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ABSTRACT5

The utility of static and adaptive mesh refinement (SMR and AMR, respectively) are ex-6

amined for idealized tropical cyclone (TC) simulations in a spectral element f -plane shallow7

water model. The SMR simulations have varying sizes of the statically refined meshes8

(geometry-based) while the AMR simulations use a potential vorticity (PV) threshold to9

adaptively refine the mesh to the evolving TC. Numerical simulations are conducted for four10

cases: (i) TC-like vortex advecting in a uniform flow, (ii) binary vortex interaction, (iii)11

barotropic instability of a PV ring, and (iv) barotropic instability of a thin strip of PV. For12

each case, a high resolution “truth” simulation is compared to two different SMR simula-13

tions and three different AMR simulations for accuracy and efficiency. The multiple SMR14

and AMR simulations have variations in the number of fully-refined elements in the vicinity15

of the TC. For these idealized cases, it is found that the SMR and AMR simulations are16

able to resolve the vortex dynamics as well as the “truth” runs, with no significant loss in17

accuracy in the refined region in the vortex vicinity and with significant speed-ups (factor18

of 2-5). The overall accuracy is enhanced by a greater area of fully refined mesh in both the19

SMR and AMR simulations. While these results are highly idealized, they demonstrate the20

potential for SMR and AMR for the numerical simulation of TCs in three dimensions and21

more complex models.22

1. Introduction23

Atmospheric motions span a multitude of different spatial and temporal scales. Examples24

are planetary waves at spatial scales of 106 m which evolve over days to boundary layer25
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turbulent eddies at scales of 101 m which evolves over minutes. With current computational26

resources, it is not possible to simulate the entire spectrum of atmospheric flows. One of the27

goals in the design of next generation numerical weather prediction (NWP) models is that28

they be unified, or that one nonhydrostatic dynamical core has the capability of simulating a29

wide-spectrum atmospheric spatial and temporal scales of motion, from microscale to global,30

and weather to climate. Severe and high-impact weather can often take the form of localized31

weather systems, such as severe thunderstorms, tornadoes, fronts, and tropical cyclones.32

With limited computational resources, it would be ideal to perform local mesh refinement33

to resolve the details of these features, while resolving the large-scale features (e.g., synoptic34

scale high pressure systems) at coarser resolution.35

Currently, the primary method for tackling this scale discrepancy is by utilizing multiply36

nested numerical weather prediction (NWP) models (Kurihara et al. 1979; Hodur 1997;37

Kurihara et al. 1998; Skamarock et al. 2005; Doyle et al. 2014). However, a number of38

drawbacks exist with this method. First, there exist multiple lateral boundaries, often with39

the existence of non-physical blending zones. Secondly, there is inefficiency in performing the40

same forecast on each nest since the nests are embedded within each other. Thirdly, due to41

the extra communication required between nests, it is not expected that these setups would42

scale that efficiently on multiple processors. An alternative method to embedded nests is43

static or adaptive mesh refinement. In the former method, a mesh could be statically refined44

over a region of interest (e.g., a city or coastline) providing more fine scale details of the flow45

there. In the latter method, the mesh could adaptively refine and de-refine based on some46

feature of interest, such as a tropical cyclone (TC). The earlier work of Berger and Oliger47

(1984) and Skamarock and Klemp (1993) demonstrated the utility of AMR for hyperbolic48
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equations. A review of the current state of AMR for atmospheric modeling is described in49

Jablonowski (2004) and Behrens (2006).50

The purpose of the present study is to examine the utility of both SMR and AMR for51

ideal TC simulations in a next generation dynamical core. The model is a planar spectral52

element shallow water model, with similar numerical methods used in the Nonhydrostatic53

Unified Model of the Atmosphere (NUMA; Giraldo and Restelli 2008). We examine the54

utility of SMR and AMR for four flows, representing idealizations of TC dynamics in the55

real atmosphere. First, we examine the a TC advecting in a uniform flow, representing a56

TC tracking in the atmosphere in steady environmental flow. Secondly, a binary vortex57

interaction is examined, representing the interaction of two TCs that are close together.58

Thirdly, instabilities and mixing processes are examined in the hurricane inner-core (eye and59

eyewall). Fourth, the instability of the intertropical convergence zone (ITCZ), its breakdown,60

and formation of TC-like vortices. In each case, we compare a series of SMR and AMR61

simulations with variable regions of refined mesh to a “truth” simulation with uniform refined62

mesh in order to obtain an understanding of efficiency and accuracy tradeoffs. The remainder63

of this paper is organized as follows. In section 2, the continuous model equations and64

numerical method are given. Each experimental setup is given in section 3, along with65

details of the spatial and temporal discretization. The results from each experiment are66

given and discussed in section 4. A summary of the main findings are given in section 5.67
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2. Model equations and numerical method68

a. Continuous equations69

The model is based upon the divergent barotropic (shallow water) equations in Cartesian

coordinates on an f -plane. The governing equations are

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv + g

∂h

∂x
= 0 (1)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu + g

∂h

∂y
= 0 (2)

∂h

∂t
+
∂(uh)

∂x
+
∂(vh)

