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short >ourses. Ali aspects of electromagnetic computational analysis are
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From The Conference Chairman To All Atzendees:

On behaif of the conference commitiee, welcome und thank you for
commgtoACEi'% Ahowelcome(bwk)mMonuey to California, and to
the Naval Postgraduate School from which we have our roots, If you are from
abrosd, of course, welcome (back) to the USA. If this is your first time here, an
extra welcome, and an invitation 1 azk of us to give ou our version of
where 10 go and what to do, or how you can nvo w2 ¢o noed you!

As | write this letter, the January 94 earthquake in the Los Angeles area,
and its after shocks, are still very much in the news; uweuhnthnmjoyuble
wwkfnrum.lannot butmmkohhooel.ffecwd.poui.bflgwmeof

I find it remarkable that te the numerous calamities aftecting ACES
beautiful host state of California, an atmosphere of energetic hope almys

For this 10th Anniversary meeting, we have tried 10 make it special and
memorable, and o give a distinct hank you t0 Dick and Pat Adler for their years
of selfless service. We tried to centralizc everything around the
Doubletree/Convention Center 30 a3 to give Dick and Pat somewhat of a break
this yexr. We have coordinated noteworthy social events, vendcr exhibits, and
short courses. chehbenulyuwdwexp-ndtheshmwmmmdmw
that those of you at home with ACES can reach out tn other related areas like
Wavelets, Time Froquency Analysis, and Measurement Validation, We also [elt
thuwxmmd:myhmngught.thCESwnlbemwnfmyouwmx
tot.hns/ear you would be able 10 partially diversify while here.

way of anknowledmu mdmmks.onoeaguleck and Pat Adler,
mdm’smofdedtcw who work 30 hard behind the scencs, not only
here during the conference, but all year. Jodi Nix, who I'm sure you all uiked to
at least once this past year, has. been the hands and faetofA(SS'?dforoma
year. She attended '9‘! visiied the Dogbletree, gave ACES publicity at
nummodcrmmhsmm,mdmmdw\mdeupempecﬁve
icipants in various capacities. She and her team at Veds designed our
pesuﬂyusmuxdmwdnﬂthemﬂmp.mdcmkeptmron
schedule: please thank her every time you see her!

Thanks to Jeff Fath, Dennis Andersh, and the Air Force Wright
Laboratories for su advice, publicity, and help with every facet of this
conference; w0 Rob ant Jin Fa Lae who, uyouetn:ee.d:dasum)obm
pulhnéapthulﬂﬂ:ﬂnnmm:nmlvmgmmy Ray
the Al ‘95 (despite what it says in) the January announcementj Conference
Churmm.dnd:gxulpbmhelmusouuhuywpmwdm;omﬂhdpmd

Lubutnotleuxlomyhmd()odlmplyuythanhw,m.mdplzau
don’t let the earth shake while we are here.

Best Wishes,
Andy Terzuoli, Chainnan,
1994 ACES Conference.
Dayton, Ohio
February, 1994

THE LN DETWEEN DEVELORERS AND UBERS OF COMPUTATIONAL ELECTROMAGNETICS TECHMIOUES
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ACES PRESIDENT’S STATEMENT

1t’s nice to b> here in California in March, especially considering the frigid weather we
experienced in the Midwest this past winter.

It's especially nice, however, to be here for the tenth annual conference of ACES. It's
hard to belicve that nine years have gone by since Ed Miller and his colieagues ac
LLNL convened s mecting to determine if there was a need to form a society to catsr w
the needs of the computational clectromagnetics comrmuvnity. The angwer wr
resounding ‘yes' then, and 30 it remains today. -

ACES is unique in its attitude to the profession. It ha: senior-lew=i - :marisers,
oemu.ly wbopublishngmﬁmnlmmd et much of ¢ email | ! cures from

operutors who want to use NEC in their noevmfeasionat - i Fries, and
nmﬂyMnA@Sagmemmmmvus Peroar - +at's niore of
a credit 10 NEC, but A siarted as a virtual NEC user’s ginie-, - » I’ nice (0 see
that we haven’t lost our roots.

Andy Terzuoli and Jodi Nix have done a great job in organsisg il ronference. We
Oowe them a great debt. And how about Dick and Pat Adler” “:m tnonght they were
just a couple of names who wanted your money. Now that you ¢ lizd a chance to meet
them, and their suppor staff, you can do the right thing and thank them, too.

Let me tell you how to get the most out of this conference: meet colleagues, see the
-nqmum.gomdnbmquet.haveagoodnme The papers will be so much better if
you're in a good mood. That's what we want for you.

Harold A. S
ACES President
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MONDAY MARCH 21

"WAVELET ELECTRODYNAMK'S®
by Gerald Kaiser, Dept. of Mathematical Sciences, UMass-Lowell

MONDAY _MARCH 21

"TTME-FREQUENCY ANALYSIS"
by Looa Cohon, Huswer College snd Gradusie Conter of CUNY

MONRAY_MARCH 21

“GEMACS FROM A-Z"
by Buddy Colfcy, Advinced EM

MONDAY _MABCH 21

“FDTD FOR ANTENNAS AND SCATTERING”
by Ray Loetbers, Ponn Suse University

MONDAY MARCH 21
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by Al Dominck, Ohio State Uni-ersity
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by Ed Millez, Los Alamas National Lab

SATURDAY MARCH 26

“FINITE ELEMENT METHODS FOR ELECTRCMAGNETICS”
by Jin-Fa Lee, Worcester Polytechaic Instituse; Robert Loe, Ohio Stase University:

‘Tom Cwik, Jet Propulsion Labomiory: and Join Bamser, MacNesl-Schwendier Corporation
SATURDAY MARCH 26 FULL DAY COURSE
*WIRE ANTZNNA MODELING USING NEC™

by Richard Asdler, Naval Posigracaste School; Jame: Broukall, Feon Siate 1. Iniversity;

snd Gerald Burke, Lawreace Livermore Nationsl Lab
SATLURDAY MARCH 26
"VOLUME-INTEGRAL EQUATIONS IN EDDY -CURRENT NONDESTRUCTIVE

FULL DAY COURSE

FULL DAY COURSE
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HALF DAY COURSE
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by Andreas Cangellaris, University of Arizons

xv



SESSION 1:;

RECENT IMPACTS
OF
MATHEMATICS

ON
COMPUTATIONAL
ELECTROMAGNETICS

Chair: Arje Nachman



Review of FD-TD Based Algorithms for Electromagnetic
Wave Propagation in Dispersive Dielectric Material

J.G. Blaschak
USAF Armnstrong Laboratory
Brooks AFB, TX 78235

Abstract

The radio frequency dosimetry community is actively engaged in the assessment of the
biological effects of short pulse, wide bandwidth electromagnetic sources. A key component of
this effort is the development of robust and accurate numerical simulations for use in microwave
pulse dosimerry prediction. Simulation algorithms based on the finite-difference time-domain
(FD-TD) approximation to Maxwell's equations have the poten:ial for significant contribution in
this area and are therefore of interest to bioelectromagnetics researchers at the Armstrong
Laboratory.

This study will present analysis and computational experiments designed to resolve
practical, performance questions regarding the usie of FD-TD based methods to model
propagation in dispersive dielectrics. Some questions to be considered are:

¢ What effect does the accumulation of phase error, inherent to the algorithm, have on the
quality of the solution?

* For a sensible level of discretization, throngh what distance can the algorithm be expected
to accurately propagate waves?

« Using published guidelines for appropriate selection of time and space increments, what
computer resources are required to produce an expected level of accuracy?

Computed results using the FD-TD algorithm will be presented using implementations of
two popular formulations for dispersive dielectrics. These approaches couple the constitutive
relations for the D and E fields in the material to the standard FD-TD difference scheme as cither
a discrete approximation to a convolution integral, or as a discrete approximation to an ordinary
differential equation. The FD-TD solutions will be compared to reference solutions obtained
using wn exact, Fourier spectral approach designed to compute the penetrating fields in a simple,
dispersive slab geometry.
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Madeling Propagation and Scattering in Dispersive Dielectrics with
FD-TD*

Peter G. Petropouios,
Armstrong Laboratory, AL/OES,
Brooks AFB, Texas 78235-5102.

1. Introduction

The application of ultra-short pulsed fields in the areas of radar, hyperthermia, and biolog-
ical/environmental imaging is imminent. For that reason there is a need for a thorough un-
derstanding of the short-pulse response of media whose dielectric propertics are described by
frequency dependent models fitted to permittivity data available for biological tissue, soils, hurnid
atmospheres, and radar sbsorbing materials. In addition, the planned extension of the IEEE
C95.1-1991 RF ure standard to pulsed fields will also require quulitative and quantitative
understanding of this sort to be developed. The alternative to actual measurement of the response
is numerical simulation. The fact that the sbove mentioned problems azre dispersive requires of
the candidate numerical method to accurately propsgate each frequency component present in the
computation. This implies that the mathod must be non-dissipative so that it correctly models
any energy loas due to physical mechanisms, and it must introduce as little artificial dispersion as
possible so that the real dispersion is simulated correctly. Such nice properties are desirable for
numericolly captuoring the Brillouin (a low-frequency aspe:t of the response) and Sommerfeld (a
high-frequency aspect of the response) precursor phenomens in disper.ive media. Lacking such
s method one would like to characterise the spurious numerical attributes of existing approaches
in order to control them or even alleviate them, »nd to develop some ability to prescribe an
acceptable error level and be certain that indeed the simulation will accumulate that error and
no more. In the standard FD-TD method [1] the truncation error can be neglected since it is
O(At? + A?), where A is the typical spatial cell site and At is the timestep. Assuming proper
treatment of the electromagnetic boundary conditions and of the absorbing boundary condition
used to truncate the computationa] domain one is left with the major source of error, i.c., the
phase error introduced by the finite difference scheme. This error grows linearly with time. As
8 result, » given discretisation will not be suitable for an arbitrary amonnt of computation time,
and the so called “rules of thumb” concezning the points per wavelength, N,,., have no meaning.

}

The issue of how to chooss N,,, is central in FD-TD cal m the of canonical
salations. In my talk I present some guidelines on how to choose the points per wavelength for
FD-TD in relaxing (Debye) and lossless dielectrics.

There exist a variety of useful extensions of the popular FD-TD scheme to the modeling of
pulse propagation in tem y dispersive media with complex geometry. Here | will only be
concerned with a method [2] for Debye dispersive materials since most materials in the microwave
are of such type. Other extensions [3] use a convolution representation of the constitutive relation
and work is under way to characterize them too. I will also determine the N, required to control
the phase error of the standard FD-TD in lossless dielectrics when a small Courant number, v, is
used. The case i < 1 is relevant to the discussion of FD-TD for dispersive media because then
the timestep is very small (as we will see the scheine in {2] requires that {or accuracy the smallest

*This work was supported by contract F41624-92-D-4001 with USAF Armatrong Laboratory.
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Figure 1: The maximum stability eigenvalue of the Debye medium difference schemes versus
hA(= 2x/Np,y) for v = At/ = 1.

timescale in the problem is finely resolved) consequently, the ordinary differential equations (ODE)
which are appended to the Maxwell’s equations to model the dispersion are solved exactly thus
leaving only the space-time discretisation of the partial differential equation (PDE) part of the
problem (the curl eauations) to iatreduce the phase erzor. Only one dimensionsl problems will
be idered but b temporal dispersion is not coupled to space the ideas presented here
can be heuristically extended to two -mf thres dimensions.

2. The Stability Analysic of a Debye Scheme

Details of the unalysis of schemes for Debye and Lorents dispersive media can be found in [4].
Some of the text herein also appears there but the explanations are new. For demonstration 1
will give the essence of the approach used to determine the stability properties of the discretized
coupled PDE-ODE system nnce from this analysis one determines how the discretization affects
the gﬁ_[uf!r_de of each frequency component in the problem on & per timestep basis.

From (2| the difference equations for the update of the magnetic, displacement, and electric

field are:
4, At
o3t - m’; o B D)
l 1.1 -
Dyt = Dy + Z(H o - ) 2.1)
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where n is the discrete time index, j is the discrete spatial index, a = 2re¢,, + ¢,At, 7 is the
mediaimn relaxation time, o is the infinite frequency relative permittivity, ¢, is the d.c. relative
permittivity, and u, is the permeability of vacuum. An eigensolution solution of {2.1) is

H? h
{ fod }: { d ]e"e"'""’. (2.2)
E? é

Pl

In (2.2) the complex valued vector # = (h, d, £)7 is the spatial eigenvector of the difference aystem
which 15 related to initial conditions, and & is the wavenumber of the harmonic wave component
whose stability and decay is determined by || which is the complex time-eigenvalue we wish
to find and whose magnitude will determine the stability and dissipation properties of the k-th
frequency in the difference equations. Substituting (2.2) in (2.1) and after plerty of algebra we
arrive to a polynomial equation for {. The polynomual, whose solutions give £ as a function of the
medium parameters, the timestep, and the quantity kA (= 21/ Ny, ), is as follow-

(A + 2) — Beg — he,
2¢qs + he,

pi(h—2) + Bem —hz.‘_ 2¢00 — he,
2¢, + he, *

e'+“'3

1
Y

2ew + he, 0. 23)

where p = 2y sin %‘, h=At/r,v= hA‘! is the Courant number, and all permittivities are relative
to ¢. The speed co, is the maximum wavespeed in the problem and is given by co = ¢/ /.
The speed of light in free-space is ¢. The product k& may be thought of as wavenumber if A
is fixed, or as inverse of points per wavelength if k is viewed as fixed. It must be emphasized
that k and v determine the amplitude (and phase error) introduced by the discretization. Taking
7= 8.1x10""%sec, ¢, = 78.2, and ¢, = 1, we calculate numerically with IMSL routines the 3 roots
of (2.3) for a variety of h and v and examine the root of largest magnitude as a function of kA
in the range 0 < kA < x. Figure 1 shows the result for v = | and three levels of time resolution,
ie., 10, 100, and 1000 timesteps per relaxation time. Numerical studies of the roots show the
uifference equations to be stable since it was always that maz|¢| < 1 for say kA in the range
considered as long a8 v < 1 and A arbitrary. In such a graph the amount of artificial dissipation
introduced by the differenced ODEs is evident since it is known that the FD-TD differenced PDEs
should alwayt have maz|{| = 1 for all kA when + € 1. To determine the amplitude of the k-th
mode after N timesteps one merely computes the number A x (maz|§(kA)|)Y where A is the initial
mode amplitude. It turned out that ma=z|{] > 1 (instability) whenever v > 1 regardless of the
medium parameters. Thus, the well-known stability restriction of the standard FD-TD scheme
is preserved by this extension to Debye media. Looking at other medium parameters and media
which exhibit multiple relaxation times I deduced that the amplitude error is negligible whenever
At € 0(10~*)r™ and v is at the maximum value for stability (=1). When the timestep is thus
choser the amplitude error resembles that in the case of non-dispersive FD-TD which is Iabeled as
EXACT on Fi 1. ™™ i5 the smallest relaxation time if the medium exhibits more than one
relaxation mechanism. If v/ is reduced from its r dmum possible value (in 2/3 dimensions this
is always the case) the timestep restriction is o : severe. Note that the incident pulse duration
does not enter in the analysis. Thue the minim. . relaxation time must still be finely resolved by
the timestep in this and other similer approaches even if the pulse duration is comparable to the
longer relaxations. Thus, when the problem is stiff (it is typically) the computational resources

ded to tackle realistic problems may be enormous. It would be helpful to be able to increase A
in a controlled fashion in order to reduce the computer storage which grows geometrically when
the spatial cell size is reduced. Of course one will then have to execute more timesteps to compute
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Figure 2: Phase ecror as a function of A = At/r for existing Debye medium difference schemes
vertus wA¢ for Courant number v = 1.0.

in a given physical time interval but the computation time increases only linearly as At is reduced.
Section 3 will show Low to control the artificial dispersion (hence the phase error) for FD-TD in
dispersive media. and Section 4 will show how to choose the spatial cell size in cases where the
required timestep is very small, i.c. when one effectively reduces the Courant number, so that
a prescribed amount of phase error is accumulated by the end of a prescribed computation time
interval. -

3. The Phase Error Analysis of a Debye Scheme

Now we will dctermine how the discretisation affects the phase of each frequency component
on a per tiniestep basis for the scheme in the previous section. Details and some of the following
text can be found in [4] but, again, the interpretations are new. The following definition of phase

error is employed:
() = b (A1) o)
kealw)] ' ’

where K (wAt) is the numerical dispersion relation and k4 (w) is the dispersion relation of the
Debye medium given by

$(wAL) =

PR
W[ —w

w) = =, | F——. 3.2

O e (32)

T have set ¢, = ¢, 10 the axpressions simphify. The w range considered ix such that 0 C wAt < =

—
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Figure 3: a) The dependence of N,,, on P for an allowed phase error of 0.1 radians. For vom-
parison the Ny, required by a fourth-order FD-TD at the same error level is also graphed. b)
Compnted phase error (stars) growth versus the number of computation time for the Yee scheme.

given At. To determine the numerical dispersion relation

o A
g}‘, = .?- ilkia-umat) (3.3)
] (1

is substituted in the difference cquations (2.1). Extensive alcebra gives the dependence of knun
on the frequency w and on the various medium and discretisation parameters us follows

wh sinwAt/2 |1 cos ¥ - 4 S2e

=2 et
b = AT T oA \cho.n,ﬂ-.'u%]'

(3.4)

By inspecting (3.4) and comparing it to (3.2) a feature emerges that is solely due to the discretiza-
tion of the ODE involved. The relaxation time r of the medium is now 7, = 7/ cos(wdi/2),
ie., the medium actually modeled by the numerics is one with higher relaxation time constant.
This is the source of the artificial dissipation exhibited by the maximum root of {2.3). Such
artificial dissipation can be controlled by choosing At 7o that coswAt/2 ~ 1 across the range of
frequencies present in the short-pulse that propagates in the medium. In Fignre 2 we show the
dependence of the phase exvor (3.1) on the number h = At/r as a function of wAt when v = |,
the maximum » for stability in 1D. Agair. we see that the timestep guideline given in the previous




section is optimal also for the phase error since if At < O(1073)}+""™ and v = 1 the phase ervor
is that of the non-dispersive FD-TD in a 1D dielectric used with © = 1, i.c., the phase error is
sero. Experimentation with various medium parameters, with media exhibiting more reiaxation
times and with ¥ < 1 points to the optimality of this guideline. If v is reduced (typical in 2/3
dimensions) the timestep estimate is more severe and the error properties of the scheme can only
be determined by looking at graphs Like Figures | and 2. In the next tection a useful estimate
is shown for Npgw. It holds whatever the medium in cases where one needs an extremely ymall
timestep. Finally, it is to be emphasized that if the given medium exhibits a range of relaxation
times then At bas to resolve the smallest one in the way derived here even if the incident pulse
duration is comparable to the longer relaxation times. This situation occurs in simulations with
realistic pulses sad medinm models.

4. Control of Phase Error in FD-TD for Small Timestep

For the Yee scheme in a one dimensional lossless dielectric 1 have determined that if one
prescribes the phsse error, ¢4, then the points per wavelength (N = A™"/A) required to

discretise the spatial domain is related to P, the “electrical time,” by
N,,.~(l)9rf(£)§‘ (+.1)
3 oy

where P = tw*/%r, t, is the physical computation time, w® is the highest frequency in the
computation for which we will accept the prescribed phase error, and 4 is in radians. (4.1)
was derived for the Courant number » « 1 and this was done because my problems required a
very small timestep and consequently a very cmall spatial step if [ had to take v = cAt/A = 1.
The estimate is also valid for any s as long as /N, « 1. It would be helpful to be able to
determine how to choose A in the case v € 1 since this effectively means that, for fixed v, A has
been increased In [5] I derive the corresponding relation like (4.1) for the two dimensional FD-TD
where I also verify it with simulations of propagation in a waveguide. Figure 3a) shows how N, is

related to P for a phate error of 0.1 radians, roughly 5.7°. From (4.1) the cell size is O(,/eg/t w*).
If we are calculating pulse propagation w*® would be the highest frequency present thus, for fixed
ey, the spatial cell sise goes like 1/4/%,. If we are using FD-TD to march to a steady-state in order
to obtain frequency-dorzain information then ¢, does not have any meaning apart from it being
the Sime interval needed to reach steady-state since essentially we are solving an elliptic problem
80, for fixed ey, we see that A goes likr 1/+/w*, where w* is the frequency of the time-harmonic
wave forcing the problem. In this case the time ¢, has been lumped in the O symbol. On Figure
3a) I have also graphed the corresponding Nppy 1equired from a fourth-order FD-TD method te
achieve the same phase error as the Yee scheme in the same amount of computation time. Note
that for long computation tiraes the N, savings (=less memory) are substantial. For the Yee
scheme Figure 3b) shows a comparison between the theoretical and observed phase error for a one
dimensional computation whose discretisation was designed with the guideline (4.1).

In [5] these concepts are demonstrated for two dimensional FD-TD methods where the case
in favor of the fourth-order FD-TD is even stronger. We have seen in Sections 2 and 3 that the
FD-TD for dispersive media require an extremely small timestep. Thus one has to lock at the
discretisation requirements for small Courant numbers given a fixed spatial step determined by

the amount of computer memory one has. (4.1) and [4]-[5] should help in such attempts. Figure
3a) and [5] indicate that for long computation times (needed in calculations of che interaction of
pulses with dispervive media) the fourth-order FD-TD should be better. Here is another reason:
The fourth-order FO-TD works best with a small timestep since its truncation error is O(At? +AY),
it is second-order accurate in time, 80 if we choose At ~ A? true fourth-order accuracy is obtained




at a fourth of the {atal computational cost of the standard FD-TD for the same pkuse errcr level.
That is, in light of the spplication in dispersive media, the so called (2-4) FD-TD 13 » natural
choice while the standard scheme needs a large amount of computational resources since in order
to be accurate and the timestep restriction to be optimal it requires » to be chosen close to its
maxmum value possible for stability.
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ANALYSIS OF FINITE ELEMENT TIME DOMAIN METHODS IN
ELECTROMAGNETIC SCATTERING
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Dept. of Math. Sciences Oxford University Computing Lab.
Univ-rsity of Delaware Parks Road
Newark, DE 19711, USA Oxford, 0OX1 3XD, U.K.

Abstraci. In computing the RCS cof complex objects, or computing the interaction of microwaves
with biological tissue, one is often faced with the problem cf discretizing Maxwell’s equations in the
presence of exotic geometries and niaterial ipbhomogeneities. In these cases, the use of automatically
geaerated unstractured tetrahedral grids is particularly attractive. These grids, in which some elements
may have poor guality faciors, influence the choice of discrctization method. An obvious possibility is
to use either standard node based continuous pi ise linear e} , or the sub-linear edge based
family of Whitncy elements This paper is devoted to an analytical and numerical comparison of these
two ryethods. We shall also discuss some implementational aspects focusing on parallel computing.

1. Introduction. In this paper we shall compare, using analytical and numerical tech-
niques, two methods for discretizing th. Maxwell system in R®. In order to simplify the presen-
tation and in order to focus on essential aspects of each method we shall unly consider simple
wave propagstion. Other aspects, such as radiation boundary conditioas, will not be considered
here. We wish to approximate the electric field E(z,t) and magnetic field H(z,¢) that satisfy
the Maxwell system.

E-VxH=0amd H+VxE=0 in Q (1)

where ) will be either the cavity [0,2]° or the entire space R. For the cavity 1 = [0,2)® the
fieldr: are assumed to satisfy the following boundary condition:

nxE=« on I' = boundary of Q, 2)

where n is the unit outward normal to 2 and v is a given tangential field. In addition, the
initial sields ¥ (x,0) and E(=z,0) must be given (in our case H(z,0) = F(z,0) = 0).

We assume that €} has been covered by an unstructured tetrahedral mesh 7, consisting of
letrahedra of maximum dianeter i. The mesh is assumed to be regular and quasi-uniform
(altbongh the latter constraint is often ignored in practice}. We shall use the notation (u,v) =
Jam - vdV. With this notation, we can define the two methods under consideration.

1.1 Nédélec's Method. Thaic method was proposed by Nédélec [13] and uses the lowest order
edge elements of Nédélec {or Whitney elements). Precisely, the approximate electric field E,(t)
is taken to satisfy the following conditions:

{Research supported in part by AFOSR.
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o E\(t) € H(curl; ) where H{curl; ) is the set of functions in (L?(12))* with (L2())? cusl.
e On each tetrabhedron X € i, Ex(t)ix = ax + = x bg
where ax and 8y are piccewise constant vectors in space that depend on time. We denote the
space of solution functions of the above type hy UA and we denote by Uh the space of functions
with homogeneous boundary data so that U, ° = {uA €Ul inxu,=00n I‘I Aa advantage
of these spaces is that U'® is easy to construct
Following Nédélec, the magnetic field is discretized using face based elements, so
o H\(t) € H(div;l) where H(div;Q) is the space of functions in (L?(f1))® with L?(?)
divergence.
¢ On each tetrahedron K € 7y, Hy(t)|x = cx + dxz where ¢k is a constant vector and dy
a scalar on each element.
We denote the space of functions of this type by V.
The discrete electric and magnetic fields (Ex, Ha) € UY x V¥ satisfy the variational problem

(Ero¥n)~ (HW, I x9,) = 0 vy, e UM, (3a)
(Ha, @) + (VX Ex,y) = 0 Vo, e V. (3b)

In addition, (3) is satisfied approximately by interpolating the boundary condition at the mid-
point of the edges on I'. This method was analyzed in 11, 9]. Advantages of this method are
discussed in [2]. Details of implementation, together with numerical RCS, absorbing boundary
conditicus and time stepping are given in [8, 7, 5]. Advantages of this method are discussed
in [2]. ‘We remnark that the main advantages of this method are that the computed magnetic
field is exactly divergence free and the electric field is discrete divergence free. Io the case
of inhomogeneous media (vaciable permeability, permitivity and conductivity) this method is
applicable without modification.

Obvious disadvantages are that for & given mesh, many more unknowns are required to
discretize the problem compared to nodal methods (but see [4) for coraments on the sparsity
structure of matrices for this problem). In addition the method has a low order of convergence
{as we shall see in the pext section).

1.2. A Nodc Based Method. The second method we want to examine is based on continuous
piecewise linear finite elements. The discrete electric field E\(t) satisfies:
o Eut) € (H} ()P
¢ On each element K € 7y, Ex(t)|i € (AP where P, is the set of linear polynomials.
We denote the space of such fields by US (standard elements). The magnetic field is discrotized
ia the same way.
Due to ambigyity in the choice of a normal vector for a polyhedral domain, we prefer to use
waakly enforced boundary conditions so e seek (Ex(t), Ha(t)) € (UF)? such that
(Evea) = (Vx Hyo,) = 0 v, €Uf, (4a)
(Fn )+ (EaV X&) = <v,0,> Yo, eUf. (4b)
Here < %,2 > [pu2 - ndA. We have also programmed the use of strongly enforced boundary
covditions (sec [12]). This inetked is similar in spirit to a method investigated in [6] in two
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dimensions. However we do not mazs lump since mass lumping destroys .ae superior phase
accuracy of the method.

Oue advantage of this method is that the fields are coatinous and heace available a4 any
point in apace (for example for RCS calculations or graphics). In addition, as we shall see, the
method has excellent dispersion properties. An important disadvantage is that the method does
not generalize easily to allow for discontinuous permiability or permitivity.

1.3. Time Stepping. Both methods describcd above give rise to a asystem of differential
equations of the form

M,-f-cﬁhi, and M—-+CE éG.

where £ and J are vectors of electric and magoetic degrees of freedom, Mg, My and C are
matrices and £ and G are data vectors. This system can be discretized conveniently by h
leap-frog method [15]. Thus if At is the time step and E™ = E(nAt) with similar deﬁnmon..
Fr+113 and Fetif? and é-wl

Bt B . .
M = Er —CT'H"'H" = F'“/’, (5a)

n43f2 _ frtl/2
!J‘—“———H Atﬂ +CB‘+1 = G"‘"_ (5b)
Note that at each time step we shall have to solve matrix problems with matrices Mg and My
which ave sparse and positive definite.

2. Analysis of the methods.

2.1. Error Analysis. The Nédélec scheme (3) was analyzed in {11, 9] where it was shown that
i || - || denotes the (L3(R))® norm then |[(E - Ex))|| + I(H ~ HO)()|| = O(h) provided E
and H are smooth encugh. This is an optimal estimate for the edge scheme. Using the methods
of (10}, it is also possible to show the same error cstimate for (4), but this estimate may oot
be optimmal. This first order convergence is very poor, but in R? {using a triangle based edge
raethod) we find that the noda! convergence rate is O(h?) which is a significant improvement
over the global estimate. In this paper we shall investigate whether such “super convergence” is
found i R® (see the section on pumerical results).

2.2. Dispersion Analysis. The etior analysis above shows general global convergence. To
obtain a better understanding of the wave propagation properties of (3) and (4) we perform
a dispersion analysis. ‘To do this we must use a translation invariant grid of R3. We start by
discretizing in cube 1 = {0, AP using six tetrah~dra as shown in Figure 1 (a). Then the mesh,
7, of R? is formed by translating {2, in z,y and z. We sevk discrete plane wave solutions of (3) or
(4)- By thiz we mean that Ej(2,t) = Eh(:)exp {~iwt) and H,(2,t) = H\(z)exp(~iwt) where
E. and H, bave the translation property Ex(x + (jh, kb, lh)) = E;.(::)exp (ik-(7h,kh,lh)) for
integer i_j, k. A similar reiation holds for H,. In order for these functions to satisfy the finite
element equations, the vector k and frequency w must satisfy a dispersion relation w = w(k, k).
The finite element functions and dispersion relation may be computed by solving an eigenvalue
problem o {ia.

13



{d) Yee Scheme

Figure 1: We show contour maps of the error in the phase velocity as a function of propagation angles
@ and $. Panel a) shows the me.h used. Panel b) shows the phase velocity error for the edge scheme
with 10 grid points per wuvelength. Shading emphasizes that the error can be pasitive or negative
Jepending on propagation direction. Panel c) shows the phase velocity error for the node based scheme
using 14.7 gird calls per wavelength (same density of unknowns as for the edge scheme). The error is
always negative and much better than for the edge scheme. Panel d) shows the corresponding plot for
the Yae finite difference scheare using 14.7 grid cells per wavelength and the optimal Courant number
{the other pictures do not include time stepping).
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For the continuous problem (1), a plane wave solution exists if either w = 0 or w = L|k|.
For a finite element problem the dispersion reiation will no longer be exact, but we want an
accurate numerical dispersion relation to ensur: good phase accuracy in the gumerical solution.
To distinguish the finite element dispersion relation, we shall denote it by wy.

Using MAPLE, we can show that for the node based scheme (4}, either wy = @ or wy =
+|k| 4+ O(h*'). This is a very highly accurate relation and justifies our interest in this method (for
compatison the well known Yee finite difference scheme {15] bas a dispersion relation accurate
to O(h?)).

For the edge method (3), we caunot compute an analytic dispersion relation. Instead we
compare dispersion relations graphically. In Figure 1 (b) and (c) we show the error in the
dispersion relation defined by

wa(k(6,4),h) _
76,¢) = e 1

where § and ¢ are the standard polar angles for the propagation direction and where & is
chosen to correspond to 10 grid cells per wavelength for the edge method and i4.7 grid cells per
wavelength for the nodal method. The choice of 10 cells per wavelength is at the lower end of
the range used in practice, and hus the same density of unknowns as for the node based methods
with 14.7 cells per wavelength. For comparison, we also show the dispersion relation for the Yee
finite difference method using 14.7 grid cells per wavelength. From Figure 1 it is quite clear that
we expect the edge method (3) to have a pocrer dispersion behavior than the Yee scheme, but
the nodal method (4) is far superior to either.

We should also note that the adge scheme possesaes parasitic modes. Finally, the grid based
on subdividing a cube is optimal for neither the edge bared or nodal methods. Using a uniform
Sommerville grid (3], the dispersion relations for (3) and (4) improve dramatically.

3. Implementation. In implemeating the edge based method (3) it is convenient to
use the Whitney forms to represent the fields ou each element [1. 8]. One is left with the
problem ef solving the discrete problem (5) obtained form the semi-discrete problem by leap-
frog discretization.

3.1. Edge Method. In this case the matrix Mz is symmetric, positive definite and sparse
(see [4] for an analysis of the spassity pattern). We use the preconditioned conjugate gradient
algorithm to solve the associated matrix problem using the diagonal of the matrix as the pre-
conditioner (sec also {8]). To analyze the effectiveness of this approach we procead as follows
using the analysis of Wathen [14] Let MY be the mass matrix for element K € 7, and let DF
be the diagonal matrix formed from the main diagonal of M. Then the cigenvalues of the pre-
conditioned matrix Mg are real and lie in [\, A] where A; = Riingon, AR™, Ay = maxXker, AR
and

T ek TaeK
; z'Mi=z z'Mg=
AR™ = min £ and AR = max —e—t—,
K T Zi0zTDkz K T Zyo 2TDE=

For the grid in Figure 1 (a) we find A /A = 6.433 which implies that at each step of the
preconditioned conjugate gradient algorithm the error is decreased by a factor of approximately
0.19.
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Unfortunately, the conditioning of the matrix Mg depends on the geometry of the grid. Thus
A and A, must be computed for each grid used. Nevertheless, computing A, and A; does give
aa a priori estimate on the number of conjugate gradient steps needed per time step. It may be
worthwhilz to check grids before computing, and modify poor tetrahedra to improve the condition
number of Mg. We note that a uniform Sommerville grid gives a condition number estimate of
5 and hence a convergence factor of 0.145 per conjugate gradient step.

For the edge method the matrix My in (5) can be diagonalized so (5b) can be solved rapidly.

Numerical computations of wy show that maxg wy = 8.5 and hence the leap frog time atepping
scheme has a stability constraint of At/h < 0.23 where At is the time step and A is the length
of the sides of the cube which underlies the tetrahedralization. The actual stability bound in
the presence of boundary conditions may differ from this value.

3.2. The Node Based Method. Here both Mg and My are symmetric, positive definite and
sparse. Thus both (52) and (5b) give rise to linear systems that must be solved by precouditioned
conjugate gradients. In this case the Wathen bound on the condition pumber is 5 independent
of the mesh. Thus the convergence factor per conjugate gradient step is 0.145. This indicates
that conjugate rradient method converges faster for the node based scheme than the edge based
schemsz, but one must do twice as many conjugate gradient nroblems.

Numerical computations of wy show that maxgw, = 2.77 and hence the leap frog time
stepping scheme has a stability constraint of At/h < 0.72.

4. Numerical Results. In order to investigate the propagation behavior of the two
methods (3) and (4) on non-uniform grids we have performed a simple computational test of the
methods. We take £ = [0, 2]* and mesh §2 by subdividing into N x N x N cubes, then subdivide
each cube into six tetrahedra (sec Figure 1 (a)). Finally the mesh is randomized by moving the
coordinates of each mesh point a random distance at most 0.1 (2/N) in the (x,y) plane. The
time step At =2 h/8. The exact solution is E = Eog(k - * — t) and H = Hog(k - z — t) where
k = (sin(@) cos(#), sin(9) sin(¢), cos(#)) and 6 = ¢ = /4. Aiso Eo = (sin(¢), —cos(¢),0) and
H = (cos{@) cos(4), coe(8) sin(#), = sin(#)). Finally the function g(t) is given by

g—lgl-lg!ﬂ—lo!
o) = T—exp(~10) O<ts2
0 otherwise .

The boundary data 4 is computed from ke exact solution.

Figure 2 shows & plot of the maximum error at the interpolation points against numbers of
degrees of freedom. The slope of the line is consistent with 0(®) convergence with § = 1. This
suggests that the error analysis mentioned earlier in the paper correctly reflects the behavior of
both methods. A graph of the z component of the electrical field at £ = y = z = 1/2 is shown
in Figure 3 for the case N = 16. It is clear that the phasz accuracy of the nodal scheme is much
better than the edge scheme as is to be expected from the dispersion analysis. But the overali
accuracy is worse (for the electric field).

5. Parallel Aspects. The use of a low order tetrahedral based solver increases the
computational burden compared to traditional finite difference schemes. For this reason it is
important to investigate parallelization of the finite element time domain code. We have done
this for the edge based method (3). It turns out that the space V¥ is nc longer convenient, 30 we
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Figure 2: This figure shows a plot of the er-
rorin the nodal values of the electric and mag-
netic fields against the total number of degrees
of freedom for the method. We show results
for the edge and node based schemes and a
reference line corresponding to O(A) cunver
gence. The error is computed at ¢t = 3 for
the numerical test discussed in the text. The
slope of the lines are consistent with an error
proportional tc O(h) for both methods which
shows that our error analysis does capture the
details of convergence. Note that, even allow-
ing for differences in the number of degrees of
freedom, the edge mcthod is more accurate for
the electric field although the magnetic ficld
is worse.

o—e
petedig

{a) Node Based Scheme (b) Edge Element Scheme

Figure 3: We show the z component of the exact and computed eleciric field E at approximately
z = (0.5.0.5,0.5) when V = 16 as a function of time t. The nodal rasult is for the node closest to the
desired point, while the edge resnlt is actually the component of E in the direction (0.967, -0.256.0.)
at the point (0.523.0.500.0.500). This is the closest edge interpolation value to the desired result. Note
the poor amplitude accuracy of the node based scheme. The integration has not becn carried out for
a long enough time to sliow the superior phase accuracy of the nodal scheme.
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use the space V¥ of piecewise constant vector fields to discretize the magnetic field. This method
gives exactly the same solution as the edge/face method mentioned before, but at the cost of
more degrees of freedom for the magnetic field. Parallelization aspects are discussed in more
detail in [12] where we provide efficiency data using a variety of mechanisms for parallelization
on message passing computers.

6. Conclusion We have given a description and comparative analysis of two finite element
methods for discretizing Maxwell's equations. Despite the superior phase accuracy of the node
based scheme, our calculations show that the edge based finite element method is competative.
For this reason we have implemented a parallel edge based finite element solver.

It would be desirable to investigate further the source of error in the node based solver since
if this source could be controlled the method could offer high phase accuracy on unstructured
grids. We are now making antlytical and computational investigations on this point.
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Abstract

The iast rultipole method (FMM) provides s sparse decompasi-
tion of the impedance matrix arising from a discretization of an inte-
gral equation equivalent to the wave equation with radiation borndary
condition. Mathematically, the sparse factorization is made possible
by s diagonal representation of translation operators for multipole ex-
pansions. Physically, this diagonal representation corresponds to the
complete detenmination of fields in the source-free region by the far
fields alane.

Because the diagonai form of the translation operator is not a well
behaved function, it rmist be fiitered in numerical practice. {This does
not constitute a practical limitation to the securacy of the results ob-
tained with the method because of the superalgebraic convergence of
the multipcle expansions.) In the originally published version of the
FMM, the filtering was accomplished by a simple truncation of the
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multipole expansion of the translation operatcr. This sharp cutoff
results in an oscillstory transfer function that .. non-negligible over
the entire unit sphere {i.e., in all far-field directions). Physically, the
transfer function represeats the effect a bounded source has on 3 well-
separated observation region, expressed in terms of the far field of the
source. This suggests that a suitable transfer function might be non-
negligible only iu the direction of the separnticn vector. It turns out
that such & transfer function may be obtained by applying a smooth
cutoff to the multipale expansion. Although such a transfer func-
tion requires the tabulation of far fields in & denser set of directions,
the overall computational and storage requirernents for a single-stage
FMM are reduced to O(N*/?) from O(N3/3).

1 Review of FMM

The fast multipole method (FMM) for the wave equa.ion[l, 2] gives a pre-
scription for a sparse decomposition of the (impedance) matrix obtained by
discretization of the integral keinel

@k’

G(x—x‘)-m'

n
Mathematically, this decomposition ensues from the diagonal form of the
transiation operator in the far-field representation([3]. For brevity, this sum-
mary relies heavily on the exposition and notation of (2].
Briefly, the FMM works by decomposing the intersctions into near-field
and far-field parts. This is done by dividing the scatterer into groups and
each pair of groupe 2s near or far. The mairix representing the near-
field part is sparse by virtue of locality. The far-field part may be factored
by using

N I PPN
mzz;jd’ke To(eX, k- %), @)

where the T is the diagonal representation of the translation operator:

Ty (x,cos6) = ii‘(ﬂ + DA (x) Pi(cos 8),, @)
im0
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and X is the distance between the two memters of a group pair. In the
previously published version of the FMM, the sharp cutoff at | = L caused
the transfer function 7" to be non-negligible over a wide range of angle. As
we show below, examination of 7 reveals that it may be modified so that
it has support only in a narrow range of cosé near 1. The only cost of
this modification is a denser sampling of far-field radiation patterns from the

groups.

2 The Translation Operator

The transfer furction 7z (x, cos ) represents the interaction between bounded
source distributions separated by distance x/k (where k is the free-space
wavenumber) and € is the angle between the displacement vector of the cen-
ters of the groups and a direction at which the far-field of the source dis-
tribution is computed. Since we expect the fields radiated from a bounded
region to s well separated observation region to be given only in terms of
the far-field in directions that point toward the chservation region, we might
expect that 7;(x,0086) would be strongly peaked for cos# = 1. Further-
more, since convergence of the multipole expanrions requires L = kD, where
D is the diameter of the regions, we might also expect that the peak have
a width §f o« L/x. Numerical examination of 7 reveals that this is indeed
the case; however, there are rather large oscillatory tails outside the peak.
In Figure 1, T0(30,cos#) is plotted. This is the transfer function that one
would use for rather small (compared to a wavelength) groups separated
by 4.8 wavelengths. The oscillatory tails are reminiscent of leakage in power
spectrum estimation using the FFT(4]. This suggests that by using a smooth
“window function” to compute T rather than a sharp cutofl, that leakage to
large angles may be reduced. In fact, this is the case; even a simple-minded
cosine window function, giving

Ti(x,cos6) =
To(x, cos) + f': P2 +1) [1-@’(’—"‘—)1] AP (k) Pi(cos 6) , (4)
o 2L

produces the localized transfer function plotted in Figure 2. Naturally, be-
cause we are taking more terms in the multipole expansion of 7, we must
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Figure 1: Real and imaginary parts of transfer function 7 of cos 8 for L = 10,
x =30
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Figure 2: Real and imaginary parts of the localized transfer function 7" of
cos & for L = 10, x = 30,
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sample the far fields in a denser set of directions appropriate to a quadrature
rule for spherical integrations exact for a larger set of spherical harmonics.
The trigonometric window function in Eq. (4) is only for purposes of illus-
tration; more efficient windows should be used in practice.

3 Complexity Reduction

A detailed analysis, to be published elsewhere, reveals that the window func-
tion of ! can be chosen to minimive the support in solid angle of 7. This
analysis confinns the intuition, impiied above, that the solid angle of sup-
port of the resulting tranusfer function is about n(kD)?/(4x3), where D is
the diameter of the groups. In the O (N*/?) FMM, the operation count of
the translation operator application is oc K M?, where M is the number of
groups and K is the number of far-field directions tabulated. It might now
seem that this count should be multiplied by a factor  (kD)?/(4x?) x 1/M,
giving a total count & (K/M)M? x N, which is independent of M. TLis
is incorrect, however, because it implies that by decreasing the size of the
groups that the number of directions at which the far-field is used can be
1educed without limit. Actually, since we must know the far-field of each
group in st least one direction for each other group, the number of directions
must go to s constant for very small groups. The total operation count for
application of the transiation operators is thus (bN/M? + c) M?, where b and
care irnplementation dependent constants. (Actually, 8 mere careful analysis
gives a factor of Iu M in the b term, but it bas no effect on the behavior for
large N.) Minimiring the sum of this with the operation count for the other
steps in the FMM (aN?/M, where g is another constant), one sees that, for
large problemmns, b is inelevant, and the total operation count is minimized by

aN?\
M= (-k—) . )

30 that the totai operation count is O (N‘/’). For smaller problems, where
the ¢ term does not dominate, the operation count varies roughly as NIn N.
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An Optimal Incident Pulse for Scattering Problems
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Abstract. Numerical computacion of the feld scattered from & body in twe dimensions due to an
incident plane p pulse is idered. In particular, we eamine the process of inferring the
scattered findd due to one incident pulse given the scastered field due to another incideat pulie. The
objective is to develop an indirect mathod that avoids the potentially expensive direct solution of
the problem. Qur approach is based on a formula expressing the scattered field as & convelution of
3 kerne! with the incident pulse profile. The most straight forward generalization of this formula to
the discrete version of the scatter problem used in namerical computstions does not allow the kernel
to be inferred from a single numerical exp-riment—z difficulty we call the “multi-source probiem”.
Preprocemsing the incident pulses using simple interpolatior formulas overcomes the multi-source
problem giviag an extcl algorithm for computing the kernel. Selection of a sharp incident pulse
(the Kronecker pulse) for the primary numaerical experiment sssures stability o this algorithm and
permits extremely accuraie prediction of the scattered fields for secondary incident pulses.

I. Introduction

In a recent paper (1] we presented a numerical algorithm which efficiently computes the scat-
tering of plane incident pulses from a compact, impenetrable target. Assuming only that the
aumetical scheme used to solve the wave equation was linear, causal, and time invariant. we
deduced an expression for the scaitered field at a point as a fnite convolution of the time
dependent. boundary dzta and the scattering kernel. The later is unknown in general and rep-
reseats the scattering response of the target te an incident plane delta function. Our algorithm
is essentially a constructive way of approximating this kernel: We s.mply run one numerical
erperiment and record the response. The incident wave for this simulation is the Kronecker
pulse, which is cnly aonzero at one grid point. and the response is sur approximaticn to the
kernel. We then convolve the approximation to the kernei with an incident pulse to determine
th seattered field.

Wa celerred (1] to the Kronecker pulse as optimal because it affords us the simplest way of
approximating the scattering kernel. Here we consider the #lgorithm from a slightly different
point of view; we study the response of the coutinuous system, R's, to this incident pulse and
estimate its deviation from the scattering kernel. Specifically, we stucy the difference between
the field produced by convolving an incident pulse with K5 and the exact scattered field.

This work was supporied by the Air Force Office of Scientific Resecarch under Gran: No. AFOSR 91-0252 and
by the Office oi Naval Research under Gract N00014-92-J-1261.
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I1. The Scattering Kernel K'(x.t)

For the sake of simplicity, we consider only two dimensional scattering problems for the wave
equation and assume that the target is convex and sound hard (or TM), although our analysis
can be be generalized in the obvious manner. We therefore consider the following scattering
problem:

Fv  Fv v
(1a) 5‘—2-'-3:—24-@, x€D, t>0
(l'b) v= _uinc(f - kmc . X). XES, t>0
(1¢) v(x,0) = v(x,0) = 0

where u;q. is the incident pulse, v is the scattered puise, D is the scatierer and § is its boundary.
and kin is the unst vector in the direction of the incident pulse. The scattered field v is also
outgoing at co. The quantities in (1) are dimensionless; the spatial variables have been scaled
with respect to a characteristic length. L. of the target. the time with respect to L/c where ¢
is the speed of sound (light) in D. and v and u,,. with respect to the maximum of the incident
pulse.

