
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

2013-05

Rapid Flight Control Prototyping - Steps

Toward Cooperative Mission-Oriented Capabilities

Dobrokhodov, Vladimir

http://hdl.handle.net/10945/45476

Rapid Flight Control Prototyping - Steps Toward Cooperative
Mission-Oriented Capabilities

Vladimir Dobrokhodov1, Kevin Jones2, and Isaac Kaminer3

Abstract— The paper describes the latest advancements in
the development of the Rapid Flight Control Prototyping system
that were motivated primarily by the need to enable cooperative
missions of multiple unmanned aerial vehicles and to enhance
the capabilities of human operators to design and oversee the
collaborative behaviors of multiple heterogeneous UAVs. The
evolution of the system is driven by the mission level objectives
and supported on one hand by the progress in miniature
sensors, computational power, communication and portable
energy technologies and on the other hand by the advanced
capabilities of embedded control and communication-oriented
software. As a result the developed system enables rapid design,
onboard integration and in-flight verification of multiple UAV
collaborative concepts that seemed impossible just a couple of
years ago. Advantages of the designed system are illustrated by
a couple of scenarios that were recently developed and verified
in flight by multiple cooperating UAVs. The paper concentrates
on presenting the motivation and the conceptual design ideas
which drive the evolution of the flight prototyping platform.

I. INTRODUCTION
High operational utility of a single unmanned aerial ve-

hicle (UAV) has been proven in recent years on many
occasions. A single UAV has been primarily used in various
intelligence surveillance and reconnaissance (ISR) missions
that have been designed around the capabilities of a single
platform, in turn the onboard instrumentation were adjusted
to facilitate a specific ISR utility of interest. When integrated
into a mission the aerial platform provided a single unique
autonomous capability however producing a humongous
amount of raw data but intelligence content was still missing.
The fact that the onboard intelligence is limited by various
factors, including the size, weight and power (SWAP) [1]
resulted in the “Large Data Problem” [2]: a misleading
exchange of quality for quantity. In real operational scenarios
this resulted in the raw data being streamed in close to real-
time pace however the human analysts not being capable to
process this amount of data in weeks after the mission. In
response to this bottleneck of capabilities the R&D com-
munity has focused its efforts on the faster processing and
automated analysis [3]. However, getting to the data faster,
and utilizing more data through automated tools cannot solve
some of the most difficult problems, among them is the
precision and resolution of data suitable for further use in
predictive analytics. Thus, in order to eliminate the creation

1V.N. Dobrokhodov and 2K.D. Jones are Research Associate Pro-
fessors at the Department of Mechanical and Aerospace Engineer-
ing, Naval Postgraduate School, Monterey, CA, 93943 vldobr,

kdjones@nps.edu

2I.I. Kaminer is a Professor at the Department of Mechanical and
Aerospace Engineering, Naval Postgraduate School, Monterey, CA, 93943
kaminer@nps.edu

and need for large data sets, an intelligent high-precision and
resolution capability for sensing and surveillance needs to be
developed for time critical applications.

The key to overcoming the intelligence bottleneck and to
developing a rich data set capability lies in the development
of distributed and collaborative platforms, both in the sense
of distributed computational intelligence (onboard and on
the ground) as well as in distributing the airborne sensory
capabilities that would leverage the features of multiple
complementary sensors. Enabling this level of collaborative
and distributed autonomy, considering the given state of
the art in communication, computational power and power
technologies, requires significant advances to be made in the
areas of distributed mission planning, coordinated control,
human-machine interaction, distributed data processing to
name a few. Some of these capabilities need to be transi-
tioned from the laboratory environment onboard of multiple
collaborative UAVs and proven working in a flight scenario.