∂y
= 0, (3)

where u is the zonal momentum per unit mass, v is the meridional momentum per unit mass,

h is the fluid depth, and f is the Coriolis parameter. An important property of the unforced,

inviscid shallow water equations (1)-(3) is the material conservation of potential vorticity,

DP

Dt
= 0, (4)

where P = (f + ζ)/h is the potential vorticity, where ζ = ∂v/∂x − ∂u/∂y is the relative70

vorticity and D/Dt = (∂/∂t) + u(∂/∂x) + v(∂/∂y) is the material derivative.71

b. Numerical method and mesh refinement algorithms72

The flux form of the continous shallow water equations (1)–(3) are discretized using the

continuous Galerkin (CG), or spectral element, numerical method. The flux form shallow

water equations are written in compact vector form as follows:

∂U

∂t
+ ∇ ·

(

U ⊗ U

ϕ
+

1

2
ϕ2I2

)

+ fk × U = 0 (5)
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∂ϕ

∂t
+ ∇ · U = 0, (6)

where U = ϕu, u = (u, v, 0)T is the velocity vector (where the superscript T denotes the73

transpose), ϕ = gh with h being the fluid height and g the gravitational constant. Other74

quantities requiring definition include: I2 ∈ R2 is an identity matrix, k = (0, 0, 1)T is the75

vector pointing upwards (along the z-coordinate which coincides with the direction along76

which h is measured), ⊗ denotes the tensor product operator, and ∇· denotes the divergence77

operator.78

High order CG methods for the shallow water equations are given in Ma (1993) and79

Taylor et al. (1997), and the numerical model used is this study is based upon the specific80

methods discussed in Giraldo (2001) and Giraldo and Restelli (2008). The spectral element81

method has been applied to numerous idealized test cases, as well as more complicated82

idealized tests cases of atmospheric phenomena, such as moist experiments of a squall line83

(Gabersek et al. 2012).84

A brief overview of the elemental CG method is given here. Given a computational85

domain Ω, the domain is first decomposed into a number of elements Ne as86

Ω =
Ne
⋃

1

Ωe (7)

where Ωe is one element. In each element, the weak integral form of the shallow water87

equations above is taken, and the solution is expanded as88

qN(x, y, t) =
MN
∑

j=1

χj(x, y)qj(t) (8)

where qN is a prognostic variable, MN = (N + 1)2, N is the polynomial order, and χj is a89
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local basis function. In the CG method, neighboring elements share interface points and in90

each element the solution is obtained at the Legendre-Gauss-Lobatto (LGL) nodal points.91

As an example, Fig. 1 shows the LGL nodal points inside one element for N = 5.92

The mesh refinement algorithm is based upon Kopera and Giraldo (2014, 2015), and uses93

a forest of quad trees (i.e., each internal node has four children), similar to the approach94

used by St-Cyr et al. (2008). In the refinement procedure, the polynomial order N is held95

constant, while the mesh is refined (i.e., h-refinement is done instead of p-refinement). For96

the experiments here, a maximum of two levels of mesh refinement is used, so that a fully97

refined element is four times the horizontal resolution of a coarse element. Additionally, the98

refinement algorithm includes the functionality to generate an arbitrary number of layers of99

refined mesh cells extending away from the feature of interest. This is hereafter referred to100

as the “buffer” region. The AMR criterion for this study is the potential vorticty P , and101

refinement and coarsening of the elements is accomplished based on a threshold in P . An102

attractive feature of PV is that linear inertia-gravity waves have zero PV, eliminating the103

possibility of AMR tracking fast-mode inertia-gravity waves. The SMR criterion is based104

subjectively on different area sizes around the feature of interest.105

3. Initial conditions and model setup106

Four different test cases are examined and described in detail below. These cases are: (i)107

TC vortex moving in a uniform flow, (ii) binary vortex interaction, (iii) dynamic instability108

of the hurricane eyewall, eye mesovortex formation and mixing between the eyewall and eye,109

and (iv) formation of TC-like vortices from the barotropic instability of a shear zone. These110
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cases are idealizations of TC dynamics occurring in the real atmosphere. In order to relate111

the simulations to the real processes, Fig. 2 shows an example real-case scenario that each test112

case is designed to represent. In Fig. 2a, Hurricane Andrew is shown moving west towards113

Florida, being advected by the easterly flow around the subtropical ridge to its north (case114

1 idealization). In Fig. 2b, the binary vortex interaction of two storms Typhoons Melor and115

Parma are shown. The differential advection induced from each cyclone advects the other116

creating a net cyclonic motion (the Fujiwhara effect; Fujiwhara 1921) (case 2 idealization).117

In Fig. 2c, the instability and break down of the eyewall of Hurricane Dolly (2008) is shown,118

leading to an asymmetric radar reflectivity pattern there (case 3 idealization). Finally, in119

Fig. 2d, the instability and breakdown of the ITCZ is shown over days. The deep convection120

along the ITCZ is observed to undulate and finally breakdown into distinct tropical cyclones121