Taking the fourier transform of (1), denoting transformed quantities with hats. ”, and tak:ng
w to be the transform variable we obtain

8 & .
(2a) 5§+Ei"wzv=0. xe€D
(2b) &= =fn(w)e™=  x¢5
(2¢) L
ar
The soluticn of (2) in principle is given by
(3‘) b= _‘.‘mc(“’)l‘?(x- Kinc. )
(3b) K= / Glx,x' weim* s’
s

where G is the greens function and ds' is the differential arc length along S. A

If we take the special incident field uine = 8(t — kinc - X), then tijp, = 1 and # = F is the
fousier transform of the scattered field produced an incident plane celta function. Its inverse
transform A'(X,1. Kin. ) is the scattering kernel of the target. Applying the convolution theorem
to (3) we obtain

1
(4) v= / KXt Kinc Jinc(t = 7)dr
-0
which shows that the sca‘tered field for any incident pulse can be dstermined from the target’s

response to an incident delta function. Equation {4) is the continuous version of our discrete
convolution described in Reference 1.
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IIX. The Approximate Scattering Kernel R(x,t)s

We begin by defining the triangular function u¢ given by

(52) us{t) =0.  t<—h

(sb) ug(t) = (h+t)/h?, —~h<t<O
(5c) us() =(h—t)/h, O<t<h
(3d) ust) =0.  t>—h

where h is a zmall positive number. The function defi ed in (5) is propostional to the linesr
inte: polation of the Kronecker function that we used iu our algorithm (1). In that context
was the mesh size and our interpolatior was h times bigger than ug.

If we take our incident pulse to be u,n. = us{t — kin. - X} and denote by R’y the corresponding
scattered field, then it follows frum (4) that

(6) Rs(x,t) = /‘ R(x. 7. KinsJus(t — 7)dr.

Since ug is a simple approximation to a delta funccion, it seems plausible that A ~ Ky as h — 0.
This would then suggest in light of (4) that given any incident pulse. the produced scattered
field is approximately given by

@) v~ /_ Ke(%. t. Kinc)uine(t = 7} dr.

This is the continuous version of the discrete result presented in Reference 1.
Denoting by E the difference between the approximate and exact scattered fields given by
(7) and (4), vespectively, we find that

(8a) E = Uine(t = 7)J(7)dr

-

(8b) J = K(7) - K§(7)

where the dependence of the functions on x and Kin. has heen omitted for notational conve-
nience. Thus, the error depends on the difference function J which according to (6) becomes

1
@) J<f)=mf)-/ K(pjus(r - p)dp.



Since us approximates the delta function. it is clear that J — 0 as A — 0. The question we
must theefore nddress is: how small is J for a fixed h?

One possible way of addressing this question goes along the following lines. Using the defini-
tion of K. the evenness of 1, the convolution theorem. and the explicit fourier transform of us
we rewrite (9) as

sin’(wh/%), -
(10) J(r) = -—/ 1- = :1/")/2 K (w) cosws du.
The ability of the function us to approximate the delta function is mirrored in this frrquency
domezin result by the bracketed term which is the difference between their fourier transforrs.
And if h is small enough, thin term is quite small for a large range of w. For example, if
wh/2 < x/10, then the bracketed term is < 0.008.

In our numericz! algorithm [1} we chose h small enough to resolve the highest frequency
present in a class of incident functions. That is, A ~ 7/10uw;: wheie w5 is this maximum
frequency. Using this ordering and the observatinn just made about the size of the bracketed
term, we deduce the estimate

sin (uh/Z)

..;h/")" JA(w)cosws dur.

(1) J(r)—--/ n-

Assuming that wyy >> 1. or equivalectly h << 1. and that & ~ w " K. we integrate (11) by
parts to obtain
(12) J~ﬁsiuuur

wiyT

wlore Ko is independent of w and N is a positive integer. The existence of Ay and N follow
from greens function arguments on the helmholtz equation and boundary conditions satisfied
by K. Finally inseriiag (12) into (Sa) we obtain .

(13) Em B sint)
Twihy

which shows that the error — O as A — 0.
IV. Numerical Examples: Time Harmonic Responses

The response of a scatterer to a time harmonic incident pulse has played » major role in
scattering theory for practical and theoretical reasons. Many aumerical methods have been
devised to tackie this problen., each with their strengths and limitations. A technique called
the Fiaite Difference Time Doriain Method (FDTD); is a relatively straightforward and robust
way of computing the time harmonic scattering response of a target {2-5]. The time dependent
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equations with a time periodic incident wave are solved vsing an explicit finite difference scheme.
According to the limiting amplitude principle {6], the soluiion of the time dependent problem
will approach a time harmonic state as long as no trapped iodes are present (and this is
certainly the case for compact targets). And if the explizit finite difference scheme and non-
reflecting boundary condition are carefully chosen then the numerical results will give a good
approximation to the time harmonic response. The rate at which the soiution evolves into the
time harmonic response depends upon the target shape and the polarization of the incident wave.
For example, it was observed [4] that raie for sound hard (TE) targets is smaller than the rate
for a soft (TM) target. Morzover, if the target shape encourages local energy confinemen: (e.g.,
a Helmhoitz Resonator), then the rate can also be quite small [5]. Thus, the FDTD method may
hecome prohibitively time consuming if the target is complex and if many frequency responses
are required.

The method, presented in (1] and erabodied in the discrete version of (7), may give 2 more
aconomical approach than the FDTD for complex targets where the frequency response is re-
quired over a broad spectrum, Q. Our algorithm proceeds as follows. We first use a finite
difference scheme to solve (1) for the incident pulse us. The temporal time step % is chosen to
resolve the highest frequency present in {7 and the spatial step size is chosen to satisfy the CFL
condition [7}. If the differential cross sections for different frequencies in Q are required, then
we save the response R; on a large cirde of radius R enclosing the compact target S. Next, we
choose our incident field to be the complex stepped sine wave

(14) Usne = exp(—twct)H(t)

where H(t) is the Heaviside furction and we € ©. Then we convolve this function with K
according to the discrete version of (7): the imaginary part of v will be the approximate response
of the target to & stepped sine wave incident pulse. Finally. we compute the convolution in (7)
until v(x,?) becomes time harmonic. The amplitude of v is the differantial cross section of the
scatterer, A(f¢,wg). This process is then continued for those frequencies of interest it the
spectrum 2.

To illustrate tue process outlined above, we determine the amplitude of the surface currents
on a target in the barmonic steady state from the response to an incident Kronecker pulse. For
simplicity our tar=et is a circle of normalized radius one. We consider several wave numbers
k = 5,8,10 to illustrate that the harmonic response for many frequencies can be obtained
from a single computation of the response to a Kronecker puise. The amplitude or the surface
curreats is shown for the three wave aumbers in Figure 1. The response to the Kronecker pulse
is computed using the standard explicit centered difference metbod in polar coordinates with
AHr = 0.025, At = 0.0023, A6 = 2:7/128 ~ 0.0491, 2000 time steps and an absorbing boundary
at r =20,

Because the surface currents are obtained by evaluating the convolution in our method at
a single large time and because computing the convolution involves only data on the surface
of the target (rather than the fields throughout the computational domain) the computational
effort required to obtain the surface currents from the Kronecker scattering resulis is many
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orders of magnitude less than the time needed to find the harmanic response directly with
FDTD. Obtaining the scattering results for the Kronecker pulse is relatively expensive. but
the computational cost is essentially equal to that of obtaining the harmonic response directly
with FDTD for a single frequency. Thus. our approach gives the harmonic response for a
range of frequencies for essentiaily the same cost as determining the harmonic response for
one frequency using FDTD directly. The surface currents shown in Figure 1 contain small but
noticeable errors. But these errors are no larger than then the errors suffered if FDTD is used
directly. In fact, to machine accuracy the errors are the same. That is. our method predicts
the surfaces currents given by the FDTD method exacily including any error inherent in the
method.
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1 Introduction

The computation of high frequency electromagnetic waves is of paramount importance for calcula-
tion of reflection of radar waves from objects and radar radiation patterns. The direct calculation
of the high frequency v-aves is not practical since the wavelength of the radiation is usually quite
small compared to the size of the ohysical objects of interest. Therefore approximate methods
have been extensively used for this type of calculations. On> of the more successful approximate
method. is the generalized theory of diffraction. This method relies on a high frequency asymp-
totic expansion of the wave equation and considers special diffracted waves from the singularities
present in the media and the shape of the reflecting objects. We shall refer to these singularities
that are surfaces, lines, or points as branch manifolds. Recently we have developed numerical
methods for solving the partial differential equations obtained by corsidering the high frequency
asymptotic expansion of the scalar wave equation. We expect these to replace ray-tracing meth-
ods for many high frequency calculations and they are applicable directly for the calculation of
electromagnetic waves. '

Maxwell's equations for the electric and magpetic {.elds in an jsotropic homogeneous material
can be written as:

(eE) = cVxH ~dzJ (1)
(ufH) =V=xE (2)
V-(eE)=4xp 3)

V- (sH)=0 4)
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where E is the electric field. H is the magnetic field, J is the current, p is the charge density, cis
the speed of light in the mediumn, and g and ¢ are res,sctively electric permittivity and magnetic
pe-meability. For electromaguetic waves the equations can be written as:

Eu=SviE (5)
&

Fe= SviH (6)
e

These are, of course, wave equations for the E and A vectors.
Special time harmonic high frequency solutions of the Maxwell’s equatiors can be obtamed by
arsuming solutions of :he form,

E = e(x)e**X!, H = h(x)e¢(X]

where ¢ Tunction is the phase of the wave, and k is the frequency of the wave. These snivi ..
correspond to a high frequency plane wave and are of important practical significance. €~ 0
show that the phase satisfies an eikonal equation (8],

7. K 7
(Vo) = 2% (7.
The eikonal equation is a first order nunlinear FDE, & Hamilton-Jacobi type cquation. The eikonal
equation can be considered as the Hamilton-Jacobi equation for the variational problem based on
Fermat's principle {8]. The usual practice has been to sclve the sikonai equation by ray-tracing
methods. Ray-tracing in this context is nothing but solving the eikonal equation using the method
of characteristics for PDE's. Qur approach relies on a direct discretization of the eikonal equatian
using the recently developed numerical me*nods for Hamilton-Jacobi equations [1].

2 Asymptotic expansion for the scalar wave equation

To develop the numerical mathods we have started from the scalar wave equation in two dimen-
sional) space. The numerical methods developed for shis problem are applicable to the Maxwell's
equations.

u"=c2Au=cz(z,y)(u"+un) (8)

x and y are the spatial variables, t is time. u is the amplitude of the wave, and c(z.y) is the
speed of the wave in the medium. High frequency solutions of the scalar wave equation can be
approximated by an asymptotic ¢xpansion as introduced by Luneburg. Kline, and Keller [9]. [10].
{11]. The asymptotic expansion to the wave eq. ation is obtained by expanding the solution ia
powers of w-! in an infinite series. The expansion is substituted in the wave equation and the
sequence of the coefficients of w-" are collected and set to zero. This procedure produces an infinite
system of nonlinear partial differential equations, that, together with the boundary conditions,
determine the expansion. The first term and the most important term of the expapsion is the
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eikonal equation of geometrical optics for the phase of the wave. The remaining equations are
linear Lyperbolic transport equations for amplitude functions.

Here we briefly repeat the standard derivation of the asymptotic expansion. The solution to
the wave equativn is expanded in inverse powers of w in the following form,

Uz, y,1) = e (2,4, 1)), (9)
wrd

where u is a complex soiution of the wave equation, ¢(r.y,?) is the phase of the wave, and v,
are real functions of time and space. By substituting the above expansion in the scalar wave
equation and equating the coefficients of different powers of w, the partial differential equations
for the evolution of §, vg, v;, etc are derived. Terms of order (iw)? are collected and the result is
the eikonal equation.

oly; = (a? + o?:)va

In general vg is not zero and we take the square root of the equation. Here we choose the positive
root.

& = +o(z,y)|Vl
Terms of order (iw) result in the equation for evolution of vg.

20,Vp, + Puvg = E(2V 6. Vu, + Aov,)
By collecting terms of order (rw)—" we get:
26 Ungrt + Sulngs + Uay = E(2V6 - Vg + Agv,,, + Av,)

One can solve for ¢, and v, , and get an infinite system for evolution of the expansion coefficients.

&, =c|V4e| (10)
vé (—d + RAd)y,
= 3=V e
V.t C:|V¢| Ug t+ 2ival (11)
_ Vé (—¢a + CAdJvpyy | =V + cPlu,
B 7 e T N\ 2] 4

The above system with the appropriate boundary conditions define the expansion.
It is possible to write the equations for evelution of v, in couservative form by changing the

variables. We define the new variables as w, = 15", and we write the transport equations in their
conservative form.

e =¢|Va| (13)
Ve
o= V- (o) (a9
. Ve i -
Wnpra =V - (Wnﬂm) +(Av, ~ —C;—')u,\“ (15)
v, =¢ & (16)
Pe
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The above formulation of the equations seems to be natural, based on our experience with con-
servation laws.

The eikonal equation for the phase is a Hamilton-Jacobi type =quation. The equations for
the variables w, form a hyperbolic system. The system is essentially decoupled, since it can be
truncated at any level. The first equation, the eikonal squation, can be solved independent of
the others. After we compute it, we use it to solve for wy. Similarly w, is solved using the ¢
and w,.,. The equation for w, has a forcing term (Av, — =) which has to be calculated from
the previous term, w,_;. If the previous term w,_, is pot twice differentiable in space and time,
the forcing term is ambiguous. From a numerical point of view, even for smaoth solutions, it
is important to calculate the forcing term correctly, otherwise error would spread out to higher
order terms. The ambiguity in the forcing terms could be vesolved by specifying jump conditions
along discontinuities of v,. The proper conditions depend on physical considerations as well
as raathematical arguments and we plan to determine them for important physical applications.
Continuity of the phase across branch surfaces supplies us with the necessary boundary conditions
for multivalued solutions of the phase. The situation is more complicated for the computation of
tn. For example the amount of reflected energy from a reflecting surface depends on the physical
characteristics of the surface. The situation is more complex for other kinds of branch manifolds
such as corners and jumps in higher order derivatives. This question of the proper boundary
conditions needs to be solved for a variety of important cases, including discontinuities in the
index of refraction and singularities in the shape of objects.

3 Numerical algorithm

The traditional way of solving the eikonal equation is by the method of characteristics, which, in
this context is called ray tracing [13]. We apply the modern high resolution algorithms to directly
compute the eikonal equation und the other equations defining the terms in the expansion. These
modern techniques aliow for accurate representation of singularities, which is essential in this
application. The standard viscosity solution or the eikonal equation, [12], is not enough and
an hierarchy of numerical solutions has to be generated. These new functions represent the
multivalued character of the solutinn and are based on singularity detection.

Qur numerical algorithm was developed based on the recently devised numerical methods for
Hamilton-Jacobi type equations and high order accurate, nonoscillatory methods for hyperbolic
equations. We have developed numerical algorithms to solve the equations both in conservative
and nonconservative variables. We bave abandoned non-conservative variables in favor of con-
servative variables. From a numerical and also theoretical point of view it is the natural way of
writing the equations. We have only considered the first three equations of the infinite system for
©. wy, and w;, but the methods are easily applicable to an arbitrary number of terms. After the
third equation the equations are exactly the same. so even the same subroutine could be used o
solve them. The equations to be discretized are,

o = |Vl (17)
Teé
wo, =V - (ﬂﬂoﬁ) (18)
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vé . ,
W= V(e + (A - 327‘)1), '19)

"ogcku/¢l Uy ’val/@

Wa use third order ENO interpolation and a Godunov type numierical Hamiltonian to solve the
eikonal equation [1). For solving the transport equaticns a first order upwind scheme is used. In
principie, various sophisticated schermes devzloped for nonlinear conservation laws could be used
to solve the transport equations. At this stage a first order scheme was sufficient.

4 Numerical examples

The reflection of high frequency waves from solid objects is an important problem.ln the first
example we consider the reflection of a source off a sphere. We only have calculated the phase
liere, but the full solution of this problem will be an essential part of cur future work. An
important problem for calculation of pbase is computing multi-valued solutions to the eikonal
equation. Usually the multi-valued nature of the solution is known a priori, such as in case of
reflection and branch maaifolds due to singularities in the index of refraction. Nevertheless there
are branch manifolds that are not known a prior. such as the second example that we have
considered here. Only after the solution to the eikonal equation is computed branch manifolds
are found. We have designed a numerical procedure to do that autamatically. The last example
corresponds to propagation of & planar wave through a non-uniform media, in particular. a lens.

We consider the reflection of an incident wave off a sphere. This probiem has all the features
of reflection of high frequency waves off a convex object in a uniform medium. We consider a
sphere of radius one at the origin. The source of the wave is at point (0.0,2). We use spherical
coordinates and exploit the symmetry of the problem nnder rotation around the z axis. The
eikonai equation in (r, 8) space is written as

. L, 8
O = ?3 + .;21 (20)

We solve an eikonal equation for the incident problem and an eikonal equation for the reflected
problem. The two equations ire coupled only at the surface of reflection through the boundary
conditions. The physical problem is posed in all of &3 but our computational domain is (1,3] x
{-#.7]. The computed solution is sbown in figure 1. The viscosity solution of the eikonal equation
calculates the incident and the reflected waves accura’ely, also it produces the phase in the shadow
region of the sphere.

In a nonuniform media, the solution of the eikonal equation in general develops singularities.
These singularities are geperated when two wave froats approach each other. The solution of
the eikonal equation in that case becomes multivalued. But the viscosity solution of the eikonal
equation only chooses one branch of the solution (conjectured to be the first wave that reaches
that point). A numerical procedure was devised to recover the multi-valued solutions. When a
solution becomes multivalued a discontinuity in the gradient of the phase appears. We detect this
aiscontinuity and use the phase at that point as boundary conditions for creating the next sheet
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ot the solution. Using the terminology from compiex analysis. the discontinuities in the gradient
of the phase are branch cuts. The other branch cuts are the singularities in the index of refraction
aud the shape of the boundary. In figure two we show a generic situstion where two sources are
present ana the solution is double-valusd after the two waves reach other. We have superimposed
the two solutions on top of each other.

In the next example we show the coniputed phase and amplitude for a convex lens (Figure 3).
The lens is implemented by taking a smooth change of index of refraction 1n the middle of the
computational domain. The bending of the incident planar wave creates a shock starting from
the focal paint. The amplitude of the wave is calculated. The amplitude bas & singularity oo
the shock. since it has to be connected to the second sheet of the solution(not done here). The
proper bourdary conditions for the amplitude coefficients is an important question that needs to
be investigated for these applications.

5 Additional Proposed Effort

We first plan to compute problems for which the index of refrection has a known spatial disconti-
nuity. This is fairly routine and amounts to solving an initial-boundary problem for a Hamilton-
Jacobi equation.

Next, we plan to investigate appropriate boundary conditions at corners for the eikonal equa-
tion. This is well studied. We anticipate no difficulties with the nume:ical implementation.

Ao additional speculative idea involves “capiuring” multivalued solutions to Hamilton-Jacobi
equations directly, This has been done in one space dimension (for conservation laws. but there
13 an equivalence here) by Professor Yann Brenier {16). He uses moments of the classical Viasov
equation in an original and ingenious fashion to arrive at a system o” conservation laws which
give the different braaches of the multivalued solution. Ap extension to multidi seems
difficult. but will be investigated. This would automate the code and remove the shock detection
step, if successful.

Another. simpler idea is to use polar coordinates in syome problema and just to alicw the §
dependency to be nonperiodic. This is very promising and will be explored.

After the direct algorithm matures we expect to vse it as a tool for solving the inverse prob-
lem, i.e. finding the index of refraction given a certain number of measurements. Opimization
techniques e.g. those described in [14], {15] can be modified and adapted using our fast direct
solvers.

Finally, we expect to extend these results to a full Maxwell's equation situation. Numerical
techniques borrowed from the conservation law community such as space marching, the use of
body fitted coordinates and artificial compression shall be incorporated in the resulting package.
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A new technique for synthesis of offset dual reflector
systems*

Vladimir Oliker!

Department of Mathematics and Computer Science
Emory University, Atlanta, Georgia 30322

and
Laird D. Prussner

Matis, Inc., 120 Parkwood Lane, Decatur, Georgia 30030

1 Introduction

In electromagnetics the geometric optics (GO) aporoximation is used to describe offset single and dual
reflector antennas when it is required to control the energy pattern and/or phase on the output aperture
and at the same time minimize energy losses due to spillovers, blockage, etc. [1]. Similarly, in optics, GO
is used to describe systems with one. two. or more specular refle:tors that are required to transform an
input Gaussian laser beam into a uniform output irradiance front and at the same time optimize certain
design parameters (2}.

The differential form of the energy conservation law for such systems leads to an cquation for the
Jacobian determinant of the map derived by ray tracing the energy wavefront. If a quasi-potential can be
associated with this map then one usually arrives at an *quation of Monge- Ampére type that this quasi-
potentia' must satisfy (cf. [3], [4], [5]). The same type of equation arises in a number of other applications;
for example, in inverse diffraction, nondestructive evalution, allozation of resources [6!. During the last
15 years there has been a surge in mathematical studies regarding theoretical solvability of equatuions
of Monge- Ampére type and their generalizations. Still, the theory is far from being complete.

The purpose of this note is to report several results on synthesis of dual reflector systems. We discuss
here unly specular reflector systems with two reflectors and energy source which is a collimator. For such
systems we preseni here a second order partial differenticl equation of Monge-Ampere type expressing the
ray tracing map and the energy conservaiion law. Rigorous results concerning existence and uniqueness
of solutions to the resulting prmblem are established. A detailed exposition of these resvits is beyond the
scope of this paper and will appear elsew here.

The numerical solution of the resulting equation and the generation of the surface points of the two
reflectors is done with a specially developed software package REFSYS. The algorithms are based on our

*This rewearch was ssppoited by ATOSR wider contcat Fise20-52-C-6009. The Uaited Siaics Goveizmeni s auiboised
to reproduce and dirtribgie reprints for go I purposes ith diwg any copyright notation heren.
tAlso with Matis, [ac., 120 Parkwood Lane, Decatur. Georgia 30030,
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earlier paper (7], though substantial modifications werc required. Using REFSYS we can synthesize a
system with two reflectors which redirects and reshapes a plane wave front and, at the same time, the
syster: transforms the energy pattern of the input beam into a uniform (or any other. desired) energy
distribution pattern across ihe front of the output beam. For example, our technique allows to design
a two-reflector system which will transform an arbitrary eiiptic input beam into an output beam with
prespecified elliptical (rectangular. or genti_. polygonal) shape. Blockage is completely avoided. The
resulting reflectors are aspherical but convex. which is a substantial improvement over an earlier design
of Malyak [2]. In general, the reflector surfaces are not radially symmetric. We illustrate the technique
by presenting designs of two dual reflector systems converting a cireular Gaussian beam into uniform
circular and elliptic beams.

As it was alrendy mentioned, Monge-Ampére equations arise in a variety of other physical problems.
and we expect that our technique will apply to such problems. Inquiries regarding concrete applications
are weicome.

2 The synthesis equations

2.1. The configuration of the system is shown schematically on Fig.l. We denote by o the plane : = 0
and by {1 the cross section of the incoming beam I by that plane. In order to emphasize that the shape
of the incoming heam is not raquired to be circular, on tho figure, we draw i as an ellipse. In general,
it is allowe.- to be any bounded convex d in. It is assnmed that the rays of the incoming beam I
form a plane wavefront propagating in the positive direction k of the z axis. The input radiation pattern
is given as a nonnegative function [(z,y),(z,y) € . The desired characterisiics of the system are as

{1 - inpw beam

O

Figure 1:

follows.

» The cutput wavefront Il is required io form a plane wave propagating it the same direction k as
the incoming beam.
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¢ The geometric shape and position of the output beam are specified by prescribing in advance the
cross section of the output beam by a given plane z = d. We denote this cross section by T. Again.
ofi the figure, T is drawn as an eilipse. but it can be any bounded convex domain.

* The output radiation pattern is a prespecified in advance function L{p.q). where (p.q.d} = T

¢ Our aim is o determine the surfaces F and G which will transform the plane wave | with intensity
I(z,y) into a plane wave IIl irradiating at T with intensity L(p, q).

Two basic physical principles are used here in deriving the analytic formulation of the problem. The
first one iz the Snell law of refiection, leading to the ray tracing equations, and the second one is the
energy conservation law for the energy flux along differential tubes of rays. The resulting equation is
a differential equation of Monge-Ampere type for a scalar function (quasi-potential) z representing the
reflector F. The aecond surface G is determined in terms of this function, its first derivatives, and other
dasa in the problem,

Below, we review some of the steps involved in deriving the required equation. More details can be
found in [8]. We begin by tracing a typical ray through the system. Such a ray is “marked” by a paint
(z.y) € N It propagates in the direction of the unit vector k = (0,0.1), strikes the first reflector F.
refiects off F in the direction of the unit vector 7(z, y), strikes the second reflector G. and reflects off it.
again, in the direction k. The reflectar F we describe by a function #(z,¥),(z,y) € 2. In vector form F
is given by the vector function r(z,y) = (2, ¥ 2(2,9)).(z,y) € §I. Dencte by # the unit normal vector
on F. Putz, = §,z, = g{; Then

(-Dz,1)
1+ Dz

A=

v Dz o= (zp,2,). (1)

The unit vector 7{(z,y) in the direction of the ray reflected off F can be found by applying Snell’s law.
#=k =20k A)a. (2)

Denote by t(z,y) the distance from reflector F to reflector G along the ray reflected in the direction
7z, y) and let s(z,y) be the distance from G to T along the corresponding ray refiected off G. The total
optical path length (OPL) corresponding to the ray associated with the point (z,y) is denoted by /(z,y)
and it is given by

Kz.¥) = 2(2,9) + Yz,¥) + 8(2,y). (3)
Because {(z,y) is the distance between input and output fronts, we have (see [9)):

Hz.y) = | = const. (4)

It is convenient to introduce vector notartion for the surface G and the output front . Respectively.
we put

G: R(z.y)= r(z.y)+ Kz, y)iz,y). (z.y) €D, ()
T: Viz,yi=Riz,y)+ s(z.p)k. (z,9) € . (6)
Thus, a point (p.q.d) € T is the image of some (z,y) € { under the ray tracing map V, that is,

{(P.g.d) = V(z,y). (z.y) €N (M
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Next, we relate the radiation pattern I{x,y) of the input bsam tn the output radiation pattern
L(V(z,y))on T. This relation is based o the energy conservation law for the cnergy flow along differ-
ential tubes of rays, Denote by dzdy the area element in {) and by dpdg the area element in T. Since T
is supposed to be the image of {) under the ray tracing map V. we have the relation

dpdg = |J(V)|dzdy.

where J is the Jacobian determinant of the map V. We assign a = sign to the Jacobian according to
whether V preserves the orientation of 2 or reverses it.
According to the differential form of the energy conservation law (9], p. 115,

L(V{z,u)(V(z,9)) = Kz, y)- (8

It folfows from (8) that the total energy conservation equatjon is given by
[ UV Vi dzdy = [ 1z idzdy. 9)

Using representations (5) and {6) it is possible to find an explicit expression for (8). For that we need
an explicit expression for the J(V) in terms of the function 2(z,y). Such an expression is found in (8]
in a more general setting. To present it here we need a few more potation. Because the output {front is
a plane wave in the direction k, the vector function V can be written as

V(z,y)} = Va{z,y) + dk, (10)

where V,, denotes the projection of the vector V on the plane a. Clearly, J(V} = J(V,) and in order
to find J(V) it suffices to compute J(V,). i
The position vector of the sarface F is given by vz, y) = (2,4.0) + 2(z, y)k. Heuce, it follows from
{6) that .
Viz.y) = (2,y,.0) + (2{z,y) + 3(z, y))k + 2. ¥)Hz.¥). {11)

Then (10) and (11) imply that
vn(xvy)= (ENIEXIEN) NERTN (12)

where no(2,y) denotes the projection of the vector iz, y) on the plane o
It is shown ic (8] that

1
= gu(1+(Dsf), (13)
where we put 4 = { — d. Using formulas (1) and (2). we get

__2([;.1.') Dz = 20z
T = Jl+|5:! 1+|Dz*

Substituting this expression and (13) into (12) and recalling (7;. we obtair

(Pg) = Vo(2,y) = (5,y) — pDz(z,y). (z.y)€ N : (14)
It follows now from {14) that
!
§ i paee paay
V,) = d |
J(Va) etk BIzy 14 pany ) (15)
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where z., = %ﬁ and similarly 2., and z,,. '
‘laking into account (10), (14), and suppressing the indication of dependence on the constant d in
the functian L, we have

UV) = Uz +pzey + 03,).

Thus, the main equation (8) assumes the following form:
L(z + pze y 4+ uzy (1 + pzec 1 + uzyy ) ~ pl2 | = 21 in Q. (16}

Danota by T, the projection of the region T on the plane @. Formula {14) shows that V, is a map from
{1 anto T, and the Jacobian determinant of this map is the same a3 that of map V.

2.2. We perform now a transformation simplifying the equation (16). Introduce a new unknown
function u(z,y) by setting

1
pz(:.y):u(z.y)—-2-(zz+y’)+oz+bz-rc. (17)

where g, b, ¢ are constants to be described in a moment. Then, in terms of function u(z. y). the map (14)
assumes the form

Vo2, ¥) = (ve(2,4) + 0, ty(2, ) + 6) : @ = T, 118)
where uz = §2 and u, = §2. Substituting (17) into (16), we obtain

L(ur + 6,y + b)(ugely, — vl ) = £7 in R, (19)

where u., = E&, and similarly for us, and uy,.

Formula (18) showa that we can choose the constaats ¢ and b so that the map Du = (u,.uy) maps
Q2 into some translate T_f of T,. It is convenient tc choose these constants in such a way that the origin
O of the coordinate system on a is an interior point of TS,

Obviously, the choice of the constant c in (17) affects neither the map (18) nor the equation (19).
That means that any function u satisfying (18) and (19) is defined only vp to a constant.

2.3. The analytic formulation of the problem stated in 2.1 is now complete. We summarize it hare.

» For the given convex domain T determine the constants a.b so that T is a translate of T with
center at the origin O of the coordinate system on the plane a (or any other translate convenient
for computations).

+ Solve the equation (19) for the function u(=,y).

o Assuming that u is given, and u > 0 Jetermine the function z{z,y) from (17); the constant ¢ can
be set equal to 0. The function z completely describes the first reflector F.

¢ Using formulas (1) and (13) determine 7{z,y) and #(z,y). Then, a substitution in (5) (and a
lengthy calculation that we omit) gives

R(z,y) = (us + @ uy + b, u ~ zu, — yu, + (1/2{[Du+ A - p?}), (z.p1 e (20)

where A = (a.b). Thus, we have the parametric equations of the second reflector G.

2.4. The ciitical step in the above procedurs is to solve the equation (19). The physically interesting
situation is the one when the + sign in the equations (19) is taken. We were able to investigate this
problem completely but a full discussion is beyond the scepe of this paper and will be presented elsewhere.
We note only that this equation admits infinitely many solutiors leading respectively to infinitely many
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possidble designs of a two-reflector system. This feature is extremely ussful because it allows to select a
solution satisfying additional requirements. Thit can be done in a way leading to an optimal design. In
the test cases presented below, we construct solutions that aliow to synthesize systems that convert a
Gaussian circular beam into a uniform elliptic beam, have no blockage, and, in addition, map the central
ray in the input beam into the central ray of the output beam. When the ~ sign in (19) is taken, the
problem can be also investigated, but by different techniques.

2 Examples

11, the examples below the inpat beam is circular witn 2 Gaussian power pattern
2

4oyl
I5.4) = Ceap (- Z55 ) :

where C is a balancing constant required to enforce the energy conservation equation {9). and ¢ is
specified below. The crossection {1 of the input beam is given by:

N={(z,y)€e |22 +y* g9}

In the first example the data as the same as in [2], Table 1, data set 1. The input beam crossection
is & circle of radius 3o, centered at the otigin (0,0), the output beam is required to have a yniform energy
distribution, with circular crossection T of radivs 20, o = .125m, and center at the point (0,1.396m):pt =
99.98050804m. The parameter s is determined from the data in [2]. The surface profile of the y = 0
cut of the first reflector F is shown on Fig. 2. Fig. 3 shows the spacial view of the first reflector. The
surface profile of the y = 0 cut of the second reflector G is on Fig. 4. Fig. $ is the spacial view of
the second reflector. It is important to note, that for the same data the design presented in [2] requires
nonconvex surface profiles with two “humps”. Our design leads to convex profiles which should be easier
to manufacture,

In our second example the input beam is the same as in the first example. The output beam is required
to have an elliptic crossection, T, with center at (0, 1.396m), minor semiaxis 2¢ in the x-direction and
major semiaxis 3o in the y-direction. The output energy distribution is required to be uniform across T.
The parameter ;1 = 99.95030804m. The surface profiles and their spacial views are shown on Figures 6
- 9. On all figures the measurement units ara meters.

0. 0000 0.00308¢ 1

ey 1o © v ~0.0%e0r

Fig.2. First reflector, y = 0 cut. Fig-3. First reflector, side view
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Fig.4. Second reflector, y = 0 cut. Fig.5. Sccond reflector, side view.
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Fig.6. First reflector, y = 0 cur. Fig.7. First reflector, side view.
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Fig.8. Second reflector, y = 0 cut. Fig.9. Second reflecror, side view.
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4 Summary

The design equations for a two-reflector system for reshaping, redirecting, and energy redisiribution is
presented. The resulting main equation is a nonlinear partial differential equation of Monge-Ampere
type. Once this equation is solved, the surface data pcints of the reflectors are found by using formulas
presented here. The results of theoratical and numerical investigation of this equation will be presented
else vhere. Using a software code REFSYS, developed by the authors. two examples of reflector syrtems.
synthesized numerically, are presented. In contrast with some existing design techniques, our technique
aliows 1o produce noncircularly shaped output beams and uses only convex reflectors. The availability
of convex reflectors is particularly importart for fabrication.
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Fast and Accurate Algorithm far Computing che [Mutrix Elements by the Unified
Full-Wave Analysis for (M)MIC Applications

Shih-Chang Wu
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New Jersev institute of Technology
Newark, NJ 07102

Abstract — The unified full-wave analysis, which yields a fast and accurate ~omputing algo-
rithin for (MJMIC applicrtions, is introduced. This new analysis method combines the advan-
tages from the classical space-domain and spectral-domain analyses in computing the matrix
elements duriug the moment method procedure. A frequency-independen’ numerical-error con-
trol algorithm is implemented to guard the aumerical accuracy. A CPW short-end discontivuity
was analyzed and illustrated as an example of potential applications.

1. INTRODUCTION

Nlecently, because of the dramatic increase in computing power and the: need from the hy-
brid and monoliihic microwave/millimeter-wave integrated circuit (MIC and MMIC) industrial.
full-wave analyses have gradually been adopted in the microwave computer-aided-design soft-
ware. pecause that their formulations are directly derived from Maxwell’s eqnations, full-wave
analvses cai, accurately take into accrunt the radiation and surface wave coupling. The space-
domain method [1,2) and the spectral-domain method [3-7] are the most popular full-wave meth-
ods. Both cf tuem utilize the same EFIEs aud Green'’s functions to formulate electromagnetic
problems; bu: they adopt diffeient matheinatical integration seauence in computiag the sixfold
integral for the mutual coupling calculation among the expansion and the test functions. Asa
result, the snaie-domain method 3 suitable for the modelirg of acbitrarily shaped geometrie-
#nd the circuits,'antennas wih large size compared to the wavelength. The spectral-domaia
method cen accurately evaluates the mutual coupling between adjacent current elements; thus,
it is more suitable to aunalyze the circuits/antennas with the size less than a wavelength. In this
paper, the algorithm of the unified full-wave method, whi<h combines the advantage from the
spare-domain and the spectral-domain methods, is introduced. This unified fell-wave metiod
Promises an accurzte mutual couplirg computation for the overlap elements; while it yields
high numerical efficiency and accaracy when the elements are far apart.

The unified full-wave analysis presented in this paper is formulated to characterize the
multilayered coplanar waveguide (CPW) curfiguration. Similar approach can be «xtended to
the miurostrip or other prinisd circuit/antenna coafigurations. lu the next section, the Green'’s
function and its asymptetic expression for a multilavered CPW viill be presented. The umfiad
full-wave method will be derived. The computed reflection coefficient fram a CPW shor’-end
discontinuity will be illustrated as an application example of the presented unified full-wave
method.
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Figure 1: Multilayered substrate and its equivalent transmission line model

II. THEORY
A. Multilayered Green’s Function and its Asymptotic Expression

Accurate Green'’s function is the essential element to solve the integral-equation formulatea
electromagnetic problems. The electric-ficld Green's function 1n a multilayered stiucture ‘le-
rived from an equivaleat transmission lire model was introduced oy T. lioh in 1980 {8]. Similar
appreach has been used in the derivation of the vector potentials [9]. In this paper, the deriva-
tion of the Green’s function for the multilayered substrate fullows that in [8]. Ia Fig.1, a layered
substrate anc its equivaient transmission line model are shown. The speciral-domaia Green’s
function is derived by the transmission iine theory and results in a recursion formala, which can
be implemenited numerically. In Fig.!, for a given (k.. k,) pair. Y,7"™" is the TE/TM wave
admittance in the n** layer. Y/'™ ard Y{{77™ are the equivalent input admittances at the
n** interface by looking up and down into the equivalent transmission line. respectively.

For a CPW configuration, the excitation source is heiizontal electric fields on the siois.
As a result, the multilayered spectral-domain Grean’s function at the n** mterfacs excited by
the horizontal electric field source at the same interface s summarized as follows,
lJ] oo YR YIE (X VI e | s} "
-~ : 7
n (-YIE+vIM & yTER4YIMR LB

where,

~ATE.T™ TET™ 1
VI = VT e (2



-

K = kl+k] (3)

The aiymptotic form of the 1pectral-domain Greer.'s functicr. iz dutjved when the fol-
lowing corditions are met.

PRl < 1 (4)
Patal B < 1 (3)
h2enpin . )
—?——K:-" <« 1 (t)
kg(n—l“u—'l
Sbofs g ) 7
2t & (7)
where v2 = K? — klenpn. Uirder these conditings, Yie™! wnd ¥/5*" ™! are expressed as
YJ;‘.TM) - Y“{:t.ru) [, ~0 (eah.h.)] (8)
1 A [‘ +0 (C-z-v_._-m...x)] (9)

And, the asymptotic expressions for ¥, 757} are determined to be

TEssy _)wc° ___1 _l [ -—..1 ] i
yIE il g LY I—O( T ) (10
YIMew = e, fnot + L] [l +0 \]':)} 1

l

B. Unified Full-Wave Analysis

Full-Wave analyces, which employ the moment method to solve the electric field integral
equasions, were widely zpplied to characterize planar ¢ircuit discontivuities and printed circuit
antennas. During tbe mument method procedure, heavily numerical effort is devoted to com-
puting the matrix elements, which represent mutual coupling among the testing and expansion
functions. The calculation of the matrix elements invoives a sixfold integrai as

Yum = /,, /:. /’ j-; /_: /: Gz, 3 20, Yo: by b, ko dky dy, dz, dydz (12)

Tbe integrand G(z,¥: 2., ¥,; ks, ky) contains surface-wave poles and sovrce-point singularity,
where special care must be taken in the numerical integration. Traditionall; the calcvlation of
the snatrix element was periormed either by the space-domaia methed or by ti.: spectral-domain
metbod.

The space-domain method {1,2] evaluated the (&, k) integrals in ibe cylindrical co-
ordinates. Special coutour juiegration on the compiex & pline was used to account for the
surface-wave contribution accurately. During the process, the precise locations of the surface-
wave poles need to be pre-evaluated. In the outer space integrais, (2,,%,. %, %}, the source-point

s5



-10

L i)

S ~15

o

=

e
-2C¢

(7]

b4 e e DX =0 ¥ #0, 10MM

K R DX<DY#0.50mm ;

I
-26 s . R \ ;
a 500 1000 1500 2000 2600 3000

ky A
Figure 2: Comparison of the integrand behavior for two apertures of the same size but different
spacing

singularity causes numerical inaccuracy when the expansion function and the testirg function
overiap.

The spectral-domsin method utilized the properties of the Fourier-transform pairs of
the expansicn funciion and the testing function to evaluate the cpace integrals, (z,.y,.2,¥),
in a close form. In the (%, k,) integrals, the trianguler contour [10] was used to avoid the
surface-wave poles. It yizlded very accurate mwutual-coupling computation. However, when the
testing functicr and the expansior function are electrically far apart, the highly oscillatory
integrand needs to be computed. To illustrate, the spectral-domain integrands of two rectan-
gular apertures of the same size but different spacing are plotted in Fig.2. These two apertures
are with the size of 0.05 mm X 0.05 mm and are on the dielectric substrate of (A = 0.2 mm,
¢ = 13.2). At 30.0 GHz, the integrauds are examined at the fixed &., where &k, = 50/),. The
solid line describes the integrand behavior respected to k, when two apertures are apart by
DX = DY = 0.1 mm. The dotted line represents the integrand of that when DX = DY = 0.5
mm. To accurately compute this highly oscillatory integrand in the spectral domain when
apertures are electrically far apart, a large integration ares and dense sampling in the spectral
domain are needed. Consequently, longer computing time is required.

A solution to simultaneously iraprove the numerical accuracy and efficiency is to combine
the space-domain and spectral-domain schemes; and this leads o the unified full-wave method.
With the apertures depicted in Fig.3 , the sixfold integral is ¢ zcomposed into the summation
of the low-frequency terms and the high-frequency asymptotic terms as
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= [T - v+ v stinnstimoT s d Tk g
cos(k. D X) cos(k, DY )dk.dk,

= Y,""+Y7“‘+YZW-Y4"+Y5"" (13)
where
O , Ny 1 k:
o= [ sthanistn et o) | [ L [vzedk 4 vik]
T(k,;d,)T(k,;d,)cos(k DX)dk.} dk, (14)
casy Kooy 2
W= A S(k,;h;)S(k,;h.)cos(k,L‘Y){/ -—-[(Y"-' Y"-'V)—g+
(YIM - yTMam) : ] T(k,; d;)T(ky; d,) cos(k; DX )dk, } (15)
Ke k k2
wo= | S(k,;hJ)S(k.;h.)cos(k,DY){/:"—;[Y,’f“'-1+YT“"vk;].
Tlks; dy) Tk d,) cos(k. DX )dk,} dk, (16)
k k2
Y = [) S(kys hy)S(ky; h,) cos(k, DY){r—— [Y”‘"kuymﬂwﬁ .
T(ke; dg)T{kz; d,) cos(k: DX )dk. } dk, (17)
hai ] k K1} k
v o= /o S(lcy'.h/)S(ky;h.)cos(lcyDY){ / = [Y,.T,.E""—’-+YT” vf].
T(k,;dr )Tk, d,) cos(k, DX)dE, } dE, (18}

where the functions S and T are the Fourier transform of the PWS and the pulse functions.
respectively. The constant K'*" is selected to satisfy the asymptotic conditions listed in (4)-(7).
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K° iz sslacted to be less than the lowest surface wavenumber bui large enough to avoid the
singularity of the asymptotic expression at A’ = (.

Y and Y} are with double finite integrals which contain surface-wave poles. They are
computed in the spectral domain by the triangular contour integration. The inner integral of
Y7¥ can be evaluated in a close form, ar.d the outer finite integral is directly computed in the
spectral doinain. During the computation of r”, the space-domain scheme is used for the k.
integral to evaluate the integratible singularity analytically; and the k, integral is performed in
the spectral domain numerically. V" is contributed by the asymptotic term of the integrand.
A close form expression for (kg k,) integral can be obtained by converting V¥ into the space
domain.

s
o _ Jwe [T [PX+% g DY4hssink, (hy — lyl) sin ke (hy =y = DY)
W= 5 S Lk

DX-% DY ~4, sink,hy sin kA,
F(II, - ’" v '.‘!- - yl)dv-dydt-dl (19)
where
Flu,v) = . (——1 + l) [(u2 +v3)7 3P 4 v’)""} -
2k3 Bn-t Hn
‘n~12+ ‘n(uz 4.07)708 r20)

C. Numerical Example

A comparison of the computing time between the spectral-domain method and the unified
full-wave method was conducted. The test was performed on the single-layered CPW with the
dielectric constant of 13.1 and the thickness of 0.2 mm. The dimensions of the two apertures, as
shown in Fig.3, are equal and with h, = h; = d, = d; = 0.05 mm. The numerical inaccuracy for
both methods was controlled to be less than 0.001%. The numerical program was executed on a
486/33 MHz PC. At 30 GHz, the computing time from each method is plotted as a function of
spacing D = DX = DY. In Fig.4, it illustrates that the computing time of the spectral-domain
method increases linearly as the spacing increases; while that of the unified full-wave method
maintains near a constant.

An application example of this unified full-wave method is to characterize the CPW
short-end discontinuity. The aperture eleciric fields of the CPW short-end was expanded into
PWS and semi-infinite expansion functions as that in (7], Fig.5 shows the calculated effective
length extension of the CPW even and odd mode incidence versus frequency. Good agreement
has been observed by comparing to the published data {11].

IV. CONCLUSIONS

The unified full-wave anaiysis, which merges the advanced schemes from the space-domain
and the spectral-domain metbods, was introduced. Its dynamic and accurate computational
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New Rectangular Series Node in 2D-TLM Network

Qi Zhang and Wolfgang J.R. Hoefer
NSERC/MPR Teltech Research Chair in RF Engineering
Department of Electrical and Computer Engineering
University of Victoria, Victoris, B.C., Cansda VEW 3P6

Abstract

This paper preseats & iew modification of the transmissioa line matrix method of numerical
analysis in two dimensions. The traditional square series mesh 2D-TLM algorithm is generalized for
reciangular meshes of arbitrary aspect ratio. Reactive swbs ars not necded in this scheme. The basic
theory of the two-dimensional rectsagular meeh is described in detil. A full dispersion analysis of
the rectangular mesh is then performed for the general case, and the results are compared to the prop-
erties of the uaditional square mezh.

Introduction

The transmission line mawix (TLM) method was proposed by P.B. Johns for the analysis of
microwave structures [1]. The foundation of this method is the well-known concept of modelling ficld
space by lumped networks(2], where these networks have been built to solve the wave equation.
Using a distributed parameses transmission-line network mocdel, the propagation space is represented
by a mesh of TEM transmission lines. Electric and magnetic fields are cquivalent to voltages and cur-
rents on the network. Two-dimensional propagation space can be modelled by either & shunt or &
series mawix{3]. Traditional TLM schemes are restricted to sGuare mesh elements. This affects the
efficiency of the method whenever the resolution requirements differ considerably in different coordi-
nate directions. To overcome this probiem, Al-Mukhtar and Sitch proposed modifications to ‘conven-
tional TLM’ which allow the mcsh to be graded by means of stubs{4], but the dispersion error is
increased in the mesh, and more compuier memory is required. Recently, Hoefer and Sautier have
proposed & more general 2D-TLM algorithm which removes the restriction that the cell must be
square [$]. The basic theory of the two-dimensional rectangular TLM shunt meches of arbitrary
aspect ratio was described, and the 2D stub-free rectangular shunt node was introduced.

In this paper these concepts will be reviewed and extended to the 2D rectangulsr serics node.
The space and frequency dispersion charscteristics of the rectangular series node will be derived and
compared to thoze of the equivalent square mesh. The thres-dimensional expanded node is presently
being developed which incorporates the same idea, leading to & more efficient space discretization.

The Properties of the 2D Rectangular Series-Connected Network

The 2D rectangular series mesh is tketched in Fig.1. Fig.2 rhows the rectangular series node
and its equivalent circuit. This node represents three field components of TM modes, nemely E,, E,
and H,,

In the rectesgular series mesh the desired fean-res are as follows{S]:
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1. Impulse Synchronism: The velocities of impulses on the dispersionless link lines must be
such that the transit time At is the same for all lines. According to this property the line velocity is
proportional to the line length:

v k,
;:-;—'-

w g 4 H

(114

where @ = Ax/Az is the aspect ratio of the rectangular element.

