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ABSTRACT

Digital forensic investigators have traditionally used file hashes to identify known content
on searched media. Recently, sector hashing has been proposed as an alternative identifica-
tion method, in which files are broken up into blocks, which are then compared to sectors
on searched media. Since sectors are read sequentially without accessing the file system,
sector hashing can be parallelized easily and is faster than traditional methods. In addition,
sector hashing can identify partial files, and does not require an exact file match. In some
cases, the presence of even a single block is sufficient to demonstrate with high probability
that a file resides on a drive. However, non-probative blocks, common across many files,
generate false positive matches; a problem that must be addressed before sector hashing
can be adopted. We conduct 7 experiments in two phases to filter non-probative blocks.
Our first phase uses rule-based and entropy-based non-probative block filters to improve
matching against all file types. In the second phase, we restrict the problem to JPEG files.
We find that for general hash-based carving, a rule-based approach outperforms a simple
entropy threshold. When searching for JPEGs, we find that an entropy threshold of 10.9
gives a precision of 80% and an accuracy of 99%.
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CHAPTER 1:
Introduction

Digital forensic investigators are overwhelmed by the volume of storage media and the
proliferation of storage formats they encounter in the course of their work. Technological
advances have led to an increase in storage media capacity and decrease in costs. Today, the
typical consumer owns multiple hard drives with storage capacities in the terabyte range.
These drives take hours to read and image, and much longer to analyze. It is also common
for consumers to own a wide variety of devices, each running different operating systems
with different, often proprietary, storage formats. In addition, the adoption of cloud com-
puting, has led to the synchronization of copies of consumer data across multiple machines,
including unconventional devices such as video game consoles. These developments pose
challenges to investigators attempting to identify content of interest on digital storage me-
dia.

1.1 Traditional Hash-Based File Identification
Investigators are often interested in identifying files with known content, such as contra-
band images or video files, on seized storage media. These files are referred to as target
files.

Forensic investigators have traditionally used cryptographic hash functions to create digital
signatures of target files they need to identify. These hashes are used to scan digital storage
media for matches. If any matches are returned, there is a strong probability that the file in
question resides on that drive. Confidence in the matches stems from the fact that crypto-
graphic hash functions are collision resistant, which means that it is highly unlikely that a
cryptographic hash function will produce the same output for two distinct files [1].

Comparing hashes instead of files significantly reduces the workload of a digital forensic
analyst. The hash matching process is automated so that analysts no longer have to inspect
a file’s actual content. While other automated comparisons could be performed, such as
byte-by-byte comparisons, hash-based comparisons are preferred, since hashes are easier
to store and are faster to compare. However, due to the avalanche effect (Section 2.2), it is
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possible that many near matches will not be found. This is a problem because it is trivial
for criminals to try to hide their tracks by making a small modification to a file, completely
changing its hash value.

1.2 Sector Hashing
An alternative approach for identifying target files on digital storage media involves looking
at the hashes of chunks of files instead of the hash value of an entire file. Garfinkel et al. [2]
propose an approach where target files are broken up into chunks of 4096 bytes in order
to match the sector size used on most drives. These chunks of files are known as blocks,
and their hashes as block hashes. When a hard drive is searched for target files, 4096-byte
sectors are read, hashed, and compared to block hashes of target files.

One of the benefits of sector hashing is that it is relatively file system agnostic. A drive is
processed by reading sectors sequentially off of storage media rather than by seeking back
and forth following file system pointers. This is an improvement over traditional methods,
since it allows the drive to be read sequentially, which minimizes seek time, and is easily
parallelized by splitting the image into segments and processing them simultaneously. An-
other benefit of sector hashing is that files that have been deleted or partially overwritten
can also be found, since the entire drive is analyzed, not just allocated space. Traditional
hashing methods require that an entire file be present on a drive for a match to be returned,
but sector hashing is not subject to this limitation. The investigator may determine that as
little as one matching block is enough evidence to conclude that a file resides on a drive.
Finally, statistical sector sampling can be used to quickly triage a drive and determine the
presence of target files [2], [3].
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1.3 Probative Blocks
File identification using sector hashing relies on the ability to correlate the presence of a
sector with the presence of a file. Garfinkel and McCarrin [4] define a probative block as a
block that can be used to demonstrate with high probability that the file in question resides
on a drive. If a copy of a probative block is found on a storage device, then there is strong
evidence that the file is or was once present on that device. An example of how probative
blocks can be used to identify target content is discussed below.

1.3.1 Probative Block Scenario
Suppose that a terrorist network is circulating a video file that is unique to their organiza-
tion. Forensic investigators learn of the video after recovering it from a seized hard drive
belonging to one of the terrorists. The investigators take block hashes from the video file
and add them to a database.

A group of suspected terrorists are later captured. External hard drives, mobile phones, and
computers are seized. One of the men arrested had once possessed a copy of the video file
on his laptop, but had deleted it long ago. The file was no longer accessible through the file
system, and most of it had been overwritten by new data.

In order to detect the presence of the incriminating file, forensic investigators begin their
triage process using sector hashing. They compare the sector hashes on the seized drives
to the block hashes in their database of target content. One of the drives returns multiple
matches for probative blocks in their database, blocks that have only been observed as part
of the terrorist network’s video file. This information leads the forensic investigators to
believe that the video file was once present on the drive and that the owner of that drive is
associated with the terrorist network.

1.3.2 Which Blocks are Probative?
The above scenario was an ideal example of using probative blocks to find target files
on digital storage media. Since probative blocks are so useful, we need to know which
blocks in a target file can be considered probative blocks that can later be used for file
identification. We also need to know which blocks are common across many files. For
example, many files share similar file headers or contain the same data structures, such as

3



color maps in image files. Matches to these common blocks are false positives for a target
file, since they do not match content generated by a user and can be found across multiple
distinct files.

