establish some large classes of graphs, including trees, as the p-competition
graph of a loopless Hamiltonian digraph. and show that interval graphs on n > 4 vertices are the
2-competition graphs of loopless Hamiltonian digraphs.

key words: competition graph, p-competition graph, strongly connected, Hamiltonian, trees,
interval graph

1. Introduction. Competition graphs were first introduced in 1968 by Cohen
[3] in connection to the study of food webs and have since found many applications.
One such example is the assignment of frequencies to transmitters in radio commu-
nication networks. Since it is desirable that a message initiated somewhere in the
network be able to reach all stations, typically the digraphs for these networks are
strongly connected. Which graphs are the competition graphs of strongly connected
digraphs? Answers to this question are provided by Fraughnaugh et al. [4]. The area
of competition graphs has been extensively researched, for example by Brigham and
Dutton [1, 2], Lundgren and Maybee [7], Raychaudhuri and Roberts [8], and Roberts
and Steif [9] and has generated related topics such as niche graphs, tolerance competi-
tion graphs and p-competition graphs. The p-competition graph was first introduced
by Kim, McKee, McMorris, and Roberts [6]. This paper generalizes the work of
Fraughnaugh et al. [4] in considering the question which graphs are the p-competition
graphs of loopless strongly connected and Hamiltonian digraphs?

For definitions not given here, the reader is refered to Golumbic [5]. We use V(G)
and F(G) to denote the vertex set and edge set of a graph G respectively. We use
V(D) and A(D) to denote the vertex set and arc set of a digraph D respectively. We
let Inp(x) denote the inset of a vertex « in a digraph D and #(G) denote the set of
isolated vertices in a graph G.

2. Preliminaries. The p-competition graph of a digraph D, denoted C,(D), is
a graph on the same vertex set with vertices z and y adjacent in Cp(D) if and only if
there are k > p vertices, vy, ..., vy, such that (z,v;), (y, v;) are arcs in D for all ¢. If
p =1, then C,(D) is called the competition graph of D. A p-edge clique cover (p-ECC)
of a graph G is a family of subsets of V(G), {S1,..., Sk} (repetitions allowed) such
that (z,y) € F(G) if and only if # and y appear together in at least p of the sets.
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Observe that if G = Cp(D), then {Inp(z)|z € V(D)} is a p-ECC for G. When p =1,
a p-ECC is called an edge cliqgue cover. One should be careful to make the following
distinction between a 1-ECC and a p-ECC for p > 2. While in a 1-ECC the sets are
necessarily cliques in the graph, for p > 2, the sets in a p-ECC are not necessarily
cliques. Every intersection of p sets in the family is either a clique or the empty set
(see Figure 1).

Fic. 1. The family of sets {1,2,3,4},{1,2},{2,3},{3,4},{1,4} 1s a 2-ECC for the graph on
the left. The family of sets {6,7,8},{6,8,9},{8,9,10} is a 1-ECC for the graph on the right.

We let ©%;,(G) denote the minimum cardinality of a p-ECC for the graph G. Kim,
et al. [6] proved that if G has n vertices and ©%(G) < n —p + 1, then G is the
p-competition graph of an arbitrary digraph (possibly with loops). The same authors
also proved that a graph G with n vertices is a p-competition graph of an arbitrary
digraph if and only if ©4,(G) < n. This generalizes a result by Brigham and Dutton
[1], who originally established the result for p = 1.

3. The p-Competition Graphs of Strongly Connected Digraphs. IfO}(G) <
n, is G necessarily the p-competition graph of a loopless strongly connected digraph?
The following result of Fraughnaugh, et al.[4] tells us the answer is no.

ProrosiTiON 3.1. Forp =1, G # K is the p-competition graph of a loopless
strongly connected digraph if and only if O4(G) +i(G) < n.