108 GL
=Nl

UL
JOOHL
1008L

L.

Figure . Two dimensional rectangular series meeh

2. isotropic Wave Properries: In the infinitesimal limit, the plane wave netwerk velocity v, is
the same in both coordinate directions (and in all other directions ay well),

Vgwy, td k, ek -]

We will now determine the electrical parameters of the mesh lines such that the mesh has these

two properties. To detenmine the slow-wave properties of the series mesh along one of the coardinate

directions, it is sufficient to consider a single series cell which has its arms in the other direction

shori-circuited. In z-direction the mesh'is characserized by o transmission line of inductance L, and
cxpacitance C, per unit length. The total thunt capacitance of a cell is thus:

" C = CAI L
and the total series juductance of this cell is
L, =Llaxsl Az @
To get the capacitance and ind ce per unit length in z direction, Eqs. 3 and 4 must be
divided by A:
C,=C, ]
Ly =al,+L, ‘ ™
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The network velocity in z-direction is

1 i
n - = - m
The inductance and capacitance of the link line in x-direction are L, and C,. The total capaci-
wance of the cell in x-direction is

Croa = C,AL ]
and the total inductance in ..-direction is
Ly = LAx+L.Az »
Wh obtain the conesponding values per uait leagth when dividing by Ax.
L
C.~C, and L‘,-Ln;‘ (200
Cax2
Iy, 2 7 »_‘
4
I‘.____—}_El & L_—‘:;j ) %L.Axﬂ
2 A s GERT AR Cax2
1 "‘JI ~
S A2
[T ®)

Figure 2. mmmammmmmmwnm. (b) equivalent umped element
model.

The network velocity in x directiou is

1 ]

Ve = _— B —rmoee— (EQ t4)
c L
T J; W+
a
For isofropic wave property the netwerk velocities in x- and z-direction must be equal.

L
C.(L,O-é) - (L +al) ®012)
The phase velocities of the link lines are
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1 1
L. AL I ma 1%
~IL1C. erCI
From property 1 we kiow the ratio of phase velocitier.
v, ax LG
;‘-E-—f--a ®Q 19
Combining Egs. 12 and 14 yelds
L, L
1+ ;i— - aT_. «a’ % 19)

By solving Eq. 15, the ratio of inductances can be: obtained.

'
~r !
E, "a-, [ R[]

Then we can determine the ratio of intrinsic impedances.

Zz, . JL,C, s i
o :;L,C, ﬂ.‘
The scattering matrix of this pode is thus
[a’ a | -a
t
(5] = —-L-, @) <a w1
lva’i | -aq‘ a

a1

If the transmission lines are approximated by lumpe:d inductors cnd capscitances as illustrated
11 Fig.2(b) then a pair of coupied transmission line equations can be formulatec:

o, 2 a, A a. Ve 2 . L, 5 (1+at\¥,
A I e AU rUAh el "‘Z*“*‘”(zax )m ®aw
with the equivalences
Vl
H o=l ., E n-aV, and E,-; [ 1)
and L, (H-a’]
ewl, =aC, [ (E+al.,)\ 77 ) e n)
Egs. 19 reduce 10 Maxwell's equations for the TM case with
- - a -
H, =M eE =0 and J=~0 wasm

Thus. the series node matrix provides a solution for the 4,, £, and E, in the xz-piane.

65



Th. relationship between retwork velocity v, snd mesh line velocities v, and v, is the same in
shunt-connected and series-connected networks. For & = 1, the special case of a square mesh is
obtained. The square tnesh wath a petwork velocity v, is called the equivalent square mesh.
- 1 - l

=
WCdy (140} JC,L,(H-;—Z)

(EQ 21)

v,-v_dl«v-a.’ and V,-V,Jl+—l- (EQ 24)

Cl:

Al-ij 21-A1I 2
Yl+a
o

1
1+
V. oa

where 4! is tsz mesh parameter of the equivalent square mesh.

For a g'ven Iength of transmission line between nodes, it is necessary to estimate the range of
frequencies for which the above approximate analysis is valid. The propagation properties of a peri-
odic structure cen be analyzed by dividing the network into individual cells and assume that a current
wave travels throngh the setwerk as a Floquet made[6].

The tot>! voltage Vv, at the series node is
Vo m eV eaVae y-aiv)) mozp
lea

The cu:rents into the nods at the node center are denoted as /,, where “p” is the line number. At
the center of the adjacent nodes. e currents are J; . J, is the value of the cunrent flowing around the
center of the series node. For the pth branch we have

Ve, and v =TV mam
where 7 @ ¢
ey (Vv (eQ 2)
where Y, is the intrinsic admittance.
For the four branches the currents can be writtan us
[ aY, ((T'-D1-TV) and J; =¥, ((TF=-DV,+TV,) =02

HaY ((F=-NVy+TV) and S, =Y, (T'-NV,=TV) ®0 50
-’1---/2- and .IJ' are multiplied by -1, o? and —a? respeciively, and /,° is sded to yield

~h+aii+li-atl, = (1+a®) (T +DJ. ea 1)
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Floquet’s theorem is applied to the series node, and an eigensolution to Eq. 31 is postulated
based on the assumption that .

A A Y I D el B AP e ®0 1)
By combining /; ", " Jj‘ and J;" the dispersion relation of the rectangular mesh is obuined:

cos (k, Arx) +a’soc (k, iaz) = (1+a?)oos (kAN (3%
This equation is exactly the same as the disperzicn relation of the rectangular shunt node.

The dispersion for arbitrary propagation directions is illustrated in Fig. 3. The normalized prop-
agation vector is plotted in a polar representation. In Fig.3 the vector k, describes the unit circle for
the infinitesimal mesh case. When a coarse discretizution is selected, fer example (A1/4=0.15), the
wavelength can not be considered very large compared to Az, and the velocity becomes frequenzy
dispersive and depends on the propagation direction. ‘The maximum dispersion occurs in the axial
direction. In this example the parameter 4: is larger thaa Ax; thus, the propagation vector is Jarger
along the longer mesh, and the dispersion is higher in z-direction. Checking the Jdispersion relation
along the main axes, we know

cout, Az = coubpar— L (ky) sinkAz
a

cosk, Ax = coskpt1~altan (k,?) sink, &x

5, = creos (cnlszz— -l-zm(kz;) sinkz.Ax)
4z o
Az (20 38)
k= a_i_.t"ma (coskpAz~a’ten (ky) sink,42)
The above dispersion relations are shown in Fig. 4. Compared with the reference square mesh,
the higher dispersion eccurs in z-direction. It is consistent with the result presented in Fig. 3.
Conclusion
in this paper the traditional square zeries node TLM algorithms are generalized for rectangular
cells of arbitrary aspect ratio. It is shown that the anisotropic rectangular TLM networks can be cou-
ceived in such 2 way that the propagation vector remains independent of the direction of propagation
in the infinitesimal approximation. A full dispersion analysis of the rectangular series mesh is then
performed for the general case, and the results are compared to that of the traditional square mesh.
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Abstract

An efficient solution to the problems associated with planc wave illumination of a scat-
tering body in a TLM mesh. initially presented in [1! is explained. 1'he equivalence of the
solution to a partial implementation of the Huvgen's surface [2} iused in the Timne-Domain
Fiuite Difference (TDFD) method) is outlined. The method allows the use of considerably
smaller TLM meshes for scattering problems excited with a plane wave source than previ-
ously possible. The method uses the TLM mesh itself to generate the yequivalent of ' retarded
surface currents for the Huvgen's surface. This gives automatic compensation for any dis-
persion in the mesh. The method is therefore suitable for problems using a araded inesh
without further modification. New results are presented which demonstrat2 the efficacy of
the solution and compare its performance with other methods of plane wave illumination.

1 Introduction

The Transmission Line Matrix {TLM) metliod of n merical electromagnetic analysis using
the svmmetrical condensed node is well known [3]. Tt has been widely used o determine
scattering from siructures under plane wave illumii ation .4]. However the probiems of
obtaining an accurate plane wave are not well reported. Here we will address these problems
and provide a simple and efficient solution.

When a plane wave is excited in a finite TLM mesh with matched! boundaries. the sudden
truncetion of the mesh causes a second wavefront to be generated at each boundary. This
is due mainly to the physical truncation of the wavefront at the boundaries and 10 a lesser
extent to the fact that the boundary does not represent a rrue radiation boundary condition.

The problem of plane wave illumination is often overcome using problem boundaries
which have a +1 reflection coefficient (magnetic walls) at the edge of the wave parallel to
the electric field and -1 refiecting boundaries (electric walls) perpendicular to the clectric
field. This produces an ideal waveguide in which a plane wave can propagate. However
the reflecting walls also serve ro return waves scattered by the Hluminated objec: to the
observation pomt and tius interferes with tiie observation of the cirect ~cati-red waves.

'The transmission hines ar the onrer curface hemy fermmated 1y 2 marchee oi
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In order to avoid this the problem space must be made large encugh that reflections
from the boundaries do not reach the observation point in the time span of the simuiation.
However this results in an excessively large problem space and wmayv not be possibie where a
large number of iterations are required (e.g. when a high-Q resonant structure is present ).

The implementation of asymmetric boundaries. equivalent to a partial Huygen > surface.
discussed in this paper provides an efficient solution to the probiems outlined above.

2 TIlustration of performance

LS, Muscria; Mova [ ST

— Ry L L LT Y
Figure 11 Arrangement of asymmetric boundaries within the TLM mesh.

In order to demonstrate this a simple Gaussian plane wave was excited in @ TLM mesh. with
a 10x10 node cross section {Fig. !). and the field observed for three scenarios (Fig. 2):

1. with the wave propagating in the mesh with asymmetric boundaries as described below
- the Gaussian profile is preserved:
2. with no asvmmetric boundaries and matched terminations at the edges of the mesl

- a considerable negative excursion occurs after the initial Ganssian pulse due to the
truncation of the wavefront at the boundaries of the problem:

3. with the same 10x10 node plane wave asin 2)in a larger suesh (60x60) - a siniilar time
response occurred showing that the negative excursion iz mainly due to the rruncation
of the wave rather than failure of the boundary in some wav.

Il
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Figure 2: Comparison of a Gaussian pulse propagation with asvimmetric
boundaries, with matched boundaries in 10x10 cross section mesii. and a
truncated 10x10 plane wave in 60x60 mesh (1o scatterer;.
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Figure 3: Comparison of Gaussian pulse plane wave in the different meshes
~ith scattering object.

Fig. 3 show the time history at the observation point with the ~catrering object | Fig.
1) present. It can be seen that the use of the partial Huyeen's surface gives results :solid
line) which correspond very closely to the ideal case {~ pointsi with ----| boundaries used
with a very large (60x20x60) mesh size Lut this is achieved wirh a <mall i 10x20x10) 1nesh
size. The large mesh size ensures that the reflections from the houndaries do not reach the
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cbservation point within the abserved time span. .r the small mesh size +/-1 boundaries
' result (diamonds) in multiple r:flections which distort the observation of the scattered field
as does the additional wavefront if matched boundaries are used (broken line).

H - ——r— v v -
ASymmetric auuncelivs ——
Matcned $ide SOundaTies ooo-
Trurcated wave 1T _aTge Tash -

£z {dm)

e — N s

h2e 24 P

.-'rlt:un-c,y LN
Figure 4: Comparison of the spectram with asymmetric boundaries. with
matched boundaries in 10x10 cross section mesh. and a truncated 10x10

plane wave in 60x60 mesh (impulsive excitation).
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Figure 5: Comparison of measured fields in the aperture of an enclosure
with TLM simulation using asvinmetric and matched boundaries

Fig. 4 shows the spectrum of the wavefront incident at the observation pout with im-
pulsive excitation for the same scenarious as in Fig. 2. A | m node pitch s assuned. 1t
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can be seea that the spectrum of the incident wave is flat when the partial Huygen s surface
is used whijst the use of matched boundaries gives reduced energy at low frequencies. The
truncated (10x1U) wave in a iarge (60x60) mesh exiibits 4 large d¢ component but vtheiwise
has very littie energy at the low frequency end of the spectrum.

Fig. 5 compares the results obtained with asymmetric boundaties and matched vound-
aries with experimental results. An enclosure (Fig.6) with an aperture is placed in a semi-~
anechoic chamber and illuniinated with a vertically polarised wave of constant amplitude. In
the TLM simulation a plane wave was used. the ground plane was represented by a ~1 re-
flecting bonndary, and the walls of the semi-anechoic chamber were represented by matched
or asymmetric boundaries. The field in the aperture is then plotted . In the TLM simulation
it can be seen that the use of asymmetric boundaries gives a resuit much closer to experiment
than the use of matched boundaries. However the magnitudes of firs: two resonant peaks.
and the field minima zre not predicted accurately bv TLM. This mayv be due 1o the facr that
the walls of the enclosure were lossless { —1 reflection coefficient ) in the TLM simulation
whilst the reflections from the walls of the real enclosure would not be lossless.

Antenna
position
y~ertical polarisation)

Figure 6: Experimental lavout for enclosure.

3 Implementation

Using a set of simple asvmmetric boundaries in :he TLM mesh the distortion of the wavefrout
due to the discontinuity of the plane wave can be removed whilst still maintaining a watched
boundary for the scattered field. As shown in Fig. 1 the TLM mesh is terminated with
~1 reflection coefficient boundaries on the faces perpendicular to the electric field of the
plane wave -1 reflection boundaries paralie] to the electric field. and matched boundaries
on the remaining wwo faces. Asvmmetric boundaries arc conistructed. as o tube. parallel

to the direction of propagation of the plane wave. one mesh unit inside tie TLM mesh.
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The reflection coefficient of the inside faces of the asymmetric boundaries is set to zero
{matched) as is the transmission coefficient. This means that the problem space appears to
have matched boundaries on all sides for the scattered fields, Also no energy from the inner
proSlem space can reach the outer region between the asymmatric boundaries and the sides
of the TLM mesh. The outer faces of the asvmmaetric boundaries have reflection ccefficients
identical to the outer boundary which they face and a unity transmission coefficient. Thus
a {plane) wave can propagate in the waveguide formed by the asvmmetric bounduries and
outer surface of the mesh undisturbed by any waves from within the problem space. However
if a plane wave is excited across the entire cross section of the TLM mesh (as in Fig. 1) the
parts of the wave propagating in the problen: space and the outer laver are in time phase
and will remain so regardless of any dispersion in the mesh. The erergy transmitted from
the outer layer to the problem space provides the necessary continuity so that the wave in
the problem space is not truncated and thus no spuricus wavefronts are generated

Therefore. by the use of asymmetric boundaries we have achieved propagating conditions
for the exciting plane wave as if we had used +/-1 problem space boundaries io create a
waveguide capable of sustaining the wave, whilst for scattered fields the problem space has
matched boundaries. The methad can be shown to be equivalent 1o a partial implementation
of a Huygen's surface as used in the TDFD method.

4 Theory

Let us consider the implications of using the reflection coefficients specified on the boundaries
of the exciting surface (the asymmetric boundaries and the plane of initial excitation). In
particular, let us consider three points on the surface

a) a point on the surface where the plane wave starts (minimun v coordinate):

b) a point on the right-hand surface (maximuin x coordinate):

c) a point on the top surface (maximum z coordinate).

If we consider the voltage which is implicitly added in when using the appropriate reflec-
tion coefficients on these surfaces then we get fur each point

a) a positive z-directed voltage. 1. flowing ir the positive v-direction (into tiie interior
scattering region surrounded bv the surface) and zero component flowing in the negative
v-direction (into the exterior region of the surface}:

b) a negative z-directed voltage. —V./2. flowing in the positive x-direction {out of the
scattering region) and a positive z-directed voltage. 1./2. flowing in the negative x-

direction (into the scattering region):

<

o
—

a positive v-directed voltage. 1,/2. flowing in the positive z-direction (out of the scat-
tering region) and a positive v-directed voltage. V, /2. flowing in the negative z-direction
(into the scattering region).

It is possible to calculate the actual fields we are creating at the boundaries of the

scattering region. For the case of a boundary in the xz-plane with two voltages flowing
outwards along the v-dirsction. the field component: are

L)+ V=9 ‘
E—E:-———B‘I——— (B}
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V¥~ Vi=y)
Zo&l
where V. (¥) and V.(—¥) are the z-directed voltage pulses travelling in the positive and
negative y directions respectively. Similar expressions can be given for the other boundaries.

Using equations 1 and 2 then allows us to calculate the fields created at the three bound-
aries, We get

H:H,: (2)

a) :
V. 2 .
E=zE. = 37 = E {3)
H=f, = 5 = - (4
T T T 7oAl T ZgAl )
b)
E=Er=0 i3
V. Vv
H=H,= Zodl ~ Z,AT (@
<)
Vy v =
E = Ey = E = E (7)
H=H, =0 (8)

where we have used the relation V. = V,, = 1", sav.

Using Maxwall’s curl equations 1t is then possible to write down expressions for apvro-
priate electric and magnetic source current densities on the sunaces which would give rise
to the fields. We would nead to apply the currents

a)
J= = 9
T Zoad 9
v
M=37 (1o
b)
J=90 (11
v
- D
M Al (12)
<)
v .
J—*zm (13)
M=0 (14

If we now cousider the creation of a similar plane wave using the Huvgens formalism
described in !2] . we see that we need to applyv currents o the surface given by

M"=E" x & (15)
Ji.=ﬁxHh \1())

where 0 is a unit vector perpendicular to a particular surfaze and directed into the scattering
region. Then. in order to create a v-directed wave with component=E' = £ and H" = H:

at the same throe positions described earlier we nesd to apph the currenrs
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a)
= -HM (7
Mk~ _Elg (18
b)
Jh =0 (19)
M = —Ehy (20)
¢) A
I* = -H'§ (21)
Mh =0 22

Fro  .in examination of the Huvgen's surface currents and the currents actually applied
to the surface in the new method we can see that they are equivalent with

v

Er=i (23)
v

Y (24)

That is. exciting a plane wave of voltage. V. in the new wethod is equivalent to exciting
a free space electromagnetic plane wave with fields £ = V/Al and H = 1/ZoA/ using a
Huygen's surface.

5 Conclusions

A simple and efficient msthod of implementing a partial Huvgen's boundary in tle TLM mesh
has been demonstrated. The method allows the use of considerablv smaller TLM meshes for
scattering problems excited with a plane wave source than previously possible. The method
uses the TLM mesh itself to gencrate the (equivalent of) retarded surface currents for the
Huygen’s surface and therefore automatic compensauon for any dispersion in the mesh is
achieved. This also means that the method is suitable for problems using a graded mesh
without further modincation.
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Abstract

The transmission line satrix (TLM) methoq is ued to avalyse the balanced bridge mine
detection system. These resuits inclode an of modeling a thir wire in a coarse
TLM mesh.

1 Introduction

The TLM method of clectromagnetic analysis is ideally suited for modeling a balacced bridge mine
detection system. This type of system requires some areas of the model to represent free space
and other areas to represent a losry earth material. Using TLM, srbitrary material parameters
can be easily realized by modifying an input file. However, to use TLM to model a mine detection
system, an adequate method for modeling thin linear antennas in a coarse mesh must be found.

The balanced bridge mine detection system utilises a receiving artenna located between two
transmitting antennas, as shown in Figure 1. The transmitling antennas are operated 180° out of
phase to create a symmetric systern. Due to this symmetrical property the signal at the receive
antenna is normally sero. In the presence of an anomaly, the system becomes unbalanced, and
the received signal increases.

I1 Theory

The Transmission Line Matrix (TLM) method is a time domain apalysit in which both space
and iime are discreuscd. Space is divided ‘nlo diseretz points, noedes, which ure represented
by a network of transmission lines. The transmission line equations are related to the Maxwell

equations allowing the voltage pulses traveling along the lines to represent the propagation of fields.
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Figure 1: Geometry for a balanced bridge mine detection system as it appears in the TLM mesh.

Time progresses in discrete steps as the voltage pulses are passed frain one set of transmission
lices to another. The data st any node may be saved and preceis.d. The processing may include
such things ss calculating the frequency respoosa.

TLM aoalysis is performed in two basic steps A routine is performed which scatters all the
voltage pulses (V;) incident on a node The scattering is executed through a matrix multiplication
as shown in Equation 1 with S being the scattiring matrix. After scatering, the voltage pulses
(V;) are outward traveling.

V. =5V (1)
The cutward traveling voltage pulses are then moved to the appropriate transmission lines of the
surrounding nodes and are again inward traveling voltage pulses. The exchange of vuitage pulses
between different nodes is referred to as connecting. Every scattering and counecting process
represents one discrete step iu time.

The type of node we used for our analysis is called the Symmetric Condensed Node (SCN) (1)
This node consist of six branches, each one composed of two uncoupled two wire transmissior
lines. By adding more stubs to the node, permittivity and permesbility of different materials may
be incarporated into the model [1]. Lossy materials may also be modeled by the use of additional
stubs [2]. The scattering matrix for the SCN with permittivity, permeability, and Joss stubs is
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shown in Equation 2.

a b d 0 0 0 @ 0 b 0 -d c ¢ 0 0 0 O 1 W
b a 0 0 0 d ¢ 0 c -d 0 b 8 0 0 0 -1 0
d 0 e b 0 0 0 b 0 0 ¢ -d g 0 0 0 -3
¢ 0 b e d 0 -d ¢ 0 0 b 0 0 8 o i 0 0
9 0 0 d a b e -d 0 ® 0 0 o0 g -t 0 0
0 4 0 0 b a b 0 -d ¢ 0 0 0 0 g9 0 ¢ 0
] 0 0 -d c b a d 0 b 0 g 06 o i 0 0
0 0 b c —-d 0 d a 0 Q b ¢ 0 ¢ ﬂ -i 0 0

S= 4 ¢ 0 0 0 -d 0 0 a d 0 b 8 D 0 0 1 O @

= 0 -d 0 0 b ¢ b 9 d a« ¢ 0 0 8 0 -i O
-d 0 ¢c b 0 0 O b 0 0 ¢ d O 8 0 0
€ b -d 0 0 ¢ 0 [1] b “ d a z ¢ 0 0 -3
e [ 0 0 0 0 0 0 e 0 0 e 0o 0 0 0 ¢
0 0 e e 0 0 O e D 0 e 0 0 A O 0 0 O
0 0 0 9 e e e 0 D e 0 0 O 0 A 0 0 9
0 0 0 6 —6 0 6 -6 6 ¢ ¢ 0 0 0 O 6 Q0 0
0 -{ 0 f g -f 0 0 0 0 0O 6 Q

. -f 0 0 0 0 0 9 f -f 6 0 0 0 5]

The scattering is performed on every node in the system; however, the conmecting cannot
be done for nodes locate? along the edge of the mesh. At these positions, oply five of the six
branches have another node with which to trade voltage puises. The five branches, which have

eighUoring branches, are d using the normal process. The sixth branch, which is not
abutting another branch, must be terminated so as not to disrupt the network and cause invalid
data. The termination method used in this mode! is based on refiection coefficients. By knowing
the cheracteristics of the material surrounding the mesh, the refiection coefficient is calculated.
The inward traveling voltage pulse placed on the sixth branch is the product of the outward
traveling voltage pulse and the reflection coefficient. The disadvantage of this method is that it
cannot compensate for a lossy material immediately adjacent to the mesh.

For the mine detection sysiem of Figure 1, thin linear antennas need to be modeled. The
dipole, which nas a diametar much less than the incremental length (Al) of a node, ic modeled
by modifying the scattering matrix to represent a node that has an infinitesimally small piece of
conductor located at the center. The scattering matrix is changed to reflect the negative of the
inward traveling pulse back onto the same lines. A straight line of these “special” nodes can be
used to represent a piece of wire. As long as no voltage pulses are impressed along the adjoining
branches of the wire, no voltage pulses will ever be reflected onto these transmission lines.

III Results

Due to the fact that we are modeling this relativeiy small structure in a coarse mesh, the dipole
cannot contain a center gap if the procedure outlived above is to be used. In our mesh the
antenna is 104!, if this model were to represeat the center node of the antenna with free apace
then the center gap of the dipole would comprise 10% of the entire antenna. This setup is shown
in Figure 2.

Therefore, our approach to the problem was based on a concept used in the moment method




hed

. + =
4 T
i
———" *T—;'l
» o
v ()] T :
n 4 == +
& jm s 1 3
i 0 S— 3
—y CTHETrTrET TR TR
— I ’e T ®
=
"an ru we
= e ?
1+ T
- T >
{
+ 1
- T
: 1
T 1
. T T
4 mun e
T t
- vt

Figure 2: TLM mesh used for modeling the dipole. The dipole is located in the center of the mesh
with its axis oriented in the s-direction. (a) Three-dimensioral view of the mesh used to represent
a block of free space. (b) Cut away view of the x-y plane. (c) Cut away view of the x-z plane.

sclution of & sirnilar type of problem. Instead of using two pieces of metal to represent the dipole,
one continuous piece was used to model the entire dipole. Without a gap at the center, excitation
and output must be obtainect without directly using the nodes located along the antcnna. The
excitation is provided by exciting 2 magnetic cutrent around the dipole. Voltages across the dipole
are gathered indirectly, by finding the E-field around the dipole according to Equation 3

v=fE.d @)

The characteristic admittance of the dipole is compared to that obtained by Harrington (3]
using the moment method. When the real part of the admittance peaks or the imaginary part
is passing through sero, the system is resonant. From this data it can be seen that the resonant
frequencies occur when the length of the anteana is appraximately a muitiple of half a wavelength.
The resonance with which we are most concerned occurs when the antenna is approximately one
balf of a wavelength. The system is to be investigated in the region surrounding this frequency.

The fields are used to obtain veltages and currents at the center of the dipole. The voltage is
obtained using Equation 3. The current is obtained in a similar manner using Ampere's law via
Equation 4.

I= f H-dl (4)

The admittance is defined as the ra:io of current to voltage.

The dipole antenna was defined as 104! in leagth with Al defined to be 0.1 meters, thus
producing sn antenpa with a length of 1.0 meter. The first resonance for this antenna should
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Figure 3: Ioput admittance of a center-fed linear antenna obtained using TLM.

thearetically occur at 150 MHs. However, the first resonant frequency for this antenna, as deter-
mined from its input admittance lhown in Figure 3, occurs at 100 MHz. This difference in the
theoretical and computed r ies can be explained through an examination of the
TLM computed current distribution lhm in Figure 4. The TLM computed current at locations
between the ends of the antenns appears to be sinusoidally distributed, but the magnitud= of
the current at the ends of the antenna is #till a large percentage of the maximum current at the
antenoa center. A “trailing” current occurs beyond each end of the antenna caused by the discrete
nature of the TLM simulation. This trailing current continues to decrease in wtagnitude beyond
each end of the antenna. If the antenna is increased by 2.5A( on each end 30 as to include most of
the trailing current, the effective length of the antenna is increased from 1.0 meter to 1.5 meters.
The effective length of the anterna should therefore be used to compute the resonant frequency,
which in this case is 100 MHs. Taking the extra lergth into consideration, Figure 3 shows the
correct respanse for this antenna

This technique of including the effects of the trailing current was applied to antenras of various
length, but the number of Al remained the same. The leagth was changed by adjusting the sise
of Al, and as expected, all of these cases produ.ed the same TLM computed current distribution
with the trailing current baving a length of 5A[. When the length of the antenna was held constant
but the number of Al modeling the antenna was increased, the current distribution data showed
that the length of the trailing current was reduced. When 2 larger number of Al was used to
model the antenna the data showed the current dropped to small fraction of the maximum current
in less than 5Al beyond the ends of the antenns. This shows that the finer the discretization of
the antenna the better the model approximates the actual current distribution.

The TLM model was tested ! ¥ running simulations of a balance bridge mine detection system
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Figure 4: Current distribution along the antenna, which is being modeled as one continuous piece
of wire.

examined by Hill[4]. The configuration of the mesh is shown in Figure 1. The dimensions of the
setup are as given below.
d = 10on

h=8cm
1 = 26em
g = 10om

frequency = 380MHz

& =3.5-70.05

The results obtained using TLM are very close to those obtained by Hill. Figure 5 shows

“the comparison of the date produced by TLM and that obtained by Hill. This figure also shows

the results obtained using the two-dimensional TLM. As can be seen from the results the three-
dimensional TLM code shows a closer agreement with Hill’s data than the results produced by
the two-dimensional TLM code.

IV Conclusions

The technique presented here works well for modeling thin liuear antennas. However, to use this
method test need to be run to determine the amount of trailing current that must be included to
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Figure 5: Normalized electric field as a function of the position of the anomaly for results obtained
using T. M and by Hill

accurately model the antenna. The problem of modeling a thin wire in a course mesh has been
examined by several researcher. Naylor and Christopoulos (5| developed a new TLM node and
scattering matrix to treat the problem whercas Wiodarceyk and Johns (6] model the thin wire
between two TLM nodes. Most recently, duffy, Benson, Christopoulos, and Herring (7] trcated
the problem by using a lower time ste in the immediate neighborheod surrounding the conductor.
Future work will investigate the applications of these methods to the mine detection problem.
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Abstract
The Transmission Line Matrix (TLM) method is used to d ine tbe electromaguetic near-field
it duced by the radiation from a choked circular waveguide sntesna. These aear-field

9 |

quantities are ¢ d into fas-field ridiation patterns by use of the field equivalence principle.
Numsrical results are then compared to messured data provided by the Jet Propulsion Laboratory
(3PL).

1 Introduction

The Jet Propulsion Laboratory (JPL) is investigating the design of the dual frequancy low gain antenna
for the Cassini spacecraft emergency command and low data rate link. JPL ix most interested in ereating
an analytic tool, capable of assessing and optimising designs based on various mission requirements
(typically 7-9 GHs). In support of this investigation, an azalysis bax been performed on the choked
circular waveguide sntenna of Figure 1. This is the low gain antenna fof the Mats Observer which uses
a simple choke design.

Figure 1: The GE baseline design of the Mars Observer low gain antenna showing the teed portion as a
choked circular waveguide
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Figure 2: The symmetrical condensed node showing its 12 transmission lines and voltage puises

A numerical technique known as the “Traasmission Line Matrix” (TLM) method is used to model
the propagation of waves through and about the choked circular waveguide antenna. After the proper
electromagnetic radiation of the antenns has beea produced using TLM, the electric and magaetic field
quantities are saved over & surface sur ding the ant These field quantities are used to determine
the far-field radiation patterns by use of the filld equivalence principle.

2 Theoretical Foundations
2.1 3D TLM method and the symmetrical condensed node

In order to implement the scattering of waves through space o2 a digital puter, the fi iation of
this wave model needs to be in discretized form. Therefore, both space and time zre reprosented in
terms of finite, elementary urits, Al and At. Electromagnetic fislds are modeled with a network of
transmission lines compriting the field space. The bebavior of voltage pulses traveling on this network
of transmission lines is Jogous to the behavior of elect: goetic fields traveling in a bomogensous
medium. Equations assotiated with voltage pulses on transmission lines can be related to Maxwell’s
sqastions so that TLM can realistically model the propagatior of electromagnetic fields [1].

The kof t istion lines i at nodes which represent points in space separated by a
distance Al. Voltage prises launched on the network scatter from point to point in space in a fixed time-
ttap At. One of the more recently developed node models is the symmetrical condensed node d
by Johns [?]. Kis symmattical cond d node for modeling froe space is depicted in Figure 2. Two-wire
transmission lines connect the ports of the node on the sides of syuare ducts made of insulating material.
In all six directions of propagation, two polarisations are carried on two pairs of transmission lines which
are completely separated throughout the network of transmission lines.

Each transmission line has a characteristic impedance equal to the characteristic impedance of free
space, no. These transmission lines link the mesh of nodes together in Cartesian fashion. Twelve voltage
pulses incident upon the twelve pairs of transmission lines produce scattering into twelve reflected pulses.
These incident and reflected voltage pulses appear on the terminals of the transmission lines at each of
the twelve ports on the node. The volitage pulses are numbsered and directed according to the arpows on
Figure 2 [2).

The scattering at ench pode is defined by

V' =SV (1)
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where S is a 12x12 scattering matrix in the care with no stubs. V' ix the column vector of reflected
pulses, and V* is the col vector of incident puises on esch node. A voltage pulse V} of unit amplitude
incident upon port 1 of the node in Figure 2 procesds toward the center with field qnunmu E,and H,.

Likewise, the other cleven ports have field qnantities associated with them. Ry spplying the conservation
of curreat, voltage, and energy to the symmetrical condensed node of Figure 2, the scattering matrix
becomes

0 1 1 06 o ¢ 0 0 § 0 -1 0]
1 ¢ 0 0 0 1 0 ©0 0 -1 0 1
1 0 0 1 o ¢ 0 1 0 0 0 -1
o 0 1 0 1 9 -1 6 0 0 1 O
o ¢ 0 1 ¢ 1 0-1 0 1 O O
s=1| 0 1 6 0 1 0 1 0~1 0 o0 0 2)
2 60 0 0-1 D 1 0 ! 0 1 © O
P 0 1 ¢ -1 0 1 0 0 0 1t O
1 06 0 0 0 -1 0 © o0 1 0 1
0 -1 » 0 1 ¢ 1 0 1 0 0 O
-1 & 0 1 0 06 0 1 0 0 O 1
0 1 -1 0 0 0 O O t O 1 0]

which provides the basis for scattering in TLM programming (2].

After the scattering process has been carried out on every node in the transmission line mesh, a
connection process must take place. This connection process takes all twelve output voliage pulses on
each node, and transfers them to the corresponding ports oa adjacent nodes. At the same time a node
ontputs its twelve voltage pulses, it receives twelse input voltage pulses from the six neighboring nodes,
assuming the node is not on the boundary of the tr ission line mesh.

The six field quantities caz be calculated at any node from the following equations {2):

Eo= jG i+ +VE)
1 . h
By = E(V;+VI‘+VI‘+VII1)

E. = %(vww FVR V)

H, = %( 3+ 1)
8, = :‘,‘.'hj(vz“vc“‘":"‘vfo)
B = ooV + V= Vi 4 Vi) @

To implement boundasies aad snrfaces, output voltage pulses incident upon a boundary are multiplied
by the proper reflection coeficient, I, and injected back into the same node as input voltage pulses. In
the following analysis, three types of roflection coefficients are used. For the case of a perfect electric
conductor like the surface of an antenna, I' = —1. At the edges of the TLM network, I' = 0 so that
the fields are completely ebsorbed. For the third case, an infinitely 'ung waveguide is modeled using a
frequency dependent reflection coefficient. An expression fo: this reflection coefficient is derived by using
the waveguide impedence at the termination; the individual transmission lines have an impedance equal
to the impedance of free space.




2.2 Near- to far-field transformations

For many antenva corfigurations, such as aperture antennas, it is possible to take the field quantities near
the antenna and transform them into a far-field radiation pattern. One auch technique is a mathematical
techniyue Laded on the ficld equivalence primciple (3]

The field equivalence principle allows actual sources, such as an antenna, to be replaced by equivalent
sources. The fictitious sources are said to be equitalent within a region because they produce the samn
fields ~vithin that region (3]

The fields outside an imagisary closed surface are obtained by placing over the cloted surface suitable
electric and magnetic current densities which satiafy the boundary conditions. Proper current depsities
are sslected so that the fields inside the closed surface nre sero and outside they wre equal to the radiation
produced by the actual sources. If the fislds outside of the closed surface are represented by E, and H,
and the fields inside are made to be sero, then the surface current denuties become

-‘. = ﬁxﬂ, (‘)
M, = -axE (5)

where f is tiie outward normal of 5. Vhese current densities are then used to determine the true fields
radiated outside the closed surface by the sources within it (3].

After the current densities on S have been determined, the electric aud magnetic vector potentinls,
A and F, respectively, can be calculated from

A= e (®
BN 1//5S g

where & = % (A is the wavelength), and R is the distance from the source point (z',y',s') to the
observation point (z,y, 3). The total fields are then given by

. .1 1
E = —JWA,—J;F—‘V(V-A)—;VXF (8)
.1 1
H = —jwF-;—V(V.-F)+-VxA. 9
Jw )u‘u ( )+“ (9)

Howevur, these formulations are complex, und the integrals are difficult to evaluate. Therefore, some
Approximations which are valid for far-field observations will be introduced (3].
Raferring to Figure 3, for far-field obserations, R can be approximated by

Re~r—rcony (10)

for phase varistions, and
R=r (11)

for an.plitude vzriations (3).

in Equation 10, ¢ is the angle between the vectors r and r'. The primed coordinates (z’,¢/, ")
indicate the space occupied by the sources J, and M,, over which integration must be performed. The
unprimed coordinates (z,y, ) represent the obvarvation point (3].
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Figure 3: Coordinate system for aperture antenna analysis

Equations 6 and 7 ¢xn now be written as

_ B R HeT
Y TE-NNrE
N = '[/s I etiw gy (13)
Pl R g
F = F././,:M' R el 4y L (19)
L = //’ M, et gy (18)

Equations 13 and 15 can be simplified by separating them iato their z,y, and 1 components and then
using & rectangular-to-spharical component transformation, to give {3

Ne = fL(J.a0m¢+J,mom¢—J.nu)m""*‘u (16)
Ne = f/,(-.l.dn¢+l.m¢)c*""“"da' an
Lo = fL(H.mOm‘-fll,colhin¢~)l.:in0)¢*"’"“"d:‘ (18)
Is = /L(—u.m¢+u.m¢).*f"'-*u (19)
where
r'cosd = £'sin#coad + y'sin F5in @ + ' cos . (20)

After substituting Equations 16-19 into Equations 8 and 9, and separatiug the fields into spherical
components, the tatal E- and H-fields can be written as (3]

E =0 (21)
gt

B o= -1y 4Ny (22)
e

Eo = T—(Lo=nly) (23)




H, =~ 0 (24)

L Wy, )
By = | Ns 7 (23)
- -J_‘*:I'_( E:)
Hy = Pl Ne+ o (26)
To impl these formulati in & comp program, discrete versions of these equations are

used. After the TLM algorithm has run for several thoussnd iterstions, the Fourier-transformed field
quantities are saved on a virtnal surface just inside the cuter boundary of the TLM network. This virtual
surface is the surface to which the equivalence principle is applied. An algorithm incorporating the above
formulations, in discrete form, is used to calrulnte the radisted E- snd B-fields.

2.3 Obtaining circular polarisation putterns

The measured data provided for the Mars Observer low gain antenna was obtained for circule © palar
isation. Thersfors, it was necessary to convert the linearly polarised far-field data produced by TLM to
circularly polarised patterns.

In order to cotapute circular polarisation, it is con t to define A new pair of unit vectors,
in = A-dy (an)
L = i+ )dy. (28)

Theee vectors correspond to time-varying anit vectors rotating in the right-handed and left-Landed senses,
respectivaly, where the thumb points in the direction of propsgaton (4]. Thus, any wave field can be
written in one of the two following forms:

E = B, + E iy (29)

or
E = Epip + Erar. (30)

From these two equations it can be shown that

Er = 3(Ec+1Ey) €

BL = j(E-iEy) (32)

Circular poiarisation, can be thought ofu;nmon\m Of!wcnpunlly otthogonal linear polarisa.

tions separated by & 90° phase difference. Therefore, in rey, K, bec Eg of the first

polarisation. Likewise, E.bmmuhdthcmspdw;nnwhdn]&dthﬁrnpohnuhon
After making these subeti , Equations 31-32 b

Er = 3(Ee-Eo) (33)

Eu = (B, +Eo) (34)

iu spherical coordinates.
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3 Numerical results

A case was rug to determine the radiation charscteristics of the Mary Obeerver antenna desiga of Figure |
A cross-sectica of the TLM wodel for this design is sbown in Figure 4. Bach node in the TLM nstwork is
1 sam on each side. The diameter of the wguide is 22 mm. At a frequency of 9.13 GHz, this diameter
is 0 7¢44 The choke has a diamreter of 42 mm, a depth of 25 mm, and the mouth of the choke is recessed
15 mm back from the aperture of the waveguide. A TLM aetwork of 100 mm on each side surrourds
this arraagesent. The dominest TE;; mods was allowed to yropagate down the waveguide and waves
radiated into the currousding TLM astwork modeling free sprce. After 15,000 iterations, the tungential
dectric s magastic Salds were ssved oa 3 virual surface 90 nodes oa each side. The near- to far-fiel
transformation aigori:hm produced PFigure 5. Measered dita for circular polarisation was providad by
JP1. for comperisca. This Sgvre shows the measured pattern for circular polarization plotted from -90°
to 90°, xhe Ky and K, patterns, aud the right- and Jeft-haad circalar polarisation plots.

4 Limitations and conclusions

This perticular case was run ¢n the cray supercomputer to take advantage of the cray’s memory and to
spesd up raa-tise. However, even the cray has a limit on the sise of TLM networks it can bandle. This
limit scams to be oa the order of 10° nodes. Therefore, the sise and resolution of the structure being
modeled are also fmite . likewiss, the amount of spece surrounding the antenna is imited. Enough
free spac in froat of the bonid b modeled so that an accurate represeniation of the near-field
quastities oa the virtual surface caa be generated. For the Mars Obeerver antenna design with a simple
choks, 1 x 10* nods wary ured in the TLM snalysis. Asteans desigts with Jarger chokes can be analyzed
wsing TLM. Howeve, for A—igni asieg very large chokes, some resoiution may need tu be sacrificed.

Anaaslysisof acire - /aveguide antemna with & simple choke has been made using a TLM algorithm
asd a sear- to far-fald transformation algorithm. Iaitial runs produced radiation patterns that agree
quits & bly with ared deta. Better resclution by ssing larger LM network sizes will increase
the sccwracy of the radiation characteristics asalysis.
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ABSTRACT

In this papes, s ficld based taree-diniensiona! time domain Transmussion Line Matrix (TLM)
method has been applied to analyze a microstrip meander lioe configuration on GaAs substrate.
Both regulsr and vsrisble TLM meshes have been employed. The scattering parameters obtained
have been compared with thoge of Sonnet em software and messurements (avaiiable data). The
results agree well indicating that the TLM method, which is a fullwave elecromagnetic solver,
can properly account for the strong interaction between various parts of the meander line.

1. INTRODUCTION

The Transmission Line Matrix (TLM) method is a aumerical technique in which both space and
time are discretized [1). The simuiation of propagation of electromagnetic waves is done through
scattering of impulses in a 3-D meshed network of transmission lines. This powerful and versatile
technique is suitable for microwave and millimerer-wave circuit simulation, especially when the
circuit geometry is highly irregular. Also since it is & fullwave electromagnetic solver, it can
sccount for electromugnetic inweraction between various perts of the circuit.

The meander lines (2) are used in monolithic microwave integrated circuits (MMICs) as delay
lines as well as planar inductors. As a meander line consists of a uniform transmission line laid out
in & such a way &¢ to minimize the space required, there will be strong elecromagnetic inrersction
between various part~ of the transmission line. It will be very difficult to take care of such interac-
tion using analytical methods. The TLM method is ideal for analyss of such structures. Also, the
time domain responses obtained from the TLM method are very useful when using them as delay
lines. In the following, we report & detailed nalysis of & microatrip meander line configuration on
GaAs substrase.

There are some difficulties associated with the TLM analysis of such large structures. The regular
uniform mesh TLM leads to large computer memory and large coarseness and dispersion errors.
We bhave applied & variable mesh scheme based on Al-Mukhtar’s and Sitch’s [3] approach to
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reduce these errors. Also, the variable mesh allows fitting of the exact dimensions of the structure
into the TLM mesh. Excitation of the circuit with a Gaussian pulse (containing narrow band fre-
quency commponents) facilitates reaching the steady state faster.

This paper also compares the scattering parameters obtained from the TLM method with those
obtained using Sonnet em software and measurements.

2. THEORY
The symmetrical concicnied TLM nade {4] (shown in Fig.1) has been vved for our sn+ .y 2o

adveutages of this node when compared Lo the expanded TLM node are 1 = followin:: b-nviary

deacription is easier, all six field componeats can be defined at single pos : ta sprre, o there is
no dispersion in axial directions. It has zix branches, each branch consixii~;y T\ - .ncoupled
two-wire transmission lines. The 12 transmission lines linking the Caiver .71 73 sa of nodes
together have the characteristic impedance of free space. To compute the scait.sing usrameters of
meander lines, we need the incident and refiected fields at the input port, and .2+ »ansmined field
at the output port. To compute the incident field, we discretize 8 length of uniform microserip line
with absarbing boundaries pleced on ail sides of the computational domain. Then, we include the
meander line in the computational domain, and compute the transmitted field at the output port
and the total field at the input port. The reflected field is obtained by subtracting the incident field

e
I,
gl ] 2 z-

2 All
] I
-Z 3 /] > X+
6 10

A
|

Fig. 1: The Symmetrical Condensed Node
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from the total field. The scattering parameters are then determined by Fourier transforming these
time domain waveforms. Good quality absorbing boundaries must be used for accurate extraction
of scattering parsmeters. We have used the second-order one-way equation absorbing boundanies
[5] in the main propagation direction of the microstrip. A voltage impulse reflected from the

absorbing boundary can be computed from the knowledge of impulses in the cells in front of the -

boundary using ihe following equation:

Vi b = (g +a) V" b g eV M b « (R + 3V (m= LB
v (n+ o B-Bia) Vi (m= 16 - (@ ena) Vi m=- L) b
~8,8,V (m=2./, 0= (Byy, + 7,5 V" M=/, k)= vy, P (m=2.j. B o
The interpolation coefficients are:
¢
- (a-g,(1=b)) (a-1+gb) (—a-bg,)
S T4, B =280 " ™ @=T-g(1=B) -5ah " = (a=T=g(I-5 =caD

where coefficients a and b are weighted time and space averages of the space and time differences,
respectively. €, and ¢, are damping factors. The parametwr g; for the uniform mesh is

g = 2.Je, () 3

while for the variable mesh, it can be written as

— . AFecs
;=2 ) — 4
& J‘q(fn) AP @)
where Al™® is the unit length of the mesh. This is determined after scanning the entire variable
mesh 30 that no stub impedances or sdmittances are negative, Al"™! is the space resolution at the
sbsorbing boundaries. The absarbing boundaries on the sides and top of the meander line strucure
sre implemented by means of & simple zero reflection cocficient.

3. NUMERICAL RESULTS

The meander line configuration is shown in Fig. 2. This line has been studied earlier by W. Prib-
bie using Sonnet em software and measurements (6,7). The microstrip line width and substrate
thickness are 50 and 75 jLm respectively. The dielectric constant of the substrate is 12.9. First, the
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Fig. 2: The microstrip meander line configuration. Dimensions are in lm measured
along the center line.

structure was discretized with a uniform TLM mesh of size (195x20x76) with the space resolution
and time step of 10 jum and 0.016666 ps, respectively. The chamfers at the microstrip bends were
approximated by staircasing. The excitation Gaussian pulse width (corresponding to -34 dB) was
25.45 ps. The values of the effective dielectric constants used in the design of the absorbing
boundaries were 8.5 and 9.5. The coefTicients a and b were taken as 0.25. The damping factors
used were 0.1 and 0.0. The time-dor.ain responses obtained at the input and output ports are plot-
ted in Fig. 3. The scattering parameters obtained have been compared with those of W. Pribbls in
Figs. 4a, 4b, and 4c. The major difference between the TLM and Sounet results is the shift in fre-
quency of the former towards the lower end, which may be sttributed to the coarseness error of the
TLM analysis. Note that only five nodes were taken across the width of the microstrip, Next, a
variable TLM mesh of size (170x18x100) with the following element sizes was used.