As steps toward developing and implementing these capa-
bilities in flight, the Unmanned Systems Laboratory (USL)
at NPS has been developing a Rapid Flight Control Pro-
totyping system (RFCPS). The key capabilities of the sys-
tem enable verifiable (repeatable) execution of the multi-
ple heterogeneous UAV cooperative missions, onboard data
preprocessing, in-flight information streaming and sharing;
some of them are running onboard while always providing
the required level of collision avoidance and flight safety in
a multiple UAV sense. When a mission is planned ahead
it creates a set of collaborative tasks accounting for the
mission objective along with the individual capabilities of
UAV platforms. When executed in flight by multiple UAVs
the context-driven raw data preprocessing is followed by an
intelligence analysis and an action that might reshape the
mission. Therefore, focused and context-adaptive tasking of
multiple collaborative players results in significantly lower
volumes of raw data with significantly higher quality.

The RFCPS system is built around capabilities of an ad-
vanced autopilot connected over a real-time communication
link with a secondary set of controllers responsible for a
variety of tasks including real-time flight-critical control,
raw data pre-processing, and robust communication tasks.
Rapid hardware prototyping that implements CAD drawings
in strong and lightweight materials, new microcontrollers and
high speed and precision actuators enable quick integrating
onboard of various sensors. Novel high-bandwidth wireless
IP communication link allows beyond the LOS in-flight
transmission of sensory information and the R&D telemetry
without any need to utilize the primary command and control

link. New software solutions implementing advanced cooper-
ative GNC algorithms, robust communication messaging and
onboard sensory data processing enable cooperative flight
of multiple heterogeneous UAVs and their interaction with
human operators. Thus, the systems engineering effort of
designing and integrating various components resulted in
a system capable to rapidly prototype a mission of high
complexity.

The paper addresses the underlying design concepts im-
plemented by the RFCPS system, the presentation focuses
on architectural ideas and the results achieved by the setup.
Thus, Section II of the paper outlines two basic types of
rapid control prototyping systems that were initiated at the
USL lab: they include OS-based and a System on a Chip
(SOC) designs. While the latter one is briefly presented, the
primary focus of this publication is given to the OS-based
architectures. Illustrating the Model Based Design (MBD)
paradigm and the rapid verifiable code generation that are
provided by the Simulink and Simulink Coder tools, the xPC-
based design is presented as a first step in transitioning a
theoretical concept to real flight. The steps of transitioning
the same solution (already flown) to the Linux-based semi-
industrial implementation are presented next. Chapter IV
demonstrates a set of multiple cooperative UAV missions
that illustrate the developed solutions in flight.

II. UAV SOFTWARE PROTOTYPING SOLUTIONS

One of the key elements in building a reliable solution
of an onboard flight control system (specifically for the
cooperative missions) is based on utilizing a set of tools that
enable control algorithm design, automatic code generation
and its formal verification and validation. The MathWorks’s
MatLab/Simulink and the Simulink coder [4] are the tools
that provide a well-developed model based design (MBD) ap-
proach to the modeling and simulation of various engineering
systems and processes. Control system design is especially
well-supported by Simulink and a number of control ori-
ented toolboxes. Capabilities of the Simulink coder (formerly
called the Real-Time Workshop) significantly extend the
applicability of practical solutions developed by utilizing
the core features of the MatLab-Simulink environment. The
code, that is auto-generated by the system can be easily
customized to address the specifics of the control design task,
available hardware (sensors and actuators) and the airborne
platform requirements. A number of code generation options
addressing specific microprocessor architectures is provided
by the Simulink coder.