Recall that if a digraph is strongly connected, then every vertex has an incoming
and an outgoing arc. Consider the graph in Figure 2. A 1-ECC for this graph has at
least 9 sets, thus every vertex in the digraph must have at least two incoming arcs, one
for each endpoint of an edge in the graph. The isolated vertex, is not in a minimum
1-ECC but must have an outgoing arc in order that D be strongly connected. This
outgoing arc creates a competition between the isolated vertex and some other vertex
in the graph, a contradiction. This graph is the 2-competition graph of a loopless
strongly connected digraph (see the digraph in Figure 2). Notice that by adding 9
to the inset of 8 makes the digraph strongly connected, but 9 competes at most once
with any other vertex.

THEOREM 3.2. Let p > 2 and G be a graph which is the p-competition graph of
some loopless digraph. Then G s the p-competition graph of some strongly connected
loopless digraph.

Proof. Observe that if G has |V(G)| isolated vertices then let D be a directed
cycle on |V(G)| vertices and Cp(D) = G for D strongly connected. Therefore we may
assume (G has at least one edge.



Fic. 2. G is the 1-competition graph of a loopless digraph, but mot one that is strongly con-
nected. G 1s the 2-competition graph of a loopless strongly connected digraph. The digraph is not
strongly connected but G is its 2-competition graph. Adding the arc (9,8) makes the digraph strongly
connected, but does not change its 2-competition graph.

Let D be a loopless digraph with fewest number of strongly connected compo-
nents such that C,,(D) = G. Let D1, D5, ..., Dy be the topologically ordered strongly
connected components of D. Recall that an ordering of the strongly connected com-
ponents of D, Dy, Dy, ..., Dy is topological if and only if whenever x € D; and y € D;
exist such that there is an arc from # to y, then ¢ < j (see Golumbic [5] for a proof
that such a topological ordering exists).

If D1 = Dy we are done so assume k > 2. Since (G has at least one edge, we can
assume that D; contains a vertex z with at least one outgoing arc (if Dy does not
contain such a vertex then D, ... Dy, D1 is a topological ordering of the strongly
connected components). We then have three cases.

Case 1: Dy = {z}. Then In(z) = 0 and Out(z) # @. Let y be a vertex such
that there is an arc from z to y. Let Dy denote the strongly connected component
containing y. Create D’ by adding the arc (y,x) to D. The set of vertices competing
with & at least p times 1s unchanged. Since y is the only vertex with an arc to z, the
set of vertices competing with y is unchanged. Thus C,(D) = G implies Cp,(D') = G
and 1’ has fewer strongly connected components than D, a contradiction.

Case 2: |D1| > 2 and there exists y € Dg, @ € Dy such that there is no arc from
z to y. Suppose |Dy| < p. If there exists ¢ & Dy, such that (q,y) € A4, create D’ by
adding (y,¢) to D. Since D is loopless, y competes at most (p — 1) times with any
vertex (namely at most (p — 2) times for a vertex in D and once for ¢). Therefore
the set of vertices competing with y at least p times is unchanged. Then C,(D) = G
implies Cp,(D') = . Letting D, denote the strongly connected component containing
g, we observe that Dy U D, is strongly connected in D', i.e., D' has fewer strongly
connected components than D, a contradiction.

Thus all arcs incoming at y originate in Dy. Create D' by adding (z,y) and (y, «)
to D). Then the set of vertices competing with x at least p times in D has not changed
since at most (p — 1) vertices have arcs to y (namely at most (p — 2) vertices in Dy
and z). The set of vertices competing with y at least p times in D has not changed
since y has at most (p — 1) outgoing arcs (namely to at most (p — 2) vertices in Dy
and ). Thus Cp(D) = G implies C,(D') = G and Dy U Dy, is strongly connected in
D’ i.e., D' has fewer strongly connected components than D, a contradiction.
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Thus |Dy| > p. Since |Di] > 2, In(z) # 0 and since |Dy| > p > 2, In(y) # 0.
Create D' from D by switching the insets of  and y and leaving all other arcs the
same. No competitions have changed therefore C\,(D) = G implies Cp,(D') = . Since
|D1| > 2 and |Dg| > 2, Dy U Dy is strongly connected in D’ i.e., D’ has fewer strongly
connected components than D, a contradiction.