The element sizes aloog x: (49x14.54 + 40x6.25 + 35x14.54 + 24x6.25 + 22x14.54) pm
The element sizes along y: (11x12.5 + 7x14.54) um
The element sizes along 2: (7Tx14.54 + 85x6.25 + 7x14.54) um

Eight nodes were taken across the width of the microstrip. The unit length (A*) anc time step At
were 2.686 um and 0.004476, respectively. The exact dimeasions of the structure were fitted into
the above variable TLM mesh. The scattering parameters computed have been piotted also in
Figs. 4a, 4b, and 4c. This time, results agree better with those of Sonnet and measurements. The
results could be further improved by employing & very fine mesh, keeping a larger distance

97




between the excitation and sampling points (at the wput port), aad placing sbsorbing boundaries
(oa the sides and top of the structure) at larger distances from the strip. [BM RISC System/6000-
mode! 350 arxi HP 9000-model 755 computers have he=n used for computation. The computa-
tional time fer the unifor TLM algorithm was about twelve hours.

4. CONCLUSIONS

A cyzesip meurder line sonfiguratica hes beer studizd using the 3D-TLM method. There. s
to agree well with he available dats except for a shift in frequency. Application of the vari-
able mesh (based on Al-Mukhtar’s and Sitch's approach) leads to better results, but it takes more
computational time. The coarseness error, which is due to imperfect resolution of fields in the
vicinity of sharp edges, has been the major source of error in the TLM analysis. This could not be
reduced consider ably for the meand»r line structure because of its large size, aad limitad computer
resources.
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COMPUTATIONAL STUDIER OF FACTORS AFFECTING
LASER DOPPLER VELOCIMETER MEASUREMENTS

Dr. Joseph E. Yyhalen
3115 E. Navaho Straet
Sierrs Vista, Arizona 85835

Abstract

This paper discusses a Laser Dcppler Velocimeter (LDV) Simuiation (LDVSIM). Representative resuits include
time histories of photocurrents, distribution of photocurrents showing their G ian behavier, effects of varying
scatterar size, effects of velocity variations within the measurem.at voiume (7v), and the affects o fluia Mmean
flow through tre mv. Emphasis is on the fivid characteristics as opposed o hardware charactenstics.

1.0 Introduction

LDVs are devices for determining veiccities of sofid objects and fluids containing particulates. Fiuxd applications
nvolve several piwsical phenomena that are of interest, ¢.g., convective flow, Brownian motion. Brownian
motion limits the abikly of the LDVs to messure low velocities. LDVSIM was designed to be simple and provides
an altsrnative to more sophisticated models. Despite its simplicity, LDVSIM has provided significant insight into
LDV behavior. Also, LOVSIM provides a moans of validating more complicated models. Simpticity in modeiing
is achisved by considering the problem as sn siectromagnatic scattering problem. Each scatterer int the mv is
considered to be a source of a spherical wave that is reflacted from the scatterers onto the photo detecter. The
total field &t the dutector is the sum of the fiekis from the individus! scatterers. Obvicusly, if one needs to model
the millions of scstterers typically encountered, the LOVSIM approach is impracticsl from a computational
parspective; however, 88 it shown later, 5s few 83 32 scatterers are sufficient to obtain the Gaussian behavior
for photocurrents that is expected in the limit of & targe number of scatterers.

2.0 Lamer ‘oppler Velocimetsr {LDV) Operating Principles

Because of the Doppler effect, the frequency of light scattared from a moving object is shilted with respect 1o
tha incident light [1.2]. Since the velocity of the scatterers of interest is considerably less than the speed cf light,
the Doppler frequency shift is only a smsh fraction of the optical frequency. Since I at optical
frequeancias sre ImpEracticsl, “down Mbing” to iower frequencies is embioyed to transiste to & messurable
frequency range. A common appmach 1 frequency shifting is Susirated in Figure 1. The laser boam is spiit
into two components. the reference beam and the incident beem. The reference beam is shifted in frequency
by Bragg celis. The incident beam ig reflsctad from scatterers in the fuid medium and retunas as the scattered
beem. Both scaitered and reference beams are directed 10 a photo detector. For siationary scatterers, the
photocuTent from (he photo delecior will oscillate at the frequency difference between the scattered and
rafererce beamns. A shift in frequency of the scattered beam caused by scatterer motion will appesr as a shift
in trequency cf the photocurrent power spactra.

The output of the photo detector is ampiified, filtered to remove ;e outsida the frequancy band of interest,
and demodulsted. The shift in the spectrum of the demodulatec  sotocurrent is proportional to the velocity of
the scatterers. In typical laboratory appiications. provision is made to t the ph Tent time histories in
a compiex enveiops representation. One way of achiaving this is illustrated by the slectronic components
appeeing in Figure 1. Other LDV configurations are prasented in References [3.4).
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3.0 Overview of the LDV Simulation (LDVSIM)

Functional fliow within LOVSIM is provided in Figure 2. There are three major Companents. an Interactive Setup
Procedure (SETUP), a batch oriented Computational Procedure (COMPUT), and a Post Processing Procsdure
(POSTPR). POSTPR contains spectrum analysis modules, signal pr ing modules including phase-locked
loops, statistical analysis modules, and graphics modules. POSTPR was developed first and used as a tool to
develop the sigorithms in othey portions of LDVSIM. In addition to obtaning inputs from tha user raquired to
run COMPUT, SETUP provides management services for input parsmeters and for output results, controi options
for COMPUT and POSTPR, and srchival services.

LOVSIM is a2 combinetion of time-atep processing and event processing. Photocurrants sre computed at a
uniform time step specified by the user.  Evants can 2cour st arbitrary times, bul are assumed ta lall on the
uniform time step bourdanes. Events inciuae computst-program control options, .g., time at which to tum data
collection on/olf. conditions undar which terminauon & to occur, physicsl events sucn 3s platform accelerations,
snd many other events corresponding to physical phenomena.

LOVSIM 8 higiny modulsr, with major modules for each of the items kisted in center of Figure 2. Thus, it is

relatively easy to replace a module, such as the model for the mv flow fieki. Although not @ true "plug ard play”

caplbmty iNCy & CoMpie mp is requirad, the capability proved sdequate in supporting a large number of
tigations in 8 timely

4.0 Mathematical Formulations

Assumptions and overvigw,  The key sensing elemaent in the LDV is a photo detector; the output of which is a
photocurrent. To ubisin the velocity, the slectronic portion of the LDV Jetsrmines the phase rate spectrum for
the photocurrent. The magnitude of the frequency shift of the phase rate spectra is proportional to the relative
velocity between the LDV and the scatterers in the mv. The foliowing sssumptions are made: (1) The beam
incident on tha scatterer is a plane wave. (2) The scattered beam incident on the photo detector is an out-
going, spharical wave having its origin at the scatterer. (3) The lotsl sca’tered slectric field incident on the photo
detector is the sum of the electric fieids from sach scatterer. (4) The reference beam incident on the photo
detector is a plane wave. An overview of the mathematical mode! implemented in LDVSIM follows.

Photocyrrents gnd Phass Rate Expvessions = The photocurment is given by [3,4]):
N N m
(E+Y E) (E,+ Y Eg) “=E.E[+J,
"y -~}
where E= electric fisld of reference (r) beam representsd by a pisne wave, E,,* slectric fieid from scatterer (s)
beam represented by a spherical wave, N = number of scatterers, * = complex conjugate
The first term on the right-hand side of the above equstion is a constant biss term the. is assumed removed

by the processing system. Also, the veriabilty of the shove expression across the faca of the phto detector
is ignored.  Caxrrying out the muttipiicstion leeds 1o the following expression for the photocurment:

J-E J, .1/22 L A,B.0,0,C08 ($p+N,.) *1,,

mei a=l (2)

Ta=Ay0,C08 (W' E1d,+n, -n;-0,) ,
3)
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where o/ = differance frequency between referanca beam and the incident beam; A, B, = terms contaning
wave number, lassr intensity, nd geometrical parameters. o, = scattanng cross section for the mth scatterer,
n 7 VEMOUS NOISE 30Urces, &.g.. shot noise {J), reference (1), incident (i), scattered (s) beam noise.

The complex envelope representation for /| 1s grven by,

T2+ 10, (&)
whera the / ard Q are referrad to as the “inphase” and “quadrature” compconents.  To obtmin expressions for
i, and Q.. J, is mixed with cos{w't) and sin{w') terms. The inphase componant is givan by,

I,=(1/2)A,0,.(cos (2con’c+¢,,*n,,.,) +cos(dptn,;,)) +

A,0,c08(w't) Y Ay0,008 (Gn,*Na) - s

n=1

A similar expression is obtained for the quadrature component, howsver, cosine terms are repiaced by sine
terms and .ne 38CONd $Me twiM it negitive.

The required phasa rate from « hich velocities can be determined is obtained by differentiatng the arc tangent
of the ratio of quadretum to inphase components:

&= (I0-01) / (T2+07) . (6}

Aftar taking the time derivetive of appropriate terms, 8 messy job, an expression for the time rate of change of
phase can be obtained in terms of the time rates of change of geometrical factors, scatterer velocres,
propagation rnedis churactendtics, scatterer mass, 2nd NOiSe SOUTCES.

Scaterer Pogitiony snd Velocities  The simulation computes the value for the phase rate at time intervals
specifiad by the user. At sny particular time, the particies will have a velocity caused by Brownian affects and
by the fluid velocity. The velocity distribution associatad with Brownian motion is gven by,

- m 1/2
Plu,, u, t) = TRRT(I=exp (<27 0)) )

exp (-m{u-u.exp(-yt))?/2kT(1-exp(-2yL))), M

whare v, = velocity ai ¢t = 0; ¥ = instantaneous velocty of a scatterer. | » time; m = scafterar mass; kK =
Bolizmann's conatant; 7= tempersture. y = 6 w v 7/ m; v = viscosity, kg/(sec-m); r = scatterer iadius.
The above expression is Gaussian with standard devistion and mean givan by:
o=(kT(1l-exp(-2y2))/m)*/2,
u=y exp(-yt).
Module BROWN computes Brownian velocites using a Gaussian distribution using the abave parameters.
Between times at which L photocurrent and phase rate are computed, the scatterers are subject to collisions

with surrounding molecules. As a result, the scatterers diffuse it snd out of the rm.. To capture thesa effects,
new positions are computed for sach time siep using the distribution for particle diffusion [5):
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Po(Xy X, ) =(mmy?/2nkT(2yC-3+dexp(-yC) ~exp(-2y¢c))) /2
exp [ ~my? (x-x,~u,(1-8xp(-yt)) /y)?/

(2kT(2ye-3+dexp{-yt) —exp(-2yt))}], 8)

where x, = NitAl parhcie position. x = particle position at time t
The above form is Gaussian with standam devishon and mesn given by:
0,2 (KT(2yt-3+4exp(-yC) ~exp(-2yL)) / (m?) )13,

<x>mx,tu {l-exp(-yt))/y.

Module BROWN computes changes in position caused by Brownisn effects using 8 Gaussian distnhution having
the sbove parameters. These changes are added (o position changes associated with other flud-flow elsments.

Apvir ate rooUels for othar selocity sffects can be incofporated into LDVSIM by replacing the particle velocity
moduie (VELINT) w21 an appropriste velocity fisid mouel. One rodel useJ for this Darer 1ap.as.. (. fud Tow
in a convection veil (8]. The required scatterer velocitins are obtained by a two dimensiona! intarpolation within
measired velocity flslds. LDVSIM has wn option to supsrimpose a knear flow field on the mv 30 that transit
broadening effects can be investigated. One othes velocity component that is modeied is LDV platform motions.

5.0 Representative Results
Results are pregented in th figures that follow the text.

Ehotocyrrent Time Higtory Charscterigtics, Figure 3 contains inphase and quadrature time sanes for Brownian
motion. in addition to rapid fluctuations, the data exhibit low frequency behavior caused by Brownign diffusion
of perticles in and out of the mv. The gverage numbaer of scatterers is 32,

Ehotocurrent Statistical Charactenstics  in many analytic darivations the number of particies 18 assumed large.
Typically, a mv contsins thousands of scatierers, cften milkons. Simulstion rung involving large number of
particies for iong periods of simulated time are prohibitive becauss of long computational times. Thus, it is worth
detemining how many scatterers need to be inciuded in the simulation to obtsin reasonabis statistical agreement
with the many-scatterer case. Histograns of the inphase compunent of photocurrent for g single scatterer (line)
sre compared with 8 32-acatterer case (shaded portion) in Figue 4. Tha 32-acatterer Case passes tha
Kolmogorov-Smimoff test for Gaussianity at the 95% confidence level.

Photocyrrent Powsr Sogctra, If scattersr inertial effects are ignored, the power spactra of the photocuments
for Brownian motion will be Lorentzian. As mnertial effects are introduced. the spectra will have a iower vaiue.
A comparison of the output from the simulstion which contsins inartisl effects (See Eqs. 7 and 8) with the come-
sponding Lorentzian profie is presarted in Figure 5. Note that the trend it as expected.

Browniagn Motion,  For these runs ali effects except Brownian motion were turmed off. Five different simulations
were conducted coresponding 1o five different scattersr masses. As Mass increatss, the Brownian-velocity
distribution p.aks at lower velocities. Thus, power &t high freq e will o as scatterer mass
increases. These effects sre dlustrated in Figure 6. which contains & power spectrs for the photocurrents.
Ultimately, the velocity of the fluid is determinad by the shift n the power spectrs of the photocurrent phase rate.
Power spectra for photocurrent phase rates for five different particle sizes are ilustrated in Figure 7. The noise
fioor for the 1 micron scatterers is significant.
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Valgcrty Varigbiity within the my, Velocty diversily effects were invastigated tr; introducmg a convectize flow
pattemn consisting of two eckies  The eddies are sssumed genersted by placing a tempersture gradient acrosy
2 3x2x1 cm ool containng the sthkoscid mv with s long mde at a 10-15 degres snole with respect to the Ix2
cm tace Fluid ow 18 UD 1 the cantsr of the mv and down Bt sither end  Placing scatterers m two grouns at
the ends of the Mv results N a velocty component toward the detector for one group #nd away from the detector
for the other group. Tive phase spectium has two pesks CoMesponamg to the two groups of s atterers as
dMustrated in Figure 8. As me pesses. the sCaktersrs migrate throughout the mv because of the convactr e flow
Aftar several minutes, the resuling spectnum is a8 Muineiec in Figure @ Note the broad nature of the spectrum
The lack of powar outuide of 250 Hz reflects the MANMUM veOCIIes N the cald for the thermal gradment appired
The nerrow isolsted posk st the left may repressnt irspped perbcies, however, this hasn't been ngorously
confirmed.

A comparison of phase rate spectrs for three different th | gracients the ¢ » ool is Wustated
in Figure 10. As the tempersture INCreses, Mmmmmmmnman
NO IONQEr 2810, !mhmmm.mmmmmm which
increases the speciral

Transd Broadenng Transit broad flects were stigated by ntroducmg 8 meen flow m the mv  Two
mmmuwmwbmdmm These results are provided in Figure 11 The

dotted kne represents the hgher spesd. The higher speed case. line (b), s significantly broader

6.0 Conclusions

The basic slements of Lases Doppler Veincimeter (LDV) opsrations as apphed to fluid velocilty meassurements
have been discussed and re-enforced with computational results. The LDV sspects dustrated n this paper
represent only 8 small fraction of the totsl problem. th-mmmmybcdmmtmmm
mvestgations include: scatterer shape, opticsl ntemal dynamcs,
pistform vibrabons, turbulence w the v-cinety of the platform, mewmQ

Developing models ang investigating LDV systems provided 8 convernsnt means 10 invesbgats fundamental
physical phanomena, such as Browrsen mobion, wave propagation through random madis, optical systems, flud
flow, thermal dy and y Establisihng LDV expenments st academic mstitutes for the
purposs of investigeting LOV sysiems s recommended 28 2 basc resesrch endeavor and as a taaching id to
ilustrate modem aspects of aser systems 38 well as fundamental physcal phenomana

References.

1. Bom, M., and Welt. E.. 1950, Poncidies of Qotics, Pergamon Press. New York, New York.

2. Jackson, Davd J., 1962, Clssscal Elscirodviiamics, John Wiisy and Sons. Inc.. New York, New York,
3. Adnan, Ronaid J.. 1963, “Laser Veloamatry,” Chepler S, Fluiid Mecharics Meaguroment. sdited by
Richard J. Goldste:n, Hemuxphe.s Publisiung Corporstion, Washington, D C.

4 George, W. K., and Lumiey, J. L., 1973, "The Leser-Dopoier Velocimeter and its Apdhcation to the
Maasurement of Turbuience,” J, Flux] Mech.. Vol 4, p 1220

5. Nelson Max, editor, “Selectad Papers on Noise and Stochastic Pro ~ Dover Pubk £ 99
6. Busse. F. M., 1967, "On the Stabiity of Two-Dimensonal Convection in & Layer Heslwd from Below.”

LMath_angd Physicy. Vol. 46, p 140

105

—— — —




POV

R0
w)IsAD) O I taay W
, ‘ [ |
> E:..womm_ nrkmuey ‘uofranByucs
e | | o ’ umnasdg | K101810q8) AGT RNDh v | einByy
[11W] ssed
(1] [, 1]
_.J somnpowsa W4
] o3 R
— wondo}- )
oy I = A=l
| it | epoia ]
ooyud ey
»
§ Py
¥ oy o -ﬂu
L]
UANON
s 5 -]
e
nmsss 8L
29008 nyas

-»!.Il!u D 13307




Adoo
LI

synsay
teuyy

S0)NP0IOLS

WISAG? Yl Moy teuogouny -z esnbyy

sinduyy
7 sindinp

Je8n

Id
d

“1s0d
4

sinsey
ajoipatiny

uopewioN
snjelg pue obussep

$juaAg
wsAs uondNQ

SIIRIRIRYD 1222)|R2S

JWNjoA JuswdInsEIY
WIWU0IIAL]
sjuauodwIod JuaNIAP
sjuauodwios exydo
waofjeld

iJ0 $123j)a 3y Anduto)

simsey
S|BfpoILIu)

sinduj aseqg
neq pannhoy

I

i

BIR(] JUSAT ‘Sisjownieg
‘sieq jonuo)

sheydsia ~t

aInpadosg

e JUSAT ‘siejnusivg
'sjeg jonu0)

sindu|

dneg -

¥ sindinp

sy

107




1

{volts)
0 800 1000 1500 £o00

-M“l}oﬂ ~1000 -800

i

4

[~

5 ' 10
TIME (SEC)

Figure 3. inphase and quadrature components for Brownian motion.
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Analysis of a Cavity-Backed Slot Antenna
Mounted on an Infinite Ground Plane Using
the 2-D TLM Method

John B. Erwin and Stuart M. Wentworth
Dept. of Electrical Engineiing
200 Broun Hall
Auburn University, AL 36849

Introduction

The transmission line matrix (TLM) method is a very powerful technique for solving
clectromagnetic problems. A single computer slgorithm can be used to analyze a wide variety of
electromagnetic interaction problems since arbitrary media parameters and boundary conditions can be
changed stmply by modif; ing an input file. The model simulates waves propagating in the time domzin
within a space that has been discretized into ransmission line sections, called TLM ‘nodes’. Voltages
and currents on these nodes correspond to electric and magaetic ficld quantitics. Two dimensional
space is discretized into four-port nodes, and three dimensional space may be discretized into 12-port
symmetrical condensed nodes [1]. A pulse entering one port of a node is scattered to the other ports
based upon & scattering mutrix which can be derived for either the 2D or the 3D node and can include
the effects of mawcrial parameters such as pemmittivity, permeability, and conductive losses. The
scattered oc reflected pulse leaving one port of 2 node becomes an incident pulse on the appropriate port
of an adjacent node. The TLM method is then a two-step iterative procedure that first involves
scatering of incident pulses at every node followed by a connection step 10 pass the reflected pulses to
adjacent nodes. Repeated application of this scattering-connection process results in an output function
at some observation point (output node) which consists of a train of pulses in ime which may be
Fourier ransformed o obtain a frequency response or convolved with an arbizary time domain input
sequence to get a comresponding output.

The TLM method can be used to calculate the fields scanered from arbitrary bodies. By exciting a
particular group of nodes (a line of nodes in the 2-D model or a plane of nodes in the 3-D model), a
planc wave will begin propagating through the mesh. If the bistatic RCS is desired, the scanered fields
resulting from this plane wave encountering the body are determined along a virtual surface
smwudin&:ebody. One way o calculate these fields is to obtain the total fields with the scaerer in
ghce.md incident fields with the scatterer removed. The scattered fields are simply the difference

i 2!?3:} total and the incident fields. The resulti'g ficlds are theu used to determine the far-field
pattern R

One of the difficulties in obtaining RCS through numerical modeling is that the incident plane
wave must appear infinite. This requirement is often met by making the mesh very large along the
wavefront. However, a large mesh conuaining many nodes will require a lengthy computation time.
One way 10 simulate an infinite piane wave with a more manageable mesh size is to implement

ic walls” tha guide the plans wave. These magnetic walls are perfectly reflecting boundaries of
infinite impedance. This approach is 7 lequate for obtaining the incident fields (since there is no
scattersr), but the magnetic walls would interfere with waves reflected off the scatterer. Ideally,
scatered fields see only absorbing boundaries, which in the 2-D TLM model can be realized by using a
reflection coefficient of -0.1716.

An approach to this problem is to run a total fields case, which includes the scatterer along with
absorbing boundaries, concurrenty with the incident fields case, which omits the scasterer and has
magnetic boundaries to make the plane wave appear infinite. During each iteration, a scaled portion of
the pulses reflected at the magnetic boundanes for the incident fields case are iniected into the
boundaries for the total fields case. The details of this approach are described in a previous work [4].
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Fig. 1: 3-D depiction and side view of a cavity-backed slot antenna mounted on an
infinite ground plane.

The situation is more complicated when the scamerer consists of an eiement mounted on an
infinite ground plane. When a plane wave is incident upon an infinite ground plane, it is reflected (or
scartered) as a plane wave. For a nommally incident plane wave, the incident fields and those scantered
from the ground ;lme may be maintained along the boundary by using magnetic walls with reflection
soufficient +1. However, there would also be scatteting from an element mounted in the ground planc
whic* would require an absorbing boundary to prevent re-scattering. Thus, the problem of
simultancously maintaining the incident plane wave, and the two scattered fields (froni the ground plane
and from the mounted element) arises. This paper will discass a solution to this problem using a
¢y~ -backed slot antenna mounted on the infinite ground plane in a 2-D TLM mesh, as shown in Fig.
', «e=xample. These antennas are commonly used in aircraft and space applicatons because of their
v, ounting abilides [5].

Ay «<h

Determination of the scattered fields from a cavity-backed slot antenna mounted on an infinite
ground plane requires an adequate model of the infinite ground plane in only a finite TLM mesh. One
method i+ © truncate the ground plane, but allow it w0 remain excessively large compared to the
mounted .meat. This method raises several questions: How much larger than the mounted element
does the ground plane need to be? Is the size of the ground plane dependent upon the number of
iterat un? In addition, how lengthy a run tie can be tolerated for a large mesh? A second
methou. .. one we will describe in this paper, is to employ 8 pulse injection technique to handle the
reflected planc wave. This approach is similar to one taken in modcling an incident plane wave [4].
This approach, a planc wave injection technique for the incident plane wave, will be reviewed. Then
we will show how a similar method can be used to model the plane wave reflected off of an infinite
ground plane. Figure 2 shows the actual TLM model of a cavity mounted in a ground plane. This is an

ximation of the cavity-backed slot antenna case where now the slot dimensions are actually equal
1o the cross-section of the cavity.
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Absorbing boundary . I'=-0.1716

Fig. 2: A representation of the 2D mode! for the cavity mounted on an infinite appearing
ground piane. The plane wave would be normaily incident from the top, and the field
points are determnined at the indicated nodes 1-8.

Pulse Injection

Our problem requires simulation of both an incident plane wave and a planc wave reflected from
mmmmwmeﬂmWymmgmmmmmuﬁq. An accurate
and time ient method to model an incident plane wave is to maintain the absorbing boundaries
while injecting pulses previously calculated [4]. These injections maintain the integrity of the plane
wave by allowing it to appear w be non-attenuaring. Since the absorting walls cannot distinguish
berween incident and scattered waves in the total ficlds case, -0.1716 times the incident field is also
reflected at the boundary. Therefore, the incident field pulse at a port next 1o the magnetic wall is
multiplied by 1.1716 and then added to the total field pulse at the corresponding port next to the
absorbing wall. The pulses to be injected may be determined by running a one-dimensional string of
nodes, as shown in Fig. 3a. For example, duning cach iteration, the pulse at port p in Fig. 3a is scaled
and injected into Fon p' in Fig. 2. This technique works well for normally incident plane waves and
may be modified for oblique incidence cases using a timed pulse injection technique for hoth the initial
excitation and the maintenance of the plane wave (6.
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Fig. 3: One dimensional plane wave injection models. In both cases, the waves are
guided by PMC walls. (a) For the incident wsve case, the wave terminates in an
absorbing boundary. (b) For the reflected wave case, the wave is reflected by 8 PEC.

Fer our problem, we must incorporate a unique scatterer, the infinite ground planc, to which the
cavity is :nounted. The technique discussed above works well for mainuining the incident plane wave
while absocbing the scanered field from the cavity, but some further action must be taken 10 account for
mesctuaedﬁeldﬂomtheym lane. The field s:attered from the ground plane would be a plane
wave except for the presence of the cavity. It then:fore should not be aliowed to attenuate when
propagating through the mesh. Since the absorbing bxundaries used to absorb the fields scattered from
the cavity would give rise to attenuation of the plane wave, an appreach similar to the one used o
masintsin the incident plane wave may be taken to main ain the reflected plane wave.

Similar to the incident case, pulses arc pre-calrulated and injected intc the mesh every iteration
to maintain the scattcred plane wave from the ground piane. ‘I'hepuls.‘smca.lculmdbyumgam
dimensional st of nodes, as shown in Fig. 3b. Note that the left and right boundaries are PMC and the
bortom boundary is a PEC, representing the ground plane. Because of the normally incident field’s
symmetry, thxswcmmelyrepnsenumemﬂmwmmdphmmmounheamy the pulse is
injected at the top of Fig. 3b (as shown by the arrot/), a on¢ dimensional wave, representing a plane
wave, propagates through the mesh. During each itrration, the voltage pulses on the ports next to the
magnetic boundaries are increased by 17.16% and injected into their corresponding ports of the 2-D
mesh. In Fig. 3b, once the wave refiects from the ’EC, the total ficlds become present in the mesh.
Therefore, the reflected pulses along the PMCs represent both the incident wave and the scattered wave.
Consequcntly.mepulm injected from Fig. 3b uuohg 2 simultancously munummemr:gnry of both
the incident plane wave and the scatiered plane wave from the infinite ground plane.
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Verification

The electric field calculated at selected points using our injection rechnique was compared to the
field using a very large ground plane. The large ground plane extended 1249 nodes on each side of 2 2
x 2 node cavity, and the mesh reached 10 nodes above this ground plane. ‘The injection technique was
used to simulate the incident plane wave, but no injection was used 1o simulate the reflected planc wave.
The extreme size of this mesh was sufficient to calculate the field in the vicinity of the cavity 1s though
it were maunted on an infinite ground planc. Using 1500 iterations, an accurate E-field dismibution
was calculated over a line of 8 nodes panailel to the ground plane. These nodes were selected 2 nodes
directly above the cavity and were symmetrical to the cavity s center (the node location relative to the
cavity is shown in Fig. 2).

In the mesh including the injection techrique for the reflected wave, the ground plane extended
only 5 nodes on ¢ither side of the 2 x 2 node cavity. Again, the mesh reached 10 nodes above the
ground plane, the field was calculated over the 8 nodes indicated in Fig. 2, and 1500 sterations were
run. As shown in Fig. 4, we achieved very close agreeznent with the large mesh case. The maximum
deviation was less than 0.4%. A comparison of the phase showed similar agreement. For an additional

ison, Fig. 4 also shows the field obtained when the smaller mesh was run without the injection
techinique for the reflected wave (injection was still used to simulate an incident plane wave). This case
deviares from the large ground plane case by as much as 16%.

There is a limit to how close the siac walls can be brought in using our technique. With the
walls moved to within one node of - .c ~aviry, the field deviated from the very large ground plane case
(the maximum deviation was 4.07). However, with the walls only 2 nodes from the cavity, the
maximum deviation dropped 10 2 1% .

1.8"

161

Magitude of Ez
N

121

1.0 T T T T T - T ™

Node

Fig. 4: Coniparison among calculated electric fields for three cases:
(i) (CJ) a large mesh, 1500 nodes in length, used without the injsction

- technique . . . T
(i)  (@)asmall mesh, 12 nodes in length, incorporating the injection
technique

(i)  (A) a small mesh, 12 nodes in length, without the injection technique
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Conclusions

By injecting pulses at the boundaries, our 2-D TLM network can simulate a plane wave
normaliy incident on a caviry which has been mounted on an infinite ground plane. Since a relatively
small ground ptane in the mesh can be made to appear infinite, a significant savings in memory and run
time is realized over the large mesh approach. We are now developing a timed pulse injection technique
1o accurately model plane waves obliquely incident on an infinite ground plane. Further, these
techniques will be adapted for the 3-D TLM network.
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Curved Line Multipoles
for the MMP-Code

P. Leuchtmann and M. Gnos
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Abastract

The e.ponsion of the electromagnetic field used i MMP (2]ultiple Multipole Program, may be simplified
m particuler cases. Depending on the set of ezpansion functions a significant reduction of the number of
wnknowns is possible. The paper describes a new set of expansion functions (the ‘curved {ine multipoles’;
which m1y be flexibly adapted to any curved long structure including edges. Curved line multipoles have
two independent parameiers (order N and degree M) to predefine the marimum possible vanntion of
the field to be expanded. N steers the wanation along ¢ curved line of finute length while M steers the
field canation around this line. The calvulstion of ike line multipoles is discussed and the application to
Jarticniar scattering problems shows their advantage versus the conventional multipoles.

1. Iatrodection

This paper deals with a particular subset of expansion functions for the MMP-code. the line multipoles.
First let us briefly describe the basic ideas of MMP (Multiple Multipole Program) iu order .o see what
the line multipoles are good for. _

The basic problem is finding an unknown electromagnetic field function f where f = (£. A has
six compopents. the compoments of the electric field £ and the composents of the magnetic field .
In a domain D (with boundary 9D) f bas to satisfy Maxwell's equations in the stationary case {~
=) curl £ = wuf aod curl B = —iwef where : anguiar frequency. u.£: constant (complex)
permeability permistivity in D. i. imaginary unit, ¢ time. On 3D. f must satisfy some boundary
copditioas. MMP starts with the seties expansion

J
IEDIHA ()

=l

whers sach expaasios anctidn f, fulfils Maxwell's equations. but not aecessarily the boundary conditions.
The vaknown coeffients a, are used to satisfy the latter in a least squares sense. Obviously. the choice
of the expansion functions [, has significant influence on the convergence of the expansion (1). If the
solution [ has a particular behavior — e.g.. f is the scatrered field and radiates energy away from th»
acatterer — it makes sense to use only exparsion functions f, with the same behavior. On the other band
the st of expansion functions should span » wide variety of possible solutions. Let us consider a special
case: scatteriag at an ideally conducting spkere (see fig. 1). The optimum set of expansion functions
{for modeling the scattered field is 2 series of multipole functions. Assume that the sphere is electrically
iarge and the incadent fidd 1s 2 linearly polarized plane wave traveling in z-direction. In this particular
case. ¥ must be large. but M = 1 is sufficient. Since z full multipole expansion has A'? — 1 parameters
while the adanted set (all orders but only terms of first degree) has onlv N parameters. the number of
unknowns is signifizantly reduced without any lack of accuracy. This example shows how an intelligent
choce of the expansion functions may dramatically redoce both the amount of calculation (~ V3) and
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Figgrg | For any incident field. the scattered field / may be written as a sum of multipole functions.
starting with a dipole and ending up with functions of higher order and degree. With the set
of all multipoles up to the maximum order N any variation of f aleng 8 € [0. <] describable
by ac N-th order polynomial in cu6 § may be represented exactly. Similarly. with the set of all
multipoles up to the maximum degree M any variation of / along ¢ € [0, 2] describable by
an M-th degree Fourier series in @ may be represented exactly. Note that M and A" may be
chosen independently, but it is always M € N. For N,.d — oo the functions form a mathe-

lly lete set of expansion fi ions. .

the amount of computer memory (~ N?). The line multipoles to be discussed iz this paper offer a similar
possibility for reducing the total number of unknowns not only for spheres but for any ‘long structures’.

2. Curved Line Multipoles: Qualitative Description

The set ¢f expansion functions to be presented in this paper may be looked as distributed multipoles
along an arbitrary curved line L of finite length L. We define a longitudipal coordinate z along L and an
azimuthal coordinate ¢ aroend the line L (see fig. 2). The field of the curved line multipoles is singular
on the finite line L and fulfils Maxwell's equations anywhese else. The strength of the singularity varies
along L in a polynomial way. i.e., line multipoles up to order N model any variation along z € {0, L]
describable by an N-th order polynomial in 2. For 3 given 3-variation of a curved line multipole function
there are various o-variations available, ramely any trigonometric function in ¢. More precisely: Line
multipoles up to M-th degree model any variation along ¢ € [0,2x] describable by an M-th degree
Fouiier series in . Note that M and ¥ may be chosen independently from each other. For N. M —
the resulting set forms a complete set of expansion functions in the space outside the Line L.

Physically, the zero degree term is the field of a line current 7(z) along L. Very close to L this field
does no. depend on ¢. However, for a curved L the ¢-independency is lost away {rom the line. This is
due to the fact that ¢ and z-values are not uniqucly defined for such points. Nevertheless, the curved
line multipole function gives exactly the correct field.

Curved line multipoles are useful not only for modeling the field arvund long thin structures like
wires but also for edges. The important point is that the user may predefine the maximum variation
along = and © independently from each other just by specifying maximum order .V and maximum degree
M. Note that this is exactly what is requestcd in practice: E.g.. the field along an edge varies most often
much less than aroued the edge.




like a polynomial along :. This behavior is strictly true only close to L since the coordinates
and ¢ are not unique away from the curved lie L.

3. The Computation of the Curved Line Multipole Fields

It is well known that the electromagnetic field of a thin straight lins current I(z) (nonzero only on the
finite length) may be given in -losed form if I(z) = I, cos kz+ I, sin kz, where k is the wave number of the
surrounding medium and /., J, are constant (1]. Based on this formula the field of an equallv segmented
long atraight wire with n free parameters (the currents at the segment joints) has been given [2j. Sine
and cosine shaped currents on each segment were combined in such a way that the current is continuous
along the whole wire. For segment lengths Al € A = (27)/k (A = wave length) we have coskz = 1}
and sin kz = &£z on the whole segment and the mentioned combination results es.entially in a poiygonial
approximation of an arbitrary current distribution I(z).

In order to reduce the number of free parameters on a Jong wire the values at the segment joints
may be given, e.g. equal to a polynomial p,(z) of degree n. A series Ef_o @, pn allows the representation
of any cutrent distribution I{z). Note that the field of one segment has tr be calculated only once but
it is part of the contribction of all p,. The main advantage of such a procedure is that the number of
segments ruay be chosen independently from the number of unknowas {4].

A generalization of the single segment current field has been described in [3|. While a line current has
an electromagnetic field with rotational symmetry the mentioned generalization (called ‘line multipoles’)
yields an azimuthal field behavior (along &) proportional to sin m¢ or cos ma respectively. For m = 0 it
is equal to the common wire current. Since the m-th degree line multipole is built up using 2m siugle
currents’, there are line multipoles of the same degree both with sin k= and with cos k2 behavior. Thus
it it possible to consider a segmented line and to combine the fie!d functions of each degree to a iong
muitipole in the same way as it has been done for the long wire in [2] and, as & next step. as in {4). This
is essentially what kas been done for this paper.

Other than in the previous versions tie line may be curved and segmented in an arbiteary way. The
user must specify a number of points (tue segment joints) and — due to the lack of rotational symmetry
— for each segment an additional vector specifying the zero-¢ direction of this particular segment. This
information is stored in an extra file. The graphical MMP preprocessor ‘mmptool’ (or *xmmptool') [3]
allows the efficient generation of the data.

Two different types of curved line multipales are available. The difference between the two lies in the
treatment of the longitudinal behavior of the fields. The first version is essentially analogous io MMP's
thin wire feataure {1]. Since ap N-segment wire has N + 1 joints (including the end points) there are vV -1
parameters. If M is the maximum degree, there are 2M + 1 functions with different o-dependency for
each single segment functioa. Thus, the total number of parameters is FPiof = (.V + 1)(2M +1). In the
second version the number of segmsnts is decoupled from the number of parameters in a simiiar way as
in MMP’s long wire expansions (4]. The longitudinal behavior is modeled using Legendre poivnomials

! The actual calculstion is recursive with respect 1o m and includes a limit (shifting all currents together ¢n the same
place} in order to have 2 zingle lne with singular fwid values (3).
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of order n and the maximum order N may be specified. Thus, the total number of parareters becomes
again Pi*f = (N +1)(2M+1). but N is now the maximam order of the longitudinal polynomial expansion
rather than the nnmber of segments. Of course the latter should be larger.

A second set of field functions may be obtained using non physical magnetic currents rather than
electric currents. For a single segment the electric current fields are TM with respect to : while the
magnetic current fields are TE. For simplicity’s sake we call the respective curved multipole fields also
TE aad TM respectively. in spite of the fact tha: the longitudinal direction varies from segment to
segment. A ‘complete curved line multipole’ has now PSS = 2(¥ 4 1)(2M + 1) free parameters. Note
that the calculation of the dual field is very easy and chesp: only the final field vulues have to be
‘dualized’, i.e., interchanging £ and & and multiplying by the (negative) wave impedance.

Another set of P.F field functions may be obtained using the ingoing Greens function rather than
outwards radiating Greens functions for the calculation of the fild of a single current segment. This
gives non phyiical fields in free space. Nevertheless, in bounded domains such functions are usef-l.

The following table gives the exact MMP data needed for all possible variants of curved line multipols
expansions. Remember: an MMP expansion bas 6 integer parameters (IE1-IE6) among other paramerers
which are not used for curved line multipoles.

IEL: 131...134 (version 1) or 141...144 (version 2)
1E2: 3 (outgoing waves) or 4 (ingoing waves)

IE3: minimum ¢~degree or maximum degree

IE4: maximum ¢-degree

IE5: maximum (longitudina.) order (only version 2)
IE6: lyy or yy

(2)

The pasameter IE1 is 131/141. if both TE- and TM-fields are requested. In this case, all o-degrees
from 0 to TE3 are computed. If IE1 is 132/142, only o-degrees from IE3 to IE4 are computed. Finally,
IE1 = 133/143, only TM-fields are computed and for IE1 = 134/144, only TE-fields are computed. in
both cases only o-degrees from IE3 to IE4. The parameter IE is used for specifying the file with the
geometric data of the line. It it named mmp_lyy.zzz where yy is the (two digit) number of the line and
xzz is the (three digit) number of the problem to be solved. The zero order term of the TE-fields (a single
magnetic current) is only computed if IES > 99. For the IE1 = 131...134, Pi = PX¥ is proportional
to the number of segment joints (N + 1) while for IE1 = 141...144, the longitudinal behavior is modeled
using Legendre polynomials up to order IES.

4. Examples

In order to show the advantage of the curved line multipoles compared to the conventional multipoles.
we calculate problems where the line multipoles seem to be useful. In a first example the scattering
at a bagana shaped object is investigated. The geometrical situation is shown in fig. 3 giving also the
time mean value of the power flux (Poyuting vector), while in fig. 4, some details of the near field are
represented.

The same sitvation has been modeled in different manners using either line multipoles or copventional
multipoles. Further on, the number of parameers (i.e.. the orders and degrees of the multipoles) has
been varied as well as the number of matching points. Finally, the field has been computed at two
different frequencies resulting in a overall ‘banana’ length of half a wave length A (low frequency) and
3 (high frequency). Field plots of the different computations look almost identical. This is due to the
fact that the errors are very small: all versions deliver good results but at very different amounts of both
calculation time and computer memory.
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Figure § The banana shaped object (idesl conductor in air, half a wavelengeh (1) long and 0.0277
thick. bent alcag & quarter of & full circle) is illumninated by an 2-polarized plane wave trav-
eling in s-direction. The picture shows the time maean value of the Povnting vector of the to-
tal near fleld. There is a shadow region S with low fleld values and a “standing wave area’ F
whaere the fields are high but only the time mean value of the power flux is low. See also fig. 4
for more detaiis of the field in the rectangie R.

The geomeiry of the situation is symmetrical with respect to two planes. This symmetry may
be used to simplify the expansion. Due to the fact tbat the line multipoles may be curved in a three
dimensional way there is no bailt ir symmetry for these functions while conventional multipoles have
built in symmetry. This has the consequence that the models are different for the two cases: Using
line multipoles, ome half of the ‘b ’ has to be modeled while using conventional multipoles only a
quarter of the ‘banana’ must be modeled. On the other hand, more matching points per unit surface are
necessary for the conventional multipoles. The following geometrical models are used:

I: Rough model for conventional multipoles, 686 matching points

II: Fige model for conventional multipoles, 12935 matching points

II: Thick model for line muitipoles, 854 matching points
IV: Thin model for line multipoles. 840 matching points (3)

Note that model IV is a three times thinner ‘banana’ of the same length (diameter = 0.009A). The
following expansions have been used for the same geometrical model where all line multipoles are along
the axis of the ‘banana” and have 28 (internal) segments of equal length for a half of the "banana’. In
most cases an additional (point-)multipole has been used for modeling the field at the end cap. Table
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Figure J A more detailed view of the instantaneous valus of the slectric fieid (left) and of the magnetic
fiald (right) respectively within the rectangle R (see fig. 3). Arrows and octagons (for vectors
perpendicular to the drawing plane) show the direction of the field while the underlaid contour
lines give the magnitude of the fiald strength.

(4) gives the integer parameters IE1 and IES of the line muitipole, its related number of parameters X,
the number of conventional multipoles ncqe wnd its related number of parameters Ny a3 well as the total
pumber of pirameters Nyg = N1 + Negn Ny for the different expansion models. For the line multipole
it is IE2 = 3 (outgoing waves), IE3 = 0, TE4 = 2 (¢-degree} and IE6 < 100 (no magnetic current).

model: a b c d e f g b i k 1 m

IEL: 142 142 142 142 142 142 132 142 142 142 - -

IES: 5} 3 5 5 8 12 - 8 8 12 - -

Ne: 34 36 34 54 81 117 261 54 81 117 - -

Teon: - 1 1 1 1 1 1 1 1 1 19 19

Ny: - 66 66 96 66 66 66 56 36 56  £18 42

Neor: 34 102 120 150 147 183 327 110 137 173 342 802 4)

The local z-axes ¢f the conventional multipoles are oriented along the ‘banana’ axis and its degrees ave 2,
i.e., equal to the ¢-degree of the line multipoles. The multipoles in models! and m are found automatically
using [5]. The number of parameters varies slightly from multipole to rultipole. Note that the models
using conventional multipoles are symmetry adapted. An ‘3D curved banana’ would reguire both twice
as many matching points and twice as many parameters for the conventional multipoles but the same
numbsars for the line multipole models.

Combining the geometrical models I-VI with the expansion models a-m and running the computer
at low and high frequency, different results are obtained. We list the mean percentage error (mean
mismatching divided by mean value of fieid values on the matching points times 100%) and the cpu time
(in seconds) for computing the parameters and the errors on a Sun SPARC 2 machine.

model Ma MNIb Mc (M4 Ile Mg Olc Mle OIf IVh IVi IVk 0 m D Im
frequency low low low low low low high high high low low low low low high high
error (%] 16.9 04 01 6.1 01 01 06 04 03 04 01 01 29 01 08 03
cpu (par) 98 122 149 181 195 447 150 195 262 137 179 243 361 3404 361 3404
cpu{err) 88 86 97 101 117 84 99 118 143 94 114 139 49 195 48 195 (3)

Figure 5 shows the distribution of the errors for some particular cases.
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Figure § The error varies along the surface of the scatterer. The ‘hedgehog’ pictures give the distribu-
tion of the errors for thirse low frequency calculatiors (left) and two high frequency calcula-
tions (right). Note that the scaling of the errors is the same for all cases except in case [lic:
The actual errors are more than ten times larger in this case. The ‘reference’ at the very right
has not significantly smaller errors, in spite of the fact that almost ten times more parameters
are used. This shows the power of the curved line multipoles.

In fig. 6, a more complicated example is shown: the scattering at a four turn helix. The helix is half
a wavelength A high, the total length of the wire is almost 2X and its thickness is A/20. It is modeled
using 3472 matching points (each rectangle on the surface in fig. § is one matching point).

The scattered field is modeled using fonr line multipoles (ane for each turn) of longitudinal order 12
and a ¢-degree of four (—884 Parameters), Additionally, two conventional multipoles have been used to
model the field at the wire ends (—132 parameters). Hence the field model has 1016 degrees of freedom.
The computer (a Sparc 2 workstation) needs about 6 hours to solve the problem end ends up with an
average error of 2.2%. The maximum error occarx at the end of the wire and is only 26.3% (see fig. 6
left).

Note that this example brought the computer to its limit if it would be calculated using only
conventional multipoles. It had to be discretized with at least 7000 matching points acd 60 multipoles
with 36 parameters eack. This results into approximately 2200 parameters resulting in about 50 MBytes
of computer memory and 11 hours ¢pu time on 2 Sparc 2 machine. The given numbers refer to the rough
model of the ‘banana’ in our previous example. A finer model would have to double both the aumbet of
matching points and the aumber of parameters — and came (with 200 MBytes required memory and 88
bours cpu time on a Sparc 2 without speaking about numerical problems) definitely out of the scope of
‘normal’ computers.
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Figure § Left: The helix (ideal conductor i air, height: A/2) is illuminated by a placs wave coming
trom left._The pictuie shows the instanstantaneous value of the E-field in the H-pline (the
incident & is vertical while the incident E-field is perpendicular to the drawing plaae). The
nead!cs on the surfsce of the scatteret rep the local mi hing, i.¢.. the "angential elec-
tric field and the normal magnetic field in this case. Mean error: 2.2%.

Right: The same field oo a helical surface (white). Nota that the electric feld is alwayx per-
pendicular to the scatterer’s surface. The direction of the incident wave is indicated. See also
fig. 7 for the power Oux of the same field.

Summary
The curved line multipolec “ow the exact calculation of the near (and far) field of thin structures.
Compared to conventicn. Jtipcles the number of parameters is — at comparable errors — reduced

by a factor 5 ...10 (a; leasi!), wheve the reduction is increased when the wires become thinner. The
scope of MMP calcuiable sitnations is significantly enlarged. The curved line multipoles are useful to
take into account a priosi knowledges, since the maximum field variations in two directions (along and
around the line) may be chosen independently from each other.
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linvisibln triangles

Figure 7 This picture shows the instantaneous value (left) and the time mean value (right) of the
Poyating wactor § = E x  of the same situation as in g. 6. The contour lines at the left
reprevent the absolute valus of 5. Note the ‘screening effect’ of the helix. Seme of the vectors
at the left poin* below the white helical surface and are not visible for this reason. The local
time mean energ flux is always along the wire and may have different directions inmde and
outside the helix. N.B.: The same efiect occurs with the ‘banana’ example (see fig. 3).
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Abstact

This paper presents a comparison of the multipole technigue with the method of moment.
as applied 1o the problem of electromagoetic scattering by perfectly corducting cylivders.
Comparisons are made on the performances of the two techniques with respect to variatiops of
the cylinder's crozs section. Theoretical development is given for both techniques, along with
comments regarding the uniqueness of each technique. Companisons are made with respect to
run tim=, number of special function calls, matrix sizes required for convergence, and numerical
stability. Bistatic scantering patterns are presemted for perfectly conducting cylinders of various
cross sections. Conclusions and general rules of thumb are given for the use of each technique.