As a results of RFCPS evolution that includes control
prototyping and fight experimentation a number of solutions
has been developed and flight tested, see the hierarchy
of possible computational platforms in Fig. 1. All of the
developed solutions were driven by the objective of utilizing
a set of high-level software tools specifically developed
for the design of real-time control algorithms and their
formal software verification.When a design task requires
developing a standalone solution (feedback controller) that
is self sufficient (does not depend on additional services),

can be executed by a microprocessor capable of communi-
cating with external sensors (measure states) and actuators
(execute control commands), and does not require frequent
modification, then a system on a chip (SOC) is one of
the viable options. The generated code, that is called a
firmware, is uploaded to the chip memory once and then
enables the code execution at every time when the system
is turned on. The SOC design approach that starts with pure
Simulink [4] modeling, code generation and implementation
on one of the most widely used microcontrollers (dsPIC)
was recently applied for the design of SLUG autopilot [5],
[6]. The benefits of the approach and the high performance
of the entire system have been demonstrated in a number
of successful flight experiments, see [7]. The system built
on SOC approach is very capable and robust, however does
not enable in-flight modifications of the onboard algorithms.
Although this might seem unnecessary, the flexibility and
convenience of the “modification at any time” option is very
desirable especially considering that modern UAV platform
can provide several hours of a single flight endurance thus
potentially enabling multiple “code modifications” to be
flight tested if necessary. Moreover, in a long endurance
mission a self-awareness that evaluates the states of ev-
ery subcomponent of instrumentation (energy expenditure,
sensors, actuators, CPU, airframe e.t.c) and is capable for
”self-healing”, for instance, by redistributing the resources
or modifying the algorithmic behaviors is a very desired
property. Therefore, the SOC approach is usually considered
as a final step of algorithm integration, when the code is
proven working in a given set of constraints and there is no
need for further immediate modification.

MatLab-Simulink
MBD env.

OS-based
platform

SoC
platform

xPC
target

Linux dsPIC

Simulink coder

step A: step B: step C:
+rapid
-limited
comm

+ flexible
- most
complex

+robust
-not
flexible

Fig. 1. Hierachy of computational platforms.

On the other hand, the specifics of R&D work frequently
require modifications of the underlying algorithms. Thus the
“xPC embedded target” option, provided by the Simulink
Coder [4] is one of the best solutions enabling frequent
and rapid code modification and reintegration. An xPC
target environment is a hard real-time operating system that
executes the real-time code (task) that is built by the coder;
the coder supports a number of computational platforms. The
solution provides various services typical for an operating
system while supporting preemptive mechanism for real-
time tasks scheduling and execution. The RFCPS system

utilizes this option for standard Intelx86 processor. While the
xPC embedded target option is very flexible, it still requires
“manual” coding in a number of occasions. Since it is hard
to expect that every new piece of hardware has the same
communication protocol and is supported by Mathwork’s,
one of the primary needs for manual coding does arise when
a new communication protocol need to be implemented.
Simulink coder enables integration of customized algorithms
by means of s-functions; the process is time consuming,
however it is well-documented and straightforward.

The desire to focus on rapid and verifiable flight im-
plementation of new theoretical results and well-developed
legacy codes, given in a variety of programming languages,
while spending less or no-time on the manual code develop-
ment and re-integration resulted in targeting a new compu-
tational platform. The high computational efficiency, small
footprint, rich interfacing capabilities of Linux operating
system and high computational power of modern miniature
computers lead to integrating this system into multiple agent
flight experimentation. It is worth noting that the objectives
of collaborative missions and distributed computation also
require integration of messaging and synchronization mecha-
nisms that are robust to network failures and communications
dropouts. A number of industrial-grade software packages
that enable communication across multiple networking nodes
while explicitly addressing the messaging protocols and al-
gorithms that are resilient to faults across local and wide area
networks have been recently developed [8], [9]. Therefore,
the most recent modification of the RFCPS included the
implementation of Simulink/Coder-built algorithms along
with novel messaging solutions into the Linux operating sys-
tem. The capabilities of Simulink to utilize communication
buses and the code defining features of the Simulink coder
allow generating C/C++ libraries that are directly suitable
for compilation and execution on Linux. Software API of
the SPREAD toolkit [8] enables efficient messaging across
various tasks executed across multiple wirelessly connected
UAVs. No manual modification of the auto-generated library
code is necessary, however the tasks scheduling file (main)
needs to explicitly define the desired sampling rate of each
of the code components and the messaging mechanism.
Special consideration is given to scheduling of the flight-
safety critical and not critical tasks. One of the initially
developed scheduling solution utilizes a simple function call
to the CPU time clock. Comparing the clock time with the
required execution rate enabled efficient implementation of
the required sampling of various tasks (daemons) in Linux.
The most recent solution that adopts the same auto-generated
code and is based on more rigorous real-time scheduling
capabilities of ROS/OROCOS operating system [10], [11]
has been also tested in the USL laboratory environment.