Case 3: |Dy| > 2 and for all # € Dy and all y € Dy, there is an arc from z to y.

Suppose |Dp| < p. Create D' by adding arc (y,#) to D. Then the set of vertices
competing with y at least p times has not changed since y has arcs to at most (p— 1)
vertices (namely at most (p—2) in Dy, and z). Since the set of vertices competing with
x at least p times has not changed, C,(D) = G implies C,(D’) = G. Since Dy U Dy, is
strongly connected in D', D’ has fewer strong components than D, a contradiction.

Thus |Dg| > p. Since every vertex in Dj has an arc to every vertex in Dy, D,
is a clique in (G. Thus we can remove arcs between vertices strictly in Dy and the
p-competition graph is unchanged. Pick an arbitrary vertex x € D;. Create D’
by deleting all arcs incoming at # and adding arc (y,z) to D. The set of vertices
competing with y at least p times is unchanged since y 1s the only vertex with an arc
to . Thus Cp(D) = G implies C,(D') = G. Since |Dq| > 2 and |Dy| > 2, D1 U Dy, is
strongly connected in D', i.e., D’ has fewer strongly connected components than D,
a contradiction.

Since in each case the contradiction implies D has fewer than & strongly connected
components where k£ > 2, we must have £ = 1, 1.e., D 1s strongly connected. Therefore
every graph which is the p-competition graph of a loopless digraph is the p-competition
graph of a strongly connected loopless digraph. a

4. Hamiltonian Digraphs: Constructions. The following constructions will
be useful in characterizing several large classes of graphs as the p-competition graphs
of loopless Hamiltonian digraphs.

LEMMA 4.1. Let G be a connected graph such that G is the p-competition graph
of a loopless Hamiltonian digraph. Adding a pendant vertex x to G results in a graph
G' which is also the p-competition graph of a loopless Hamiltonian digraph.

Proof. Let D be a loopless Hamiltonian digraph such that C,(D) = G. Let

V1,9, ..., v, denote a Hamiltonian cycle in D. Create D’ from D as follows. Add
vertex x. Let v; denote the vertex adjacent to # in G’. Let Inp/(z) = Inp(v;—1). Let
Inpi(vi—1) = {x,v;}. Observe that vy, va, ..., v;_0,®,v_1,0;,...,0, is a Hamiltonian

cycle in DY, Since G is connected v; has outgoing arcs to at least p other vertices of
D. Let x have an outgoing arc to p — 1 of these vertices. Then C,(D') = G, where
D’ is Hamiltonian. ]

COROLLARY 4.2. Let T be a tree. If T' has a subtree which is the p-competition
graph of a loopless Hamultonian digraph then T is the p-competition graph of a loopless
Hamiltonian digraph.

Proof. This follows from Lemma 4.1, since we may add pendant vertices succes-
sively to the subtree, obtaining 7. a

LEMMA 4.3. Let T be a tree which is the p-competition graph of a loopless Hamal-
tonian digraph D. Then adding a pendant vertex x to a vertex of degree d > 2 results
in a tree T' that is the (p+ 1)-competition graph of a loopless Hamiltonian digraph.