(case 4 idealization).122

a. Case 1: TC vortex advecting in a uniform flow123

The first test case is a TC-like vortex advecting in a uniform flow, which is an idealiza-

tion of a TC moving with the environmental flow in the atmosphere. The initial vortex is

constructed as a Rankine vortex in polar coordinates (r,φ, where r = (x2 + y2)1/2 and φ is

the azimuthal angle in radians) according to

vφ(r,φ, 0) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ζ1r/2 0 ≤ r ≤ r1,

ζ1r2
1/(2r) r1 ≤ r < ∞,

(9)

where vφ is the tangential velocity, ζ1 = 1×10−3 s−1 and r1 = 50 km. With these parameters,

the peak tangential velocity at r = 50 km is 25 m s−1. A smooth radial decay function

7



(1 − r/rcut)2 is added to the tangential winds so that vφ(r,φ, 0) = 0 at rcut, with a cutoff

radius rcut = 220 km. The vortex Cartesian momentum components u and v are next

specified and then the uniform zonal flow u0 = 10 m s−1 is added to u. This experiment is

done on an f -plane with f = 0. The initial balanced fluid depth is determined by solving

the nonlinear balance equation

g∇2h = f∇2ψ − 2

[

(

∂2ψ

∂x∂y

)2

−
∂2ψ

∂x2

∂2ψ

∂y2

]

, (10)

using the CG method, where ζ = ∇2ψ, u = ∂ψ/∂y and v = −∂ψ/∂x.124

The equations are solved on a square domain of 600 km × 600 km. The setup is a125

zonal channel flow, with no-flux boundary conditions applied at the north and south lateral126

boundaries, and periodic boundary conditions applied at the west and east boundaries. The127

simulation is run for one revolution, so the final TC is located at the starting point, for128

comparison to the analytic solution which is the initial condition.129

b. Case 2: Binary vortex interaction130

The second case is a binary vortex interaction (Dritschel and Waugh 1992; Prieto et al.131

2001, 2003). In this case, two TC-like vortices are offset by a certain distance and allowed132

to interact with one another. Depending on the offset distance, and the size and intensity133

of each vortex, different interactions can occur such as complete merger, complete straining134

out, partial straining out, elastic interaction (Prieto et al. 2003). The case we choose here135

is an elastic interaction, where each vortex retains its shape, but the interaction of the two136

vortices cause a net cyclonic motion (the Fujiwhara effect).137

The initial condition for the binary vortex interaction case consists of two offset Rankine138
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vortices. Each vortex is constructed according to139

vφ(r,φ, 0) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ζ1r/2 0 ≤ r ≤ r1,

ζ1r2
1/(2r) r1 ≤ r < ∞,

(11)

where ζ1 = 1× 10−3 s−1. The first vortex is positioned at (x, y) = (15, 0) km and the second140

vortex is positioned at (x, y) = (−15, 0) km. The same rcut as in case 1 is applied to each141

vortex to ensure the winds decay to zero before the lateral boundary. No-flux boundary142

conditions are used at each lateral boundary. The nonlinear balance equation (8) is solved143

using the initial condition of both vortices in order to obtain the corresponding h(x, y, 0)144

field, only with f = 1.0 × 10−4 s−1.145

c. Case 3: Barotropic instability of the hurricane eyewall146

The third case is the barotropic instability of the hurricane eyewall. The hurricane eyewall147

can largely be described as a three-region model: (i) low vorticity eye, (ii) high vorticity148

eyewall, and (iii) low vorticity environment. Observations of such vorticity structures in real149

hurricanes are given in Kossin and Eastin (2001) and Hendricks et al. (2012). An idealization150

of this structure can be constructed according to Schubert et al. (1999) using the tangential151

velocity profile152

vφ(r,φ, 0) =
1

2r

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ξ1r2 + ξ2r2 0 ≤ r ≤ r1

ξ1r2
1 + ξ2r2

2 r1 ≤ r ≤ r2,

ξ1r2
1 + ξ2r2

2 r2 ≤ r ≤ ∞

(12)
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which defines a discrete three region model of axisymmetric relative vorticity

ζ(r,φ, 0) =
1

r

∂(rv)

∂r
=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ξ1 + ξ2 0 ≤ r ≤ r1

ξ2 r1 ≤ r ≤ r2,

0 r2 ≤ r ≤ ∞

(13)

Here ξ1 = −3× 10−3 s−1, ξ2 = 3× 10−3 s−1, r1 = 40 km and r2 = 50 km. The hurricane eye153

is defined as the region less than r1, the eyewall is defined as the region between r1 and r2,154

and the environment is defined as the region between r2 and infinity. Similar to the previous155

experiments, a smooth radial decay function (1 − r/rcut)2 is added to the tangential winds156

so that vφ(r,φ, 0) = 0 at rcut. The cutoff radius rcut = 220 km. No-flux boundary conditions157

are used at each lateral boundary.158

The nature of the instability is as follows. Each vorticity gradient of the ring supports159

a vortex Rossby wave (Montgomery and Kallenbach 1997). The inner vortex Rossby wave160

progrades relative the mean flow, while the outer vortex Rossby wave retrogrades relative161

to the mean flow. Thus it is possible for each of these waves to have the same angular162

velocity, or be phase-locked, leading to the barotropic instability of the ring. A comprehensive163

linear stability analysis of this structure is provided by Schubert et al. (1999), and nonlinear164

simulations and discussions of aspects of this problem are given in Kossin and Schubert165