A. RFCPS Architecture

To enable the desired collaborative functionality the
RFCPS system representing a single UAV is comprised of
the onboard and the ground segments, see Figure 2 .The
onboard segment is built around an autopilot that brings

the basic functionality of a UAV flight to the system. The
current implementation of RFCPS utilizes the Piccolo series
autopilots [12] and the corresponding ground control station
that enables simultaneous operation of multiple UAVs but
does not have any cooperative mission functionality built-in.

autopilot flight PC

wireless
board & hub

data PC

payload

sensor

gimbal

power
service

batteries

solar
panels

streaming
server

serial

wireless
board & hub

Simulink
dev. PC

Operator
interface

GCS

R&D Operator
interface

Pilot
console

CC Wireless mesh

Onboard
segment

Ground
segment

analog
ethernet

ethernet

serial

ethernet
analog

serial

ethernet

ethernet

ethernetserial

UAV 1

UAV N

Fig. 2. Single autonomous platform as a building block of RFCPS.

The autopilot is connected over a full-duplex serial link
to a flight control PC104 computer. In xPC target version,
a set of communication drivers is custom-built that enable
hard real-time communication with the autopilot. The drivers
enable send command and receive states functionality and are
manually coded as s-functions [13]; they are automatically
compiled into a binary executable file by the Simulink coder
at the stage of code generation. In turn, in the Linux imple-
mentation the same drivers are given by the autopilot manu-
facturer. As soon as the UAV telemetry becomes available it
is first used to implement the desired collaborative behavior
and to control the onboard utility sensor (for example - a
high resolution camera) and its platform (gimbal); for most
of the ISR missions it is common to have the imagery
sensors installed on a gimbaled platform. The telemetry data
is also distributed across the local onboard and the ground
IP-based network for the secondary use. In particular, the
data PC computer utilizes the autopilot telemetry and the
utility sensor information in order to preprocess the raw data
and to extract the intelligent information of interest. A very
appealing feature of this data PC is that it runs a very efficient
Linux operating system that enables a number of convenient
services and provides very flexible access to a variety of
sensors. Unlike the xPC target system, the integration of a
new sensor becomes a matter of integrating a new driver
that is usually provided by the sensor manufacturer, while
integrating a new piece of hardware that is not supported by
the xPC target is often a significant effort. As will be shown
in the following chapter this data computer runs algorithms
that are primarily not real time-critical and do not affect the
stability and safety of UAV flight. In the case of utilizing
video cameras as ISR sensors the onboard instrumentation

also contains a miniature video streaming server; although it
is a single piece of hardware, it is comprised of a frame
grabber taking the analog video feed and a web server
that enables live streaming of the video input into the IP-
based network. Since all of the onboard components are
connected over the hight speed (up to 1GigE) ethernet a
number of convenient capabilities of the code development
become available; some of the not flight-critical algorithms
can be stopped, modified and updated while still in flight
thus providing the desired flexibility for the research.

The last significant onboard component is the power
management system. Depending on the specific objectives
of a project it allows integrating into onboard information
system a combination of solar panels and batteries. As was
demonstrated in the project with autonomous cooperative
thermal soaring gliders [15], the integration of high-output
solar cells onboard enabled harvesting solar radiation thus
significantly extending endurance of autonomous thermal
soaring gliders. Continuos monitoring of the current state
of the energy of all onboard sources enables RFCPS system
to optimally plan and execute the mission.