1. Introduction

The method of moments (MoM) has been used for mumerous years to solve various
electromagnetic scattering and propagation problems where the object under study is on the order
of the wavelength of imerest. The method is well documentad [1,2] and shown to produce
reliable results for a large cliss of problems. However, in recent vears interest has grown in
the use of the multipole technique (MPT [3.4) 2s an aiterative method for solving many of the
classical MoM problems. In response 10 questions regarding the efficiently and reliability of the
pewer MPT, two Fortran based computer codes wers developed (one MoM and the other MPT)
10 run a direct comparison between the two techniques. The two codes both use the same
subroutine (CROUT reduction) to invert their respective reaction matrices and both codes use
standard IMSL libraries tor all of their special function calls. Thus, the two cornputer codes
allow for a direct comparison of the two methods and provide insight into the ab:lities of the
newer MPT with respect to the rraditional used MoM technigue.
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2. Mathematical Development

Figure 1 shows the cross section of three infinitely long perfectly conducting cylinders
(PEC), with their 2xis along the z directicn. The region survunding ihe cylinder is free space
with permeability u, and permittivity ¢. It will be assumed that the cylinder is illuminated by
a transverse magnetic (TM) plane wave, of unit amplitude, propagating in the x-y plane.

Periodic Rectangle Ellipse
r=0.6A A=0.22 ws().31 h=0.6A x=0.64 y=0.3A
Figure 1 Scauering Test Bodies.
A) Multipok: Technique

Let the scaticred electric field at an observation point extermal to the PEC cylinder be
g enby:

Epear = 3 boa(kop)e?™2 ()
&
where, k, and H.*' are. respectively, the wavenumber of free space and the Hankel funciion
of the second kind of order n.

From the PEC boundary condition, the rangential components of the electric field must
vanish along the contour of the cylinder. This leads to the following equation relating the
incident electric field to the scattered clectric field:
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“Eipe= I a7 (kR(P))eI™2 4}
o
where p = R(¢) i the parametric comtour of the cylinder.
Approximating the above series by the first 2N+1 terms and enforcing the resulting

equations at 2N+ | matching points on the contour results in the following matrix equation:

[Znn) [2n] *[Eind] - &
Solving equation (3) provides the series expansion coefficients for the scattered fields outside the
cylinder.

B) Maethod of Moments

Let the scattered clectric field at an observation point external to the PEC cylinder be
given by:

Encu’_ﬁ‘nfcj(p/)ﬁou] (k:P'P/:)dl' @)

where, n and J(p’) are, respectively, the intrinsic impedance of free space and the surface
current along the contour of the cylinder.

From the PEC boundary condition, the tangential components of the electric field must
vanish along the comtour of the cylinder. This leads to the following equation relating the
incident electric field to the surfsce currents slong the contour of the body:

Epes [ F(RO)) BT thip-R($) 1) a1’ ®

where p = R($) is the parametric contour of the cylinder.

Approximating the surface current by N pulse basis functions and choosing N matching
points along the contour of the cylinder, allows equation 5 o be approximated by the following
matrix equation:

[2a0] [Tn] *[Eine] - )

Solving equation 6 provides the surfzce currents along the contour of the body which in
turn can then be integrated to produce the desired scattered fields.

3. Comparisons

Table I presents the run time and matrix sizes required to produce converged bistatic
radsr cross section (RCS) plots for each of the scanering bodies excited by a TM incident plane
wave. All test cases were run on an HP 5000 model 730 using double precision arithmetic,
CROUT reduction, and IMSL special function calls. Figure 2 shows the converged RCS
panemns of the two methods for each of the test bodies.

Comparing the performance of the two techniques, with regards to the periodically
deformed cylinder, shows that while both techniques produce the identical RCS plots and require
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approximately the same size reaction mairix, the MoM is approximately five times faster than
the MoM. This considerable speed difference is a direct result of the larger number of special
function calls required to generate the MoM rez_tion matrix. Similar results are obtained for
the rectangular cylinder, with the MPT appearing to be slightly faster. However, a close
comparison of the two RCS plots shows that the RCS plot produced by the MPT is slightly off.
This efror ic attributed to the known problems of trying to expand a step type function with a
Fourier series. The short coming of the MPT is illustrated by its converged RCS plot for the
clliptical cylinder which is in error with the RCS plot produced by the MoM. The MPT is
limited by the oumerical problems associated with the Hankel function used in the series
expansion. If the number of matching points greatly exceeds the minimum electrical dimension
of the body, umerical problems associated with the bebavior of the Hankel tunctions used in
the serics cxpansion causes the matrix o become ill-conditioned. If the desired answer has not
been reached at this limit, no improvement in the answer can be obtained by using an increased
number of expansion functions.

4. Conclusions

Comparison of the MPT and the MoM shows a trade off between speed and versatility. The
primary difference between the two codes is the generation of their correspording reaction
matrices. The MPT’s reaction matrix is developed using a cylindrical basis function approach,
while the MoM's reaction matrix is developed using the traditional integral equation approach.
For targets near circular, the MPT requires smaller matrix sizes than the MoM; howevcr, as the
target’s cross section becomes less circular, the matrix size quickly increases. Limits on the
maximum allowable matrix size for the MPT are directly related to the minimum electrical
dimension of the body. While the MoM does not suffer from: an upper bound on the number
of matching points allowed, it is, in general, slower than the MPT. This is, in part, due to the
larger number of basis functions and special function calis required to accurately approximate
the needed surface curremt.  Thus, the principle factor when choosing between the two
techniques is the gencral shape of the body under analysis.
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Table 1

Method of Moments

Cylinder cross section Periodic Recungle [r Ellipse
Marrix size 24 26 42
for convergence
Run time in 0.333 0.637 1.243
seconds
Number of Special 576 676 1764
function calls

Table 1T

Muitipole Technique
Cylinder cross section Periodic Rectangle Ellipse
Matrix size 25 19 23
for convergence
Run time in 0.164 0.119 0.131
seconds
Number of Special 100 7€ 9
function calls
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Multipoles as Metrons for the
MEI-Method: A Testing Toolkit
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Abstract

The mensured equations of inveriance (MEL), proposed by R.K. Mei et al. [1] is pared with traditional
[finite difference (FD) techniqus. MEI starts with the choice of the metrons which will determine the grid
operator. We investigate the influence of the metrons on the operator itself, on the local errors both
in inner grid points and in boundary points and the influence on the final result, As o general rule
we can sey that the MET result tends to be similar 1o the metrous. This is both an advantage and a
drawback: A good choice of the metrons yields ezceilent resuits but a bad choice turns out in real rubbish.
A new ME] program has been written for this investigation. It is highly flezible. accepts input from MMP
prepr s and prod MMP compaiible output files.

1. Introduction

In chis paper we discuss some special details of the MEI-method (Measured Equations of Invariance} [1.2].
Since MEI is similar to the conventional F'D (Finite Difference) technique we give a short description of
both methods. Fig. 1 shows what type of problems we are dealing with.

incident wave
(TE or TM)
1/
b - tangential
Yt gnjt vector

ap
D (A+kE)f=0 inD (1)
o, .y P TM:if-f=0 } D (2
R l TE: (7. x grad(f+ fo)] -z =0 2 PP P
B IABC on B (3)

Figur; 1 A cylindrical ideally ducting structuze 5 is embedded in a linear i pic and b g
medium and s illuminated by a (time harmonie) incident plane wave f°. The unknown scar.
tered wave [ has to satisfy both the Helmholiz equation (1) in the whole surrounding space D
and the bovndary condition (2) on the boundary 9D of D. Note that f iz equal 1o B (T™.
case) or H -3, (TE-case), and k is the wave number of the surrounding medium. The ABC
{=absorbing boundary condition} on the outer boundary B (3) is necessary if the field domain
D must be restricted.
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For both, FD and MEL an almost asbitrarily shaped grid is laid on D. The field value on the [-th
grid point is denoted by f(I). Each grid point is related to a set of N, neighbor points with numbers {;.
&....1n, (see fig. 2). For grid points on 8D, the field values are given through equation (2) in fig. 2 whue
the values of all the other grid points are unknown. A field operator L; gives a reiation among the field
value f() and the values on the neighbor points:

N
Lf = wof()+ 3 e fil;i=0 4

=l

The (complex) numbers ¢;; fully deseribe the field operator L.

+ + + + + + o+ o+ o+ o+ o+
1+
++"l ! + + o+ 4 7+ o+
+ t m i
+ L + o+ o+ bt 1+
+ + zi
P Y TR

4
Eioyrs £ Part of a general grid (lefs) : d a regular quadratic grid with grid consuant o (right).

FD and MEI differ in the wzy how the field operators L, are obtained. In FD. the operators are
essentially first order approximations of the Helmboltz operator (A + k°). E.g.. in a regular quadratic
grid (see fig. 2, right) we have (after multiplication with d*)

cp=(kdf -4 ecn=l,en=1l, en=1 cy=1. (5)

For non regular grids the coefficients ¢;, depend on the relative positions of the grid points.

In general. each inner point contributes one equation to a large (but sparse) systam of equations.
The {-th equation contains ouly N, + 1 unknown field values.

Points on the outer boundary B reqaire a special treatment since the isotropy of the field operator is
lost on B. So celled absorbing boundary conditions (ABC) take intv account sorme a priori knowledgs on
the field, e.g. the fact thut the scattered wave is traveling outwards. Hence, cach point on B contributes
an equation to the system — and the aumber ¢f unkuowas is equal to the nnmber of equations. Thus,
tLe sysiemn mayv be solvod. This is essentially what we refer to as FD.

Rather than approdmating the Helmholtz operator, MEI finds the ccefficients &; by using field
solutions ;. The metions m; satisfy the field equation (1) in D, but not necessarily the boundary
conditions (2). The i-th metron delivers the equation

Ne .
Lif i= enmil3 + 3 &milly) = 0. (6)
=1
In this equaticn, tie coefficients #;; are the anknowns. They may be computed if at least N; different
metrons are chosen. It the namber of metrons is larger than A a least squares solution may be obtained.
Note that points on the outer boundary B require no special treatment. Once the coefficients &, are
deterrained for all grid points, the field is computed in the same way s in FD.
It is the purpose of this paper to show how different choices of metrons do (or do not) influence the
final solution.
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2. How Do the Metrons Influence the Field Operator?

In a first step we choose plane waves as metrons and consider a regular quadratic grid (see fig. 2, right).
In this case, the FD field operatcr is given by (5). We normalize the MEI field operator in such a way
that & = ¢ = {kd)’ - 4 and ipvestigate the deviation of the other & fram ¢;; = 1 for ; = 1...4. The
result is given in fig. 3. As a main result we find that the phase of the coefficients decreases in the main
direction of the propagatioa of the metrons.

K -
¢ S Sl S,

Eigury 3 A quadratic grid (points 0.2) apart) is used to show the influence of the metrons on the MEI
rield operator. The direction of the metron waves are given in the top. while at the bottom
the resuiting ME] coefcients are indicated. The shading is darker for lower phase and the
triangles are narrower, if the corresponding value of jc;;| is smaller. Cases 1-3 are symmet-
rical, i.e., all four values of c;; are equal. We bave (bere. the first index [ denotes the case)
c1j = 1.048, ca; = 1.088 ard c3, = 1.068. In case 3, eight metrons have been used (~+least
squazes for computing the coefficients ¢;;). All these values are very close to the FD values.
For cases 4 and 3 symmaetry is lost since all four metrons propagate mainly in one direction. If
the second index j varies from 1 to 4 in correspondance to fig. 2 right. the values of the coeffi-
cients are ¢ = 1.08£=31", cq3 = c4q = 0.2£0%, cq3 = 1.08231” and c5; = c53 = 0.932-8.6°,
cas = cpe = 0.93£8.6°.

The influence of the propagation direction decreases with a finer grid. Figure 4 gives an example
using TM-multipoles as metrons. These multipole functions radiate energy originating from the center
of the picture towards all directions. In spite of this behavior the MEI operators are almost symmetrical
as long as the grid constant d is small compared with the wave length X.

For ingoing multipoles, i.e., the energy propagates fro.n far away towards the singularity, the coef.
ficients become conjugate complex to that of outgoing waves. (See fig. 5)
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Eixxre { The first four TM-multipoles (. le, dipoles #tc.) placed in the cenver of the picture are

used a6 matrons. At the left the wuvc length is ten tunu larger than at the right — A/d = 40

and A/d = 4 respectively. Asin fig. 3 a similar grap P ation of the coeflicients

using arrows rather than triangles is used bare.
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Fiqure § The first four TE-multipoles (monopole. dipoles etc.) placed in the center of the picture are
used as metrons. Cutgoing waves (lef:] are compared to ingoing waves (right). {A/d=5)

3. The Local Error of MEI Field Operators
We define the following local error of the ME] field operator: Given an aualytical solution f of the
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Helmholtz equation. (For us. f is 2 plane wave with a given propagation direction.) f may be evaluated
on all grid points. in particular on the grid points involved in the equation of L;. If the exact field values
on the neighbors are taken the operator equation (4) may be solved with respect to the (approximate)
value fip{!). The difference of this value and the exact value f({) is defined as the local error ny. For the

relative error 17,%. we divide by f(!).

- 1fap(D) = fQ).
t )

Figure 6 shows the relative local error due to the metrons of case 2, fig. 2 when the analytical solution f
is a plane wave traveling in direction o. Note that the error becomes zero when f coincides with one of
the metrons. This is still true for points on the outer boundary B: MEI automatically produces in this
case a perfectly absorbing boundary condition.

0= | fapll) = fLIN. -100%. ]

inner point boundary point

%
0.02547 my
Metrons
N/
N
\
=3 * =4 =F * e
Figure 6 The relative local ervot n® on ar inner point (left) and on a boundary point (right) becomes

zero as sooh as Lhe exact solution is used as a metron. n™ is shown as a function of the angle
a between the propagation direction of the exact solution [ and the horizontal direction. Here
Afd=15.7.

Figure T gives the same information as fig. 6. but now for the metrons of case ¢ in fig. 2. Both the
inner equation and the ABS on the outer boundary B produce very accurate solutions, if the metrons
are close to the exact solution.

In all cases considered up to now the local error is at least one order of magnitude smaller for inner
points than for points on the outer boundarv B. However, the error is small as long as the metrons are
close to the solution. The choice of the metroas has a strong influence, particularly on boundary points.

4. The Global Interaction Between Metrons and Solution

As a first example we intentionally take poor metrons. A circular cylindre is illuminated by a plane
wave coming from left. The scattered field to be computed using MEI is a wave traveling away from the
scatterer, In spite of this knowledge we use metrons like in case 4, fig. 2, but propagating to right rather
than to left. The solution is real rubbish: The scattered wave travels from right to left — just as the
metrons — with an amplitude even larger than that of the incident field. Figure § gives a plot of this
{wrong!) scattered field.

Next we solve the sams problem using outgoing muitipoles as metrons and find a correct solution.
But if we use ingoing multipoles we find again a rather stranye solution. See fig. 9.

Provided that good metrons are used MEI delivers quite accurate results. This is shown in fig. 10.
As a general result we found that the use of more metrons than necessary — the coefficients &; are then
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Figure 7 The relative local error n™ be.omes very small, if the metrons and the exact golution are close
together. On the other hand the error is increased as soon as the metrons sre really different

from the exact solution. Note that boundary points produce higher errors .hag inner points.
Here \/d = 15.7.

o'bta.med by solving an overdetermined system of equations using le;st squares techniques — turns out
in better results, particularly iu the near field.

The fact that the choice of the metrons has an influence onto the result may be seen either as an
advantage or as a drawback. It is possible to take into account a priori knowledge about the solution
by an ‘intelligent’ choice of the metrons. E.g., K. K. Mei et al. {1] has used a specific type of metrons
(outwards radiating fields of arbitrary (non physical) current distributions on the scatterer) and found
reasonable ABC’s from these metrons.

5. The Program

A 2D electromagnetic TE- or TM-scattering code has been wriiten. It uses the mmptool [3.4] for the
data input as well as for the representation of the results. This is advantageous at preprocessing in the
sense that aimost arbitrarily complex shapes of scatterers ruay be constructed in very short time, any
reguiar or nonregular grid may be used and any MMP expansion function may b2 declared as a metzon.
The advantage at output time is that all features of field representation — £, #- and § field plots
including animation, densitity plots etc. are possible.

The only new written part is a MEI module performing the calculation of the MEI coefficients and
the setup of the MEI matrix. A Linpack solver is used for the solutior of the (sparse) MEI matrix. Data
exrhange betwesn ME] and MMP goes through files which liave appropriate MMP formats. Finally a
high level ‘manager program’ has been written to handle the data exchange between MMP and the MEI
module. This manager program includes ‘macro features’ (to shorten several steps to a single one) and



K
H
H

3

scatterer

1
\

Figure 8 The scatterer is illuminated from left (TM-case). The plot shows the (wrong!) instantaneous

value of the total slectromagnetic field enargy obtiined by MEI with a poor ;0! of metrons
Note that the patches are traveling from right to left, just as the metrons. Here A/d =
dismeter of the ring cylindre: A/2.

Fiaure 9 The use of different metrons for the same scattering probiem gives very different results. Bath
pictures show the time mean value of the total Pavmmg field. Cuigeing multipoles as metrons
vield a correct solution (left) while ingoing multipoles as s yield a totally wrong power
flux looking as if it came {rom the opposite side tlun the incident field but the power flux is
from left to right in both cases. Here )\/d = 30. diameter of the scattering cylindre: A/2.

automatic file generation and file naming. The program runs on Sun workstations (UNIX). It is availeble
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Figure [§ Comparison of MEI (left}) and MMP (right). The time mean value of the Poynting vector {to-
tal field} is shown in the nearfleld. The accuracy of the MMF solution is bercer than 1% and
may be takes as a refavence, For the MEI # inetrons (outgoing multipoles) bave been usec
(~+least squares for computing the coefficients ;). Note :hat the MMP solution has no prob-
lems at the outer boundary. Dimension of the whole picture: 6) x 4A. A\/d = 15,

from the authors.

6. Summary

We have shown that the quality of MEI solutions does depend o:. the choice of the metrons. In general
the solution tends to become similar to the metrons. This may be seen 25 an advantage since a priori
knowledge about the soluticu may be brought in by a particalar choice of the metrons. Using more
metrons than necessary and computing the grid aperator by least squares techniques yields better results
particularly in the near field. This is at least true for the example in fig. 10. Eowever, poor metrons
deliver rabbish rather than results. The presented program allows it to play with different choices of
metrons and to represent the results in many different ways.
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Analysis of Dielectric-Loaded Waveguides Using Covariant Projection
Vector Finite Elements

Bruce R. Cr:in and Andrew F. Peterson
School of Electncal and Computer Engineering
Georgia Institute of Technology
Atlamta, GA 30332-0250

Abstract

Over the years, a large rumber of procedures have been proposed for the analysis of
dielectric-loaded waveguiding structures. Most of these approaches are unreliable because of the
appearance of spurious modes. Recent research demonstrates that mixed-order covariant projection
finite elements eliminate difficultics with spurious modes in vector waveguide formulations [1)
Furthenmore, the functions introduced in [1) can be extended to higher polynomial orders and ailow
parametric mappings to cells with curved sides.

This presentation describes approaches for finite element analysis of open and closed
dielectric-losded waveguiding structures using mixed-order covariant nrojection finite elements.
Details of the element matrix calculations will be presented. Efficient sparse eigensolvers hased on
iterative methods will be described which can handle both non-linear as well as linear eigenvaiue
equations. The treatment of open geometries using local absorbing boundary conditions will be
discussed. Analysis results will be presented that demonstrate the ability of the formulations to soive
for the propagating modes of boxed and open microstrip lines, without the appearance of spurious

es.

The finite element method is a us¢ ‘ul techpique for analyzing propagating modes in waveguiding
structures. A scalar formulation in terms of the longitudinal component of either the electric or
magnetic field is normally used when analyzing homogeneous structures lozded with isotropic marerial,
However, the scalar formulation is inadequate (except as an approximation) for snalyzing waveguides
with inhomogeneous cross section or anisotropic materials [2].

To analyze waveguides inhomogeneously loaded with dielectric matenial, the finite clement
formulation must consider at least 2 vector field components. Most vector formulations are plagued by
the occurrence of spurious solutions mixed in with the true ones. Many techniques have been proposed
to deal with the problem of spurious solutions [1-5).

One approach that effectively eliminates spurious solutions uses mixed-~-' r covarant
projestion finite slements in & standard probiem formulation [1].  This prese: scisses the
application of these elements to the solution of dielectric ioaded waveguiding strucsures.

The waveguiding structure under consideration is assumed to be uniform along the longitudinal
axis (2) and, in general, non-uniform across the transverse plane (x— ). The structure is assumed to be
filied with a source-free, inhomogeneous, isotropic, lossless diclectric matenal, with permitivity
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e(x,y) = &/(x,¥) ¢, and permeability u(x,y) = u.(x,y, 1o (typically u.(x,))=1). The time-dependent
electromagnetic fields in the waveguide at the frequency o are assumed to have the form:

#x,3,3,0 =Re (H(x,y) exp j(of - Bz)} m
F(x.y.x, 1) =Re {E(x,y) exp f(w! - B2)) @
where B is the propagation constant in the 2 direction.

iection Finite Elements

Mixed-order covariant projection finite el=ments were proposed by Crowley in [1]. These finite
clements have been demonstrated to not allow spurious solutions in standard vector formulations.
These elements fall into the general category of "edge” or "tangential elements. In the global mesh,
continuity of tangential fields bet\veen elements is maintsined but normal continuity is not.

A genenal curvilinear quadriiateral element in the X-j plane is mapped into the standard
quadrilateral element in the n—-% plane as shown in Figure 1. In the standard element, the six &
directed basis functions vary linearly with & and quadratically with 1 (hence the term "mixed-order™).
Likewise, the six 7 directed basis functions vary linearly with 1 and quadratically with £. These twelve
functions represent the transverse field components. As suggested by (6-7], the longitudinal (2)
components are represented by nine Lagrangian basis functions with quadraiic dependence in both £
and n. In.otal, there are 12 transverse and 9 longitudinal basis functions per element.

'y uy iyl "1
) I
7
1" L_ - _t.:.'_ _—j ‘I'
L3 N
3. Figure | u

Standard Eicment

The finite element formulation is based on the vector Helmholtz equation:
Vx(LVR) =B u B @
where k2 =02 g, o )

Assuming the general form of (1), the transverse components can be separated from the
longitudinal components according to:

Hxy,3) = {Hiz.5) + 2 Hdx. ) fexp(-jB2) o)
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It follows from (5) that the vector Helmhoitz equation can be separated into two parts, a vector
equation that is entirely transverse to z

Vox (&9, x B} - L(BV.H. -B3E,) =k, A, )
and a scalar equation that has only Z components:
v, { (v H.+0R) | =k }=&u 8. 10

At this point, one can proceed to derive an eigenvalue equation with either k3 or B2 as the
unknown eigenvalue. The derivation that follows considers k3 to be the eigenvalue, with B? given.

For convenience, the following scaling is introduced {6]:

=pH, (3)
h.=—j H. )
Using (8) and (9), equations (6) and (7) can be rewritten as:
v,x{,'-,v,xi':,}+é(ﬂ’ V.I::+B’77-) =k e Ay (10
v, {& (V,h.+h,)} =k, h, an

Coupled weak equations are constructed by "testing” the vector equation (10) with a transverse
vector testing function 7{x, ) and testing the scalar equation (11) with a scalar testing function 7(x,y).
After using some vector identities and manipulating, the following equations are obtained:

;[;\,-{vx'T-VxE.wi T-h+p T V)= fu Tk, -a]r"—,7‘~izxvx7:, (12)
gé{vr-wuvr-i.,}zkz {[u, Th, -a]r-g:{r%nh-ﬂ,} (13)

where ZT is the outer boundary of the region I” and 7 is the outward normal on 6T

Employing the covariant projection elements for the field and testing functions produces the
following matrix eigenvalue equation:

[:: ::][:']"‘ [ 0 a—][jﬁ] )

where: A%, =[[&{VxTn - VxBa + B2 Tu B} + | & Tu AxVxB, (15)
AER=B: ﬁs. VB' (16)

A% =L VT.-B. - jr.n-fs. an

AR =4 VT VB, - [2T0 % & (i8)

B, =y T Ba (19}

:Hu, Tw B, 20
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If the problem is formulated to solve for B2 as the eigenvalue, with 42 given, a similar derivation
leads to the following global matrix eigenvalue equation:

[;::][:Jzﬁz[gg][:} @n

where. A:,=H{$(Vx?.~vxﬁn) _,‘3“’?_,5_} + a]‘r-j'_.",xVxE,, (22
A%, =+ T. va. @)

AZ, = {4(VT.-VB) - Ky, Tu Ba} - e - e2)}

B, =-fA T, B, 9

BL =& VTa-Bu + [ £Tah- B4 25)

In the case of a perfect electric condustor (PEC) or perfect magnetic conductar (PMC)
boundary condition, it can be shown that al line integrals along 3 go to zero For open region
problems, special treatment of the boundary integrais must be considered One such approach is
addressed in the discussion of the open microstrip problein.

The PEC boundary condition is the natural boundary condition for the 5 formulation. The
PMC boundary condition is an essential boundary condition which is imposed by enforcing that the
magnetic fields tangential to the boundary are equal to zero.

The matrix eigenvalue cquations of'(14) and (21) can be written in the general form:

[A1E=A (B8] @n

Because there are 21 unknowns per element, the global matrices [4] and [B] are large and very
sparse. It has been observed by various researchers (c.g. [7]) that in edge element formulations using
kias the eigenvalue, there are as many zero eigenvalues calculated as there are free longitudinal
componems. [t has been observed by the authors that in the present formulation using B? as the
eigenvalue, there ure as many eigenvalues that approach infinity as there are free longitudinal
components.

In order not to waste computational resources on calculation of zero or infinite eigenvalues, and
to allow analysis of medium sized problems (~50C unknowns) on 2 personal computer, the authors have
developed an iterative solver using sparse matrix storage techniques. This solver is bosed on the shifted
inverse power method which converges to the eigenvalue closest to a selected input parameter.

Choosing an arbitrary parameter p, the generslized eigenvalue equation of (27) can be
manipulated as follows:

(14] - uiB)} £ = (& - ) (B E ’ (28)
(%)% = (141 - w(BY " (B2 29

When equation (29) is iteratively solved, A and ¥ will converge to the eigenvalue and eigenvector
corresponding to the eigenvalue closest to i, provided that the initial "seed” vector ¥ does not closely

resembie another solution eigenvector.
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In ceder to avoud performing an explicit matrix inversion, the algorithm actually iierates using
the following vaniation of equation (27)

([} - (BN 2 = 18] i (30)

where *! 15 the unknown vector, I' is the value of the unknown vector calculated in the previous
iteration, and i represents the Euclidean norm  After each iteration, fc**'| is computed and compared
10 its value in the previous iteration. When J&*!| converges to a stable value, the eigenvalue A is found
from

=F»|l ’sn(inl ~f’) \:3[)

where agn{-} is the Signum functon. The initiel seed vector ¥ is created using a raadom cumber
generator in an attemp* to avoid possible resemblence to a particular eigenvector and ersure that the
algorithm converges to the cigenvalue closest to A.

In the solver implemented by the authors, the shified inverse power method is extended to
calculate the set of eigenvalues {1, ) that are closest to u. This is accomplished 1 vy working with a set
of agenvecxon {X,} which are orthogonalized after each solver iteratica using a Gram-Schmidt
or p Jure  Exr srimental trials show that the resulting set of eigenvaiues and
agenvectors correspond 1o the set of eigenvalues closcst to the input parameter y.

The solver is based on a sparse matrix storage scheme and uses the Y12M subrcutine library to
solve the set of knear equativas repressnted by (30) (8], The user can vary the desired number of
cigervalres  The required number of iterations ‘ncreases with both the distance between p and the
target eigenvalues and the number of desired ~igaivalues. Foi & selection of 1 or 2 eigenvalues, the
solver typicelly converges to six digits of accuracy within 10-40 iterations. The practical maximum
number of exigenvalues that can be solved at a time is about 4. Beyond this point, the accuracy of the
outer eigenvalues suffers and the converyence rate stagnates

. ) Misrostri

A finite elerment anatysis tool, baser! on equation (21) and the previously discussed eigensolver,
bas been wruten in FORTRAN 77. This tool cun analyze geometries bounded by either PEC or PMC.
A uneful application of this tonl is to anaiyze tie propagating modes in boxed microstrip. The covariant
projection vector Tmite cleninvas have been recommended for this type of problem because edge
elements can better handie the smgulantics that occur at the strip edges [7]

The geometry of the problem is shcom in Figure 2. Because of the symmetry in the p.obiem,
only the right hialf plane of the geometry wes analyzed. A PMC was used as a boundary condition in
the plone of symmerry. Thirty six elemems were used, and after imposition of essential boundary
cenditions, 463 unknowns remained.  Using an HP/Apollo 720 RISC workstation, construction of the
§:obal mutrices required about 100 seconds, and the solver iteration time was around 0.05 seconds per
nigenvaluc iteraticn:

The results of the analysis are in close agreemert with those of [7] ‘obtained using an altermate
covariant projection finite element foimulation) and [9] (obtained using a formulation based on an
integral equztion method with the microsinip currents a; the unknovn functiens). No spurious modes
were observed Figure 3 shows a comparisor: between the first six modes calculated using this method
znd that of {5
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Figure 3
Comparison of Results for Boxed Microstnp
Applicstiva o Open Microstrip Problem

In order to analyze open problems, a boundary condition that mimics infinite space must be
imposed along the outer boundary. In general, this type of boundary condition is 2 non-linear function
of the eigenvalue and complicates the eigensoluticn procedure.

To analyze the problem of open microstrip line, an approach adapted from [10] was used. This
approach differs from [10] and other similar methods in that the desired field behavior is enforced using
an "absorbing boundary condition™ rather than some type of “infinite element”.

Along the boundary to the open region of the problem, it is assumed that the magnetic fields
exhibit exponential decay in the open region according to:

H(x0.y0,7) = H(xo,y2) exp {—a:(r - Xo) = &, (y — yo)} (32)
where: a, =o (7 %) (33)
a, =a(n-j) (G4)

a= /Bt -c £ 35

and where 7 is outward normal to the boundary, and x, and y,are points along the boundary 1. The
parameter ja is in effect the propagation constant of the transverse wave in the # dicection. The field
will exhibit exponential decay in the open region (e.g o is real positive) as long as B® is greater than
&, k2. By selecting the geometry of the finite element mesh so that all 7 of the boundaries to the open
region are directed approximately radially outward, the ficlds at these boundaries can be forced to
exhibit exponential radial decay. This effectively creates a type of absorbing boundary condition. The
desired field behavior is embedded in the global meshes via the boundary line integrals using the basis
functions modified as shown in equation (32). The resulting eigenvalue problem, however, is non-linear
atd special solution techniques must be used.

The finite element code used to analyze the boxed microstrip problem was modified to perform
analysis of open boundary problems with fields exhititing exponential decay in the open region. The
iterative nawure of the existing solver allowed solution of the non-linear eigenvalue problem with only
minor modification of the algorithm. The solver was medified such that for each iteration, the boundary
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line integrals of the element matrices were recaiculated using the value of 32 obtained in the nrevious
iteration. The presernt version of the software can process only real valued data. Thus, in the case that
a for a particular element is complex (e.g. B? is less than ¢, &3), the algorithm sets the value of o.equal
to zero to avoid generating complex matrix entries. Since the value of a depends on the particular
propagating mode of the wave, the non-linear solver can process only one eigenvalue at a time for a
particular input .

The modified code was used to analyze the propagating modes of the open microstrip geometry
shown in Figure 4. The finitz element mesh is sketched in this figure, and the boundary to the open
region was approximately ccincident on a circle of radius 3.0 mm about the origin (straight-edged cells
rather than curvilinear cells were used). Because of the symmetry of the problem, only the right half
plane of the ceometry was modeled. A PEC or PMC was used as a boundary condition in the plane of
symmetry, ° urying wish different propagating modes. Nineteen elements wete used, and depending
whether a PMC or PEC was used for the plane of symmetry, the number of unknowns was either 252
or 268. Using an HP/Apollo 720 RISC workstation, construction of the global matrices took about 50
seconds, and the solver iteration time was around 1.0 seconds/iteration. The increase in the iteration
time is attributed to the fact that L-U decomposition of the matrix [[4] - u{B]] was performed at each
iterztion, whereas in the previous solver, this was performed only once for each seiection of p

The results of the analysis are in close agreement with those of [11)] (obtained using an integral
rquation technique) and {12] (ottained using an EFIE method). No spurious modes wers observed.
Figure 5 shows a comparison of the various results.

10 ___r-r""—.-_'_‘—‘-_.—‘—‘
Fimite Elemint Mash
. (19 elements) 28
D/ 2.0
A
Plone of . 1.5{
Symmelry =P N
_L - —— . -7 S W,
o 0.54 ~un
o [12] ® Presea Method
oo "
Figure 4 Q ’W - w0 50
Open Microstrip Geometry (oria]
Figure §

Cumparison of Results for Open Microstrip

Conclusions

The application of mixed-order covariant projection elements to the finite element analysis of
propagating modes of dielectric-loaded waveguiding structures has been presented. Approaches have
been developed which can treat hoth closed and open waveguide problems. Details have been
presented for sparse eigensolver aigorithins that can soive the traditional lincar :igenvalue matrix
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cquation as well as the non-linear eigenvalue equation that results during the analysis of the open region
problem. The formulations avoid the calculation of spurious modes and sample results show good
agreement with other published data.
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A Pinite Flernent Formulation for Multipol:
Modes in Axisymmetric Structures®

E. M. Neboon
Stanford Lineas A Center
Su.ltord University, Stanford, CA 94309
Abstract

finite element ficld solver for muitipele modes in axisymmetric structares has been written and tested. The
solver is based on a weak version of the curl-curl formuiation of Maxwell’s equations in cyliudrical coordinates. A
combination of mixed-order {edge) and lagrange-tye basis functions are used to avoid sputious modes. Second-

order triangulur elements are employed to obtaip very mode freq jes. El which touch the axis
use special basis functions.

Tests oa analytically soluble struct d the y of the puted mode frequencies and the
avoidance of sparious modes. A d.isk-laded eguid ple & oot only the accuracy of the solver
but also boundary ditions for peri and/or sy 3 m'uctum The solver has been applied to the design
of detunnd sccelerator structores for the next generation of linear colliders. A precise dmnbuunn of dipole modes
is required to minimize the :fect of wakefields. An vvermoded 90° guide bend ple d strates the

applicability of the solver to curved waveguide.
Finite Elament Forraulation

Cousider an asisymmetric structure rep d by the two-dimensional region {1 and various types of bound-
aries in the 2-p plane. The boundary Feea is a perfectly ducting metal bound ary and I‘.,.(,,.., a0d Typmiing
are symmetry planes of the structure with electric and ic bound Y di vely, For periodic

structures, §1 is one cell bounded by ['jer and Fyign a8 thm in figure 1(a), sad for :ymmemc periodic structures,
£} ia & half cull bounded by Tuym.ien 80 Doymrign 83 shown in Bgure 1(b).
Whriting the problen: in crlindrical coordinates 1, p and ¢ with fsld components E,, E, and E,, the solutions

can be d posed into multipole modes with azimuthal dependence ¢™#, A weak formulation of Maxwell’s
quations fov this problem in the gaussi wmofmuwpmthengonﬁ its material properties € and .
an asimothal & try m and possibly a phase advaice ¥ (for periodic structures), ind the zigenmode
tieids B € Ux nd the corresponding eigenvalues w?/¢* such taat for all test fanctions F € Ug,
®: /ﬁ((v.‘r-).p-‘(v:s)— S () 2rpdpds =0 (1)
where the space 2y of tast and trial functicas is
Ur :(E € anl(ﬁ) :

EXE®=0 00 I'gea and r.yu!uld)v
axEly, = -axE| ¢ ¥x €T, (1%)
Im{axE} =0 on [ymien &0d

¥m {GxEe™"%?} % 0 oo Feym-righs }
and

* Work suppoiied by Departmeat of Energy, contract DE-AC03-765F00515
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)

(b)

Figure 1. The shaded region 2 (s) is one cell of & periodic str The dashed lines are periodi
boundaries. The arrow shows the rigid motion R translating & poiat from the boundary Tien to the
boundary [rigas. The shaded region {2 (b) represeats one half-cell of 2 symmetric periodic structure, The
dashed lines are sy y planes.

Figure 2. The map =z, from the master element ) to the eth element £, is quadratic in the local
coordinates r and 5. The map is defined by coordinates (2, p) of six sodes.

Heun(fl) = {E:{t - C*:

lc
A((sz') -(VxE)+E'-E) 2zpdpds exists and is finite}. (e}
The vnit normal i is directed into the region il Boundary conditions o4 the Axis are implicit in condition (1c).
For periodic problems, the modes have phase advance ¥ across one cell of the structure. A similar formulation is

snailable for the magnetic feid H. The dependence on m in (1) is embedded in the cur] operator. In terms of
the field components,

ing, 80) (% 85) (125 _in
vxewp(2r, - o) 44 (G- ) r2 (S emn - T8,

L 2k, OE, 8L\ ii[of
( ) - :) +¢( P )+-’—(—0;1—m2,) @
=V, xEx + -i-:lx (mn. - v;t.) .

where Ey = ~isEy, B = 4E, + 5E, aad V, m i + j. Some insight can be guined by considering a problem
with no media ( ). Then equation (la) bec

Re [ HURE)" (OLxB+ S(mF - )" (i~ ViE)
! )
- g(ﬁf; E+ li‘:‘ Eg)d’d‘ = 0.

The fnits edement formulstion in this work is based an quadratic triangulsr o ts. Let 2, : §} = 1, be
the map from the master element 1 to the eth element % 2 ‘shown in ﬂgnre 2. For an element not touching the
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Figure 3. Examples of local basis functions: L, is a vector field normal to sides 2 and 3. This field could
be a basis function for a linear edge element. N7, Ny and Ny, are quadratic basis functions for the vector
Beld E; constructed from L;. Ny and N; have ~on-zero tangentisl field on side 1. The size and direction
of the triaagles indicate the magnitvde and directioa of the vector basis fuaction.

axis, the scalar field E, is modelled by second-order lagrange-type basis functions N;:
Nimr(2r=1) Ni=s(2e-1) Nymt(2t-1)

Ny=trs Ny = 4nt Ny = drt, S
where ¢ = 1 = r — s. Note that the map =z, is a linear combination of the V; listed above:
L
z.(ri8) = Y xINi(r.s), (8)

in]
where x? are the (z,p) coordinates of the ith node of the eth element.
The basis functions below for the vector field E, were inspired by the covariaat projection elements|1}-[5] of
Crowley and the wurk of Nedelec[6]. They are similar to the basis functions described in [7] and [8]. Startiag with
vectof fields V; tangential to side i and directed counterclockwise,

Vim~(Vi4Vy), Vi= -ﬁz—' and Vi= ?a‘zf’ 6)

construct reciprocal vector fields R; normal to side i and directed inward,

éxV, $xVs
- B p——— d W i, 7
Ri=—(Ra+R;y), R 7 (VixVy) and R, 7 (VaxVy) (7)
The reciprocal vectors can alse be written as
% & & or s s

Ry = (E' 0_;)' Ry= (E’ﬁ) and Ry = (3?0—’), (8)

which states that the reciprocal vectors are derivatives of 2.7, the inverse of the elemeut transformation. Now
construct vector functions L; which satisfy L; - V; m &; on side j of the element:

L, mrR; — ¢R;, Li=sR; -tRy and L;=tRy~rR,. (9)

The vector fiekds L; are suitable basis functions for a livear adge el H » quadratic basis functions are
employed in this work:

Ny=rly Nu=tly Nyy=-2l

Ny=sL, Nu=tl; Ny =-2tL,. (10)

Ny=sl; Np=rls
The first six vector basis functions, N7 ta N3, bave con-zero tangential field cn ope side of the element. This field
must match the tangeatial field of the adjscent element. if there is one, in order to construct valid global basis
fuactions. The last two vecior basis functions, N1s and Ny, bave 1o tangential firld oo the el t sides. Fach
of the Jocal vector bexis fanctions N5 and Ny, by themselves constitute valid global basis functious, thus they are
internal degrees of frezdom for the element. Figure 3 shows some of these Jocal hasis functions.
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Elements which touch the axis are restricted so that the global basis functicas watisfy condition (1c). The
important terms are those weighted by 1/p, heace

E,m0 and mE,-V,E, =m0 A1)
is required of each basis fi jon. This is lished by using linear combinations of the basis functious above.

First consider the m 3 0 case. For an element with an edge (edge 3) on axis there are 6 local Lasis functions.
Written as (E.,E¢) they are:

Ny = (0',-’) Njx (%n.,u) Na = (oL1,0) )
Ny= (;m.rl) N, = (sLy,0) Ny = (—2aL4,0).
An element with exactly one node (node 2) on axis bas 11 local basis functions:
N, = (0,r(2r ~ 1) 4 ra) Ny= (Lh’")
Ny = (0,802t - 1) + at) m Ny = (rLs.0)
N; = (0,4rt) Ne = (s, 0) Ny = (-2sL,,0) (13)
- Ny = (1L;.0) Ny = (~2tLy,0).
Ny= (;—Ll,n) N = (t13,0)
For the special case m = 0 the fields B, and E, are uncoupled and can be sey d if desired. A quadratic el
with edge 3 on axis has one basis function, 2
Ny = 2, (14)

for E,, and sll 8 basis functicas, N through Ny, for E,. A quadratic element with only node 2 on axis has three
bagis functions,

Niur(2r=1)+rs Ny=t{2t-1)+st aad N;=drt, (15)
for £, and all 8 basis functions, N through Ny,, for E;.
Tests
The formulation has been tested on some analytically solubl bl an lar ring (i.e., a leagth of
coaxial cable shorted at the two ends), 2 pillbax and a sphere. For the lar ring the eig lue error is O(hY)

where A is the size of the elements. For the pillbox and the sphere the sigenvalue error is O(A*?). Examples of
mesbes for & sphere are shown in figure 4 and the error of the computed eigenvalue for the 10 lowest m = 1 mod.s
as the mesh is refined is shown in figure 5(a). Thehmnhhmmvmmoothlytothemctqgenmueuthe
mesh is refined, which allows polation of the lues to an infinitely refined mesh to abtain
a better estimate of the exact sigenvalom. In fignre 5(5) '.lu error of the computed sigenvalues in a pillbox is
shown as & fuaction of m. The relative error of the computed eigenvaiue increases alowly as m increases beyond
m = 2, Hence, the formulacion is suitable for large m. In addition to integer m, tests on an annular ring show the
fornuhhon works well for nos-integer m as well. For more details of thase tests, see [9].

[10] of the di and ¢ frequencies of a stack of six ceils of disk-loaded waveguide
were used to furtber tast this formulation. meofﬁncdlnmth;lhorudm-ullnuchend
A mesh is shown io figure 7(a). The d di are: cell di 2.159cm, disk aperture diameter
08574m.dnkthxkn¢u01464mndpnmd0.8751cm The dispersion diagram for this structure is shown in
figare 7(b). The g ies in the d band agree with the computed frequencies to better than
0.1%. The estimated error of the computed frequencies is less than 0.01%, so the discrepancies ase probably due
to fabri and t errors of the six cell stack.

Applications

The motivation for this work was the design of detuned accelerator structures{ll]. A precise distribution
of dipole modes is required to winimize the effect of wakefields. This solver was used to compute the dipole
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Figure 4. A course mesh (one element) and two refined meshes for the sphere problem. Each mesh
covers the shaded regiot {1. The dashed lise is a symmetry plane.
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Figure 5. Relstive error of the computed sigenvalue vs () mesh refinement and (b) m. In (a) the electric
field is competed for the m = 1 modes of a sphere with radius 1. In (b) the electric field is computed on
& 812 element mesh for a pillbax with leagth 1 and radics 1.
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Figure 6. Field plots of the two lowest m = 1 modes of a sphere based on the 256 element mesh in
figure 4. The triangk P ¢t the itude and direction of the fields E, and H,. Tbe size of the
circles represent the magnitode of the (imaginary) fields £, and Hy. A crossed circle indicates the field
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Figure 7. A coarse mesh (2) and a fine mesh (b) for one hall-cell of disk-loaded waveguide. The left
and right edges are syrumetry planes. The bottom edge is the axis. The dispersion diagram (c) for this
structure was generated from calculations at seven phase advacces.
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Figure 8. The lowest mrhmnm dipole mode fnquenq 1 (in GHz) for periodic disk-loaded waveguide.

The cell di 25 d ined from the s; dition for the 11.424 GHz accelerating mode:
pbase velocity wpa = ¢ at phase advance ¢ = 2r/3. 'I‘htopen circles are the dimensions at which f; was
computed. The dots are the 206 cells of the detuned tor struct

k) [
m?/g3 (zm~3)
F:‘un 9. Dispersion disgram of a curved guide with radius of curvature .. The dashed line is the drive
q y, and the dotted line corresponds to the speed of light along the center of the guide.
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mode frequencies synchronous with the beam in periodic disk-loaded waveguide, as shcwu in figure 8. Thep cell
parameies of an accelerator structure were chosen to obtain the desired dipole mode distribution.
Another application of this solver was the design of a 90° overmoded waveguide bend[12]. It is useful to
ider modes propagating along ¢ in the curved guide with phas: factor ¢'™*. This is analagous to modes
propagating along x with phase factor e**? in straight guide. Since the bend is only over 90°, not a full circle,
there is no condition that m be an integer. This solver was used to compute dispersion diagrams for the curved
guide. An example is shown in figure 9. Note that the curves are not parallel as one would expect in straight
homogensous guide.

Conclusfon

The finite element formulation described above computes modes in periodic str with ! ¥
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AZIMUTHALLY-DEPENDENT FINITE ELEMENT SOLUTION TO
THE CYLINDRICAL RESONATOR’
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College of Engineering
El Paso, TX 79958

and

G. John Dick, David G. Santiago and Rabi T. Wang
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Calitornia Insuiute of Technology
Pasadena, CA 91009

Abstract: The cylindr.cal cavity resonator loaded with an anisotropic dielectric is
analyzed as a two-dimensiona! problem using a finite element approach that assumes
sinusoidal dependance in azimuth. This methodology allows the first finite elament
treatment of the technically important case of a resonator containing & sapphire alement
with a cylindrically aligned ¢ axis. Second order trial functions together with quadrilateral
elements are adopted in the caiculations. The methad was validated through comparisons
with the analytical solutions tor the hollow metal cavity and a coaxial cavity, as well as
through measurements on a shielded sapphire resonator.

i. Introduction

Although the analytical determination cf resonant modes and frequencies of the
metallic cylindrical cavity has a weil estabiishad history, a soiution for the cavity partially
filed with an anisotropic dielectric generally requires computationally complex, three-
dimensional numerical analyses. Approximate analytical means of analyzing the dielcctric
resonator have been proposed throughout the years [1, 2], and with some degre: of
accuracy the theoretical estimates have agreed well with experimental results. However,
becausc of the inherent shortcomings of the approximate analytical modals, nume-ical
methods have continued to receive a great deal of attention during the past years (3, 4.