(2001) and Hendricks et al. (2009).166

To initiate the instability process, a broadband perturbation was added to the basic state
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vorticity (13) of the form

ζ ′(r,φ, 0) = ζamp

8
∑

m=1

cos(mφ+ φm) ×

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 0 ≤ r ≤ r1,

1 r1 ≤ r ≤ r2,

0 r2 ≤ r < ∞,

(14)

where ζamp = 1.0 × 10−5 s−1 is the amplitude and φm the phase of azimuthal wavenumber167

m. For this set of experiments, the phase angles φm were chosen to be random numbers168

in the range 0 ≤ φm ≤ 2π. In real hurricanes, the impulse is expected to develop from169

a wide spectrum of background turbulent and convective motions. Similar to case 1, the170

nonlinear balance equation (8) is solved to obtain the corresponding h(x, y, 0) field, with171

f = 1.0 × 10−4 s−1. This ring has a thickness parameter δ = r1/r2 = 0.8 and hollowness172

parameter γ = (ξ1 + ξ2)/ζav = 0 (where ζav is the average inner-core vorcity). According to173

the linear stability analysis of Schubert et al. (1999), this ring is most unstable to azimuthal174

wavenumber m = 5, with an e-folding time of 0.57 h.175

d. Case 4: Barotropic instability of a shear zone176

The fourth test is the examination of the formation of TC-like vortices through the177

barotropic instability of a region of large horizontal velocity shear. An example of such a178

process occurring in the real atmosphere is the instability of the inter-tropical convergence179

zone (ITCZ) in the eastern North Pacific ocean basin, causing it to undulate over days, and180

eventually break down and form pools of high PV (Fig. 2d). Provided favorable conditions,181

these PV pools can then form into TCs. An observational and modeling study of the genesis182

of TCs from this formation mechanism is given in Ferreira and Schubert (1997).183
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A similar experiment is conducted here. The initial condition is constructed as an ideal-184

ization of the ITCZ, with easterly flow to the north and westerly flow to the south. A linear185

function is assumed to bridge the two regions, forming a thin strip of cyclonic vorticity.186

Mathematically, the initial condition is187

u(x, y, 0) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−u0 y ≥ y0,

−u0y/y0 −y0 ≤ y ≤ y0,

u0 y ≤ −y0,

(15)

where u0 = 20 m s−1 and y0 = 100 km. Here, v(x, y, 0) = 0 and h is determined by solving

the geostrophic balance equation analytically,

h(x, y, 0) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

fu0y/g y ≥ y0,

[fu0/(2gy0)](y2 + y2
0) −y0 ≤ y ≤ y0,

−fu0y/g y ≤ −y0,

(16)

where f = 1.0 × 10−4 s−1.188

The strip of PV supports the existence of two counter-propapagating Rossby waves, one189

on the northern PV gradient which propagates to the east and one on the southern PV190

gradient which propagates to the west. These two waves can phase-lock and grow, leading191

to the break down of the strip into vortices. A linear stability analysis of this structure is192

given by Gill (1980), and here we provide a basic overview of the stability characteristics.193

Assuming separation of the meriodinal and zonal structure, Rossby wave solutions of the194

form ψ′(x, y, t) = Ψ(y) exp(ik(x − ct)) are sought, where ψ′ is the wave streamfunction.195

Here, c = cr + ici is the complex phase velocity, and k is the zonal wavenumber. The linear196
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stability analysis of this simple shear zone indicates the most unstable zonal wavenumber197

k = 0.3984/y0 = 3.984 × 10−6 m−1, or approximately 1577 km. The domain used here is198

8000 km × 8000 km, therefore the most unstable mode is zonal wavenumber-5. The growth199

rate kci = 0.2012u0/y0 = 4.024 × 10−5 s−1, corresponding to an e-folding time of 6.9 hours.200

In order to initiate the instability, a weak amplitude zonal wavenumber-5 perturbation in201

vorticity is applied to the region of constant background vorticity (shear zone). The lateral202

boundary conditions for this run are the same as case 1, no-flux conditions are applied at203

the north and south boundaries and periodic conditions are applied at the west and east204

boundaries.205

e. Discretization and model setup206

For all simulations, 5th order polynomials (N = 5) are used in each element, and a fourth207

order explicit Runge-Kutta scheme is used for the temporal integration. No diffusion is used208

in the experiments, however a modal filter is applied to help control nonlinear instability.209

For each initial condition listed above, six numerical simulations are performed: (i) a high210

resolution “truth” simulation (FINE), (ii) A large statically refined mesh around the TC211

processes (SMR2), (iii) a smaller statically refined mesh (SMR1), (iv) adaptive mesh refine-212

ment with a buffer of 6 fully refined elements (AMR3), (v) adaptive mesh refinement with213

a buffer of 3 fully refined elements (AMR2), and (vi) adaptive meshfinement with no buffer214