The ground segment of RFCPS is comprised of two parts;
the first part is a standalone ground control station (GCS), an
operator interface (OI) computer and a command and control
link provided by the autopilot manufacturer, and the second
part is the research environment that is customized according
to the needs of a specific mission under development. The
fact that the onboard software is separated into the flight
safety-critical and not flight-critical components defines the
configuration of the R&D development environment. As
an example, the sensory data processing algorithms that
are not flight-critical are run on a data PC; two primary
OS systems are currently used - the Ubuntu Linux [14]
and ROS/OROCOS operating systems. The flight critical
tasks are run under either xPC target or the ROS/OROCOS
environments. Although the hardware of both PC104 com-
puters is identical (for convenience of maintenance) the task-
based separation is preserved to guarantee safety of flight
experimentation and reliability of the experimental results.

To preserve the rigor of theoretical development while
transitioning the results to flight the core of cooperative con-
trol algorithms is developed utilizing advanced capabilities of
the Simulink environment. The Model Based Design (MBD)
paradigm supported by a number of code verification and
automatic code generation tools is what makes the transition
very reliable. The algorithms are designed and verified in
Simulink with minimal or no use of low-level programming.
When debugged, the xPC target environment is used first to
enable the Hardware In the Loop (HIL) simulation; Piccolo
autopilot is well-supported with this functionality. Therefore,
integrating and verifying the newly-built algorithms becomes
straightforward; at the same time a number of data processing
scripts can be built ahead of time to facilitate quick flight
data analysis. After confirming the desired performance of
cooperative mission in HIL setup, the same xPC based code
is transformed into real-time executable and then flown. After
series of flight experiments in different flight conditions the

algorithms and the operational environment mature enough
to allow building a set of standalone libraries for future
Linux or ROS integration. The page limitation of the paper
does not allow to describe all the benefits of this new
direction. However note, that the same development concept
is followed and the same code that is built by the Simulink
coder is used to transition the flight validated solution into
a Linux/ROS based platform, see [10] for details.

III. EXPERIMENTAL RESULTS

To illustrate the benefits of RFCPS system that enable
cooperative autonomous aerial missions this section reviews
two most recent projects. Each of these experiments high-
lights the key benefits of the OS-based approach.

A. Coordinated Road Search by Multiple UAVs

The objective of this project [16] was to enable a mini-
mally trained user to utilize a number of sensors installed
onboard of heterogeneous UAVs without any need for him
to be trained in flying UAVs. The concept of operation
assumes that one path is generated for a number of sensors
so that when they are flown autonomously the intersection
of their fields of view over the sensor path is maximized.
It is assumed that sensors are complementary(for example
they can be electro-optical and infrared) and might have
different installation onboard of UAV; body-fixed, stabilized
only in roll angle or both - roll and pitch angles. Since the
sensors have different degrees of freedom and the UAVs
have different flight dynamic limitations, the only method
of enabling the multiple sensors to coordinate their fields of
view is by enabling tight cooperation of the aerial platforms.
Therefore, as soon as the sensor path is extracted by the user
utilizing a digital map (scribble over the map), it is submitted
onboard of airborne UAVs, see Fig. 3.

−500 0 500 1000 1500 2000 2500
−500

0

500

1000

1500

2000

2500

East, m

N
or

th
, m

 @ IC UAVA @ IC UAVB

IC CVBTA A

 IC CVBTB A

UAVA

UAVB

CPF

Sensor path

CPF−RS

CPF−RS IC

Runway

Fig. 3. Coordinated road search mission

The paths of each UAV and the desired nominal velocity
profiles are then computed while accounting for the re-
quired resolution of the sensors, the UAVs flight dynamic
constraints and the gimbals limitations. The UAVs are then
assigned the corresponding paths with different velocity pro-
files to be followed in coordination (CPF); this paths define
the shape of the road search (RS) segment. To execute the

search the UAVs should start from their current flight state
(initial conditions-IC) and perform a coordinated arrival to
the beginning of the search segment. This arrival path and the
velocity profiles are calculated onboard taking into account
the flight dynamics and the collision avoidance constraints.