Proof. Let D be a loopless Hamiltonian digraph such that C(D) = T. Let
V1,9, ..., v, denote a Hamiltonian cycle in D. Create D’ from D as follows. Add z
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to D; let Inp/(z) = V. Let v; denote the vertex adjacent to x in 7. Let v; and vy
denote two vertices adjacent to v; in T' and T”. Since v; and v; are adjacent in T', v;
and v; have arcs to at least p common vertices. Let x have an arc to these vertices.
Since v; and vy are adjacent in T, v; and v have arcs to at least p common vertices, at
least one of which, v,,, has no arc from v;, since 7' is a tree. Let z have an arc to this
vertex. Then no previous competitions have changed since all vertices have arcs to z,
while # and v; compete at least (p+ 1) times. Then vy, va, ..., V1, L, Um, ..., Un, U1
is a Hamiltonian cycle in D', Therefore C,(D’) = T”, where D’ is Hamiltonian. O

A branch of a tree i1s a path of the tree with the vertex at one end adjacent to an
internal vertex (or a vertex with at least three neighbors including the vertex of the
branch). A mazimal branch has the further property that the other end vertex is a
pendant vertex.

LEMMA 4.4. Let T be a tree which is the p-competition graph of a loopless Hamul-
tontan digraph. Let T" be a tree produced from T by adding a branch of | new vertices
(I > 2). Then T' is a k-competition graph of a loopless Hamiltonian digraph for
p<k<p+Il-1.

Proof. The proof is by induction on [. If [ = 2, observe 7" is a p-competition
graph of a loopless Hamiltonian digraph by Corollary 4.2. To show 7" is a (p + 1)-
competition graph of a loopless Hamiltonian digraph, add the first vertex of the branch
as indicated in Lemma 4.3 creating a tree which is the (p + 1)-competition graph of
a loopless Hamiltonian digraph. Then by Corollary 4.2, 7" is the (p 4 1)-competition
graph of a loopless Hamiltonian digraph.

Assume the statement is true for the addition of a branch on ! < n new vertices
and consider the addition of a branch on [ = n new vertices. By the induction
hypothesis, the addition of the first (I — 1) vertices produces a tree that is the k-
competition graph of a loopless Hamiltonian digraph for p < k& < p+ 11— 2. Then
by Corollary 4.2, 7" is the k-competition graph of a loopless Hamiltonian digraph for
p <k <p+4+1—2. Tt remains to be shown that 7" is a (p + [ — 1)-competition graph
of a loopless Hamiltonian digraph.

Let v1,v9,...,v; denote the consecutively labeled vertices of the branch such that
v1 1s adjacent to an internal vertex, vy, of T'. Let D be a loopless Hamiltonian digraph
such that Cp,(D) = T. Create D' from D as follows. Direct an arc from all vertices of
T to v1,...,v—1. Observe this preserves all adjacencies from C,(T) in Cpp—1(7").

Since vy is an internal vertex, there exists vertices ¢ and u adjacent to vy in 7.
Let S denote a set of p+ 1 vertices, p of which ¢ and vg have arcs directed toward in
D and 1 of which u and vy have an arc directed toward, but ¢ does not. Direct an arc
from all vertices in the branch to all vertices of 5.

Fori=1,...,1—1, direct an arc from v; to all vertices vy (k= 0,1,...,() except
v; and v;_1. Direct an arc from v; to all vertices vy (kK = 0,1,...,1 —3). Observe
that nonconsecutively labeled vertices of the branch, v; and v;, compete at most
(p+ 1)+ (I +1—4) times in D’ (namely for (p 4 1) vertices of S and all vertices of
the branch except v;, v;_1, vy and v_1). Consecutively labeled vertices of the branch,
v; and v;41, compete at least (p+ 1) + ({ + 1 — 3) times (namely for (p + 1) vertices
of S and all vertices of the branch except v;_1,v; and v;41). Observe that vy and vg
compete at least (p+ 1)+ (I — 2) times, while for all other vertices v; of the branch,
v; and vg compete at most (p+ 1) — (I — 3) times (since vy has no arc to v; and v; has
no arc to vj_s).