(AMR1). The FINE numerical simulation is the “truth”, and is expected to simulate the215

phenonema with the most accuracy. The varying SMR and AMR simulations are intended216

to help retain the accuracy of the solution in the vicinity of the TC while also saving on217
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computational time. All simulations are run at the time step of the FINE simulation since218

our goal is understanding computational aspects only with regard to the spatial variation.219

The discretization, horizontal resolution, and model setup parameters for all experiments220

are given in Table 1. Since N = 5 polynomials are used in each element, an approximate221

effective resolution can obtained by dividing the element size by a factor of 5. However, the222

actual minimum grid spacing is less than this number since the LGL points are unequally223

spaced, and closer together near the element boundary (Fig. 1).224

4. Results225

In this section, the qualitative results of each simulation are described, followed by a226

quantitative analysis of the solution accuracy and computational aspects. For cases 1 and 2227

which simulate vortex advection, the results are described in terms of the prognostic variables228

of zonal and meriodional velocity. For cases 3 and 4 which simulate barotropic instability,229

the results are described in terms of the PV in order to better illustrate the salient dynamics.230

a. Case 1231

The initial condition of case 1 is given in Fig. 3. Here the magnitude of the perturbation232

velocity vector ((u− u0)2 + v2)1/2 for each simulation is shown in colored contours, with the233

elements overlayed. Note that only the element boundaries are overlayed, and not the actual234

grid of nodal points inside each element. The uniform resolution mesh (FINE simulation)235

is shown in Fig. 3a. In Fig. 3b, the SMR2 simulation is shown which has fully refined mesh236
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for -200 km < y < 200 km. The SMR1 initial condition is shown in Fig. 3c, which has fully237

refined mesh for -100 km < y < 100 km. The initial conditions for the AMR3, AMR2, and238

AMR1 simulations are shown in Fig. 1d,e,f, respectively. Here initial condition is adapting239

to the PV threshold providing fully-refined mesh around the hurricane eyewall (yellow region240

of stronger winds) and eye. The AMR3, AMR2, and AMR1 buffers are readily evident as241

refined mesh extending from the center.242

In Fig. 4, the simulation results are shown after a half-revolution. At this time, each243

vortex has moved a distance of 300 km to the right, and the mid-point of each vortex is244

at the left and right lateral boundaries. The vortex core is well resolved in each simulation245

and there are no apparent phase errors as the vortex center of each simulation is exactly at246

the lateral boundary. The outer wind field also appears well resolved by the SMR2, SMR1,247

AMR3, and AMR2 simulations. There exists some azimuthal variability in the outer wind248

field in the AMR1 simulation. This could be from some stronger gravity wave activity due to249

imbalances generated as a result of the coarser representation of the outer wind field. Finally,250

moving to Fig. 5, each simulation is shown at the final time after one complete revolution,251

so that the vortex is at its initial position. At this time, all simulations appear to resolve252

the vortex core well, and there are again no apparent numerical advection errors (moving253

too slow or fast). Again, here the AMR1 simulation has the most noticable differences in254

the outer wind field. Overall, qualitatively the results show that all AMR/SMR simulations255

are able to resolve the core of the TC as it advects in the uniform flow.256
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b. Case 2257

The initial condition for the binary vortex interaction is given in Fig. 6. The two Rankine258

vortices are evident as the two wind maximas. All simulations are able to resolve the vortex259

core well. Here the SMR2 simulation has statically refined mesh between -200 km < (x,y)260

< 200 km, and SMR1 simulation has statically refined mesh between -100 km < (x,y) <261

100 km. Moving to Fig. 7, each vortex is shown at t = 12 h. The vortices have rotated in262

cyclonic motion approximately 135 degrees and the outer winds of each vortex has advected263

the other. At this time each simulation has a similar orientation of the binary vortices,264

indicating that even the AMR1 simulation is rotating the vortices at the correct angular265

velocity. In Fig. 8, the solution is shown at t = 24 h, after another net cyclonic rotation of266

135 degrees. At this time, all vortices appear to have a similar orientation with the exception267

of the AMR1 simulation, which has not rotated cyclonically in the proper amount due to268

the slight weakening of the vortex winds. However, all simulations do a reasonable job at269

capturing the vortex core wind velocity magnitude.270

c. Case 3271

The initial condition of case 3 is given in Fig. 9. Here, a vortex with a very sharp gradient272

in tangential velocity is shown (ring of elevated PV). The initial condition of each simulation273

has fully-refined mesh over the ring of elevated PV. The AMR1 simulation (with no buffer)274

has a couple of coarse mesh cells at the very center as the initial mesh is adapting to the275

ring of large PV only. In Fig. 10, the simulation is shown at t = 2.5 h, as the most unstable276

mode of hybrid azimuthal wavenumbers m = 5/6 is occuring in each simulation. In Fig. 11,277
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the simulation is shown at t = 5 h, after the vortex has broken down into mesovortices278

(evident by separate PV anomalies). Each simulation appears to be resolving these localized279

features well. In Fig. 12, the simulation is shown as the mesovortices become strained and280

filamented, and begin to merge into one central monopole. At this time, the structure281

of the merging vortices looks quite similar in each run, demonstrating that the static and282

adpative mesh refinement in the local region is working properly. Finally, in Fig. 13, the283

simulations are shown at t = 48 h, after the initial PV ring has mixed into a monopole.284