Recantly, so called "whispering gallery " resonators consisting of a sapphire dielectric
element in a metallic container have made possible new capebilities for microwave
oscillator phase noise and frequency stability (5,6]. With high azimuthal mode numiers,

* This work was sponscred by and carried out in part at Jet Propulsion Laborstory, Calitornia insuiute of
Tecnnoiogy. under a contiact with the Nalions! Actonsutics end Space Administration.
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these resonatars isalate radio-frequency enargy to the dielactric + ement and awsay from
the metallic container, thus providing extraordinary low losses a 'd high quality factors
{Q’s). MHowever, these widely disparate field megnitudes pos a challenge for any
maethodology 10 accurately calculate (e.g.) conductive losses due to smail evanescent fields
at the wall of the containing can. In particular, a three-dimensional finite element methau
allowing fuil treatment of sapphire’s anisatropic dielectric constant, would require such a
large number of nodes as to become impractical. Analytical mathoeds are unattractive, with
new appraaches required for svery geometrical configuration change. A vwo-dimensional
finite element approach, however, wouid allow easy treastment of any cylindrically
symmetric rasonator geometry.

Bacause the dielactric constant for sspphire shows cylindrical symmetry, a two
dimensional treatmant is aliowed for the imporant case whare its crystai ¢ axis is aligned
with a physical axis nt axisymmetry. In terms of the field intensities, the problem is
governed by the three-component vector Heimholtz equation which can be treated as an
axisymmetric problem only for rhodes with no azimuthal {or @)} dependence. Such zero-
order modes can be obtained from a two-dimensional approach tu the cavity in the r-z
plane using a variety of techniques which vicld reasonable accuracy. Higher order solution
for isotropic dielectrics ara still obtainab!s in two dimensions if the azimuthal dependence
of the modes is assumed & pviori (7). In the work presented here, the authars reduce the
finite element analysis of the anisctropic dielectric resonator to two dimensions by
assuming an exponential g-dependence, and limiting the permittivity tensor to posses
longitudinal and transverse componants only. While ruling out most anisotropic dielectric
contigurations, this approach makss possible the first two-dimensional finite alement
treatmant for sanphire "whispering gallery” resonatcrs.

It. Fundamantal Equations

In terms of the meganetic field intensiiy M, the vactor Helmholtz equation with the
penalty term included is given by (B}

V xk]"VxH -aV (V- ~klH = 0 ()
in which [k] is the tensor dielectric constam, ¢ is an empirical coefficient of the penalty

term V (V-H), ond k, is the free-space propagation constant. The variationai energy
functional associated with (1) is given by [8]

FlHy - I { (VXM -l Ut - kI, H*-H + aV-H-(V-H)} dQ (2

where Q is the volume of the resonator. In a finite element solution, H is normally chosen
irstead of £ because of the discontinuity of the latter at dielectric interfaces.
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At the interface betwsen a perfect conductor and a lossless dielactric with a unit
normal vector a_ the use of (2) imnlias that

a8, XK1 (UxH) =0 (3)

as a naturally satisfied condition, while the condition
a - -H=0, (4)

needs to be enforced. Thera is no axis of axisymmetry for the higher arder modes (n>0)
and, hence, no parfect magnetic conductor with its assaciated boundary caondition needs
to ha invoked along the z axis.

L. Finite Elemant Analysis

Inside the volume of the cylindrical resonator the magnetic fizid vector may be
described as

H(r,®.2)
{Hirnp,2} = |Hlr@2)| ={H(2)e™ , 5
Hir.e.2)
where
{Hu2a)Y = LHn2 jHWL2D Hirz) ] . (8)

and Hir,2), H,(r.2) and H,(7,z) are functions describing the variations af the components of
the field vectors in the r-z plane. The n in (5) denotes the azimuthal mode number (1, 2,
3,. . ) while j is used 1o establish the comoonent 4, 10 be in phase quadrature with the
transverse components H, and H,. In this manner, H/(r2), H,ir.2) and H,lr,2) are real
functions.

This finite element formulation considers the use of general ring elemants to soive
for tha magnetic field vectors. These elements are defined in the r-z plane and have m
nodes. Within each finite elemment, H(s,2} is approximated in terms of the standard shape
tfunction matrix [N] as

{Hre.2 } = IMr2" {H ), ere, 7

in which
{ Mr.2) }T = L Min2 Nytnzi ... N_in2) |, {9)
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[{ Mrzi} {0} {0}
(Mr2)) - {0y w2} {0) , (8)
L (¢ {0) { nr2)}
and
(] = Mg (H)D (R0 ] (1o

Here, '}, is a roliscricn matrix of order 3m by 1 containing the unknown nodal
vaiues of the field arranged as in {10}, #nd N{r.2) is the shape function associated with the
™ node of 1he siuant.  Tha specification of the azimuthal dependence in {7) allows for
a trivial araiytics' intagrztion of the functional in (2) from @=0 to @ =27 when the
die'ectric propecties are m-independent.

The subsutution of the field approximation in {71 into the functional expression (2)
leacs to the element matnx equatien

Foa(HT [IS), 1A, -k MM, . nn
where
{51, = l (A" K1 (A7 a0 112)
[, = L (ci 1creq (13)
in, * L M* M o, 14)
eN _.n ‘l
{0} (»é-;} iz {M}

" i (oN S| o (AN (15}
[A] =e¢"® | 7 (—a;} {0} J 7{"/) I(—a—;) .

- n T
Pom )
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and

1,9
e M

[C] = em* __g(N} {16)

2
2im

The integrations of {12), (13) and (14) over the azimuthol direction are done
analytically, requiring that the dielectric properties (K] in (12) be ¢-independent. This is
satisfied when [K] has zero vaiue off diagonal coefficients, and when the radial permittivity
is equal 10 the azimuthal permittivity. The integrations of (12), (13) and {14) over the
elament area in the r-z plane are evaluated numerically using the standard Gauss-quadrature
technique generally used for isoparametric elements with non-rectangular and curved
shapes {9).

The giobal form of the functional in {11) may be expressed symbolically as

Fa{HY[ISI+1UI-k2(TI]{H} . an

where [S], (U) and (7] are global matrices resuiting from the superposition of the
corresponding element matrices, and {ff} contains all the unknown nodai values of the
magnetic field vector.

Applying the Rayleigh-Ritz criterion, {17) yields the gigenvalue equation
{(ISI1+{VUI{H}-£2([TI{H}=0, (18)

which needs to be solved for the resonant frequencies w, = ¢k, and tor the nodal values
of the corresponding mode intensities {#}. The parameter ¢ i1s the velocity of light in free
space.

IV. Comparison to Analytical Solution

The proposed method was tested by solving for the resonant frequencies and modes
of a metallic nollow, eylindrical cavity resonator with a radius of 3.8 cm and a height of 4.5
cm since the exact analytical solution is weli-known. The resonator was modeied using
rectangular ring elements with faur corner nodes and bilinear shape functions. Solutions
were obtained using 16, 36, 64 and 100 elements. A penaity factor of ¢ = 1 was
assumed in (1) throughout the calculations. The identification of the modes and the
remaval of spurious modes was assisted by computations of the cosine of the angle £
between the eigenvectors from the finite element snlution and the exact gigenvaciors.
The cosine of this angle is given by [8] as:
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{(HY {H,) , 19)
FCHY (A ) T

where {H} is the eigenvector solution of {18), {H,} are the nodai values calculated from the
exact analytical expressions, and the factors in the denominator are Euclidian norms. (f the
value of cos £in (19) is close to ane or minus one, then the field vectors {#} and {#,} are
the same. Equation (19) was evaluated using each {M,} and all {H} vectars to find the
correspondence between each analytical vector and the numerical eigenvector.

cos 8 =

Figure 1 shows convergence curves for w, obtained from the finite element solution
for the transverse magnetic TM,,, series modes, where the subscrints rep: asent the nuraber
of oscillations in @, r, and z, respectively. The abscissa corrasponds to the order of mode
extraction in the finite element sowrtion. For 100 elemeints the resonant freque:cies
converged to about 0.12% frum tne exuct va'ues for both the TE aiiu TM moJdes. Fig. 2
shows a sample of the results obtaired through the use of the cosine of the angts between
vectars in (19) for mode identification. The true TE,,, modes are shown on the ton of the
figure, with a cosine close to one, while the spurinus modes have values much iowaer than
one. Fig. 3 shows the frequencies of various famities of TE and TM modes of the cavity
resonator as functions of the azimuthat index,
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Figure 1. Convergence curves of the finite element frequencies far the first six modes of
the holiow cavity with 1. -6,
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Figure 2. Finite element frequencies of modes cbtained for the hollow cavity. The modes
with cosines close 10 unity are physical, while those with smaller values are spurious.
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Figure 3. Sample fa: nilies of modes obtained from the finite element analysis of the holiow
cavity with 100 quadrilateral elements.
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Figure 4. Frequency error for several mode families of coaxial resonator.

Somawhat higher accuracy was found when the method was applied to a coaxial
cavity, where a more uniform geometry is obtained for elements near its geometrical
center. The coaxial resonator had an outer radius of 5 cm, an inner radius of 2.5 cm, and
a height of § cm. Figure 4 shows the ditference in parts per million {PPM) between the
finite element solution using 220 elements and the analytic soiutions tor various mode
families. Frequency errors for the first five mode families zre all less than 7 parts per
million, with errors for the fundamental TE,;, mode family being less than 1 PPM.

V. Comparison to Measurements

The proposed finite element VL OW PRI LT L W)
approach was also tasted by solving for the Cuwalls T
resonant frequencies and modes ot a
cylindrical sapphire resonator
experimentaly studied by the Jet -
Propulsion Laboratory.  Reference (5] |44
includes detaiis of the experimentation and

!

i
of the measured fraquencies for different 17 | © e b | -
{amilies of modes. 22.70

{

i

3

Figure 5 illustrates the geometrical 2.2
axisymmetric plane of the resonator tested.
The sapphire material was held together by atn -
a copper core in the center and s o
encapsulated Ir:side a copper cyiinder. The
resonator was modeled using three finite Figure 5. Dimensions (in mm) of sapphire
resonator.
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element meshes comprising of eight-node elements of sapphire and air materiais. The
dielectric propertias af the sapphire material were taken from Ref. (2] as ¢, = ¢,, = 9.407
and €, = 11.62. The coarse mesh consisted of 62 nodes and 15 elements, the medium
mesh of 193 nodes and 54 elements, and the finest mesh has 709 nodes and 216
elements. The perfect electric conductor boundary condition reflected in {4) was enforced
at all metal boundaries of the finite element meshes. The eigenvalue solution of (18) was
obtained for azimuthal order values ranging from 3 to 12. Each solution yielded a set of
resonant frequencies with associated eigenvectors. The lowest frequency solution
corresponded to the fundamental mode for that n® azimuthal order.

Figure 6 shows the resonant frequancies of the fundamental family of modes WGH,,,
for the three meshes with n values ranging from 3 to 12, lilustrating convergence of the
solutions as the finite slement 1.1esh was refined. The mode :lassification shown is based
on the notation of Jiao, et al. [6] for whispering-gallery modes. A finer mesh was not
considered feasible due to computer memory limitations.

4 T 15 ELEMBNTS
ST T 54 EMENTS
TR 216 EEMENTS

g -
f
oz 7%
6
5 -
4 — . . . . . \ . 4
3 4 5 6 7 8 9 10 1" 12

AZIMUTHAL MODE NUMBER (n)

Figure 6. Convergence curves of the finite element frequency for the fundamental WGH,,,
family in the sapphire resonator using different mash sizes.

Figure 7 shows the frequencies of the families of modes that were identified and that
matched with the frequency measurements made at the Jet Propulsion Laboratory [5). The
solid lines of the figure correspond to the finite element results and the dots are the
measured values. From this figure it is oDserved that the finite element results agree well
with the measurements. The errors in the resonant frequencies of fundamental family
WGH,,,, modes, obtained from the three meshes, with respect to the measurements are
listed in Tabie 1. Errors of the resonant frequencies of the rest of the families shown in
Fig. 7, including uncertainties \n €, were all las> than one percent.
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Figure 7. Comparisun of resonant frequencies obtained from finite element analyses with

measurements made on a cylindrical sapphire :2sonator.

Tab'a 1. Error ¢t Resonant Frequancy of Fundamentai Family WGH,,, with

Respect to Experimental Maasurements

Azimuthal Error (%)

Number n Coarse Mesh Medium Mesh Fine Mesh
6 11.0 1.9 0.15
7 12.0 2.3 0.16
8 13.1 2.7 0.22
9 14.0 3.1 0.26
10 14.9 3.6 0.28
11 15.7 41 0.55
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VI. Conclusions

A finite element method has been presented for troating a cylindrical resonator
partially filled with an anisotropic dielectric as a two-dimensional finite element probiem
assuming harmonic oscillation for the field dependenca in azimuth. This technique allows
the first treatmer:t of the tachnically interesting case of an anisotropic but axisymmetric
diglectric \mounted in a cylindrical conducting container. The method was first validated
with a hollow, netallic, cylindrical resonator and with 8 coaxial cavity by comparing the
numerically-obtained results with the exact analytical expressions. The method was then
rasted with a cylindrical sapphira resonator for which thare are no exact soiutions available.
The numaerical results obtained frern the method were grouped by famiiies of modas and
1he fraquencies compared to experimentai values obtained at the Jet Propulsinn Laboratory.
Excellent agresement was found foi all the cases, thus indicating that the method is valid.
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ABSTRACT: The measured equation of invariance (MEI) is a new concept for electromag-
netic field computation, and the “metron” is an important concept in the method of ME],
but people still have difterent opinions on the meaning of metrons up to now. Many people
think metrons to he basis functions just like ones in the method of moments (MoM). In fact,
metrons are quite different from the basis functions. The coefficients in MEI are determired
by metrons based on the postulate: “The MEI is invariant to the field of excitation”, and the
current distribution or scattered field etc. are determined by the final field values at nodes
other than the metrons. Previously, the metrons are usually choosed as global {unctions which
are defined on the whole object surface. For some problems, especially for 3-D problems, the
definition and calculation of global metron functions are very difficult. Therefore, in this paper
we proposed several kinds of piecewise metron functions which are flexible for fitting arbitrarily
shaped objects atd no more computation time increased. Many numerical results are presented
for comparing the different kinds of metrons.

1. Introduction

The measured equation of invariance (MEI) is a simple technique used to derive finite differ-
ance type local equation at mesh boundaries, where the conventional finite difference approach
fails [1}. Convertionally, finite difference or finite element meshes span from boundary to
boundary, or to any surface where an absorbing boundary condition can be simulated. It is
demonstrated that the MEI technique can be used to terminate meshes very close to the object
boundary and still strictly preserves the sparsity of the finite difference equations. It results in
dramaiic savings in computing time and memory needs.

In the first paper of MEI [1], this new method successfully applied to the scattering problems
of general boundary geometries including both convex and concave metal surfaces. Lately, the
authors extended this technique to the scattering problems involving penetrable medium (2] and
anisotropic medium (3], where the electric metrons and the magnetic metrons are successfully
decoupled by & movel concept. In this paper, 3 geperalized FD aguation for inhomogenaons
anisotropic ferrite medinm is derived, tuen the method of MEI is first extended to the scattering
problems of apisotropic medium cylinders.

m
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The coefficients in MEI are determinec by metrons based on the postulate: “The MEI
iz invariant to the field of axcitation”. Previously, the metrons are usually choosed as global
functions which are defined on the whole olject surface. For some problems, especially for 3-D
problems, the definiticn and calculation of giobal metron functions aze very difficult. Therefore,
in this paper we proposed several kinds of piecewise metron functions which are flexible for
fitting arbitrarily shaped objects and no more computation time increased. Many numerical
results are presented for comparing the different kinds of metrons.

II. The Principle of MEI

Let’s consider the electromagnetic scattering preblem of a conducting cylinder with arbi-
trarily shaped cross-scction as shown in Fig.1, where several layers meshes are drawed around
the surface of the cylinder.

Fig.1 2D scattering problem aund the meshes

terminated boundary
/ 2 3

g

Fig.2 Nodes at terminated boundary for MEI

In the earlier paper [1], Mei postulated that the finite difference/element equations at the
tnesh boundary may be represented by a local linear equation of the type

4
ZC.'Q.' =0 (1)
=]

where the node configuration is shown in Fig.2, and the coefficients C's are (i) location depen-



dent, (ii) geometry specific, {iii) invariant to the field of excitation.

It is known that the scattered tields at MEI nodes shown in Fig.2 can be determined by the
current on the surface of the conducting cylinder as

ey _ | JUNG(FR, )l for TM or E-wave 2
()= o M) &G, #)dl' for TM or E-wave ()
where G(F,7) is the 2D Green's function of free space, n stands for the outward normal direction
of the cylinder surface, the superscript ' denotes source point, J(!') and M(l’) are electrical and
maguetic currents on the cylinder surface respectively, ! is the distance measured along the
circumnference of the cylinder and L is the total crcumferential dimension of the cylinder.

If the current J(!) or M(!) are given, the scattered field values at the four MEI nodes are then
determin=d by Eq.(2). However, the currents on the surface of the cylinder are unknown which
aze also what we want to calculate. On the other hand, the MEI Eq.(1) should be independent
of the incident wave, that means the MEI should be independent of the current distribution
on the surface of the cylinder for different excitation produces different current. Therefore, our
MEI mus. be valid for various kinds of curreat distribution on the cylinder surface other than
some special one. In other words, we should find a set of MEI coefficients C.,i = 1,4 which are
suitable for all kinds of currents distributiou on the suwrface of the cylinder.

Assuming that {¢a,n =1,2,----- } is a complete set of functions defined on the surface of
the cylinder, then any current distribution on it can be expanded with the functions sc* as

L) = 3 ambald (3)
nml

M) = S b (4)
nml

If the MEI Eq.(1) is valid for each expansion function ., it can be obviously seen from
Eqs.(3)(4) that the MEI is valid for any current distribution on the surface of the cylinder,
this alsc means the MEI is independent ui the excitation. For this reason, we can determine
the ME] coefficients C;, i = T, 4 by forcing the MEI to be valid for each expansion function ¥:.
That results in the followicg linear algebraic equations

4

G fr Ua(l)GFE" F)dl =0, n=1,2---, for E-wave (5)
".l s

vC [_ Ua(l)3G(F', 7)dl =0, mm 12, for Hwave (6)

=l
Subsiituiing the fcld valuss at bowsdary nodes pioduced by each ¥a into the MEL Eq.(2),

a linear algebraic equation (5) or (6) with respect to the MEI coeficients C,,i = 1,4 is then

followed. This process just like measuring the MEI by function w,, 30 we call 1, “metron”.
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Since the limitation of computer memory, only finite metrons a,n = 1, M are used for
determining the ME] coefficients, and if the number of equations M is greater thasm 3 (the
nurmber of MEI coefficients to be determined, C; is assumed to be 1), we can solve Fq.(5) or
Eq.(6) by least square technique.

Generally, several metrons are enough. In our program, for instance, increasing the number
of metrons (sio. and cosine functiors) more than 3, the results will have practically no change.
The conclusion also verified the postulate of that the MEI is invariant to the excitation.

A intes.or nodes of the mesh, finite difference (FD) equations are valid. Coupling the
MEI equations at boundary nodes to the FD equations at interior nodes and considering the
iacident field, a system of linear alzebraic equations with respeci to the scattered field values
at boundary nodes and tha tot:] fiel.. values at all the interior nodes is obtained, and then the
current on the surface of the cylinder is determined from it. solution. Finally, the scattered
fields at any point out of the cylinder can be determined by the current.

II1. On the Metrons

From the discussion above, we know tha "hLe constraints on the choice of metron is rather
relaxed. Usually the the following functious
2x! 2xl
w(l) = 1,50 —, ~08 ——, - - i 0, {
Wa(l) = 1,5in ==, "os = € [0,L] M
are used as metrons. In fact, .iany otuer functiops, such as the following coastant piecewise

functions 1, for [ € [ln, lns1]
_ , lor i€ |[ly, ndl
Pa(l) = { 0, for [&la, L 41) “

wheze [I},13,---,In] is a partition of G, L], the piccewise linear functions

Ihaer  for 1 e {lay, e )
¢n(l)={ frlacp tcy, bl (9

ree) for 1 € [ln, Int1)
and the piecewise sine functions

sin(§ - =, for £ € [la-s, ]
¥a(l) = { sm[; . ‘_-'n:l;:":], for 1 € {ln, las1] ao

etc., 2ay also be effeciently ured as metrons. Usiag the global metrons like sine and cosine
functions in Eq.(7) cost nearly the same CPU time as using the piecewise constant pulses in
Eq.(8), the piecewise linear functions in Eq.(9) or the piecewise sine functions in Eq.(10). When
choosing piecewise functions as metrons, the number of metrons must be far greater than the
number of MEI coefficients, but the integrals in Fq.(5) or Eq.(6) need only to be carried out
on a small sagment of the cylinder boundary. Waen choosing the glubal functions as metrons,
a few metrons are enough but the integrals should be carried out or the whole boundary of the

cylinder.
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Fig.3 chows the RCS results of an elliptic dielectric cylinder with E-wave incidence, where
the permittivity ¢, = 4, permeability 4, = 1, the incident angle '™ = 45°, tie lengths of the
principal semiaxis of the ellipse are @ = 1)\(wavelength), & = 0.5A, the mesh steps h, = k, =
0.025), and global sine and cosine functions are choose? as metrons. It can be seen the results
ohtained by MEI are in good agreement with that obtained by MoM, and when the number
of metruns is equal to or greater than 3, the results are almost the same. Besides, in Fig.3
the incident angle is 45°, if we change the incident angle, the coefficients of MEI not change,
that means the MEI is independent of the excitation. For this problem, any linear combination
of the three metrons is great different from the real currents. Therefore, the metron is fully
different from the basis functions in MoM.

A 4:1 aspect ratio rectangular cylinder of 20\ circumfervatial dimension is shown in Fig.4.
The surface current distributions with H-wave incidence and constant piecewise metrons are
shown in Fig.5, and that with piec:wise linear metrons are shown in Fig.6, where the mesk
step A = 0.04) or 25 nodes per wavelength. "The integrals iu Eq.(4) or Eq.(5) are calculated
by an approximate mid-point formular when constant piecewise fuvctions as metrons, which
is equivalent to using many point sources on the surface of the cylinder to measuring the
MEIL It can be seen that both piecew'se constant and linear metron; can get good results,
but the piecewise linear meirons seem something better. For this problem and piecewise linear
metrons, enough accurate resulis can be obtained with 30 or more metrens. It is known that,
10 segments per wavelength are basically requirement in MoM. For this problem, therefore, at
least 200 piecewise basis functions are pecessary for guaranteing the accuracy of the solution.
Thus, it also shows the difference between metrons and basis functions.

The RCS of » 4:1 rectangular conducting cylinder with H-wave incidence and 12.5 circum-
ferentia] dimension is shown in Fig.7, where piecewise sine functions are chosen as metrons.
It can be seen that piecewise sine nietrons can also get very good resulis. On our experience.
piecewise sine metrons is a little better than piecewise metrons.
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Abstract

The finite difference time domain (FDTD) [1} algorithm has been used widely in
solving the transient responses of electromaguetic problems. However, it is difficult
to model complex EM problems with curved surfaces using the FDTD method in its
original form. Many variants have been proposed in the past with the aim to circum-
went this difficulty with varying degrees of success. Almost all of these approaches are
based upon, one form or the other, the use of finite difference approximation in both
spatial and temporal domains. It is the purpose of this paper to show a finite element
time domain formulation, which uses Whitney 1-forms in the spatial domain and the
finite difference in the time domain, respectively, for solving Maxwell's equations. In
this way, the proposed WETD method can be used on a tetrahedral finite element
mesh generated by an automatic mesh generation program, TETRA.

1 Automatic Mesh Generation

Due to recent improvements in computer technology, in particular the massively parallel
machines, the size of engineering probiems which it is practical to analyze using finite
element method is dramatically larger than before. This makes it increasingly important
to automate the mesh generation process, so that creation of a mesh does not become 2
bottleneck in the analysis of a product design. Furthermore, if mesh generation can be fully
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automated, then it becomes feasible to embed the entire finite element analysis (including
the mesh generation) in a feedback loop in which the mesh can be selectively refined to
ensure accurate numerical solutions.

The current implementation for meshing multiple objects, based upon the use of De-
lavnay tessellation [2] algorithm, comprises of three major modules. These three major
modules are: surface meshing, initial Delaunay tessellation, and mesh refinements and qual-
ity improvements. The major tasks involved in each module are outlined in Fig. 1.

TETRA PROJECT
Edge poins distribmiion
Iasarior poins dixribution using i-offsacting mathod
" 8
1 Surface Triangnlation| Delauney wisnguision using Circle Swapping tochnigue
Bounding box end analvical mashing
: Watson's algoriien
M.2 Initial Delannay Mesh Generation Preserving mrfaces by stisching
Assigning efiributes
Symbolic meshing for point insertion
M.3 Moesh Reft and Quckity Oplimioati E Mezk refimemerss

Figure 1: Three modules in current Delaunay mesh generation.

1.1 Three-Dimensional Delaunay Mesh Generation

In the Delaunsy mesh generation, originally all the mesh points are generated via the surface
triangulation. Except in the case of adding points to preserve the surfaces of the solid
objects, no additional points should be generated.
Watson Algorithm
One method of forming Delaunay tessellation of a given set of points P is the Watson's
algorithm. The basic approach as shown in Fig. 2 for a two-dimensional case, is based upon
the incremental point insertion into a pre-existing mesh.
The extension of the algorithm to three dimensions can be briefly described as follows:

o Start with an initial tetrahedral mesh Do containing all the points to be added; new
internal tetrabedra are formed as the points are entered one st a time.

o At any typical stage of the process, a new point is tested to deteninine which circum-
sphere of the existing tetrahedra contains the point. The associated tetrahedra are
removed, leaving an insertion polyhedron containing the new point.

o Edges connecting the new point to all triangular faces of surface of the insertion poly-
hedron are created, defining tetrahedra that fill the insertion polyhedron. Combining
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Figure 2: Watson’s algorithm

these with the tetrahedra outside the insertion polyhedron produces a new Delaunay
triangulation that contains the newly added point.

Watson’s algorithm, although conceptually straightforward, suffers from three major dif-
ficulties in practical application. First, improper resolution in dealing with the degenerate
cases can yield an invalid mesh; Secondly, due to the finite-precision calculation, the appli-
cation of Watson's algorithm may result in structural inconsistencies and ultimately fail to
construct a valid m+sh; and, Thirdly, for real-life problems with high degrees of complexity,
the algorithm will take prohibitive computation time. Therefore, methods implementing
Watson’s algorithm need to resolve the degenerate problems, enforce strict point convexity
condition, and provide a vehicle to localize the use of Watson's algorithm.

Localize the Action
In its original form, the Watson’s algorithm requires a scan through all the tetrahedra,
consequently, it is ineflicient and undesirable. A modification in the Watson's algorithm
which localizes the action and provides a significant speed-up is proposed herein. The idea
is to employ a multi-zone search method: First divide the bounding box into M. x M, x M,
zopes, and for each zone construct a directed tree with tetrahedra whose centroids are within
the zone. Furttermore, by noticing that once the tetrahedron which contains the new point
is located, the creation of the insertion polyhedron may not go beyond two layers of it.
H. ace, it is possible to form a localized action region centered at the tetrahedron with the
new point inside it.

Finally, the modified Watson’s algorithm in the present implementation works as follows:

1. First find the zone, Z,, to which the new point belongs. Consequently, find the
tetrahedron, T,, which contains the new point. This tetrahedron should be found in

27 zones centered at Z,, if not check all the zones (this case happens only in the early
stages of the process when the number of tetrahedra is few).
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2. Form a localized action region which is centered at T, and cxtend no more than a few
layers (we choose 3 in our program). Also, mark all the tetrahedra inside this action
region.

3. Perform the circumsphere ;:hec.king for all the tetrahedra inside the action region and
form the insertion polykedron.

4. Perform the point convenxity checking and construct the final insertion polyhedron.
5. Conneci the new point to the faces of the insertion polyhedron.

After step 5 has been completed, the new point has been successfully »ddcd to the set of
tetrabedra and the process is complete.

2 FINITE ELEMENT TIME DOMAIN METHODS

2.1 FAEDO-GALERKIN FORMULATION

Let us consider the following vector wave equation for the electric field, E-. which is derived
from Maxwell’s equations:

Vx—VxE+e§f=—%—tl- in Q

AxEw=0 on T,
AxVxE=0 on T, (1)

where I',, T are electric and magnetic walls, respectively. The weak form, or the Galerkin
form, of Eq. (1) is just

j(voe%ﬁ+von—VxE) =-—/ o-—dn 2)

where ¥ is & test vector function. To achieve a greater symmetrv between trial and test
vector functions, we apply vector identities to result in (assuming either PEC or PMC
condition on the boundary T')

/[voeg;—f-r-}(vxF).(VxE")]dﬂ=—/nﬁo%’dﬂ 3)

To make this formulation operational, we use the Whitney 1-forms as the bases for the trial
space S* and expand the trial and test vector functions as

EMF 1) = Wi(P) €i(2) (4)
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where ¢, W; are the circulation of the electric field and the vector basis function associ-
ated with edge i, respectively. Also, in Eq.(4) we have used the Einstein notation for the
summation over index ¢,

Finally, the optimal weights ¢' are determined by the Galerkin principle

P die 1 o, - ; Y
[ (W eww)an S5+ n(Zwa.wa.-)dn . =—L(W'-—5t-—)dn (5)

forall

Now we put the Galerkin equation into vector notation, with £ as the coeficient vector, the
result is an ordinary differential equation (ODE) as:

m%fn’[sle-—r (6)

2.2 FINITE DIFFERENCES IN TIME

A. Central Difference
By applying the central difference to the time derivative in Eq. (6), we obtain:

[T]gi-,-(s"“-zsws"’)-;-c’lsle'.o ™

The above equation can be rearranged to result in a matrix equation which can be used to
update the coefficient vector, £, as

[T} = ~[T) & + (2(T) - Pée2 [3]) € (8)

As evidenced in Eq. (8), the updating of the electric field, for each time step, requires
solving & matrix equation of the form

Tz=y (9
However, since the matrix [T} is positive-definite, equation (9) can be soived efficiently by,

for example, the Pre-Conditioned Conjugate Gradient (PCCG) method [3)].
From Eq. (8), it can be shown that it will be stable if and only if the following condition

bolds 2
o ({211 - @6 181}) < 4o (17T (10)

where p(A) is the spectra! radius of the matrix A. Fipally, with algebraic operations, the
final stability condition can be Jdeduced as

‘AT-
l) L0
oft £ 2| 1 (1)
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where AT, and A3, are the minirqum and the maximum eigeavalues of matrices [T} and
(5, respectively.

B. Forward Difference

Applying the forward difference to the ODE in Eq. (6) results in the following procedure
to update the E field in time:

a5t?(5]
(7]

However, it can be shown that the numerical scheme proposed in Eq. (12) is unstable
regardliess of the time step &t that is used in the computation.

C. Backward Difference

When the O.D.E. (6) is approximated by backward difference, the following equation is
obtained

st R SR S Tl s et (12)

(i1+ 263 (5]) £ = 2(T) €~ [T) (13)

The nice feature of Eq. (13) is that it is unconditionally stable, viz. it is stable regardless
of the time stap §2. The bad feature is that the numerical solution will always decay even
for lossless problems.

D. Mized Differcnce

As evidenced from above discussions that both forward and backward differences suffer
serious drawbacks: in the forward difference scheme, the numerical solution always grows;
whereas, in th1 backward diffecence case, it always decays. Consequently, in their original
fornas, neither one of them is practical. To eliminate these numesical artifacts, we propose
here a mixed difference scheme. Namely,

mixed difference = Sforward difference + Sbackward difference (14)

Applying this mixed difference to the ODE in Eq. (6) results in
4(T)

& == e amEn e (18)

It can be shown that equation (13) is not only unconditionally stable but also the energy of
the numerical solution remains a constant, as is required for lossless problems.

3 NUMERICAL RESULTS

A. Rectanguler Cavity

A rectangular cavity with dimensions 2m x 3m x 4m has been analyzed by using the three
WETD methods described in this paper. The cavity is first discretized into tetrahedra with
the average element size h = 0.378m, furthermore the constant o for the excitation is chosen
as o = 1/(xf) and f = 500M Hz. The CPU time, number of iterations, and the computed
resonant frequencies are summarized in Table 1. We note that WETDI provides the best
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accuracy with the longest computation time. Whereas. the WETD3 offers reasonably good
results with much less computation time.

B. Spherical Cavity

Shown in Fig. 3 is a finite element mesh for an air-filled spherical cavity with radius r s 1m.
The mesh corresponds to an average element size A = 0.13m. This cavity will be difficult
to model using the conventional FDTD algorithm, however, it presents no problem for
the current finite element time domain methods. The time step used in the simulation is
cit = 0.07618607 and the simulation runs for 500 iterations. The numerical results computed
by WETDS is summarized in Table 2. At can be seen from the Table, the comparison of
the first three computed resonant frequencies to the exact ones are excellent.

Exact .
Sl WETD? WETD2 WETD3
1] 0.06209 | 01491128 | 0.1891128
Iterations 2137 3000 3000
cru 20378.7 11626.7 9669.2
Model (MHZ) 2.5 §1.9298 41.193 61.58
Mode2 (M, 43.253 82.5751 80557 21.719
Mode3 (MHy) 20.139 88.7661 26367 47.916

Table 1: Numerical results for a rectangular cavity.
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Figure 3: Tetrahedral mesh for a sphere by using the Delaunay mesh generation.
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h=015 ¢ §1w0.07618607
Exact Computed (WETD 3) | ervor
(MHz) {MHz) (%)
131.0i6 130.745 0.207
184.7789 134.581 0.107
214.5279 215.345 0.382

Table 2: Numerical results for a sphere cavity.
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Time stenping methods for transient analysis of magnetodynamic
aroblems
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Unhiqdmem'lh 8

wl: 03251-. B
fax; +32-41-362910 v

* This smhor is & Ressarch Assionat with the Nasonal Pund for $ciensific Resaerch.
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In the rest of the papar, the reforeace i electromagnetic quantities is given up and the genersl system of
dffecuntinValgebreic squesons (DAE; (4) is consid. ed:

A y(t)+B y(1)=b() “
where A and B are coefficient matrices. b iz che right hand member vecior, y is the unknown vector, t is the time and the
dot indicates the time danvative, Nows that A sad B may depend on y in the case of & aon lincar sysiem ¢.g. B depends on
y 111 the case of ferromagnetic sacrtion and ane bas B(y(1)).

The sumarical solution of sysiem (1) requires a tirss Sscetismtion. A simple scheme is given by (5):

n JELEL LB (@yq4r +(1-0)ya) = BBy +(1= )by ®

Indices 2 and 8+ refor 10 GINtinS 5t LIS §, 80 L, = |, + &% respectively. Variows choices of the parameser a iexd 10
-x-inln:hvb(o-l.b implicit (backwyrd) Exler, om0. is explicit (forward) Euler, o172 is Crank-Nicolson, as2/3

ThC wsinix /08 -+ 0 is involved in the solution of sysem: (5). One obviows condition is that it must be invertibie ic.
aon raguler. The mady of DAE syssems such as (5) involves the magix pencil A + A B of matrices A sad B where A is
an arbitrary parameser {1,3]. It st be regulsr ie. dei(A + A B) must not vasish identically. If it is not the casn, it is
impomidle 0 L d ¢ Aland an @ such that A/AL+ 63 is mot singular and the sysem is mosningicsr. On the other hand,
i£A + A B is a reguler peacil, matrices E, F exint such that:
A*wE A F = ding(l)) ®
B*u KB P o ding(W)) (v]
muu—.—.-&mmmm marricys placed on its disgonal, I sre unit matrices
of vhs saitablo disnession, W is 2 reguier square merir, annwwmm»nmumm
0 0
1 0
®
0 10
dehhﬂﬁmMnmhMGmdummmdlmjmy

w;um-nwnrjnr-ouf‘-um Withy* ¥y and b® = E. b. the DAE sysiem (4)
is Eronacker aormal form (KNEX(1

e 2 "ver v =) ()

v+ ver \v)

®

‘The sumevical behavicar of 8 DAE sysem depends srongly on its silpowacy. On the oo band, if the ailpotency is gresser
than one, tke sysam is very difficuit 10 solve and spacial sschniques swast b3 wed. On the ciher hand. if the nilpoency is
xnm(]hwyuﬂnm).aly—;hu*n“dmwm&ODEmy

The time desivative of the corresponding aodel valus of
the vector possatial gives a Ron 2000 term ou the diagonal of A. Such eqastions de wot influence the ilpowury of the
©

y={(y.0) a0
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) 1
y = - i"-j Ya+i=) 11
L) an

f - ip,; fasi-j
=] ’ )

Indices i refer 10 quantitios at times | .8.8. y; = y(i) aad £; = {(y;.1,), all the timos 3 being spaced by A constant time step
At. The solution beiag known wp (0 tine Ly, , the solwtion a time 1y, is computed by solving for y,,; the system
obtained by doing the replacesemts (11) snd (12) in (10). A particuler method is defined by giving p+1 coeflicients a; and
q+1 coefficionts B.. Tabie 1 shows some classical methods. Adams Moulion sad Gear methods sppear as higher order

geoealisation of the scheme (S).
ethod 12 % = o | o 1 2 | &
Implicit Enler 1 i -1 0 1

Nicolson 1 1 .l 1 AR 2
Adams Moulon 1 1 -1 2 5/12 12 -1/12
w0 e Genr 2l p | an | ip g L
thiee sep Gowr 3.1 us | 186 9% 26 0 1
Table 1: Backward diffarence methods

In the case of the DAE system (4), with the following notations:

Ya 'gﬂj Yast-} a®

'(’)Yb - ipj B{Yael-j}Yas1-; (14)
=0

by~ éﬂi Baetj as

the compuzation of the Rext time SWP is the solution of the sysem (16):

ALSoB(y)rly =y as
fot yae1, where the dopendence of B on y has been made explicit.

Que_stes methods: Buncs Kutta methods

The geoeral differential syssem (10) is considared again. An approximation of the solution from the valves yg of the
solation a1 the previous tme sep msy be obtained by solving the following relations (5]:
foom 1
L]
Yimya *MZBi,' (Yjly +a;a1) isl.s
jml

3 an
Yae1 =Y "Mz“i {(Y;. 1, +o;t)
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or form 2
k; = At f(y,«ribﬁ kj, L, +a;8)  i=l.s
=]

1 {18)
l)’ul"Y-*Zl‘i k;
is]
The equivalence of both forms may de shown by remarking thatk; = At I(Y;, t, +@;Al). A s.step method is
Mwhmwﬂuﬂmpmhmwmwbwmm

e, Pu Pu B
% By Pz P
a, By [ By
L Lr} = ¥
with g; -iﬁij.
ot
mmmmmuwmnumammm classical explicit methals are the

methods for which -ohjzmum.:umu(u » 0 for j > i), the methods are called the implicit
Ronge Kutta methods (IRK). Spmmdm.euwnmmxmmmmmws =C for
pi),nnbunpydvhchn&euzlydwllyiwlﬂtkwKun(SDlRK)muhod:(nfB -0!u'j>und1l
By= B foralli).

NRKMM&W»MDAEM(J) Nevertheless, only form 2 may be used because form 1 would
involve the inverss of A in its last sep. The adapiation of form 2 w the DAE sysicms gives the following relations (6]:

Aki-Al{b(l,¢ciA()-l(y.+25ij kj) (y.vZBi,- xj)] for iml..s
I~ =
' (19)
Yai ®Ya* L K;
in}

In this case. 2 (£.8) x (5.0) system bas 10 be solved 1 find the k;. Nevertheless, in the cate of DIRK, k) depends only on
Ya: ky onlyon y, and ky, eic... and the relsvions (19) reduce 00 a sex of s successive systems of size n x n.
Here are some exssapiles of DIRK:

* oot sep metdod [7}
A A

1
hhmdh thod redaces 4 scheme (5)
Bty +AA1) inssond k)*lb(bu)

* two saep raethad {7)

A A 0
1-2 1-22 A
1”2 12

voepted for the independent werm b which is discrerised as

« three sep method
-7/}

12 a 12-a
1-0/2 a 1-2c
la 1-2a

n[soo
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P

-
with w7 aod el
Note that this method is symplectic i.c. for Hamiltonian sysaems, it conserves the symplectic two form. The weaker
properties of volume conservation in phase space (Liouville's theor=m) and of conserv ition of energy me a consequence of
MWMUﬂWlhemblcmscumduedmmummm}hmlmnnm-lu..1hem-dnesno(
congerve energy.

The following slgorithm may bz nsed t implement the DIRK method w0 30ivo (4) sad 10 kecp it ixm of the non linear
systemns @ be solved as close as possible 10 the ones involved in the other methods:

Fori= 11081

. To find K;, soive the system:

=t

;-l

‘i')‘.'zﬂij k;
. Compate gi.__pl:'___
]
3
Conpase Yael 'Y-*z“l k;
job

One stey _methods: extrapolation methods

The principle of extrapolation method:; i 40 perform computations with a basic scheme for a sequance. of decTeasing time
seps sad (0 extrapolate 10 xx0 time step (Richardson’s deferred approach © the limit) [9). This is made by contilering the
W&mdm“dmmm-mdmmwdwmtewm

The following algorithm has been used for the compuiations this paper. The chosen besic scheme is the
mmammwumnmuwnnmm small cacillationy dae W its weaker
saability joopardise the convergence of the extrapolation procexs. The implicit Exler method is very siable and its error
development inciudes all the powers of the time sep frum the first ore. The arror dovilopment of ON nclodes the same
terms uacepend che firn oxder onz. The following saqoescn o time steps 1 considored {9):

far, a1/2, ar/a, 4176, at/8, AL/12, ... 2u/m; .}, wm=dng ROi>4 [0}

s-m(t.nnol.mnlnmy..ammumhounowwWn.mofmphcnuu
method with the time sep Aty . The fallcwing sequance of syproxinstions is obtained:

{T". Ta1. T Tt Tope Togo Trieveee Tt } an
‘The higher order spproximations sre obtained by ing the following disgram:

Tn

Ta T»

Ty To Ty @

Tar Ton
;heﬁmc_cu;nnislimby(zl)mdmeuhumeompuedluinn‘?zfollowin‘ formula (poly ial
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@)

In practice, the diagram is lnebylmehycompunglmw'r"-ld forming Le Lations. The process
umpedwhan-dTulwaewnumed y. The poi myusngwegoodrmxluaﬂdu
advised by some suthors (9], nmbuonlymmof(!l)mmdor(m

Tis @ Tig + (Tigor = Tictuy)

LR 1= -g-l' i=ikel
Biaer| Tk~ Ticia-2

In practice, both extrapoiatioas are performed and the best is chosen. In ical ests, the polynomial extrapolati
seems 0 beter converge.

Numerical examples

As an applicaticn, the discharge of & capecitor in 8 series RLC circait is considered, where the inductive effects are
computed by the finite elemtumhcd(l(!l This is & lreeomlhuon problem, which is more s2nsitive (0 time
integration method than forced oecillation ones. First, the linear case (i, = 1000) is considered in order 10 swdy the
behaviour of the various schesnes. The reference solution is computed with the Craok-Nicolson method snd with a very
small stepsize b = 4,10 ssc. For compariag the varioss methods, a conmant siepsize of h = 4.10°3 s is considered,
which corresponds spproximagely 40 20 saepsizes im one period. In figare 1, the multinep methods are compared. It appears
that the implicit Euler mothod hes 2 100 important damping effect. The Crank-Nicolson scheme is very accurme (the energy
of the syssem is spproximately conserved), but a small frequency emor is inoduced. The more precise scheme is the
Adaes Moulton one, but it beaomes unsubie after s few periods. Finally, two step Gear is not of great interest because
ﬁwmuwﬂ-wmeﬂmnmhmummmmmmimﬂuin
mmmlﬁwmmmﬂ-mnpaarmm lton) only require the storage of

Thmup-uhods.eMmﬂmz.h that the synpl mmc—* ‘uwl.lu&eeu'npohum
method give excelient resuilts. Convergonce of mmm hed afier 3 subdivisions of the
mmMulﬂsm'mwuaﬂﬂmmlmmhanw
memm(«).hm" ges aiier 4 subdi The is still excellent, but
soeras discontingons. This muﬂmmum-nm thod i3 peeferred (or lineer probl

J 24)

Reference
implich Euler ____ __
Ceank-Nicolgon_ ___ |
3 step Adams Moulton

2gtenGear ____

Figure 1 : Time evolation (s) of capacitor voliage (V) - Multisiep methods.
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Figure 2 : Time evolution (s) of capacitor volage (V) - One step methods.

As & non linom' wet, the same problem with a hyseretic core is considered. As a criterion of quality of the soluticn, the

Mwumnnm.wmwkmmwhmnmm&

mmmm:mummmmamtmmawmmmmm

energy of the sysiers and mvast stay constant. The implementation of the Preisach hysitresis mode! in the finite element
. : v . . *)

" gl
linear problems.
12. F\
10. P

ol
L.

005 01 015 02 025 03 035 04
Figure 3 : Time evolution (s) of the

gies (1) puted with Crank-Nicolson scheme,
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Figure 4 : Time evolution (3) of the gies (1) puted with iation 1 sthod.
Conclzxion
The Crank-Nicolson method appears 1 be s simple and method. Nevertheless it may [ail in sonse problems. An
incresting alternative sre the extupolation methods. Although thoy are time conmuming, extrapolation methods are very
robust and provide a nataral mechanism of step cowrol. Energy conservalion appears 1 be a good est of the validity of
the methad for very complex problems.
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Abstruct

This paper describes for the first time new complex periodic boundary conditions that enabie efficient finite element

modeling of periodic alternating current electromagnetic devices, These boundary conditions are shown to be &

special form of multipoint constraint. Applications are made to kow frequency electrical machinery and to high fre-

quency phased zrray antennas. Computed results are verifiod' 7 their agreement with those of much larger models.
INTRODUCTION

Peno&cbwndnnwndmmmmnlyuedwmmewofﬁmaelementmodeutoonlyoncporuon
of an entire device [1]. Conventional periodic boundary conditions constrain the potentials and fields on one
boundary to be equal or opposite 1o those on a boundary ooe period away. Thus in alternating cusrent electromag-
netic problems, these periodic boundary conditions specify 8 phase shift that is an integer multiple of 180 degrees.