Now consider an arbitrary vertex v € 1 other than vy and a vertex v; of the
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branch. Since 7' is a tree, v can have at most p arcs to vertices of S, while v; has arcs
to { —2 vertices in the set {vg, ..., vi—1}. Therefore v and v; compete at most p+1—2
times. Thus Cp4y—1(D') = T". Furthermore if z1, x5, ..., 2, denotes a Hamiltonian
cyclein D and x; 1s any vertex of S, then @1, xa, ..., &;_1, 01,2, .. ., V1, &5, Tig1, .-, T,
is a Hamiltonian cycle in D', completing the proof. a

The next lemma allows us to join two p-competition graphs of loopless Hamilto-
nian digraphs.

LEMMA 4.5. Let p > 2. If Gy and G2 are the p-competition graphs of loopless
Hamaltonian digraphs, then Gy UG5 is the p-competition graph of a loopless Hamilto-
nian digraph.

Proof. Let Dy and D» be loopless Hamiltonian digraphs such that Cp(D1) = Gy
and Cp(D2) = Ga. Let vy, vs,...,vp,, and &1, 29, ..., 2y, denote a Hamiltonian cycle
in each digraph respectively. Let v; be an arbitrary vertex in 17 and z; and arbitrary
vertex in Ds. Create digraph D from D; and D, as follows. Let Inp(v;) be the inset
of &; in D»; similarly, let Inp(2;) be the inset of v; in Dq. Then C,(D) = G1 UG and
V1,09, vy Vi1, Tiy Tigly o ooy gy Ty« ooy Lie1, Viy Vigly -« -y Uny, U1 18 @ Hamiltonian cy-
clein D. a

5. Utilizing the Constructions. Before we can utilize the constructions of
the previous section, we must establish a few examples of graphs as the p-competition
graphs of loopless Hamiltonian digraphs.

LEMMA H.1. Let p > 2. If G is a cycle on n > p + 3 vertices, then G is the
p-competition graph of a loopless Hamiltonian digraph.

Proof. Let vy,vs,...,v, denote the consecutively labeled vertices of G. Create
digraph D as follows. Let

IHD(W) = {Ui+1modna Vi4+2modn,y « -+« Ui+p+1modn}~

Then v; and v;yi1modn compete p times, namely for v;1omodn, .- -, Vitpmodn, and
Vitp+imodn. Consider nonconsecutive vertices v; and v. There are 4 vertices for
which v; and vy, do not compete, namely v;, Vi, Vit1modn and Vk4+1medn. Thus v; and
vy, compete for at most p—1 vertices. Therefore Cp(D) = G and v1, v, V1, ..., v2, 01
is a Hamiltonian cycle in D. a

LEMMA 5.2. The complete graph K, on n > p+ 2 vertices is the p-competition
graph of a loopless Hamultonian digraph.

Proof. Let V = {vy,va,...,v,} be the vertices of K,,. Create D as follows. Let
Inp(v;) = V — {v;}. Then C,(D) = G and that vi,vs,...,v,,v1 is a Hamiltonian
cycle in D. a

LEMMA 5.3. The complete graph minus one edge on n > 2p + 1 vertices is the
p-competition graph of a loopless Hamiltonian digraph.

Proof. Let G be the complete graph minus one edge for n > 2p + 1. Label
the vertices of G, vy, va,..., v, such that (vy,v,) is the missing edge. Create D as
follows. For 1 <i < [%], let Inp(v;) =V — {v;,v1}. For [§] < i< mn,let Inp(v;) =
V(G) = {vi,vn}. Let Inp(vray) = V(G) — {v[z1} if nis odd, and V(G) — {vzy, v}

if n 1s even.
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Then all pairs compete at least [%] — 1 > p times except for v; and v, which
compete at most once and

U1, vf%]-l—la vf%]-I—Za -y Un, U"%" ) v[%]—lvf%]—Za -l
is a Hamiltonian cycle in D. a

LEMMA 5.4. If G is a path on n > p + 3 vertices, then GG is the p-competition
graph of a loopless Hamultonian digraph.