All simulations qualitatively have similar structures. The AMR1 simulation has a slightly285

different orientation of the central monopole.286

d. Case 4287

The initial condition for case 4 is given for each simulation in Fig. 14. Decreasing amounts288

of refined mesh are evident in moving from the FINE to the AMR1 case, with the AMR1289

case only have refined mesh over the PV strip itself. In Fig. 15, each simulation is shown290

at t = 45 h. Each simulation produces the theoretically predicted most unstable mode of291

wavenumber-5. Upshear tilt of each PV anomaly associated with the northern and southern292

counter-propagating Rossby waves is evident. The simulations are shown at t = 180 h in293

Fig. 16. Here the breakdown of the PV strip has resulted in the five separate vortices. All294

simulations are able to reproduce the five vortices.295

17



e. Error Norms296

In order to quantify aspects of these results, normalized L2 errors were computed between297

the final state in the FINE, or “truth”, simulation, and the final state in the SMR/AMR298

simulations. In order to compute the L2 error norms, the solution at the AMR/SMR meshes299

at the final time are adapted to the FINE mesh. The normalized L2 error is defined as300

L2 =

(

∑N
k=1(q

num(xk) − qref(xk))2

∑N
k=1 qref(xk)2

)1/2

(17)

where q is the predicted variable, N is the total number of points, the superscript “num”301

denotes the numerical simulations, and the superscript “ref” denotes the reference solution302

(or in this case the FINE solution). The normalized L2 error is computed for the magnitude303

of the velocity vector |U = (u, v)| and the geopotential ϕ = gh. Since we are interested in304

how well the SMR/AMR simulations resolve the local TC processes in comparison to the305

FINE simulations, the L2 errors are computed in two regions: (i) the entire domain, and306

(ii) in the localized region in which the AMR/SMR simulations are designed to resolve. For307

(ii), this region was defined as r < 100 km for cases 1, 2, and 3, and |y| < 500 km for case308

4. These correspond to the regions of large PV in each case.309

The L2 error norms for (i) and (ii) are shown in Figs. 17 and 18, respectively. In both310

figures, the green bars are the L2 errors in the magnitude of the velocity vector and the black311

bars are the L2 errors in the magnitude of fluid depth. In Fig. 17, for each case, there is a312

general trend of decreasing L2 error norms moving from the AMR to the SMR to the FINE313

simulations. In Fig. 17a, in terms of the velocity vector magnitude, the AMR1 simulation has314

one order of magnitude larger error than the AMR2, AMR3, and SMR1 simulations (10−2
315
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versus 10−3). The SMR2 simulation has the lowest errors (10−4). A similar trend is evident316

for ϕ, however the AMR1 simulation has a significantly larger error than the other runs. In317

Fig. 17b, the results are shown for case 2. A similar trend is evident, however in this case the318

AMR1 simulation L2 error in ϕ is not as significant. In Fig. 17c, a similar result is also seen in319

the instability case. Moving to Fig. 17d, the results are broadly consistent with the previous320

panels, however in this case the L2 error in ϕ shows a continuing decrease, rather than321

asymptoting as in the previous results. Overall, the results for the entire domain indicate322

that the SMR2 simulations are most accurate. There are not significant differences between323

the AMR2, AMR3, and SMR1 simulations. In general, the AMR1 simulation typically has324

larger errors than the other simulations. In Fig. 18, the same L2 error norms are shown325

in the region of high PV. Broadly, the results are consistent with Fig. 17, however the326

errors are generally lower. This is expected since the localized regions have only fully-refined327

elements. In summary, these results indicate that very high accuracy may be obtained for328

these TC simulations by using a large statically refined mesh (SMR2). However, the AMR329

simulations with only three buffer elements (AMR2) are able to produce similar accuracy330

of the 6 element buffer simulation (AMR3) and statically refined mesh (SMR1) simulations.331

This is important, since as we will show in the next section, the computational expense of332

AMR2 is significantly less than AMR3 and SMR1.333

f. Computational aspects334

Each simulation was executed on a single central processing unit (CPU). In Fig. 19, some335

computational aspects of the simulations are given. The point ratio is shown in Fig. 19a,336
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and in Fig. 19b, the speedup is given. The point ratio is defined as the inverse of the total337

number of points of the FINE simulation divided by the average number of points of the AMR338

simulations (since the points change in time), and the total fixed number of points in the339

SMR simulations. The speedup is defined as the CPU time of the FINE simulation divided340

by the CPU time of each of the other simulations. In Fig. 19a, for cases 1–3, the AMR1341

simulation has approximately 9–12 times fewer nodal points than the FINE simulation. The342

AMR1 simulation of case 4 has approximately 5 times fewer points due to the different343

structure of this atmospheric phenomenon (zonal strip instead of a central vortex). There is344

approximately a linearly decreasing trend of the point ratio moving to the AMR2, AMR3,345

SMR1, and SMR2 simulations. Fig. 19b shows the speedup for each simulation over the346