This paper describes and applies new complex phasor pesiedic boundary conditions that enable smaller phase shifts
and therefore smaller ac models to be used. While similar bourdary conditioas have recently been meationed for
 hybrid roethod [2], this paper is the first to describe the theory of contplex boundary conditions for finite elements.
The first application of the new boundary conditions is to low frequency wpparatus. Results obtained for a one—-
third pole mode! of an induction ntotor with the new boundar:' conditions are compared to those of an entire pole
model using conventional boundary conditions.
The second appiication of the pew boundary conditions is to high frequency antennas. An infinitely periodic phased
array is analyzed with the new boundary conditions for comparison with results obtained by a much lagger finite
ciement model having conventiona! boundary counditions. The new complex periodic boundary conditions are also
used for antenna scan angles that cannot be analyzed using conveational boundary conditions,

COMPLEX MULTIPOINT CONSTRAINTS
The finite element snalysis software used here, MSC/EMAST™(3), based upon the potential vector {u} made up
ofmmwmmmuxmdm-mw electric scalar potential v, has three matrices making up its
tquation:

] IMI{ii} + [BI{u} + [KI{u} = {P} (1)
where [M] is proportional to permittivity, proportional to conductivity, and {K] is proportiot  to reluctivity.
{P)m[hel;uunonmdnumdkn w{:mupwnmewnmnmwmtuulmplex
phasor, and $o are its first and second time derivatives. Thus for aa angular frequency o = 2x f, (1) becomes:

(- @™ + juB + K{u} = [Fi{u} = {P} @)

Boundary conditions that relate s potential u on one boundary m to those on ancther boundary n can be expressed
as & multipoint constraint. This constraint obeys a matrix reiation between nodal values:
{ua} = (Gu}{u,} 3)

One way of enforcing such a constraint is the Lagrange mudtipler technique (LMT). It can be expressed as:
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;a Fu GL.][u. .
] | 1 O
Gau ~1 ox{q-} ) “

where the vector partition gm contains the Lagrange multipliers and where Tindicates the adjoint.

Ancther way of enforcing the constraint of (3) is the ¢ int variable elim; techmgue (CVET). It can be
expressed as:

[Fu'l{us} = (P} (5)
whers

(Fua'l = (Fu] + [FuullGua] + [GLJIFLa] + [GlullKam}(Gra] (6)

(P} = (P} + [GL{Pa} ™

If [F] is & real symmetric matrix, then [F"] 's Hermitian; otherwise {F’] is a complex unsymmetric matrix. Open
boundaries [4],{5] might produce an unsymmetric [F°) matrix.

The two constraint techniques are compared as follows. The LMT enlarges the size of the matrix, but makes it more
sparse. The CVET reduces the sizs of the matrix, and was chosen for the computations of this paper.

AFPLICATION TO LOW FREQUENCY APPARATUS

The low frequency device 10 be analyzed is a 60 Hz polyphase AC induction motor that has two poles. Figure 1 shows
the geometry of the induction motor, including the stator windings of phases A, B, and C. There are 24 stator slots
and oeth, and 36 rotor bars and teeth. These numbers of stator and rotor teeth are quite common for induction
motors. Because of the three = phase stator windings, the number of stator slots is usually » multiple of 3 times the
oumber of poles, and hence 24 stator siots are often used. To minimize torque variation and acoustic noise, the
aumber of rotor teeth is usvally significantly greater than the number of stator teeth, and hence 36 aluminum rotor
bars are often used [6).

The minimum model size with conventional real periodic boundary conditions is one pole pitch, or 180 degrees.
Figure 2 shows the 180 degree finite clement model developed for the motor of Figure 1. The model consists of
444 two—dimensional quadrilateral finite elements and 414 wiangular finite clements. There are 697 grid points
(nodes), each with only one degres of freedom, the componsut of magnetic vector potential A that is in the z direc-
tion pormal to the 2D finite elements. The boundary conditions consist of setting A to zero at the inner and outey
diameters, plus periodic boundary conditions. The perindic boundary conditions are (1]:

A, 100°) = (-1) A (r,0°) (C))

which are enforced at the grid points of radius r between the innet and outer motor radii. Becuase (8) involves a
coefBicient that is a real number, most finite element codes are able to enforce it.

The ac magnetic field can be computed for the 180° model of Figure 2 at various slip frequencics. Figure 2 shows
the computed magnetic flux lines at a typical instant and a typical slip frequency of 3 Hz (5% of 60 Hz). The com-
puted values of stored encrgy and induced power for the 180° model are listed in Table 1.

Figure 3 shows a new 60° mode! of the motor of Figure 1. It has ooe third the number of finite elements of the 180°
model, and has oaly 241 grid points. Figure 4 requires the complex periodic boundary conditions:

A (r,600) = (cos 60° +jsin 60° ) A (r,0°) 9
which are enforced at the grid poiats of radius r between the inner and outer motor radii.
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Figure 1. Induction motor with stator windings of phases A, B, and C.

. ¥ .
i b A S\

model of Figure 1, showing computed instantanecus fiuxlines.

Figure 2. One ~pole (180°) finite clement
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Figure 3. One~third pole (60°) model of Figure 1, showing computed instantancous fluxiines.

The sc wagnetic field was computed for the 60° model of Figire 3 at various slip frequencies. Figure 3 shows the
computed magnetic fux Lines at a typical instant at slip frequency of 3 Hx: the flux lines agree with those of the 180°
wodel of Figure 3. The computad energy sad powsr for the 60° mode! are listed in Table 1, and are seen to be exactly
oas third thoss of the 180° model. ilcace the compleax pesiodic boundary conditions are obtainirg the correct an-
swers. Because the complex conditious reducs the model sise, the overull CPU time is reduced from 60.7 seconds
10 40.9 ssconds on aa HP 9000 woekstation. This reduction is expected to be even more dramatic for larger modeis
such a8 3D models. hﬂmmmmuwmmmmmmmmuymm
by the compiex periodic boundary conditions.

Table 1. COMPUTED ENERGY & POWER IN INDUCI'ION MOTOR MODELS

Baamesac 1% madal 60° model
Magaetic energy (joules) 2074543E~2 6.915143E-3
Power (watts) T29M0E -2 2.40915E-2

APTLICATION TO PHASED ARRAY ANTENNAS

The high frequancy devics to be analysed is » phased array microwave anteans. Figure 4 shows the finite element
model of four anteunes of tw phased array, which are fod by rectangular metal waveguides operating in the funds-
meatal TE10 mode with slectric fisld in the y direction. The frequancy is 3 GHz. The waveguide width in the x
direction is 5.714 cm and its leagth in the 3 direction is 12 cm. Noso that a radome of relative peraittivity 3.0625
and thicknews 2.857 cap covers the wavegiids opeging 1o tres spacs [7]).

mhmwusofmuntmmdndbhmbmdummmdmmbnymmum

Hnumlpbmdunywnlhwwm—dmn ekunummenplne. Tbuhmb

. &mmmmumumm:mdrm«wmmmb-
socbing Boundary

Coaditions} are used at that Soundary {S].
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Figuse 4. Finits cloment model of four antenna ctlls of a phased arrsy along the x axia,

In the case of a phites shift per cell that is an integer divisor u of 180 degrees, » madsi of the infinite

made with res] mukipoint constraints. Mmmhﬂnaunmlmumuhan:
example, the (nite element model of Figure 4 with four anteana oalls has real multipoint constraints for 190 degree
wmm«tsmmmp«ﬂ Figure S shows the Poynting vecsor computed by MSC/EMAS
for the model of Pigure 4, showing that the ensrgy is directed al a scen angle of 12.64 degreas. This obeys the well~
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Figure 5. Computsd Poynting vectors for the four cell model of Figare 4, for phase shift Oy = 45 degrees.
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known relation [7) betwesn phass shift angis @y (in degrees) and scan sngle Oy:
sin 8y = Oy M(360* d) (10

where ) is the wavelength and d is the cel) width, which is 3,714 ¢ tn this case.

Figure 6 shows ths phass frouts computad fre the four csll mode! ‘The phase fronts have the sime angle as the
Poynting vectors of Figure 5, that is, 12.64 degreos.

- . s
0

Figuse 6. Computed phase fronts of four culls of phased array.

Compiex maltipoint constraigts can be used to asalyze the satire antenna artey with a mode! of oaly oae of its an-
tennss. For exmopis, Figurs 7a shows the Poyating vector computed by MSC/EMAS with a one cell model with
complex cosstraints of phase shifk 43 degrees. The results agree with those of the four cell model of Figure 5, even
though the sumber of Saite elemenss is reduced by a factor of fowr.

m&ma%?&hmgqumunﬁ&mmumm
= P ) . odic bound Wi
?:nma«maummuuﬂnumuam':ou

Asother key advantage of the complax peviodic constraints is that the ons cell wodel of Figurs 7 can be used to
mhmmm?;ﬂnﬁ:rwrd;n“ lfmhmﬂ:::nmud
the pbass angle boundary conditions ure obeyed, and that the scax angle is according to (10). o
Figure 9 thows the computed resalts for s phase shift of 70 degrees. Nos in Figure Sa that the scan angle is increased
according w (10). Figure S0 shows that the boundery conditious of 70 degres phass shift are obeysd.

The sbove phased array astensa hes been modeled with two—dimensioasl finite clements and with only oae com-
ponent of magnetic vactor potsatial A, in the sams direction y us the slectric fleld. The reflection coefficients com-
puted by MSC/EMAS will be compared with those of the method of momaats (7] ix a future paper [S].

Complex petiodic boundary conditions have also besa implemented in MSC/EMAS for three dimensional finite
clement models. In such cases, up t0 thees componssrs of A, ss well a3 scalar potsntial ¥, are all given phase
comstraints. Phased arvays that sean in two directions require throe dimensional finite eloment models with such
multi ~degres -of - fresdot complex smitipaint constreints.
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Figirs 7. Oue coll modsi of phased srrey wi ' ompies
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Figurs 8. Computed results for one vell model with phase shift of 20 degress
a).Foyating vectors, b). phase sagies of alectric Gield (20 degress per conlow line).
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CONCLUSIONS

Compiex periodic boundary conditions have been shown to be special forms of multipoint constraints that are en-
forcabis by finits slessat matrix oparations such as the Lagrangs maltiptier techaique or the - voseraiat variable
mwmmmmnmu“ummm wric cell 1o repre-

satae rasults Ad those obtained with much largsr models without the new boundary conditons. The new boundary
conditions are especially beiplyl in modeling phased array ansennas, where they are required for analyzing arbitrary
phxze shift and scan angles.
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CoMPUTER CODES FOR THE ANALYSIS OF PLANAR AND
CYLINDRICALLY CONFORMAL PRINTED ANTENNAS

Jian Gong, Leo C. Kempel and John L. Volakis
Radiation Laboratory
Department of Electrical Engineering and Computer Science
University of Michigan
1301 Beal Ave.
Ann Arbor, MI 48109-2122

Introduction

The hybrid finite element-boundary integral (FE-BI) method has been found par-
ticularly attractive for simulsting patch antennas/arrays, printed spirals and non-
planar cavity-backed antennas. The analysis of such a diverse collection of antennas
and arrays can be readily analyzed using a single computer code while taking into
consideration feeding lines and antenna geometry substructure. Because the exact
boundary integral is used for terminating the finite element mesh on the aperture
surface, there is no compromise in accuracy and furthermore use of the Fast Fourier
Transform (FFT) in evaluating the boundary integral contribution leads to a min-
imal O(N) memory requirement and a substantial iacrease in the efficiency of the
solution method.

After a brief overview of the formulation, in this paper we will describe the
characteristics and capabilities of 2 new computer code which uses tetrahedral ele-
ments for discrstizing antenna cavity and triangular patches for zoning the aperture.
The geometrica interface of the code will be addressed. The accuracy of this FE-
Bl code will also be described in comparison to other finite element formulations
which employ absorbing boundary conditions or artificial absorbers for terminating
the mesh. Several calculation examples involving different antenna geometriss will
be presented. Radar cross section (RCS) and radiation patterns as well as input
impedance computations will be compared to measured or reference data.

A second code for cylindrically conformal patch antennas will also be described.
This code employs shell elements for meshing the antenna cavity. Since these ele-
ments are analogous to bricks, the code incorporates its own mesh generation algo-
rithm for rapid geometry specification. Attention will be focused on the validation
of this code for wraparound patch antennas and accurate feed modeling using mea-
sured or reference data. In addition, antenna performance results will be presented
as a function of radius for a typical configuration.

Formulation

The FE-BI system for cavities embedded in a metallic surface (planar or cylindrical)
may be written as a matrix equation

1 (E"} (4] Io]] {Ey} _ ey
[AJ {E;ul} + [01 w] {E;'ut} = {f'_il(} (1)
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where the entries of [A] are due to the finite element portian of the formulation and
[0] is stiributed to the boundary integral. The coeflicients £;° and E;** denote
unknowns associated with the aperture and interior fields, respectively, whereas
J** is the excitation function due to exterior sources, such as a plane wave, and
Ji"* is the excitation function due to interior sources. In this paper the source is an
infinitesimally thin probe feed normal to the patch and cavity base. This formulation
may be readily modified to include the effect of lumped impedance posts, shorting
pins or resistive cards as reported by Jin and Volakis [1].

Solution Methodology

For both planar and cylindrical geometries, the unknown electric fields are fourd
by solving (1) using a Biconjugate Gradient-Fast Foutier Transform (BiCG-FFT)
solver. Since the system is symmetric, only one matrix-vector product is required
for each iteration of the BiCG algorithm. This product comprises the bulk of the
computational effort in the solution and it is therefore advantageous to minimize its
execution time. In our implementation, substantial CPU reduction time is achieved
by using a sparse matrix-vector product for the finite element matrix term [A] and
a discrete convolution product for the boundary integral term {C]. The resulting
product imposes both low computational and memory load.

Having determined the electric fields within the cavity and on its aperture,
engineering quantities such as RCS, radiation pattern and input impedance may be
determined. Both the RCS and antenna pattern are computed using the aperture
filds while the input impedance calculation requires the interior fields near the
probe feed.

Planar Code

Consider the printed conformal antenna configuration shown in figure | where a
cavity is recessed in a perfectly conducting ground plane. Printed on the cavity’s
aperture is a radiation element of arbitrary shape. In order to simulate the geo-
metrical irregularities as well as the dielectric inhomogeneities of these antennas,
we choose tetrahedral elements for the FE volume discretization because of their
geometrical adaptability. The expansion of the unknown electric field in this imple-
mentation is then carried out by using linear edge-based shape functions [2] since
these elements are well suited for vector field representation. The boundary inte-
gral portion of the system is formulated on the basis of the equivalence principle
which requires an integral equation in terms of the free space Green’s function and
2 magnetic current over the aperture surface which relates the magnatic field & to
the tangential component of the electric field £. Thic jeads to an exact boundary
condition for the FE volume termination as opposed to other truncation schemes
such as absorbing boundary conditions or artificial absorhers. The tetrahedral ele-
ments in the cavity reduce to triangle patches on the aperture surface which results
in triangular zoning. Linear edge-based shape functions associated with a pair of
triangular patches are introduced for the electric field expansion. Again, the sur-
face basis functions just like their volume counterparts are divergence free and well
suited for the vector field representation.

Since a geometry of arbitrary composition is to be analyzed, a commercia! mesh-
ing package such as SDRC 1-DEAS is employed for preprocessing so that a tedious
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geometric data input is avoided. An interface between the main prugram and the
mesh generator is provided as the second stage of preprocess. To reduce the mem-
ory requirement, only nonzzro elements for the FE system are stored and the BICG
solver is utilized. If the geometry of the radiating elements is regular and uniform
zoning on the aperture is physically accessible, then the boundary integral system
becomes a discrete convolution (provided the unknown edges are appropriately or-
dered) and the efficient BICG-FFT solver is used.

Since tetrahedral/triangular elements are chosen for the cavity/aperture dis-
cretization, a particular feature of this program is its capability to simulare planar/non-
planar antennas, dielectric substrate inhomogeneities and diverse feeding schemes.
Several numerical examples are shown to illustrate the code’s capability. Figure 2(a)
displays a square Archimedean spiral. A square rather than a circular spical was
selected because it allowed comparisons with reference data. The cosnplementary
square spiral consists of strip arms, each of width 0.09375 cm, jlacud (free-standing)
on the aperture of a square air-filled cavity which measures 2.812 cm per side and
0.9375 cn deep. Figure 2(b) illustrates the ¢ = 45° plane oy and o4, bistatic
patterns for this structure where the plane wave was incident from 30° off ner-
mal. The gy pattern compares well with corresponding data based on th= finite
difference-time domain (FD-TD) method {4]. No FD-TD data were available for the
Oee Pattern but as expected, the ¢gq return is much lower and vanishes at grazing.
Figure 3(a) illustrates a circulsr patch residing on the surface of a 0.406 cm thick
substrate having a relstive dielectric constant of ¢, = 2.9. The patch's diameter is
2.6 cm and the substrate is enclosed in a circular cavity 6.292 cm wide. This cavity
was recessed in a Jow cross section test body for measurements. A comparison of the
measured and calculated input impedance is displayed in figure 3(b). For brevity,
the excellent RCS data comparison is not shown. The feed in this case was placed
0.8 cm from the patch’s center and it is again seen that the measurements and cal-
culations are in good agreement. We considered next the modeling of a one-arm
conical spiral to demorstrate the geometrical versatility of the tetrahedral code. A
configuration of the spiral radiator and surface mesh is illustrated in figure 4(a) from
a side view. The top and bottom edges of the strip forming the spiral follow the lines
p = 0.05031 exp|0.221(¢ + 2.68)], z = ay exp(0.221¢), where (p, ,z) denote the
standard cylindrical coordinates, a; are equal to 0.0832A and 0.0257), respectively,
and 0 < ¢ < 2x. This spiral arm resides on an inverted cone (9.24 cm tall) whose
bottom cross section has a diameter of 1.68 cm and the top cross section has a
diameter of 21.78 cm. For our calculations A = 30 cm and the spiral was situated in
a circular cavity 10.01 cm deep. The computed E, radiation pattern, using a prove
feed at the cavity base, is given in figure 4(b). It is seen that the E, principal plane
pattern is in good agreement with the data given in [5). However, the E, pattern
differs from the measured data primarily because of the circular cavity included in
the analytical model. The latter was not part of the measurement configuration
which consisted of the spiral antenna on a large circular plate.

Cylindrical Code

The cylindrical code differs from the tetrahedral code primarily in terms of its ele-
ments and dyadic Green's function. The elements are circular shell elements such as
the one shown in figure 5. These elements, like their tetrahedral counterparts, are
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divergence fiee in accordance with the requirements of the vector wave equation and
hence no penalty function is required. They are also edge-based elements and are
therefore well suited for electromagnetics applications since they avoid specification
of a field at geometry corners where a singularity might exist. The cylindrical shell
element shown in figure $ is most closely related o the brick element and is in fact
a member of the general class of curvilinear brick elements. 'The dyadic Green's
function used in this code eliminates the presance of the magnetic field on the mesh
boundary and requiras a magnetic curreat with support only over the aperture.
Thus, the unknowns are associated with the alectric field within the cavity and on
the aperture. Although use of such a Green’s funciion is typically associated with
a large computational burden for large radius cylinders, we have found that by em-
ploying a high frequency asymptotic evaluation, we can maintain a highly efficient
code.

The cylindrical code currently allows the calculation of the RCS, the 1. ~~na
pattern and the input impedance for cylindrical-rectangular and wraparound 4n-
tenna elements. Of principal concern are the radiation and scattering properties
of wraparound anterina arrays. Two types of arrays may be constructed: discrete
cylindrical-rectengular cavities and cylindrical-rectangular patches printed atop a
continuous substrate ring. These two types of wraparound arrays are illustrated in
figure €. The scatiering and radiation behavior of each of these arrays are of inter-
est to a low observable antenna designer and are the subject of a series of papers
{6,7). Evidentiy, continuous wraparound cavities support substrate modes which
dramatically affect the back lobe RCS and radiation patterns.

An interesting application of this code is to investigate the effect of curvature
on the resonance behavior of printed antennas. The resonance characteristics of an
axially polarized 3.5 em x 3.5 cm patch anterna which is placed within a 14 cm
x 14 cm x 0.3175 cm cavity filled with a dielectric substrate (¢, = 2.17) is shown
in figure 7. The input impedance is also strongly affected by curvature for axially
polarized elements as shown in figure 8.

This code can currently model continuous and discrete wraparound arrays, two-
dimensional arrays on a cylinder {ace, planar arrays :nd elements which contain
lumped impedance/shorting posts. In the near future, resistive card overlays will
be added to the code for RCS vs. gain trade-off studies involving curvature.
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ABSTRACT

For application to radiation and scattering problems the Finite Difference Time Domain (FOTD)
method requires the limits of the computation space 10 approximate unbounded free space.
Poor performance of this absorbing boundary limits the accuracy which can be obtained by
FDTD, and may be a source of instability. When making an FDTD calculation an important
decision is the number of cealls to use in the boundary layer. (n this paper convergence tests
made by varying the size of this boundary will be reported for popular outer boundary
conditions. Further, a new apprcach for expressing these erid other boundary conditions and
for obtaining higher order boundary conditions from lowsr order ones will be presented.

L. INTRODUCTICN

When the Finite Difference Time Domain (FDTD) method as proposed by Yee [1] is applied
to scattering and radiation probleni, the surfaces formed by the truncation of the FDTD cell
space must absorb the scattered or radiated fields for accurate results. This absorption is not
perfect, and the fields reflectea back inta the FOTD space introduce errurs. Better absorption
reduces these eirors. Absorbing baundary conditions in common usc¢ provide better absorption
as they are moved farther from the scatierer or rediator since the fields impinging on the outer
boundary more ciosely approximate plane waves incident at angles nearer to the surface
nofmal. In adkdiition, the fisids reflected back to the radiator or scatterer will be of lower
amplitude dus to the spatial spreading of the waves. As a practical matter, any of the popular
absorbing boundary conditions will provids accurste results if the outer boundaries are moved
far enough away from the radiator or scatierer. But this requires relatively more computer
memory and time. .

Many absorbing boundaries have been proposed in the literature. The most popular
ones are based on the one-way wave equation. This assumes a wave incident on tho outer
boundery surface, then attempts to predict values of this wave just outside the FDTD space
based on present and past valuas of the wave at various locations near the outer boundary.
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A survey of various boundary conditiona is given in [2]. A more recant comparison of boundary
conditions is contained in (3].

in (4] the Mur condition is compared with other boundary conditions relative to the
distance from the sourcs to the outer boundary. In {5] it is shown that increasing the order of
the absorbing boundary, whilo improving parformance for a surface at infinity, may actually
degrade performance when the absorbing surface is close to the scatterer. But the results
given in [4,5] of absorption error reiative to distance again are difficult to relate to actual FDTD
performance, since NO colrespondence is given between the boundary reflections and their
effect on quantities of actual interest, such as scattering cross section or antenna currents.

There has been discussion of the reiative stability of different boundary conditions. Most
of thase have been for two-dimensionsl geometries, and have used an analytical approach.
In [8] it was shown that son'e boundary conditions are inherently unstable. In [7] it was
analytically shown that some boundary conditions may be unstable even if the Courant
condition is satisfied. A more complete discussion of stabitity was given in [8]. In [8] it was
demonstrated that the choice of discretization has a strong sffect on stability.

Here we have chosen to evaiuate several representative outer boundary conditions
using methods that relate directly to practical applications in slectromagnetics. Four popular
FOTD absorbing boundary conditions will bs compared for repressntstive geometries in both
two and three dimensions. The comparison will be made by observing convergence of FOTD
results while increasing the distance from the scatterer or radiator to the outer boundary. This
method provides information on the most important criteria in comparing absarbing boundaries,
that is, how far must the boundary be removad from the geometry in order to obtain accurate
results.

The four boundary conditions to bs compared are second order Mur [9]
Superabsorption [10] (sometimes here referred to as "Super”) applied to first order Mur, the
second order Liso [11) absorbing boundsry modified for increased stability {12), and second
order Higdon {13, 14] modified for increasad stability. Applying Superabsorption to first order
Mur results in a second order boundary. The stabilized forms of Liao and Higdon wers used
since it was found that the unstabiiized forms were likely to become unstable before typical
FOTD radiation or scattering caiculstions were completed. All results labeled Liao and Higdon
are computed with stabilized forms.

Higher order Liao and Higdon boundary conditions are generated by forming products
of lowsr order conditions. (n this paper we show how 1o axpress the boundary conditions in
a cosfficient matrix. The cosflicient matrix Clearty shows which field values aro teing used to
estimate the boundary field. The coefficient matrices for lower order outer boundarics may
then be combined to form higher order outer boundary conditions. The combination oparation
is straightforward and simple to implement. it aliows lower order boundary conditions
optimized for different incidence angies or with different stabilizing loss terms to be combined.
Even different boundary conditions of different order may bs combinad. For axample, order
P Higdon could be combined with order Q Liso to produce a combined outer bourdary
condition of order P+Q. Another advantage of the coefficient matrix notation is that the
analytical plane wave reflaction coefficients are esasily oblained using the same procedure
regardiess of the particular boundary condition being considered.

The notation of Yee is used, with E"(1,J,K) cormesponding io the eleciric field at location
x={Ax, y=JAy, 2=KA2 st time t=nAt, The absarbing boundary sguations are for a z component
of alectric field on the x=0 plane, that is, an E"(1=0,J,K) component is understood to be E; at
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x=0, If the J and K indices are unchanged in any given equation they may be omitted for
clarity. All three-dimensionai calculations use AxsAysAz=1 cm cubic FDTD cells with time step
At=0.01926 ns which is at the Courant limit. All two-dimensional calcuiations use Ax=Ay=0.5
cm with time step 0.0238 ns, aiso at the Coursnt iimit.

The far zone fieids and scattering cross sactions used in some of the convergenca iests
were obtained from the near zone fieids using the methods describad in (15,16). The FDTD
equstions were implamented in single precision, while all absorbing boundary csiculations were
performed in double precision. No difference betwren single and double precision calculation
of the boundanes was noted. For scattering caiculations with an incident plane wave, the
scattered fleki formulation of FOTD was used [17,18), and only scattered fieids were incident
on the outer boundaries for absorption. However, for radiation caiculations, total fields were
to be absorbed.

Il MUR BOUNDARY

The second order Mur absorbing condition at the boundary x=0 used in these comparisons is
given in (18) of [@). Since this absorbing boundary utilizes siectric field values al different y and
z (J and K) locations, it cannot be used for fleki values at locations adjacant to the other outer
surfaces. At these locations first order Mur as given in (15) of [9], is used.

. SUPERABSORPTION

For these comparisons Supersbsorption as described in {10) is applied to first order Mur
sc that a direct comparison between it and second order Mur can be made. Superabsorption
can be applied to other baundary conditions, so that the results of its application to first order
Mur presented here should not be taken, snd is not presentad, as a general evaluation of the
method.

Iv. LIAO BOUNDARY
Since we will be modifying the Liao boundary to increass stability, it will be discussed in more

detail. The Nth order Liao absorbing boundary condition for an electric field component located
on the x=lAx=0 surface is given by [11]

N Y1
E*Y(I=Q) -E E T,E"""(!-k—l) Q)
Jel e}
where the first order (N=1) T;x coeflicients are given by
T —‘—‘(2 -8)2(1 =) v)]
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T, =502-8) o

T,- !!!z:D (4)

car_ 1 cat

IO T owe) ax

8]}

where a is a consiant. To includs effects of different incidences angies for waves striking the
outer boundary a may be taken as the reciprocal of the cosine of the inciden:ce angie 6, where
6, is the incidence angie on the auter bou.dary (8§20 for normal incidence). For uniformity in
the comparisons, and to limit the number of piots, a=1 is used for sl caiculations in this paper

For higher order impiementations the additions! T, coefficients can be obtained from
the recursion relation

Lo B DT (M ©
A c-—u);'w-m gie-sen TN

The form of the Liao boundary given hers is siightly different than in {11), and 18 simpler
to implement. An exceilent discussion of the Liao sbsorbing boundary is given in [19) There
is no difficulty st edges and in comers since the J K valuss are unchanged for sl terms

The major difficuity with appiying the Liao absorbing boundary as given above is that
it tends to be unsiabie in many situations. Conditions that may Cause instabiity inciude
locating the outer boundary ciose to the geometry, caiculating many time steps, and including
dislectric or magnetic materiais in the geometry. For this resson a modification to the originasi
Liao absorbing bouniary has been proposed [12]. In this modification equation (2) becomes

T;‘ - !Z'u':!l‘l! m
whaere increasing d from zero corresponds to introducing energy loss in the celculation. Larger
vaiues of d provide increasad stability, but at the expense of incressing reflections from the
boundary. For all calculations in this paper a velue of d=0.0075 was used. This vaiue was
obtained empirically from caiculations for a variety of different geomaetries and total time steps.
These indicate that for calculations involving reistively few time steps, or with the outer
boundary relatively far from the object, d can be decressed withcut losing siability.
Conversely, calculations with large number of time steps or with the outer boundary close to
the object tend to require larger values of d for stability.
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V. HIGDON BOUNDARY

Higcdon's boundary condition has been given in a lossiess forrn {13)

< 3_.2
b (cu-e,E -c&-]]E -0 ®
Il
and with added loss [14)
N
1 (M,% -ca%.c,]]s -0 )
i

whare N is the order, the 6, are the plane wave incidence angles, and the G,2 0 are loss terms
that may be used to increase stability. They may also he used to incregzse absorption of
resctive fieids [20].

Equaticns (8) and (8) can be discratized in different ways. With 9.=0 and N=1, (8) is
equivalent to (1) of [9] which yiekds the iirst order Mur absorbing boundary. We can thus
discratize (8) to be identical with first order Mur. Adding the incidence angle dependence and
stabilizing loss we obtain first order stabilized Higdon as :

E*' (I=0JK) = (1 -E* (11.K)

JECAL-AX ppey g )
PPYYIY Y (E™ (1K) - E* Q1K) (10)
where o is a small positive number which .ommesponds (as with the Liao boundary) to an
energy loss and o is a constant related to the assumed incidence angle on the outsr boundary
as defined in (5). Again, there are verious ways of adding the stabilizing loss. The approach
used here is simple, and provides good stability snd absorption. For all calculations stabilized
Higdon is used with d=0.005. The parameter a remains equal to one in all cases.
The next step is to cxtend (10) to higher orders based on (8). in order to do this
efficiently we introduce a coefficient mstrix notation in the following section.

VI. COEFFICIENT MATRIX METHOD

implementing some types of higher order boundary conditions is greatly simplified by use of
a coeflicient maltrix which relates sach multiplying coefficient to the particular electric (or
magnetic) field term it muitiphies. It is 8 matrix notalion, but to generate higher order boundary
conditions the matrices combine in a operational way, 1.0t by usual matrix multiplication. The
combination procass is straightforward.

To start we consider locating electric (or magnetic) field quantities in space and time in
the vicinity of the outer boundary fieid location of interest in the following matrix arrangement:
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E™Y0JK) E*Y(1JK) E*Y(QJK) .
E* OJK) E* (1JK) E* (J)K) .

m- En-l(o’,'x) E'-‘(IJ‘) El-l(u'x) . (“)

The electric (or magnetic) fleids are arranged in position horizontally, and in time vertically.

An analcgy exists with a systam of linear equations, but instead of the uninown linear
equation variables, we have the known valuas of electric fields pius the one unknown
boundary field in the upper lsft comaer of the matrix. The matrix will be large encugh to contain
ali the electric field terms included in a given boundary condition, which will depend on the
particular bour dary condition and its order. For sxampie, for first order Mur only the four terms
in the upper left comer are included in the matrix, since first order Mur does not invalve any
other electric fieids.

Any absorbing boundary condition that operates on field terms with the same J.K
positional locations can be put in this form very easily. This includes all the boundary
conditions considered here except for second arder Mur. Forms such as 3econd order Mur
which opersate on mu'tiple spatial dimansions can aisc be put in coefficient matrix notation, but
the coefficient matrix will have additional dimensions comesponding to transverse fieid
varistions. This can be quite simply accommodatad in calculations by declaring an array with
sufficient dimensions for each spatial variation plus one for the time variation.

First order Liso has a coefficient matrix given by

10 0
-0 (12
(r.. T, r.,]‘”

The stabilized form of first order Liac is obtained merely by substituting T, for T,,.
First order stabilized Higdon has a coefficient matrix

-1 b ®-0 13
-b, (1-d))
v, cAr-Ax . _ - .
where b, :,c ATvAE and d, ic the stabilizing faclor. With a,=1 and d,=0 first order Higdon

as implemented here is identicatl with first order Mur.
One asvantage of this cosfficient matrix notation is that the terms being used lo
estimate the outsr boundary electric fisld are claarly shown. For example, both first order Mur
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and first order Higdon oparate on the current time alectric field one position into the space,
plus past time electric fizlds at the bounciary and at one position in. First order Liao operates
only on past values of elestric field, but goss one fisid lonstion further into the FOTD spaca.

‘While ussful in this way, the real advantage of this coefficient matrix notation is in
gsnerating higher order boundery conditions from lower order ones. This is most clearly seen
from considering the product notation equations (8) and (9). These equations clearly state that
higher order absoibing toundary conditions are to be obtained by forming products of lower
order one3. The combination process involves multipiving and shifting. A general definition of
this operstion process on the coafficient mairices can be given as foliows. Consider two
different coefficiert matrices for two different outer brundary conditions. The first is given by

1 1 - 1
% 1 - - Gog
11 !
Gy @ « « G

Al(’l"l) =| . . arl.'; . {14)

- v -

1 1 1
po n ~ = 8pq

and a cormesponding matrix A(p,.g,) is defined similarly. Each by itself defines an cuter
boundary conditiort. We wish to obtain the combined higher order boundary condition. Let the
resulting coefficient matrix be defined as A(p,;). The combination procass will yieid terms in 4(p.g)
with indices p=01,2,..(P,+P,) and ¢=0,1,2,...(Q,+Q,). Each term in this coefficient matrix is
given by

k&
Apa '-E E E E 60,-,a(|.om A|0’l4|)Az(szqz) 1s)

20 40 10 (o

where the Kronacker deita is defined as

s - 0, vy
w |l u=y

Equation (15) provides the shid combinations necassary to generate each term of the
combined coefficient matrix. This process comasponds to the product combinations given in
equations (8) and (3).

For axample, consider generating second order Higdon from two first order Higdon
coafficient matrices as given in (13). Each of the first order Higdon coefficient matrices could
havae different o and d teims, which is allowed for by having subscripts 1 and 2. Applying (15),
the coefficient matrix for second order Higdon is
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-1 b, +h -bb,
-by-by (1-d)+(1-d)+2bb, -b(1-d)~by(1-d,) an
“bb, b1-d)b(-d)  -(1-d)X1-d)

Third order Higdon can be generated by applying (15) to combine (17) with first order Hi_don
of (13). The process can be repested to generate Higdon boundary conditions of arbitrary
order.

While not explicitly clear from the statement of the Liao boundasy condition, higher order
Liso boundary conditions can aiso be genersted using this approsch. For axample, by
applying (15) with bot: coefficient matrices A, and A, given by (12), the coefficient matrix for
sscond order Liao is obtained as

-1 0 0 0 (/]
¢ Ty Tp*Ty T+ Ty 0 0 (18)
TyTy -2y Ty 20, Tyy-TuTy -2TpTy Ty,

While different in appearance, this resuit is exactly equivalent to ths Liao boundary condition
expressions given in Section iv for N=2. Note that equation (6) is not needed to generate
higher order Liso boundary conditinns vhen using the coefficisnt matrix approach. First order
Liso i3 directly extervded to second orcsr Liao, and then o third or higher order by combining
cosfficient matrices.

The reguit given in (18) assumes that both first order Liao coefficient matrices use the
same vaiues of a (and d if the siabilized form is used). But the coefficient matrix coribination
operations used to obtain (18) will work just as well if the T__ terms for the different first order
Liso coeflicient matrices use different values of a and/or 4. So that designing higher crder
absorbing boundsry conditions with different contributing orders optimized for different
incidence angles used to compute the a parameter and with different loss factors d is quite
simple using this approach. :

Furthermore, Liao and Higdon (or any other boundary condition that can be expressed
in coefficient matrix notation) can be combined together. For example, coefficient matrices for
first order Liao and first order Higdon could be combined tn give a sscorid order boundary
condition that would combina the features of both. ¥ transverse directions are inciuded in the
coefficient matrix by aciding additional dimensions, this procedure allows boundary conditions
involving transverse directions to be combined. For exampie, a second cvder Mur boundary
could be combined with an order P Liao bounday to creste a (P+2) order Mur-Liao boundary
condition.

VH. THREE-DIMENSIONAL CONVERGENCE

in this saction an example comparison between the boundary conditions is made for three-
dimensional caiculations. This axample is wiie band scattering frcm a flat conducting plate.
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The piste is 40 x 40 cm, and is centered in the FOTD space and perpendicuiar lo the z
coordinate axis. The incidonce angle is 0=45, =0, which puts the back and forward scatter
into an edge of the FDTD spaca, but not intc a corner. Results are shown in Figures 1-4. Mur
has not converged even with a 40 cell border, Super has converged with & 30 cell border and
simost converged with 20 cails, and Liac and Higdon have very nearly converged with a 20
cell border.

This three dimensiona! example is chosen as a representative set from a large collection
of similar calculations. Thay indicate that for three dimensions the Super, Liao #nd Higdon
boundaries perform much better than Mur, with Liao and Higdon perhaps slightly better than
Super for close boundariss, and with Liso and Higdon providing aimost identical convergence
resuits. While not included here, al boundary conditions converged to identical resulis for all
test casas if the outer boundary was locsted at @ sufficient distcnce from the geometry. Mur
war the only exception, and only for geometries where convergence still had not been ootdined
for boundary distances &t the limit of available computer memary. We now procesd to a
comparison in two dimensians.

V. TWO-DIMENSIONAL CONVERGENCE

While two-dimensional FDTD calculations have somewhat limited application, they may be
ureful in certain situations, We therefora include one two-ctimensional compariscn, a perfectly
conducting circular cyfinder. For this calculation the cylinder has a 0.25 m radius, 30 that with
0.5 cm square FDTD celis the cytindar diameter is 100 cells. Staircase errors are not a factor
in the comparison, since they will be the same for all four boundary conditions. The axcitation
is 8 pulsed piane wawve incident from ¢=45 degrest.

Figures 5-8 show the far zons backscatter for the four boundary condiiions for various
borders between the cylinder snd outer boundary. The advaniages of Super, Liao and Higdon
over Mur are even more striking than for the three dimensional calculations considsred in the
previous section. This may be due to the necessity of using first order Mur in comers, but
there may also be more fundamenta: shoricomings with Mur in two dimensions. VWhile Super,
Liso and Higdon have converged reasonably well with a 30 cell border, the Mur resulis have
not converged aven with » 250 cell border. The Liao and Higdon results for small boruers are
siightly better than Supar, especially at low frequencies.

IX. ANALYTICAL REFLECTION COEFFICIENTS

Additional insight into the performmance of these outer boundary conditions may dbe gained by
consideration of analytically-determined reflacticn rosfficients. Following the approach of {22],
it is very simpis to determine the analytical reflection coefficients using the coefficiant matrices
presented in Sestion VI. For simplicity we assume that the boundary condition can be
specitiyd using a iwo-dimensional coefficient matrix operating on time and one spatial
dimension. For 8 general cosfficient matrix Alpg) with indices p=0,7,2,...P and 4=0,1,2,...Q,

we can express the operation of this matrix on tho electric field quantities of (11) explicitly as
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P ¢
Y. 3 AQQE" =g K) =0 (19)

< 90

Equation (19) specifies a particuiar absorbing outer boundary as detsrmined by the c.oefficients
of the A(p,g) matrix. If different J or K values of alactric fields are used in the boundary
conditions, as in second order Mur for example, this can be included by adding additional
dimensions to the A(p,q) Matrix and adding more summations.

Following the approach in [22] we can then obtain the reflection coefficient R as

where
P Q
52 Y apgdrictats @y
o q=0
and
P Q
s’ - E E AP J"’“"AM @
0 0

and whers in (21) and (22) the term corrasponding to p and q simultaneously equal 0 is not
included. Once the coefficient matrix for a particular absorbing boundary is determined, the
piane wave reflection coefficient can be obtained easily. Additionat eummations can be added
to (21) and (22) to include slectric field valuas with different J or K indices.

Using this result, calculstions of analytical reflection coefficients for the boundary
conditions considered in the previcus comparisons have been made. These calculations are
made for the same outer boundary psramsiers used in the convergence comparisons. The
incidance parameter g =1, and the loss term rerhains d=0.0075 for stabitized Liao and d=0.005
for stubilized Higdon. The caiculationr are for a thres-dimensional FDTD space. Example
resuits are shown in Figure 8 for FDTD calls size corresponding to 10 per wavelangth. The
behavior of the stabilized and unstabilized Liao and Higdon boundaries are quite similar. The
desp null in the unstabilized versions is softened with stabilization. Both Liao and Higdon are
significantly better than Mur and Super at incidence angles near normal. Other calculations
of analytical reflection coefficients indicate that they are a reasonable indication of performance
at high frequencies, where there ara many cells per wavelength. But at lower frequencies,
where the outer boundaries are near the target (as measured in wavelengths) are are
interacting with reactive fields, the analytica! reflection coefficients do not provide a reliable
indication of absorbing boundary performance.
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X. SUMMARY AND CONCLUSIONS

Four absorbing outer boundary conditions popular among FDTD users have been compared.
The four boundary conditions are second order Mur, Superabsorption applied to first order Mur
(which is then of second order), and stabilized forms of the second order Liao and Higdon
boundary condition. The three-dimensional comparisons indicate that Superabsorption,
stabilized Liso and stabilized Higdon provided significant improvement over the Mur condition.
In mastthres-dimensional cormnparisons siabilized Lino and Higdon psrformed nearly identically,
with both of these convarging somewhat faster than Supserabsorption. The two-dimensional
comparison indicate that Superabsorptian, stabilized Liso and stabilized Higdon provide even
more of an improvement over the Mur condition than for three dimensions, again with Liac and
Migdon providing slightly heftter parformance.

) calculations of plane wave reflection coefficients for the outer boundary
conditions, incluging stabilization loss, were presented. These showed the effects of adding
stabilizing loss to Liao and Higdon boundary conditions.

These results are presented to provids informalion for FDTD users faced with choaosing
an outer boundsry condition and determining the size of the free space border region. They
are not an exhaustive evaluation of the Superabsorption method or of the stabilized Liao and
Higdon conditions. Superabsorption may be appiied to many different boundary conditions,
and our results are apecific to its application to first order Mur as described. These resuits
strongly indicate that the Superabsorption method is valuabie, since applying Superabsorption
to first order Mur provided much more absorption than second order Mur.

Similarly, Liso and Higdon may be stabilized using different vaiues of the stabilizing
factor or using rifferent vaiues of a. Howsver, unless extreme stability is required for
calculaticis which include unusually large numbers of time steps (hundreds of thousands or
more) the second order Mur absorbing boundary is not the optimum choice. it requires
significantly more border spacs in three dimensions than other boundary conditions, and
performs very poorly in two-dimensional applications.

To aid in the genaration of higher order boundary conditions, a coefiicient matrix
notation was introducsd. The coefficient matrix notation also allows a general implementation
of absorbing boundaries, 50 that changing from Liso to Higdon, for example, requires only
changing the first order coafficient matrix e.1tries. The analytical reflaction coefficients are aiso
obtsined in a simpie and sirsightforward way from the cosfficiant matrix.
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Adaptive Absorbing Boundary Conditions
in Finite Difference Time Domain Applications
for EMI Simulations

Bruce Archambesult and Omar M. Ramahi
Maynard, MA 01754

ABSTRACT

Abeorhing boundary conditions (ABC) are typically constructed to annihilate waves im-
pinging on the mesh truncating bourdary at, or ckase to, normal incidence. These ABCs give
sufficient accuracy provided that the truncation boundary is chosen far from the source or
scatterer, making the computation (using finite element or finite difference methods) very ex-
pensive. This paper presents an alternative formulation to ABCs by optimizing the boundary
condition at each boundary cell for the highest likely direction of incidence. The adaptstion of
the new ABC to the Finite Difference Time Domain (FDTD) solution is simple and effective.

INTRODUCTION

Absorbing Boundary Conditions (ABCs) have been widely used in Finite Difference Time Do-
rain (FDTD) and Finite Element (FE) modeling of open region scatering problems and microwave
circuits. Several papers have been published explaining and comparing the performance of a number
of different ABCs. The basic operation of these absorbing boundary conditions is to simnlate free
space, that is, absorb all electromagnetic waves as if there was an infinite amount of free space in
pixce of the ABC. These toundary conditions are enforced aiong the boundary of the computational
domain that is used to guncate the finir> difference grid and are usually derived with the assurcption
that waves impinge on the boundary at angles equal to or close to normal imciderce.

Te construct the perfect absorbing boundasy condition, two major considerarions are in order:
(1) The bouncary condition has 10 ahsorb waves impinging on the houndary from 1all directions simul-
taneously, ad (2) The boundary operator must absorb waves that are both svenescent snd traveling at
the sare time (evancscent waves typically exist in the acar field.) To construct a boruxlary operator
that addrzsses (1) is theoretically possible bt would require extensive computer memory and calonla-
tious to be performed 1t each boundary cell, nox to mention the passibility of unstable solutions. The
construction of boundary operators to accommadate (2) is possible but comes ar a considersble cost
and complexity in code development time and code exccution time. To the knowledge of the acthous.
the Lindmam sbsorbing Youndary condition [1] is the only ABC that has the potential of effectively
dealing with evanescent snd traveling waves, but involves considerable vomputational complexity and
can be very expensive to implenent.
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For an important class of electromagnetic radixtion problems such as those arising in Electro-
magnetic Interference (EMI) applications, s large dynamic range is critical to allow accurue predic-
ton of radistion from shielded structures. Typical ABCs can produce reflections on the order of -60
dB relstive to the incident pulse amplitude. This level of accuracy in the boundary conditions is usu-
ally sufficient for classizal scattering applications. However, for EMI applications higher accuracy is
needed. It is importan 10 note that this limitation on the accuracy cannot be lifiad even if the outer
Loundary is receded further by increasing the computational domain, since waves still impinge on the
boundary at angles that deviare appreciably from normal incidence.

In this work, we made use of the flexibility inherent in the FDTD method to minimize the re-
fiections arising from the use of the ABC. This was possible by adapting the ABC to the wave's most
likely direction of incidence st each of the boundary cells. For the special class of radiation problems
such as in EMI, the source is typically localized which allows a good prediction of the angles the inci-
dent waves make with the boundary. Since the ABC is adapred to a single wave (a1 cach boundary
cell,} onc can get optimal results by using an exact boundary condition, or more accurately, an adap-
tive absorbing boundary condition (AABC).

FORMULATION

There are several ways in which one can construct an adaptive absorbing boundary condition.
In this work, the formalation is based on the Liao’s absorbing boundary condition {2] which has the
advantages tha, first, it is readily adsptable to the FDTD grid, and, second, it guarantecs stabiliry for a
wide range of incident angles.

mLho'sNQabnxbingbounduycondiﬁoncmbewrinmuB]
PpGredn = f(-xf*’d-” $lx— jeatt~ (- 1)4n)
=1

where
o = M /Gtw- i

¢ is the field value and Ar is the Yime step used in the FDTD solutien. Notice that the ficld values
involved in the absorbing boundary condition are not necessarily evalusted at the FDTD grid. To ex-
press the boundary conditior: in terms of ficld values available st the FDTD grid, quadratic interpola-
tion is used. For instance, §(x - cAt. t) is expressed in terms of the field at the boundary point x as

sfs=1)

Eosio9 gl + s2- e + X5l

#x— cArn =
where
$N@) = iz~ (i- DAx.1— (m— 1))

s=

RIg
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The Lino's ABC as given above is optimized for normal incidence, in the sense that rays hinting
the boundary at normal incidence would be completely absorbed. To optimize the Liso's ABC for
each cell lying on the latice guncation boundary, we will make the assumption that only one ray hits
the boundary. Define 0 to be the angie the assumed incident ray makes with the normal direction ar a
particnlar boundary cell. To optimize the boundary condition for each boundary cell, the wave speed
is modified by the assumed angle of incidence @ as

<

% = ®
The absorbing boundary condition applied at eacii boundary cell will then be

$ian = i(—l)"’ el gx= jog At= (i~ 1)d0)
=

It is important to keep in mind that the full swength of the adaptive absorbing boundary condi-
tion is realized when the source is localized in space which gives rise 10 a single ray hinting each
boundary cell (sssurning the truncation boundary is outside the near field region.) In EMI problems
involving radiation through a single siot, the slot wiith or area is typically small compared to the size
of the computarivnal boundary and to the distance from the slot to the lamice muncation boundary. In
such problems, the most appropriste choice for the cerer of the localized source, for the purpose of
enforcing the adaptive absorbing boundary condition, will be the geometric center of the slot. For
problems where maltiple slots of equal or similar widths/area exist, it was found, as can be seen from
the numerical results presented below, that if the center of the localized source was taken as the geo-
metric center of the points defining the cemters of the slots, then the AABC still gives an appreciable
improvement over ABC. Finally, for cases where sorne slots are larger in size than others, it is rec-
oraneried that the choice for the cemer of the localized source should be made such that it will bias
the slots with larger sizes.