The control [16] that is implemented by each UAV during
the mission is based on the explicit separation of time
and space. The path is parameterized by algebraic poly-
nomials, therefore the number of parameters defining the
path is finite and depends on the class and the degree of
the chosen polynomial representation. Supported by robust
communication protocols this approach enables feasible real-
time execution, path generation and simple and inexpensive
communication of the intent and current state of each UAV
that is critical especially for the collision avoidance, see
Fig. 4. The path following control [16] for fixed wing

Path
generation

outer loop

Path following

Autopilot
+UAV

inner loop

L1
adaptation

Network
comm Coordination

L1
adaptation

Vcmd

Turn
rates

desired
path

normalized
position

Fig. 4. Control architecture of the cooperative mission

UAVs is enabled by using attitude control commands: pitch
and yaw rates are the primary control signals utilized by
the nonlinear control law. If the UAVs were following the
assigned path and the velocity profiles precisely then there
would not be any need for tight flight coordination; the
coordination is already accounted at the stage of the path and
velocity profile generation. However each UAV is subject
to numerous disturbances resulting in the path following
and coordination errors. To provide close coordination the
velocity of each UAV is used to minimize a so-called
coordination error that is calculated onboard of each UAV
based on the exchange of coordination states by all airborne
vehicles over the wireless mesh network. The developed
algorithm is robust to network dropouts and allows tight
coordination of a number of UAVs flying in a realistic
environment. Besides the coordination and path following
algorithms the onboard flight-critical computer runs the L1

adaptive control law implemented as an output feedback
augmentation loop around the nominal autopilot; the overall
coordinated path following control architecture is presented
in Fig. 4. Implementing the L1 adaptive controller onboard
provides guaranteed performance of the entire fleet of UAVs
in a wide range of operational conditions with no need for
retuning of the individual systems component, an interested
reader is referred to [17] for more details.

The desired performance of airborne sensors in this sce-
nario is enabled by the ability to execute onboard the path
following and coordination algorithms in hard real-time and
the imagery and video processing tasks executed as non real-

time critical processes. Furthermore, while transmitting the
overlapped video and imagery over the wireless network,
the data pre-processing algorithms solve a number of typical
tasks such as extraction of objects of interest (cars, people,
buildings e.t.c) and their geo-referencing. Therefore, by
enabling coordination not only the content of sensory data
becomes rich and meaningful but the operator is alerted when
an object of interest is detected. The overall load of the
operator thus is significantly lower.

B. Cognitive Automation in Support of Mission Planning and

Execution

The objective of this project was to assist a single operator
in designing and executing a multiple UAV mission by
combining the high-level mission planning algorithms with
cooperative path following of a number of UAVs. As a first
step in achieving this goal the project concentrated on a
single UAV mission with the rest of the fleet being modeled
on the ground.

Therefore, the CoCAMPUS (Cooperative Cognitive Au-
tomation through Mathematically Optimized Path-Following
of UAVs) project [18] was conducted to explore how to
achieve project objectives. A typical mission was chosen
based on a simplified air-attack scenario that also included
static threats at unknown locations; it was assumed that
the UAVs will discover the static surface to air missile
(SAM) sites during the mission execution. The Cognitive
System Architecture (COSA2) [18] was integrated onboard
to implement cognitive behavior on the basis of current
understanding of tactical situation and explicit knowledge
models, while deriving implicit cost-functions and defining
the path optimization constraints during the flight.