FINE run. The AMR1 simulation has the largest speedup (factor of 3.5–5), there is a347

linearly decreasing trend of speedup moving to the FINE simulation. Overall, the speedup is348

approximately one-half of the point ratio. Since the time step of each simulation is identical,349

if there were no overhead in refining and de-refining elements, one would expect the speedup350

factor to be similar to the point ratio. However, this overhead leads to lesser speedups.351

g. TC vortex moving through a variable mesh352

It has been discussed that in next generation NWP models without AMR, a useful domain353

structure for simulation of TCs would consist of a large region of refined mesh over the entire354

tropics, with coarser mesh away from the tropics. In this scenario, while often the TC would355

remain in the tropics, re-curving TCs would move from the fully-refined mesh to the coarser356

mesh. It is important to understand how a TC may change in structure moving through357
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such an abrupt mesh boundary. One would expect that without any forcing, the maximum358

wind speed in the eyewall would be reduced by moving from finely resolved mesh to a coarser359

mesh, as the eyewall region is less well resolved. The results of this test are given in Fig. 20.360

Here, the TC vortex is initially centered on a 200 km square box of fully-refined mesh, and361

then advected to the right in uniform zonal flow (as in case 1). At t = 4.165 h, half the362

eyewall is in the coarse mesh, while half is in the fully-refined mesh. As expected, a slight363

reduction in the tangential velocity is evident. As the vortex advects into the coarser mesh,364

then back into the fine mesh, it loses kinetic energy. The fraction of final integrated kinetic365

energy to initial integrated kinetic energy within r < 100 km is 0.999939, indicating that366

the loss is quite small. These results indicate that the high order methods used here can367

even broadly preserve aspects of the vortex inner-core structure while moving through an368

abrupt mesh boundary when the elements are quadrupled in size. This result is broadly369

consistent with Zarzycki et al. (2014), who found little numerical distortion when a dry TC370

vortex moved through an abrupt transition of a variable mesh using the spectral element371

dynamical core of the Community Atmosphere Model (CAM-SE). More energy loss would372

be expected if a lower polynomial order (N < 5) or larger elements were used.373

5. Conclusions374

A planar shallow water model based on the continuous Galerkin (spectral element) nu-375

merical method has been used to examine idealized tropical cyclone (TC) problems, with a376

focus on the applicability of static and adaptive mesh refinement (SMR and AMR, respec-377

tively). Four different idealizations of TC cases in the real atmosphere were simulated in this378
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model, with varying degrees of SMR and AMR. The SMR/AMR simulations were compared379

to a high resolution “truth” simulation (noted previously as the FINE run) with regard to380

solution accuracy and computational time. Three different AMR simulations were conducted381

with varying levels of buffer regions (or the number of extra layers of fine elements added to382

the finely resolved region). Two different SMR simulations were executed with varying levels383

of refined mesh. For AMR simulations, a potential vorticity threshold was used for refining384

and de-refining elements. With regard to solution accuracy, the SMR2 simulation (with the385

largest area of fully refined mesh) was shown to be superior to the other simulations (at least386

an order of magnitude lower L2 error) in comparison to the “truth” run. However, the AMR387

simulations with only 3 buffer elements (AMR2) are shown to be as accurate overall as the388

AMR simulations with 6 buffer elements (AMR3) and the smaller statically refined mesh389

simulation SMR1. The AMR simulation with no buffer elements (AMR1) was generally390

shown to be significantly less accurate than the others. Significant speed-ups were obtained391

by using AMR. The AMR2 simulations (which are nearly as accurate as the AMR3 and392

SMR1 simulations) had speed-ups of 2.5–4.5 over the FINE simulation. Thus, these results393

indicate that AMR can be used at significantly less computational expense to resolve the394

TC feature as well as the “truth” run, provided a sufficient buffer region exists.395

In summary, we wish to note that we have examined static and adaptive mesh refinement396

for TC applications in a very idealized framework of a shallow water fluid in constant rota-397

tion. In the real atmosphere, TCs are three-dimensional phenomena, with complex physics398

interactions (microphysics, boundary layer, vertical mixing, and radiation), as well as inter-399

actions with the environment (such as vertical wind shear and ocean surface fluxes). One400

of the major challenges in the future with AMR is the development of scale-aware physical401
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parameterizations that will seamlessly represent physical processes across scales. However,402

these results demonstrate that from a purely dry dynamical modeling standpoint, AMR403

shows great promise for TC applications.404
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Table 1. Experiment Parameters
Case 1 Case 2 Case 3 Case 4

Domain size (km) 600 × 600 600 × 600 600 × 600 8000 × 8000
Fully Refined

Number of Elements 60 × 60 60 × 60 60 × 60 60 × 60
Element spacing (km) 10 10 10 133.33

Effective resolution (km) 2 2 2 26.2
Fully Unrefined

Number of Elements 15 × 15 15 × 15 15 × 15 15 × 15
Element spacing (km) 40 40 40 533.33

Effective resolution (km) 8 8 8 106.67
Polynomial order 5 5 5 5

Model time step (s) 3 3 3 18
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Fig. 1. Grid of Legendre-Gauss-Lobatto nodal points inside one element using N = 5 order
polynomials as basis functions.
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a) b)

c) d)