NUMERICAL RESULTS

Two representative examples were studied to show the effectiveness of using the adsptive ab-
sorbing boundary conditions in FDTD solutions. In the first example, we considered the two-
dimensional probiem of radiation through an 0.0lm wide aperture in an infinite perfectly conducting
gound screen. The geometry of the problem is shown in Fig. 1. The time step used in the FDTD
solution is At = 2.36 ps and the grid size used was Ax = Ay = 0.00tm. The source excitation furction
is the derivative of a Gaussian pulse of width 32 At. Since the intrest lies in finding the radiation
levels outside the source region, the optimal choice for the localized source sor the purpose of apply-
ing the AABC, is chosen to be the center of the aperture as shown in Fig. 1. '!'heelecu-icﬁcld(Ez)u
the observation point is shown in Fig. 2 as calculated using the FDTD method for both cases using the
ABC and AABC. Since the field contribution at the observation point is coming from two ray-like
waves, the first commng through a direct path from the localized source, and the second is the reflec-



tion from the side truncation boundaries. The results shown in Fig. 2 clearly demonstrate that the
AABC has significantly reduced the effect of the second ray.

The second example employed the geomeary and FDTD pararacters used above, but two aper-
tures were added, Each of the three apertures has & width of 0.01m., and the separation between them
is 0.01m, as shown in Fig. 3. In this case, the field contribution at the observarion point is expected to
come from several ray-like waves emanating from the three apertures, thus resulting in an effective
source which is more distributed over the conducting screen than what was erperienced in the first
example (see Fig. 1.) The optimai choice for the localized source will be again a1 the cenrer of the
three apertares as shown in Fig. 3. Numerical results using the FDTD method are shown in Fig. 4,
which, despite the existence of a distributed source, ie., the three huygens® sources ar the three sper-
ures, the AABC performed appreciably better than the ABC.

CONCLUSION

This work presented an alternative formulation to ABCs for cenain class of radiation problems
having localized sources or sources distributed over a small region. By optimizing the boundary con-
dition st each boundary cell for the highest likely divection of incidence, spurious reflections can be
reduced significantly resulting in more accurate solutions. The new mumerical fommulation, or the
adaptive absorbing boundary condition is especially well-suited for imple: wentation into the FDTD
method.
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A Dispersive Outer Radistion Boundary Condition for FDTD Calculations

Brian J. Zook
Southwest Research Insiimte
P.Q. Drawer 28510
San Antonio, TX 77228-0510

Introduction

Outer radiation boundary conditions (ORBCs) in the Finite-Difference Time-Domain (FDTD) method are
usually applied to free-space computational boundaries. This is satisfactory for Radar Cross Section and
similar problems where the modeled object is suspended in free space. There are a number of applications,
however, where the computational boundaries are located in dissipative media which may or may not be
dispersive. Examples of such media include soil and plasmas. In these cases, a fres-space ORBC results
in uracceptable reflections, motivating the development of a dispersive ORBC.

Higdon’s Outer Radistion Boundary Condition

Higdon's ORBC has the flexibility to be adapeed for use i dispersive media [1). Noe only is it able to
handle different wave velocities, but Fang asunely observed the method is able to absorb evanescent waves
by including attenuation terms in the ORBC [2). Higdon originally introduced smali aenuatior terms to
stabilize the ORBC. We wish to emphasize that the aftenuation terms are even more general and can be
used to account for other forms of anenuation, in particular, to absorb a wave propagating through a
dissipative medium. For a wavefield u(x.) approaching the boundary x = O from x > 0, the Nth-order

ORBC can be written as
—l -— g - _l_.__i = 1
[|n( C 0 Y ]]ll(o,t) . a

Each term of this ORBC annihilates plane waves traveling at velocity v, impinging at an incidence angle
of 8; through a medium with anenuation coefficient .

Higdon discretizes this differential operator by introducing a mixing parameier &, used to mix time and

space derivatives. This parameter affects both stability and accuracy. The discrete form of the ORBC can
then be written as:

N
[nl ﬁi]u(o.t sa) = 0 @
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where

{l - 2,')[(1 -mieng) 2, - l)[(l -mleh2’ o)
* S 0 M = .
The slowness and attenuation in the x-direction are given by
coa §;
W @
a; = &Ccod;

mm.mmdeﬁwdml.ﬂlidmﬁlym Zl.whichilthespaﬁnpmjecﬁon

operator (distance Ax); and Z,”. which is the time projection operator (time At). The mixing parameter h
goes from U to 1; typically a value of 0.5 is used.

The discretinad boundary condition (2) can be implemented in a convenient "loop” form:
N N
Y Tastm * 0 ®
ms0 as0
where
Uy, ® U (NAX, t + AL - mA).

The T,,, matrix elements are coefficients determined from the ORBC parameters by expanding (2); this
expantion only neods to be done during ORBC initialization. The masrix elements are found to be
convolutions of the first-order operator coefficients in (3). This is a convenient computational form for use
in the FDTD program. allowing th: ORBC parameters. including order, to be adjusted without reprograrmm.
ing.

Reflection Cotflicicnt

The reflection coefficient of this ORBC can be determined by assuming the total wavefield u(x.:) is the sum
of an owgoing piane wave and (reflected) incoming plane wave, which is then substituted into (5). The

reflection cocfficient depends upon the ORBC parameters. the incidence angle of the plane wave, and the
frequency and complex wavenumber of the plane wave.

The importance of ORBC attenuation coefficients is illustrated in Figure 1, which shows the amplitude
reflection coefficient as a function of incidence angle. The medium is a Debye medium with €, = 9,
€. = 4,6 = 001 S/m. and f, = 500 MHz, where the relative dielectric constant is given by:

€ - €. ¢
g = : e (6)
R W 71+ Y
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The figure shows the magnitude of the reflection coefficient for 500 MHz plane waves. If no attenuation
is included in the ORBC, the reflection is unacceptably large. Including atenuation in the ORBC reduces
the reflection signiticantly.

Figure 2 shows the reflection coefficient as a function of frequency, for plane waves at normal incidence.
Again, ORBC attenustion reduces the reflection coefficient significantly. The figure shows that the
reflection coefficient goes to unity at rero-frequency; this can also be shown analytically. This suggests
that source signals, such as an incident pulse, should not contain significant energy at very low frequencies.

The lov-frequency reflection phenc-renon is pasticularly problematic when the computational demain is
mostly filled with a dissipative or dispersive medinm. In such media, low frequencies experience much
less attenuation than high frequencics. This means any low-frequency energy that is refiected from the
ORTIC is able to travel large distances in the simulation resuking in a low-frequency “ringing" effect, which
we have observed. Farthermore, since high-frequency onergy may be largtiy attenuated by the medium
before reaching the boundary, the high-frequency reflection coefficient is not as important. This means the
ORBC design should be skewed such that a small low-frequency coefficient is favored.

We would like o have an ORBC that has a small reflection coefficient over a broad range of both
frequency and incident angie. A simple choice of ORBC parameters would be to choose velocities and
atenuation coefficients thae commespond to the medium =& frequencies within the range of the source
spectrum.  But as we have seen, a small low-frequency coefficient needs to be favored. Also, ORBC
stability, discussed below, is another consideration. We find it useful to examine the reflection coefficient
as a function of both frequency and angle by using a contour plot, such as in Figure 3.

Stability of the ORBC

Material and ORBC parameters also affect the sability properties of the ORBC. The analytic differential
ORBC (1) is unstabie unless the ORBC astenuation is larger than the attenuation of the medium. We have
derived » stability criterion for this ORBC. It is based on requiring the roots of the Z-transform to lie
inside the unit circle (3], The stability can be analyzed for each order separately. The root for the i“*-order
is found to be:

.
Pi{ % -k o
LN | R gL RLERAG Y B
Horo [ T
where
p = v A
‘ &
5 = hip; + cod)
b, = oAxcos® - Re(K -1}
¢ = Im{K-1}
d, = cosB +aRe(K -1)
K = eji“”t = ik -ja) Axcos®
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The Z-transform oot gives us a stability criterion;

2
¢ (28 -py) - b +bp) < 0 ®

- This expression shows therc are two main ways 10 increase stability: 1) reduce the mixing parameter h, or
2} increase the ORBC attenuation coefficient. Because of the somsitivity of the reflection coefficient
frequency response to the ORBC attenumion, we find it convenient to adjust the mizing parameter.

Figure 4 shows a subilized reflection coefficient, crested by adjusting the ORBC paramesens for Figure 3.
The reflection coefficient is now both larger and smoother, which teems 10 be characteristics of the
stabilization process.

FDTD Implementaiion

We have implemented this ORBC in an FDTL code. Instsad of applying the ORBC to the E-field, as is
usually done, we apply it to the H-field, allowing the adjacent E-fields to be updated with the usual interior
dispersive update equations. For the interior calculations, we are using the recursive convolution method
developed by Luebbers [4].

As an cxample of the ORBC implementation, we show the results of TE polarization calculstions. The
configuration is shown in Figure 5. Two cziculations are done — one on the small domain Q, and one on
the larger domain Q,. Both cakulations are stopped before refluctions from S, can reach £,. Thus, any
diffemcubetwmdntwomunﬂﬁeldpohnimidaﬂlmuﬂyuﬂeaedbyret‘bcdonsfmmﬁ,.
Samples arc taken at the two indicated points, just inside Q. The source is an infinitesimal H-ficld scurce
located at the center of the domains.

Figure § shows such a run. Notice the pulse is dispersed but decays nicely 10 zero showing no instability.
The reflections from the edge and the comer were approximately -55 dB and -30 dB. respectively. The
source function used was a pulse that has a center froquency near S00 MHz, with energy ranging from
70-2100 MHz (60 dB points).

Figure 7 shows a run with a source function that produces more low-frequency energy. The reflections
from the edge and the comer were about -50 dB and -40 dB, respectively. When comparisons are done
between the two domain calculations, a low-frequency difference is seen that is slowly dissipared.

Conclusions

We have shown how Higdon's ORBC can be adapted for use in dissipative and dispersive media. A
stability criterion and contour plots (frequency vs. angle) of the plane wave reflection coefficient can be
used to design an optimal ORBC. Resulis show a complex relationship between ORBC parameters,
material properties. reflection coefficient, and swbility. Ye:, properly applied. this ORBC allows
calculations inside an infinite dispersive medium.
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1 8.0 - 107 20° 0.60 0.66
2 1.00- 10 200 1.0 1.2
3 1.3 - 10% 20° 73 8.6

Table I: ORBC Parameters for Figures 3 and 4
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Figure 1; REFLECTION COEFFICIENT VERSUS ANGLE. a) 2nd-order. no ORBC attenuation. 8; =

20° and 45°; b: Ind-order, with @, = 5.8 m!, §, = 20° and 45° c) 3rd-order, with &, = 5.8 m™l, §, = (7,
20° and 45°.
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peposed 13-5]. Thase apply approximate to the wave equation at the radistion boundary, with svaibilstion for
aml Urk saly, for sech additicaal angle of ansibilation, the order of Mm@m
increasss. The aumbet of shemeats in the which mmat be included higher-order di

3 vidaity of the in the hi
oparelion thus incresses. wide range of incidwal augles be abuwotbed with themse ABCa, the resuit:
mqm&m@f—mm“m&u;?@nﬂhl&"hh mlulynh::s
tarey difReultins

SAWTOOTH ANECROIC CRAMBER-BASYD ABC
mwmmmmm-—mumuum Journal of Elic. Waves udA:pl

0‘] ‘Fide p t30n waslysed the ic chanber ABC wsing the Finite Diflsrence
g sccitered Bald. Hm.ﬁhhnumﬁmmﬁm)m-muddwh-
mdmutlmhmm & COnLIBNOUS of P from & single angle [7,8,9].

mM\Amm-ﬂthwm'mmm

Thfndmddpnmphdlhm\BCnmtmdm&&emkrWahwbubunn-wmhm&e

wally of -t b cwydmﬂh-ymdho-mbmdtbemudut
3 ¢ iot. Tie oet effect of the wall
of pyramids is tc ah-oed all incilent wawes. And since uadu:nmﬁwdldlmn-mllhlhubed the

prramids worl wary wall at preventing nlll"mo-m anleaan lest Ins unlyu,v
was comsidered in this project, the pyramids L isngular saw tenth,
Witk pat delirg, the ial ch istics of the aboorbing layer need not be those of real dielectzic com-
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pounds. instend, the ial can be "‘-_bc'ngl-yz'hvh‘hﬁ“'nnd sgpati ductivity e, oa,
and with values of permittivity ¢ and perzosability u eslected for & wmatch st the second bounce of the normally
incident wave. If the vartax sngies of thess trisngles il tbolqhthlnduudmnd-wid&hmd

triangie facn s 90° (0° Jocal incidencs angle). This gacumisy i shown in Figure

/eo (which poads to y domain wave imped acrom
ﬂecwfmmmdnaduutoultnuhhn

[
This requirement i difficult to attain with rea) malerials, but quite easy to specify by computer. It is important to
rubelbeoo.duetiviﬁ-lupwk 0 that Lbhe -&Hym il propagates isto J'-' ahsorber medium, but

on the mesh,

° O

Figure 1. Ray paiks for waves aormally incident Figure 2. GMyEmthurculna-MABC
udnuh.luudtuuq‘nhhnl ducting square (to
dary, shrwiag &hﬁ)ndmlthoamﬂucyhn-
uﬂuphbm-hm drical pulse maximum level at £ = 0.
rOTD SIMULATION
Two di iongl FOTD simulstion of this equil 1 trinngle saw-tooth absorbing layer is ined using an excitati
pulse which i L a cylindrica) wave, ing frot:. s point source, Ulfutualdr.thmhloahndfomndum.
in the time-donain, to the cylindrical wave The dard Hanksel functi joos caly work in the frequency
i w.m-mmm,-ﬂ.nﬁu_ ; dope and & modulating earrier is used:
Eie) = 150 con 2o = 1) VE-aF+a-w
3= c0s =(p = ot), = (z-2 -
m‘ ] 4 3, ry—mw
For large redii, this form approxi the wave equals vdl.l‘otl.unduhmaauﬂbutmmbkm

ropagating wave is geaeratad. To eliminate spurious effects of this artifact, ‘mnall disk of maschad, lossy ABC media
ziuuuduth:nhrdthccylindﬁulnn Mumﬂm@b&m;m&mukmnn.mu

disk in kapt in place uatil the srtifact is reduced hm levels, sad then resmoved. ’lh-‘:moqud.m.
i ised by wding £ — id,y — j&, t — nAt. The computational domaia i chosmn a8 & rectangular grid of poiis
(525) 07 % jmany 0€CJ S Jmae-

The tic fledd L wmﬂhdmcuyﬁmhndw-hw hnthumunnlpweméhmdq»&
danee, but are orthogonal 10 £ asd are red o by the | impedance n = 3770.

The ultimate oo of the sawtooxb ABC is in the form of a contour enclosing the scatierer. Figure 2 shows this georoetry,
with an off-center square scatterer. The soutce center i at :..ugs( ,330) or 30 by 30 grid points away from ihe
center of the computational domain. The pulse hall-width, W = 15,

To save computation time, sod reduce the stiongly oblique incident pules interaction with the ABC, the total fields are
alealated outaide the. cou SoH & mmm o yrbyw Ky i .u!: of the

are oul ion. two i in terms

total Sield miaus the calculated inciden r?non l ( ) '.’w-udrm scatiered

for the of the
lddpl\-thmcdcuhuduudnliddlmmw&w‘dd)m With this procedure, the incident
field Dawer sncounters the ABC, 50 no severe ablique angle
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time

, which

oth edge
/A1 is chosen to be 0.5, implying that

in terms of the dislectric

Also, the Courant condition

20.
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Also, the

visible in this
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choarly sean in Figure 5. Figure 8 indicates that only Lhe scatiared fiald remains at 600 time stepe, vith o reflections
 incsdeat weve froin the ABC circle. ’ -

CONCLUSIONS
: PR diticn besed o anechaie chamber absoeb mwr‘uuou&ono'idl
Frovngrer o

:
4
i
i
i
[
k!
1§
i
H
il

time i i [ ]
4000 point grid, there are about oo Bcwum.mmunthum

o8 on Lhe perimetet, yot the the calculation was spest on the ABC.
Furthermore, the ABC caa be clossly positioned d & of any ehape by merel ify the boundary
hegth.Ot_huABCndhodlwonlymknplmwde m«:’. "ﬁ-m The extra
savings of wiing the b ABC om a pi h igit-with-elliptical-arc grid termil
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Figure 5b: Smoothed data at ¢ = 400.
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Figure 6a: Actual computed data for total field due to cylindrical puise, ¢ = 600.

Figure 6b: Smoothed dats ot ¢ = 600. -
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SUPERIMPOSED MAGNETIC FIELD IN
PORCED CONVECTION LAMINAR BOUNDARY LAYER

by
Alexsadra M. Morega aad Mibaela Morega

POLITERINICA UNIVERSITY of BUCHAREST
Bucherest, ROMANIA

ABSTRACT. The Bilasius problem for the laminar boundary layer is reformulated for
the case of su electroconductive fluid. The imupact of an extenal magnetic field is
observed through the similitude (Blasivs) function f(7)). Further more, the associated
thermal (Pohlbausen) problem is solved for this class of flows and the temperature

is o the true path of convection as well as the effect of the
Pl mﬂdmfmdwhmmwbyhmmmlmvel
ﬂyﬂcﬁlqm
1. Intreduction

Eeamcnndncnn fluids convecting in external (imposed) magnetic fields are the siege of
supplementary (thermal, mechanical, etc.) When the incident maguetic field is steady
(nmemdepudm).d!hﬂwnllw( as moderate free stream velocity or natural convection)
the main etfect is an increase of the drag force produced through electrodynamic (Lorenz) farces.

If the electroconductive fluid is a beat carrier as well, as it is the case of forced convection
processes, the beat transfer is influenced too.

In many siteations (crystal growth, electroerorion, magnetohydrodynamics, etc.) this is a side
effect and it is & to know in what sense it acts - improviag or not the process under coutrol.
Chandrasekbar [1] studied the modification and the stability of the flow of a fluid under the
influsace of a magnetic fisld. Oreper [2,3] analyzad this sffect in a growth natural convection

spparates. Tho hydrodynamic analysis of davﬂopdnwulﬂows(ﬂun Poiseuille) in a
magnatic field (Harunann's )uupcn-dby

Less sttention was chatu‘hadhfolwdmvmbomyu (the
mwmh&emmmmmmwunM)u y i
coajunction with the beat trausfer. mm;fmdM-Mwumvmmd

sirople, bazic models. Therefor, we focus om the heat transfec problem of a stoady, laminar
fi coavection boundary layer flow - hBMuudPouhm_lcNm The viscous flow
under study leans a thermally constrained uoth-nl), solid flat wall. objective of our work is to
gvi;m:c;_ﬁmwdn mmm fi ‘l::enow fi hmm
or ic main features couvecting flow are the
velocity and tempersture profiles are still self - similar, Purther to the classical (Blasius)
model, by including terms to account for the magnetic field contributicn solving the combined
flow and temperature problems, we use the heatfunction - a novel pbysical quantity - to show the
modification which occurs in the true path of convection by the ernm of the maguetic field.
lmodmedtdnadnqobybojn[ﬁ] tbhdfmmpondl the heat transfer community,
at jeast 2s a powerful visual means in convection processes [8.9
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2. Formulation of the problem anJ anzlysls

The equations that govern the mass, momeatum and energy in the cunstaut property forced
convection laminer boundary layer flow of Fig. 1 are [11):

du  adv

a—x+a—;=°, (1)
éu  _du 2y 2
US;-i-Vg-Vﬁ -'n"pa—ll. (2)
2
pCp(u%«rv%)-k%;:I. ®)

Here v is the kinematic thnrnulw 'ty.ois.:e'relm' conductivity, p is the mass density, Cp is the beat
capecity, k is the conductivity is the abeolute thermodynamic (emperature. It is sssumed
that the external (imposed) magnetic field is time-invependent and oriented in the k-direction (oz axis).
Its presence (and, hence, influence) is limited to a slender region inside the boundary layer. Further o
the scale analysis [6) the (Oy) projection of the soomentum equation, & compared to the (Ox) ons. is a
balance betwoeas second-order (small) terms and, thus, not relevant .

The specific form of the magnetic flux density is cousidered to be the principal pert (first order)

of a Laurent expansion for a more general field B-B(y)sbc.’)-,- (L is = charscteristic length,
typically the length of the plate in the flow direction). This definition for B satisfies tbs divergence-
free restriction and preserves the similarity festures of Blasius - Poblhausen velocity and temperature

boundary layers. The difficulty that this quantity divesges for y ~ O is alleviated through the
observation that the flow is assumed viscous and, hence, on the plats: u = 0 and v = 0. The

(electroconductive) fluid is then motionless and the quantity oB2u (Lorenz force) vanishes in this
oo
Further more. the reaction of the induced electric field upon the incident magnetic field is
In genenal (3-D), the steady statz form of the energy equation can be written as:

diviw T-agadT)=0, {4

where a = k / (p Cp) is the thermal diffusivity and w is the 3-D velocity field. It is possible to
introduce a vector poteatial, H(x,y,z) through its curl:

crlH=wT-apuT . *

This quantity, labeled “beatfunction® was introduced by Bejan {6] for the 2-D flows in Cartesian
coordinates and used thereafter to evidence the heat er process in coavective media. Whea w = 0
(i.c. pure conduction) H reduces to the classical heat flux. The hezl:‘l':nction. as [8.. 9":3?] aid, is
recognized to be superior to the isothermal representation in convection transfer , 10).

From the point of view of the fundamental theorem of vector fields [7) in 2-D protiems His
completely defined through (5) since (ooe can easily check) div Hw 0. In the special case of the 2-D
boundary layer (eqs. 1-3), eq. (5) reduces to:
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& =P ConlT-Tur), (©)

-E:FCPV‘T TM) kw- (7)

For copcisepe:s we shall present only the cold isothermal plate (T} washed by a warm fluid whose
free stream temperture is T (Warm). The reference Trer 15 set to T, the lowest temperature in the
boundary layer. All other existing similarity thermal boundary layers (imposed beat flux, ete. [12])
car be treated analogously.

Following the classicad (similarity) Blasius solution {11]:

w=Uf', ®)
via.|, |
v=%(—x:) tnr'-£), ©
whete, {* = df / dn Un is the frew stream velocity of the fluid, Uey is the free stream velocity and
! n U.X
n=fRef?, Rey= . (10)

Alter some manipulations, ecs. (1) and (2) prodice the ordinary differential equation:
-%ft':f”-ﬂ%l-hi. 1)

where Ma; =Bl /E is the Hartmann number (7). Eq. (11) differs from the classical Blasius

eqn:nonm'ough mmmmthenghthndudc. The bonnd:.ry conditions for this (Cauchy)
pr-Yiem (1), are {11}

1(0)=0, ' (0)=0, (12)
' Mag=1. (13)

It is worth noung the e¢. (11) preserves the same property of invariance to the transformations:
f—bf, n-%. 19)

as the initial (Blasius) on {6] which -
o, (me ) equati [ﬂm greatly reduces the trial-and-error shooting procedure of
Following Poblhausea's (similerity) analysis, the nondimensional temperature &(n) = (T - To)
(T -~ Ty) satisfies [11}:
e'+l;:fe'=o. 19

where Pr = v/ a is the Prandt] group, subject to the boundary conditions:

8(0)=0,€ (Migi=1. (16)
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For the similarity boundary layers, [13] an analytic solution for H is available:

H(Z7)=x"2g{n(X7)]. a7
whese, - "
H= —, 18
PCpUa{Teo-To)LRej'? us
is the nondimensional heat function and

s=fmew)+2-0'm). us)

ialbe:iﬁlilaityheaaﬁ;u'bn.

The first part of the problem, egs.(11), (12), (13) was written as an antonomous system
of ODEs and solved using a 42/ 56 order adaptive 7)-step Runge Kotta algorithm witk esror control
Per n-step (tolerance se2 to 109). A first run was carried out with f*(0)=1 (assumed vaine) and a
second (final) run with £(0) = £'(ninr)¥2, based on the invariance property of eq. (11) mentioned
before. Sineedmsicllly.mg'>$wesetm,,{=20(aufelimil)andkeptitthmughontlheamlysis.

. mmmdmmmewaanuvdAm&ngeKm
algorithm and the trial-and-error scheme was uged to integrate oqgs. (15) and (16), written as an
auooomous system of ODEs and to pin point the appropriste initial condition, 6Y0). The noeded f(T)
fmﬁwwuoh&edhnn;halmﬂymboﬁchmmlﬁmmdmcm:mdmfwme
flow pbase. At this stage H(% ¥ ) can be computed using f(n), 8(m), &(n) (locally parsbolic
interpolsiions) and the analytic formula (17).

3. Resuils

Hsthowsthehﬂmdtbemgneﬁcﬁeldonlheoonvecﬁonsyuunviaf‘(n)(theu-
~ompoocat of the velocity) for Ha=0.:0.5; 1.: 1.5; 2.
For a fluid such as silicon, withp = 2330 kg 3. v=43-106n2s-], and Un = lems!, L=

1 cm this would mean B, = 0; 5; 10; 15; 20 mT. Figure 3 shows the corresponding 8(n) profiles when
Ha=0.05; 1.; 1.5; 2, for silicon (Pr = 1.48).

Nusselt aumber, defined [6] through Nu = -k (ﬂ/% ! (To- Too) and plotted in Fig. 4.
evidences a clexr reduction in the beat absorbed by the =old One can speculate that in the limit
whenso-wmmum.mwmhummemm.mmnmw
{ratio coavection / conduction) will reach an asymptotic value - this trend is apparent in Fig. 4 too.
The ﬁmSMGMB(zy)MH(lY)fwtheHn-OndZmenndqinvsn‘gtion.

contour plcts indicate an increasingly cold boundary layer region for i ing
values of the Ha nomber. No other trend is rerdily distinguishable from these plots (Figs. 5b and 6b)
while the comtour plots for the heatfunction offer some more subtle insights in the true path of
convection. ﬁnmymoﬂbmﬂb&:wﬂlinﬁaﬁnﬂhnﬁisanfamhwm«bmly
through conducticn. For increasing Ha numbers, this orthogomality is extended to a larger domain -
conduction is predominant over the transport comzonent in the energy equation. The beatlines density
is decreating with the Hx pumber indicating s colder boundary layer, as the constant temperature lines
suggest t00. The effect of the imposition of a magnetic field is, for short, equivalent to a shift
{decrease) in the Pr number for the fluid - sn appareat increasing of the conduction part in the overall
bear transfer process.
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4. Conclusions

In this study we reportzd the modified Blagius equation to include the presence of u specific
g?auymﬂumdmpencadimmnmpa‘ﬂu(vemuudw)mmh
Allhough ml this work we addressed only the cold isothermal wall (Foblhausen problem), it is
clear that this approach is applicable to ali thermal cases (based on Blasius flow solutions)
hmvnmpuc-ndm - beat flux walls, etc. [12].
mmmwoaqmwmmuu(mmmﬁdd)
anbemwred the varistion of the Ha (Hartmann) group. Qualitatively, a second "knee”
mwh&-Om&vauﬁl&wMumevﬂckm&emm
The heatlines preve 1o be wore sepsitive than the isotherms to the changes in the flow
structures. The orthogonality to the isothermal piste is convistent with the b; of viscous flow
(adberent to the wall). Tllnhowuhnhehmmderunlylhm‘h usion (no temperature
coavection) at the plate level. When Ha > 0 the heat lines *orthogonali in a larger zone
and their denaity dm“‘ng d&::o:mnt.hulhc magnetic drag n:i:‘fhe ow nducd: also the
temperature couvection. counterpar in the overall hoat er is larger in the presence
ddnmmcﬁdiThufmmmmlydimthemthechmdmthemﬂcm
The decrease in the overall beat transfer process is confirmed through the decay experienced by
the Nu (Nusselt) grovp too. The offect of an external magoetic field can be sought as an antificial
dscrease of the Pr (Prandtl) nember of the fluid.
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OPTIMIZED BACKSCATTERING SIDELOBES FROM AN ARRAY OF
STRIPS USING A GENETIC ALGORITHM

Randy Haupt and Azar Ali’
Department of Electrical Engineering
2354 Fairchild Dr Suite 2F6
United States Air Force Academy, CO 80840

Abstract - A uniform armay of closely spaced perfectly conducting thin strips has a backscattering
pattem with a maximum relative sidelobe level of about -13 dB. We present a method of using a
genetic algorithm to strategically remove some of the strips in this armay to yield the lowest
backscattering sidelobe level possible.

INTRODUCTION

A closely spaced grid of thin strips has a backscattering pattern very similar to that of a
perfecily conducting plate of the same size. Increasing the spacing between the srtips increases the
resistivity of this structure as seen by the incident wave. Consequently, the peak scattering retum is
reduced but the relative sidelobe levels remain fairly constant. Once the spacing between the strips
gets too big, the backscattering pattern no longer resembles that of a flat plate.

One possible method of reducing the backscattering sidelobe levels is to nonuniformiy space
the strips in the grid. The noouniform spacing spatially tapers the current distribution across the grid.
If the distribution of strips is most dense in the center and gradually thins towards the edges, then
certain strip geometries may lower the backscattering sidelobes.

This paper investigates options to lower the sidelobes of an array of thin strips by thinning the
population, in other words by removing some of the strips in a uniform grid. Thinning is used in
anteana armys (o lower the sidelobe levels in the far field pattern of the aray. Usually, however,
a statistical method is used to thin the array. Here, we apply a genetic optimization algorithm 1] to
arrive at an ideally thinned distribution of strips that results in the lowest backscattering sidelobe level.

FORMULATIUN

Consider an array of uniformly spaced strips as shown in Figiwe 1. The strips are infinitely
long in the z-direction and have a center-of-strip to center-of-strip separation of d and esch strip has
2 width of 2w. Ouly baciacattering is considered, 5o the direction of the incident wave and the
direction of scanering are given by 6. The incident plane wave has an electric field polarized in the
2-direction and has a magnetic ficld normalized to one. The currents induced on the strips are found



from an integral equation formulation given by
N
.“.’ v -
e L T ) B 2| -x ) ax

where
x' = distance in wavelengths
J(x") = current density on strip n
2w = strip width in wavelengths
H,® = zeroth order Hankel function of the second kind
X, = distance in wavelengths to center of strip
¢ = angle of incidence

The current density is found using point matching with pulse busis functions. Excellent resuits were
obtained with three pulses per strip. Once the current is found, the backscanering RCS is calculated
from

N
aig) -%|2 (2w J, (x,) e'z""'l’
ey

Figure 2 is an example of a backscattering pattern of a fully-populated array of strips. The strip width
is 2w=0.037\ and the spacing between strip centers is d=0.1A, where A is the wavelength. Its
maximum relative sidelobe level is -13.3 dB. Our goal is to reduce the maximum sidelobe in this
backscattering pattern by removing strips from the amay. The new thinned array of strips has a
lapered current density across the array.

6?!'1MIZING THE GRID USING A GENETIC ALGORITHM

We begin with the uniform grid having the backscattering pattern shown in Figure 2. The idea
is to lower the relative backscattering sidelobe levels by removing strips from the grid. Thus, the
width of the strips and spacing between strips is an integer multiple of d . The grid is encoded into
a string of binary bits that is called a gene. A "17 in the gene indicates the strip is present, while a
*0" indicates the srip is gome (Figure 3). Each gene has a unique backscattering pattern. The
objective function to be minimized is the lowest maximum relasive sidelobe level in the backscattering
patiern,

The genetic algorithm starts with a random set of M genes [2]). Each gene cootains the
information for whether a strip is present in the array or not and has an associated maximum relative
sidelobe level. The genes are ranked from the minimum sidelobe (genetically superior) to the
maximum relative sidelobe level (gooetically inferior). Genes in the bottom bhalf of this list are
discarded. The remaining gencxically superior genes mate and form new offspring. Mating takes
place between two genes when the gencs swap genetic material and form two new genes. A random
bit is solected for each set of parents. The parents exchange the bits to the right of the selected bit 10
form two offsprings. Now, there are M genes of whick M/2 are  geretically superior from the
previous list and M/2 are the offspring from these genes. One final siep is to andomly murste a
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small percentage of the bits. A mutation just changesa "1" toa "0" ora "0" 10 a "1". This mutation
is an important step in the algorithm, because it helps the aigorithm wvoid local minima.

Genetic algorithms are slow. On the other hand, they search for & global minimum ano can
handle a large number of unknowns. In addition, they are well suited to optimizing problems with
discrete parameters.

OPTIMIZED GRID OF STRIPS

The genetic algurithm is applied to the uniform array of 40 strips. Starting with 80 genes and
optimizing over 8 generations produces a genetically superior gene given by [1 0000111101
0110110111101101101011110000 1]. The thinned army represented by this
gene now coasists of only 24 strips but has a relative sidelobe level of -17.1 dB. Fignre 4 shows the
backscartering pattern of the optimized array. Note that the peak RCS is also reduced, because 40%
of the strips were removed from the grid.
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Figure 1 Diagram of an array of perfectly conducting thin strips.
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Figure 2 Backscattering patt~mn of a fully-populated array of 40 strips with
d=0.1 ). and 2w=0.0371. The maximum relative sidelobe level is -13.3 dB.
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Figure 4 Backsczttering patiern of a thinwed array of 49 strips with d=0.1).

and 2w=0.0370. There are 24 sirips present and 16 removed. The relative
sidelobe level is -17.1 dB.
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Tais paper discusses a new antenna optimizaticn software package
developed for personal computer based workstitioms. The Numerical
Electromagnetics Code OPTimization design software package (NECOPFT) is
A naw and innovative approach for designing antennas. Most previous
antenna modeling software has been only concerned with the analysis of
antennas where the user could tast or determine the performance
characteristics. For designing antennas, one still needed to either
test different designs by trial and error, or apply “handbook”
approaches. The computer is an extremely powerfutl tool which is
uctilized to dramatically accelerate the cprimization process in NECOPT.

Circuit analysis codes use the same methods that we now apply to
antenna analysis softwarc to produce a package that can optimize the
design of antennas. The ¢ircuit analysis toovls have been very useful
over the traditional methods of circuit design and have made a major
impact in analog,digital and microwave circuit dJdesign. We have
incorporated the powerful techniques used in circuit design codes and
have produced antenna design software which works with the well tested
NEC antenna analysis package. Using this package, the user can provide
design goals for the antenna and the computer will perform an iterative
acjustment of user selectsd paramaters on the antenna to achieve the
Zinal results. .

The implementation of this package has been achieved using highly
accurate, fast and flaxible optimization technigues which act as a
driver for the NEC analysis software. The user creates a data :input
file very similar to the standard NEC data fils and indicates which
parts of the file are to be considered the variables for the computer
to iteratively adjust in order to achieve a desired performance goal.
The user can set limits for the variables in order tc maintain
"realism® for the fina’ design. ARfter the des:red performance
characteristics have been established, the cougputer will begin an
iteractive adjustment of the paramecers until the goals are realized.
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DESCRIPTION

The NECOPT software package consists of a quasi-Newton optimizer
integrated with a double precision version of NEC2 and the required
interfaces to provide the necessary communication between the twe
sections. Both constrained and unconstrained cptimization is provided
by the optimizer. User input is provided by a series of command lines
similar to standard NEC input which are appended to a atandard NEC
input file. The input section delines all the desired design goals,
variables, and optimization paramsters. 1In addition to cptimization
the NECOPT package has the ability o sequence any variable defined in
the NEC input file over a specified range of values. This may be
useful for developing design curves or performing a worst case
analysis. The intermediste values of the variables and goals may be
output to a plot file for further proceasing or graphical analysis.

QJOALS

Goals in the NECOPT system define what parameters the user is
intarested in optimizing or examining. Four different NEC output types
may be sampled and processed with the NECOPT package, far-field
patterns, near-field patterns, source impedance, and segment currents.
For each goal there are many options which select specific parts of the
desired NEC output data or define the processing to be performed on it.
The many options provide a generic and versatile interface to nearly
every type of NEC ocutput data. High level characteristics such as
gain, pattern beamwidth, VSWR, front-to-back ratio, and many others may
be chosen for cptimization and ocutput processing.

Multiple goals may be specified for the same run of the NECQOET
package. Each goal may be separately weighted to allow the user to
balance the signjficance of each goal to mee: the specific needs of the
problem at haad.

VARIABLES

Variables identify which parameters of tne NEC input file are to
be cptimized or changed. Thres types cf variables are available to the
user, optimization variables, function variables, and step variables.
Variables may specify any non-integer quantity in a NEC input file.
ltems such as geometry position and length, loading, excitation, and
frequency, may be defined by variables.

Optimization variables are controlled by the optimizer and are
automatically adjusted to meet the defined goals. The range of
optimizer variables may be limited by user input bounds.

Function variables are used to dafine one variable in terms of

other previously AQefined variables. They are not part of the
optimization process. They only serve as an aid in defining the user’'s
input structure. Function variables are particularly useful for

varying the size of symmetric input structures, or other structures
where relative proportions must be maintained. They allow non-physical
parameters to be optimized or scanned.
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Step variables are sinply seguenced from an initial value to an
end value by the optimizer. They are useful for sweeping a parameter
and observing the corresponding output. When combined with an
appropriate output selection they may be used to determine worst/best
case performance over a given range of one or more paramscars,

EXANPLE

This example demcnstrates the use of the NECOPT package in the
design of an optimum 3-element Yagi antenna. The only desigp goal was
to maximize the front-to-back ratio by changing the lengths of the
director and reflector elements. The element spacing was fixed as was
the length of the driven element. The element radius was fixed at
1.0E-4 wavelengths. Table 1 contains a summary of the Yagi parameters,
and Figure 1 contains a diagram of the structure.

Figure 2 contains a surface plot of the problem space. Stap
variables in the NECOPT package were used te step the reflector and
director lengths over the complete matrix of values. Reflector length
is shown on the Y-axis; director length is shown on the X-axis; and the
front-to-back ratio is shown as the surface value or the Z-axis. The
optimum front-to-back ratio of 22.4 dB is obtained with a refleceor
length of 0.4997 and a director length of 0.457A. From the figure it
is ;pplrcnt that there are several other local maximum points on the
surface.

The optimizer was used teo find the optimum location from several

different sctarting points. Because there is more than one local
maximum in the problem space, the optimizer will find different
solutions depending on the choice of starting point. Figure 2 shows

the optimization paths taken when the variables were congtrained
between the specified bounds. The paths shown in Figure 2 start with
a circle and terminate with an X. The paths are overlaid on a contour
map of the surface shown in Figure 1. The optimizer is very well
behaved in this mode. When the optimizer reaches a local maximum point
on a boundary it terminates without wasting computation time searching
for sclutions which are not desired.

Figure 4 shows the optimization paths when the variables are not
constrained. For the unconstrained czse, depending on the initial
starting peint, the optimizer may waste valuable computation time
searching for undesired solutions which are out of bounds. This
situation will depend on the initial starting point.

CONCLUSIONS

This software package represents a major breakthrough as compared
to the antenna design methods cuzrently available. The NECOPT package
brings the proven analysis power of NEC together with optimization to
create a powerful new design tool for antenna engineering. The NECOPT
package significantly expands the users ability to develiop an optimum
antenna design in a timely fashion.
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Table 1

3- Element YAGI parameters

Eleme.t Length (\) Spacing (A)

Reflactor § 0.4 - 0.6 0.182
Driven 0.5 NA
Director 0.4 - 0.6 0.182

AR

k———— Director ————9-:
0.182
N

A/
e——— 05 ———>
0.182

s

<——— Reflector ——>

Figure 1 3-Element Yag: { dimensions in wavelengths ).
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On the Computation of an
Optimised Interference Adaptive
Radar Signal

by
Heiner Kuschel
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Neusnahrer Str. 20
53343 Wachtberg-Werthhoven
1.Intruduction

One of the research projects of FGAN-FHP is an experimeal VHF-radar which is used to study
specific problems of low frequency radar, Since the VHF-band is mainly used for radio communications.
the problem of mutual interference of radio services and radars has to be solved if the benefits of low
frequency radar are to e exploited. Here, a method has been developed to avoid mutual interference by
spectrally shaping the basic radar signal waveform in crder not to transmit radar energy at frequency
tanges, within the mdar signal bandwidth, where a narrow band radio transmission has been detected.
The basic radar signal is a linear frequency modulated pulse (chirp) of 2 MHz bandwidth.

The basic chirp pulse is spectrally shaped so that spectral notches occur at frequencies of radio services.

* Tims, by receiving the radar signal echo with a matched filter, shaped in the same manner, neither the

radar is affected by radio transmissions, nor radio services suffer from radar interferences.

The detection properties of the radar, however, are sarongly affected by this pulse shaping. Unwanted
sidelobes occur and can magk weaker targets. To counter this effect, further shaping of the signal
tpectram is applied.

2. Spectral Signal Shaping

The basic radar signal is a linesr frequency modulated pulse (chirp) of 2 MHz bandwidth and a duration
of 16.4 psec, yielding a pulse compression factor of 32. The radar pulse is sampled at 3.9 MH2
resulting in 64 samples per puise. In the frequency domain, the spectrum of the sampled signal consicts
of 64 frequency samples. The 2 MHz bandwidth of the pulse is represented by 32 frequency samples
with a spectral resolution of 60 kHz.

To adapt the radar signal to the present interference situation, a spectral analysis of the electromagnetic
enviroament is conducted using a fast Fourier transform (FFT) algorithm. This spectrum is compared to
a given threshold, resulting in a weighting vector w(f) which is set to zero at those spectral samples,
where the interference exceeds the thteshold and which is set one elsewhere. The vecior w(f) is
multiplied with the signal spectrum, producing spectral notches at the frequencies of interference. Fig.1
shows the low pass representation of an intesference spectrum (a) and the shaped spectrum of the basic
chirp pulse (b), adapted to the interferewce situation. In the time domain, the spectral shaping can be
regarded as an amplitude and phase modulation of the radar pulse. Fig 2 shows a block diagram of the
spectral shaping process.
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b) shaped signal spectrum shaping process.

3. Distortion by Shaping

The choice of the radar waveform is subject to several requirements, one the most vital is a point target
response with narrow a peak and low sidelobes after compression. Here, the Doppler tolerant chirp
wavefarmi was chosen as a starting point. The signal propurties, like a narrow main peak. low sidelobes
and Doppler tolerance can be displayed in the so called ambiguity function. It is defined as /1/

Al fa) = Xo g fp) 12

where X is the cross-correlation function of the radar signal and its dopplershified version, tq denoting
the time delay and fy denoting the Doppler shift frequency. Fig 3 shows the ambiguity function of a
chirp signal of 5 MHz bandwidth and 10 psec duration for different Doppler shifts g, as an example.If
an interference situation is assumed and the radar signal is spectrally shaped to avoid transmission n
disnurbed areas, the ambiguity function is subject to changes, too. Depending on the spectral location
and bandwidth of the interferences within the radar signal bandwidth, the Doppler talerance of the radar
signal is affected, as well as the time sidejobe structure of the ambiguity function. Since at VHF-radar
frequencies Doppler frequency shifts are small, even for fast targets, all interesting Doppler frequencies
are within the mainlobe of the ambiguity function. Fig 4 shows a small section of the ambiguity function
for a spectrally shaped radar signal with + 3kHz Doppler shift region, indicating a pegligible distortion
of the main peak due to spectral shaping.

279




~ “IA{ .

.
o lelagros :E ’ \

I CTHEERLE
ar gy LN
Ao, ¢! Interterentas = 0.

el BanE« .87 Intertaransus : 4, v
|
sTih, c/an
. ]
iy | ———
L A
E N
S ;
018 Y a 2 [N

LU B /T

il
™ 'L.—-—:J—L'——~

Fig-3 Ambiguity function of the basic chirp signal for different
Doppler shifts with respect to the signal bandwidth f4/Af.

Oesplorronge (ug! =+~ 3.37%

Tau lus] = 38

&F [zl o 8.

ne. t* tnsarfarenges - 6. H

S} Aanuw . 8¢ [nteeterences @ .30 l
|
|
3
I
L

Fig. 4 Main peak section of the ambiguity function of a shaped chirp signal.

280




- db

ft .

baaa s
—

-1Q.00-

v .

}% |

f‘fﬂ t Mf\

Jrrs i

=
=

'

outocorreletlon
1]
8
3

i/] | \|
-50.00 rrrir

2.0  20.02 49.90 60.00  60.00 102.0¢ 122.e@
time samples -~ Lt,200 nsec

Fig. 5 2) Autocorre.ation ‘urv ,on of eriginal chirp signal with transient.

- B
> % ] .
-10.00 24 h.
§ 10 j / ’\
P : ! N
SRR RN
< 20.0004dA 1 ![\[\_!.\[LD X If A
G :Y n v V 'R L
Q B .
o J
-:’ :P v - )
[ +] 4
252 00 et b S
2.00 20.00 42.20 &2.00 62.00 100.02 122.0n
time samples =-> /259 nsec

Fig 5 b) Autocorrel: tion function of shaped zhirp signsl.
Interferences: 0.3-0.4, 0.6-0.7, 1.0-1.1, 1.4-1.§ MH:z

281

O —



——

Mex tmiset len of metn=-Lo-sidelicbe reatle

tnterfers-ces .30- .40; .60- .7€:1.00-1.12;1.40-' .68z
Ao weighling

cehirpsignel wilh tranelent

—20.004
(o)
C
-
010.20
@
Q
[
2.0 AR - T
2.02@ 19.00 20.20 32.00 49.00 50.0¢ 60.0e
frequency -> fr/62,5 kHz
Fl!g 5 c) Spectrum of the shaped signal.

Serious radar pecformance degradation, however, can be expected from increased sidelobes of the
compressed pulse. In figure 5; the sutocorrelation function of the original chirp signal (a) is compared
to that of a signal specirally shaped to aveid intsrference (b). Since in the discussed system, the
transmitter is switched with every pulse, the transient of the wansmitter has the effect of a weighting
function on the signal. smoothing the leading and trailing edges of the pulse. The adaptation to four
interfering sources covering 20 % of the signal bandwidth causes an unaccepubly high sidelobe level.
Figure 5.c gives the spectrum of the shaped signal, showing 4 nowches. The sidelobes would ma-':
weaker targets in the adjacent range cells. Hence, the radar signal has to be modified in a way that the
sidelobes of the autocorrelation function are reduced to a reasonable Jevel without loosing its spectral
notch structure.

4.Signal Optimisation

The problem of optimal shaping of the radar signal under the constraints of interference avoidance and a
reduced sidelobe level could not be solved analytically, yet. Though, a reasonable approach to solve the
problem is the so called random walk method which is known from evolution.

The method is based on the random mutation of one of the 32