Artificial Cognitive Units (ACUs) onboard the UAV are
used to implement task-based guidance and mimic human
rationality to some extent, forming so-called cognitive au-
tomation, processing information mostly on a symbolic level.
The ACU behavior is completely defined by its goal, which
is explicitly represented as knowledge in its implementa-
tion.The ACU allows implementation of knowledge-based
algorithms such as decision making and planning that depend
on the available tactical observations and understanding of
the current situation. It also offers semi-autonomous capabil-
ities, in a sense that the ACU pursues a task autonomously
using the automation built inside the UAV system.

The objective of a single human operator in the air-
attack mission is to perform a combat air patrol (CAP) and,
upon detection of a ground vehicle and its identification, to
approach and attack the target. The no-fly zones and the
static threats in form of SAM-sites are to be avoided as they
are detected. The ground target is located on a road inside
the mission area and its coordinates are given by an external
reconnaissance system cooperating with the operator. The
final approach to the target by a UAV should be performed
at an optimal course providing the highest effectiveness of
released material; during the flight the effectiveness was
evaluated by taking a picture at the calculated release point
and analyzing if the target was present in the camera frame.

Figure 5 presents the mission progress during the Co-
CAMPUS flight trials. The flight path can be separated
into two consecutive segments. First, the operator chose
and commanded the desired CAP (CAP A) to the ACU
in point 1. Upon arriving and orbiting at the CAP (point
2) and reevaluating the situation, the operator tasked the
ACU to attack the ground vehicle. The UAV started the
task by dynamically calculating an optimal approach to the
road (point 3) before attacking the target vehicle in point 4.
Upon taking a picture, the ACU commanded to circle the
target position for further damage assessment. At all times
during the mission, the ACU monitored the UAV systems
and flight states and matched them with its own projection
of future environment states, to ensure the fulfillment of
the task-queue and possibly counteract aberrations. The path
generation module took into account all given threats and
dynamic constraints to ensure a safe, feasible path and to
allow the best approach to the target.

-1000 -500 0 500 1000 1500 2000 2500 3000
-2500

-2000

-1500

-1000

-500

0

500

1000

1500

East = x, [m]

N
or

th
 =

 y
, [

m
]

Optimized trajectory Rabbit position

Base

CAP A

Car

Actual flight path

AS

AS

AS
AS

C

C

CAP B

CAP C

AS

C

1

2

3

4

Fig. 5. Air-Attack mission results with overlaid tactical elements.

The tasks of cognitive automation as well as flight critical
control have been implemented onboard of single CPU run-
ning Linux operating system. The coordinated path following
task has been designed in Simulink and the code was auto-
generated and recompiled in Linux. The flight control law
was manually scheduled at 100Hz rate while the communi-
cation with autopilot run at 50Hz. The COSA2 tasks were
running natively in Linux as background processes.

Flight tests were performed over multiple days and have
consistently shown verifiable and repeatable results. These
real-world operational flight trials have proven the feasibility
and the benefits of the presented approach and the developed
hardware architecture. The goal-driven ACU enhances the
system robustness in mission execution and supports the hu-
man operator, resulting in a significantly reduced workload.

C. Conclusion

The paper presented the evolution of the RFCPS system
that address the cooperative missions of multiple UAVs.
The design of the RFCPS is driven by the mission level
objectives and is enabled on the one hand by the progress in
miniature sensors, computational power, communication and
portable energy technologies and on the other hand by the

advanced capabilities of embedded control and communica-
tion oriented software. As a result, the RFCPS enables rapid
”prototyping of cooperative mission” of multiple UAVs that
seemed impossible just a couple of years ago.

ACKNOWLEDGMENT
Evolution of RFCPS system has been funded in part

by the National Air and Space Administration under
Contracts NNX08BA64A, NNX08BA65A, NNX08AB97A,
NNX08AC81A, and NNL08AA12I; ARO under Contract
No.W911NF-06-1-0330, the USSOCOM/NPS Field Exper-
imentation Cooperative, the Office of Naval Research under
Contract N00014-05-1-0828.