Proof. We need only verify this result for n = p + 3 by Corollary 4.2. Let
V1,2, ..., U, be the consecutively labeled vertices of GG. Create D as follows: for ¢ #
p+1, let Inp (v;) = V(G)—{vi, Vigtimodn }; let Inp(vp41) = V(G)—{vi, Vitimodn, Vi+2modn }-
Observe that vy, va, ..., v,,v1 is a Hamiltonian cycle in D. Then v; and v;1 compete
at least p times, namely for v;;9modn, Vit3modn, - - - Vit (p4+1)modn - Since v; does not
have an arc to v; or vifimodp, the nonconsecutive vertices compete at most p — 1
times, i.e., C,,(D) = G where D is Hamiltonian. a

We now establish a result for two special classes of trees. A caterpillaris a tree
such that the removal of all pendant vertices results in a path (the spine).

THEOREM bH.5. If G s a caterpillar on n > p + 3 wvertices, then G is the p-
competition graph of a loopless Hamiltonian digraph.

Proof. We need only verify this result for n = p + 3 by Corollary 4.2. Let
v1,v32,...,v, denote the consecutively labeled vertices of the spine of . Observe
g > 3. Since a path on 3 vertices is the competition graph of a loopless Hamiltonian
digraph D, if ¢ = 3 create D’ by successively adding all but one of the remaining
pendant vertices as in Lemma4.3. Then add the final pendant vertex asin Lemma4.1.
Then D’ is Hamiltonian and Cp(D') = G. If ¢ > 3, then the spine of G is the r-
competition graph of a loopless Hamiltonian digraph D by Lemma 5.4, where r =
q — 3. Create D’ by successively adding the remaining pendant vertices to I as in
Lemma 4.3. Then D' is Hamiltonian and C,(D') = G. a

THEOREM H.6. Let p > 2. IfT is a tree on n > 2p vertices, then T 1is the
p-competition graph of a loopless Hamiltonian digraph.

Proof. By Corollary 4.2 we need only consider the case n = 2p. The case p = 2
can be verified by examination of all possible trees so p > 2. Let ¢ be the length of
the longest path P in 7. If ¢ > p+ 3, T is the p-competition graph of a loopless
Hamiltonian digraph by Lemma 5.4 and Corollary 4.2. If ¢ < 4, T"is a caterpillar and
we are done by Theorem 5.5.

Saving the case ¢ = b, consider the case that ¢ > 6. Then n = 2p > 2p — ¢ + 6.
Thus, if we can show that a tree on 2p — ¢ + 6 vertices is the p-competition graph of a
loopless Hamiltonian digraph, we are done by Corollary 4.2. Assume 7' is such a tree
with maximum path P.

By Lemma 5.4, P is the (¢ — 3)-competition graph of a loopless Hamiltonian
digraph. Construct a sequence of subtrees Ty, 71, ..., T, where Ty is a path, Ty 1s T
and T; is constructed from T;_; by the addition of a maximal branch. Let n; be the
number of vertices added to T;_; to get T;. Lemmas 4.1, 4.3 and 4.4 guarantee that
T;is a (g — 3+ >, ki)-competition graph where k; = max{n; —1,1}. The worst
case occurs when each additional branch adds two new vertices. In this case, T"1s a
(¢ — 3 4 j)-competition graph, where j is half the number of vertices added to 7.
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Since there are ¢ vertices in Ty, we add 2p — ¢+ 6 — ¢ = 2(p — (¢ — 3)) vertices to
obtain T, and conclude T is a (¢ — 3) + (p — (¢ — 3)) = p competition graph.

If ¢ = 5, T'must have a maximal branch with one vertex; otherwise all branches of
T are of length 2, i.e., T" has an odd number of vertices, a contradiction since n = 2p.
Remove this branch. The resulting tree has 2p — 1 = 2p — 2 — ¢ 4 6 vertices and is
therefore, by the previous case, a (p — 1)-competition graph of a loopless Hamiltonian
digraph. Using Lemma 4.3 we conclude T is the p-competition graph of a loopless
Hamiltonian digraph. ad

COROLLARY b.7. Let p > 2. If G s a forest and all mazimal subtrees of G have
n > 2p vertices, then G is the p-competition graph of a loopless Hamiltonian digraph.