ADVECTION

EYEWALL INSTABILITY

BINARY VORTEX INTERACTION

ITCZ UNDULATION/INSTABILITY

Fig. 2. Satellite and radar observations depicting real TC processes that are being simulated
in the idealized framework. Processes are highlighed in bold red. Panels: a) NOAA-12 visible
satellite imagery of Hurricane Andrew advecting to the west toward Florida at 1231Z on 23
Aug 1992 (courtesy NOAA), b) MODIS visible satellite imagery of the binary vortex interac-
tion of Tropical Storm Parma and Typhoon Melor on 6 Oct 2009 (courtesy NASA/GSFC),
c) Radar image of Hurricane Dolly (2008) at 1002Z 7 Jul 2008 approaching the Texas coast
(courtesy NOAA/NWS/KRBO). Significant azimuthal variability in the radar reflectivity in
the eyewall is evident, and d) instability and breakdown of the ITCZ into multiple TCs over
the timescale of days (reproduced from Ferreira and Schubert (1997)).
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a)a) b)

c)
d)

f )e)

Fig. 3. Initial condition for case 1: advecting vortex. Panels: a) FINE, b) SMR2, c) SMR1,
d) AMR3, e) AMR2, f) AMR1.
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a)a) b)

c)
d)

f )e)

Fig. 4. Simulations of case 1 after one-half revolution, at t = 8.33 h. Panels: a) FINE, b)
SMR2, c) SMR1, d) AMR3, e) AMR2, f) AMR1.
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a)a) b)

c) d)

f )e)

Fig. 5. Simulations of case 1 after a full revolution, at t = 16.67 h. Panels: a) FINE, b)
SMR2, c) SMR1, d) AMR3, e) AMR2, f) AMR1.
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a)a) b)
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d)

f )e)

Fig. 6. Initial condition for case 2: Binary vortex interaction. Panels: a) FINE, b) SMR2,
c) SMR1, d) AMR3, e) AMR2, f) AMR1.
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a)a) b)

c)
d)

f )e)

Fig. 7. Simulations of case 2 at t = 12 h. Panels: a) FINE, b) SMR2, c) SMR1, d) AMR3,
e) AMR2, f) AMR1.
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f )e)

Fig. 8. Simulations of case 2 at t = 24 h. Panels: a) FINE, b) SMR2, c) SMR1, d) AMR3,
e) AMR2, f) AMR1.
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a)a) b)
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Fig. 9. Initial condition for case 3: unstable vortex. Panels: a) FINE, b) SMR2, c) SMR1,
d) AMR3, e) AMR2, f) AMR1.
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a)a) b)
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d)

f )e)

Fig. 10. Simulations of case 3 at t = 2.5 h as barotropic instability occurs. Panels: a)
FINE, b) SMR2, c) SMR1, d) AMR3, e) AMR2, f) AMR1.
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a)a) b)
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f )e)

Fig. 11. Simulations of case 3 at t = 5 h as mesovortices form. Panels: a) FINE, b) SMR2,
c) SMR1, d) AMR3, e) AMR2, f) AMR1.
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a)a) b)
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Fig. 12. Simulations of case 3 at t = 15.75 h as the mesovortices merge into a monopole.
Panels: a) FINE, b) SMR2, c) SMR1, d) AMR3, e) AMR2, f) AMR1.
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Fig. 13. Simulations of case 3 at t = 48 h as the PV ring has broken down and mixed to a
monopole. Panels: a) FINE, b) SMR2, c) SMR1, d) AMR3, e) AMR2, f) AMR1.
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Fig. 14. Initial condition for case 4: strip of PV representing the ITCZ. Panels: a) FINE,
b) SMR2, c) SMR1, d) AMR3, e) AMR2, f) AMR1.
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Fig. 15. Simulations of case 4 as barotropic instability sets in at t = 45 h. Panels: a) FINE,
b) SMR2, c) SMR1, d) AMR3, e) AMR2, f) AMR1.
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Fig. 16. Simulations of case 4 after multiple TC-like vortices have formed, at t = 180 h.
Panels: a) FINE, b) SMR2, c) SMR1, d) AMR3, e) AMR2, f) AMR1.
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Fig. 17. Normalized L2 Errors for all cases for using all nodal points in the domain. Panels:
a) ccase 1: advection, b) case 2: binary vortex, c) case 3: instability, d) case 4: ITCZ. The
green bars represent the magnitude of the velocity vector and the black bars represent the
geopotential.
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Fig. 18. Normalized L2 Errors for all cases using only nodal points in the localized region
of high PV (r < 100 km for cases 1–3, |y| < 500 km for case 4. Panels: a) case 1: advection,
b) case 2: binary vortex, c) case 3: instability, d) case 4: ITCZ. The green bars represent
the magnitude of the velocity vector and the black bars represent the geopotential.
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Fig. 19. Panels: a) Ratio of the number of FINE nodal points to the average number of
nodal points in each of the other simulations, and b) Ratio of the CPU time of the FINE
simulation to the CPU time of each of the other simulations.
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Fig. 20. TC vortex moving through a fixed variable mesh. Panels: a) t = 0 h, b) t = 4.165
h, c) t = 8.333 h, d) t = 12.5 h, e) t = 16.667 h.
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