REFERENCES

[1] H., Canaday, UAV Payload Systems, in Special Operations Technol-
ogy, Vol.10, Issue 6, 2012.

[2] “Too Much Information: Taming the UAV Data Explosion,” in Defense
Industry Daily, May 16, 2010.

[3] R.C., Stevens, S.A., Firooz, J.R., Braegelmann, A.M., Cordes, R.L.,
Nelson, Small unmanned aerial vehicle (UAV) real-time intelligence,
surveillance, and reconnaissance (ISR) using onboard pre-processing,
in proceedings of the XVIII SPIE Congress on Automatic Target
Recognition, vol. 6967, pp. 696717-696717-8, 2008.

[4] MathWork’s Simulink/Coder, http://www.mathworks.com/
products/simulink/, last accessed on 09/20/12.

[5] M., Lizarraga, G.H., Elkaim, G., Horn, R., Curry, V.N., Dobrokhodov,
I.I., Kaminer, Low Cost Rapidly Reconfigurable UAV Autopilot for
Research and Development of Guidance, Navigation and Control
Algorithms, in proceedings of ASME/IEEE MESA09, International
Conference on Mechatronic and Embedded Systems and Applications,
San Diego, August, 2009.

[6] M., Lizarraga, R., Curry, G.H., Elkaim, Reprogrammable UAV Au-
topilot System (Part 1) - System Hardware and Software, in Circuit
Cellar, Issue 249, April 2011.

[7] M., Lizarraga, R., Curry, G.H., Elkaim, Reprogrammable UAV Au-
topilot System (Part 1) - testing and Results, in Circuit Cellar, Issue
250, May 2011.

[8] The Spread Toolkit, http://www.spread.org, last accessed on 09/20/12.
[9] The MOOS Software, http://www.robots.ox.ac.uk/, last accessed on

09/20/12.
[10] The OROCOS Project, http://www.orocos.org, last accessed on

09/20/12.
[11] Robotic Operating System, http://www.ros.org, last accessed on

09/20/12.
[12] Piccolo Autopilots, http://www.cloudcaptech.com, last accessed on

09/20/12.
[13] V.N., Dobrokhodov, M., Lizarraga, Developing Serial Communication

Interfaces for Rapid Prototyping of Navigation and Control Tasks,
in proceedings of AIAA Modeling and Simulation Technologies
Conference and Exhibit, pp13, 2005.

[14] UBUNTU Operating System, http://www.ubuntu.com, last accessed on
09/20/12.

[15] K., Andersson, K.D., Jones, V.N., Dobrokhodov, I.I., Kaminer, Ther-
mal Highs and Pitfall Lows. Notes on the Journey to the First
Cooperative Autonomous Soaring Flight, 51st IEEE Conference on
Decision and Control, Maui, Hawaii, December 10-13, 2012.

[16] E., Xargay, V.N., Dobrokhodov, I.I., Kaminer, A.M., Pascoal, N., Ho-
vakimyan, and C., Cao, TimeCoordinated Path Following of Multiple
Heterogeneous Vehicles over TimeVarying Networks, IEEE Control
Systems Magazine, Special Issue on UAVs and Controls, 2012.

[17] I.I., Kaminer, A.M., Pascoal, E., Xargay, C. Cao, N., Hovakimyan,
V.N., Dobrokhodov, 3D Path Following for Small UAVs using Com-
mercial Autopilots augmented by L1 Adaptive Control, Journal of
Guidance, Control, and Dynamics, N 0731-5090 vol.33 no.2 (550-
564) 2010.

[18] S., Clauss, P., Aurich, S., Brggenwirth, V.N., Dobrokhodov, I.I.,
Kaminer, A., Schulte: ”Design and Evaluation of a UAS combining
Cognitive Automation and Optimal Control”, Infotech@Aerospace
2012, Garden Grove, California, June 19-21, 2012.