Proof. This follows from Theorem 5.6 and Lemma 4.5.

6. Classes of 2-Competition Graphs. Using Lemmas 5.2 and 5.3 of the pre-
vious section, we prove a result for chordal (hence interval) graphs.

Fic. 3. An example of a chordal graph, G, on five vertices and loopless Hamiltonian digraph
D such that C2(D) = G. Note that the insets of the vertices in the digraph form a 2-ECC for the
graph.

LEMMA 6.1. If G is chordal on n > 5 vertices and not complete, then G is the
2-competition graph of a loopless Hamiltonian digraph D, in which every mazimal
cliqgue of G 1s contained in at least one wnset of D.

Proof. (by induction on n) If n = 5, we verify the result by considering all possible
graphs (see Figure 3). Assume the statement is true for chordal graphs which are not
complete on n = k > 5 vertices and let G be such a chordal graph on n = k + 1
vertices. Let x be a simplicial vertex in G (a vertex is simplicial if its neighborhood
induces a complete subgraph; every chordal graph has at least two simplicial vertices
[5]). Consider G' = G — {«x}.

Case 1: G’ is complete. Suppose there is exactly one vertex in G’ that is not
adjacent to z in G. Then G is K, minus one edge and by Lemma 5.3, is the 2-
competition graph of a loopless Hamiltonian digraph. Suppose there are at least two
vertices, #; and z; of G’ that are not adjacent to z in . Let C' be the maximal
clique in G containing . Create D as follows. Let In(x) = V(D) — {x}. Let
In(x;) = In(z;) = C. For all &g, 2o # #, 20 # 2;, 20 £ 25, let In(z0) = V(D) —{zo, z}.
Then G is the 2-competition graph of D. Since the digraph D—{z;, z; } has all possible
arcs, « has an arc to #;, «; has an arc to some vertex zg of V(G) — {z, 2, 2;}, o
has an arc to z;, and x; has an arc to some vertex z1 of V(G) — {z, z;, z;, zo}, we
conclude that D is Hamiltonian. Furthermore C' C In(x;) and V(G') C In(z), so
every maximal clique is contained in at least one inset of D.



Case 2: 7 is not complete. By induction hypothesis, G’ is the 2-competition
graph of a loopless Hamiltonian digraph I’ such that every maximal clique of G’ is
contained in at least one inset of D'. Let x1,xs,...,%,_1 denote the Hamiltonian
cycle of D' Let C' be the maximal clique containing # in G. Let C' = C N V(G').
By the inductive hypothesis there is a vertex x; such that C” is contained in In(z;)
in D'. Create digraph D as follows. Add arc (z,z;) to D’. Observe that since D' is
loopless, x; is not adjacent to z in G.

Suppose there is a vertex x; # x; that is not adjacent to x in G. Then let
Inp(z) = Inp/(x;) and Inp/(x;) = C. Observe that x competes with the other
vertices of C'in D at z; and z;, while £ competes at most once with any other vertex
in D, namely at z;. Since no other competitions have changed, C(D) = G and
XTlyeoo, Xi 1,2, %5, ...,Tn_1 18 a Hamiltonian cycle in D.

Suppose z; is the only vertex that is not adjacent to # in . Then G’ — {z;} is
a clique and G — {z;} is a clique. Since this implies #; is simplicial in G and G — z;
is complete, we are in case one, completing the proof. a

From Lemma 6.1 and Lemma 5.2 we have the following results.

THEOREM 6.2. If G is a chordal graph on n > b wvertices, then G s the 2-
competition graph of a loopless Hamiltonian digraph.

COROLLARY 6.3. If GG s interval on n > 5 vertices, then G is the 2-competition
graph of a loopless Hamultonian digraph.
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