However, classifying blocks as probative is no easy task, a problem that must be addressed
if sector hash matching is to be adopted by forensic investigators. It is very difficult to
know if a block is truly probative or not. A block that may appear to be probative in one
data set may be shown to be common to many files once a larger data set is considered [4].

Instead of trying to find probative blocks, it may be easier to try to find non-probative
blocks and eliminate them from consideration. Many non-probative blocks contain pat-
terns that are easy to identify, such as repeating n-grams, or contain low-entropy data, such
as a block of all NULLs. Unfortunately, not all common blocks fit these descriptions. Some
common blocks arise from programmatically generated processes in different software pro-
grams. These blocks are difficult to catch, since they do not follow any obvious pattern and
resemble data generated by users.

1.4 Thesis Contributions
In order to eliminate common block matches from consideration, Garfinkel and McCar-
rin [4] devised a set of 3 ad hoc rules, which they refer to as the histogram, ramp, and
whitespace rules. The ad hoc rules attempt to filter out blocks that are not probative—that
is, blocks that do not help the forensic investigator demonstrate that a target file resides on
a drive.

This thesis evaluates Garfinkel and McCarrin’s rules by using the Govdocs corpus as our
set of target files and 1,530 drives from the Real Data Corpus (RDC) as our set of searched
media. We compare the performance of the ad hoc rules to simple entropy thresholds and
find that an entropy threshold of six is roughly equivalent to the three ad hoc rules. In
addition, we find that the three ad hoc rules are redundant and can be replaced by a single
rule. Finally, we focus our search efforts on JPEG files and find that classifying blocks with
an entropy value below 10.9 as non-probative allows us to identify Govdocs JPEG files that
reside on the RDC with 80% precision and 99% accuracy.

The remainder of this thesis is organized as follows. Chapter 2 provides a technical back-
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ground. Chapter 3 discusses previous work related to alternatives to file hash matching.
Chapter 4 describes our methodology for building a block hash database out of the Gov-
docs corpus, describes our method for scanning RDC drives for matches, and describes
our sector hashing experiments. Chapter 5 describes our results. Finally, in Chapter 6, we
discuss our conclusions and future work.
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CHAPTER 2:
Technical Background

This chapter provides a background on cryptographic hash functions and their application
to identifying known content on searched media. We discuss traditional file hash matching
techniques and their limitations. In addition, we provide a background on sector hashing
and discuss the benefits and limitations of sector hash matching.

2.1 Cryptographic Hash Functions
A hash function is an algorithm that maps an input of arbitrary length to an output of fixed
length. The output is referred to as a hash, or digest. For example, the Message Digest
5 (MD5) hash function takes an input of arbitrary length and creates a 128-bit output [5]
(see Figure 2.1). Hash functions are deterministic, which means that the output of a hash
function will not change if the same input is used.

A cryptographic hash function is a hash function with the following additional properties
[1]:

1. Pre-image resistance: Given the output of a hash function, it is computationally in-
feasible to find an input that hashes to that output.

2. Second pre-image resistance: Given an input, it is computationally infeasible to find
another distinct input that will hash to the same value as the first input.

3. Collision resistance: It is computationally infeasible to find two different inputs that
will hash to the same value.

4. Avalanche effect: A small change in the input of a hash function will result in a very
large change to the output.

These properties make cryptographic hash functions useful for a wide variety of applica-

Input: hello world!

md5: c897d1410af8f2c74fba11b1db511e9e

Figure 2.1: Message digest 5 (MD5) output
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tions. In particular, the property of collision resistance, combined with the fact that the
functions are deterministic, allows digital forensic investigators to treat the hash of an in-
put as a fingerprint for that input, since it is very unlikely that another distinct input will
produce the same hash.

For example, MD5, one of the most popular cryptographic hash functions used by digital
forensic practitioners today, produces a 128-bit output, which means that there are 2128

different possible hash values [6]. The number of inputs required for a 50% probability of
an MD5 collision to occur by chance is 264, or 1.8x1019 [6].

2.1.1 Applications of Cryptographic Hash Functions
For this thesis, we focus on using cryptographic hashes for content identification. Since it
is extremely unlikely that two non-identical digital artifacts will hash to the same value due
to the collision resistance property, digital forensic practitioners use cryptographic hash
functions to create digital fingerprints of files. These fingerprints, or hashes, can then be
added to whitelists and blacklists to assist investigators in identifying targeted content on
digital media.

2.2 Whitelists and Blacklists
Whitelists and blacklists significantly reduce a forensic investigator’s workload. Whitelists
help achieve data reduction by eliminating spurious matches and noise, while blacklists
help investigators focus on suspicious data.

2.2.1 Whitelists
In digital forensics, whitelisting is the process of taking known good or trusted files and
adding them to a to-be-ignored database [7]. Typically, only the hashes of whitelisted
files, rather than their full content, are added to the database; this greatly reduces storage
requirements and increases speed. When whitelisted hashes are encountered again, an
investigator can simply ignore them, since it has been determined that the content they
represent does not warrant further investigation.

An example of a whitelist database used by digital forensic investigators is the NIST Na-
tional Software Reference Library Real Data Set (NSRL RDS) [8]. The NSRL RDS con-
tains collections of whitelisted hashes, obtained from software files that originate from

8



known sources, such as commercial vendors (e.g., Microsoft, Adobe). The NSRL RDS
helps forensic investigators identify files from known applications, which reduces the work-
load involved in identifying files that may be important for criminal investigations [8].

2.2.2 Blacklists
A blacklist is a list of targeted files that are known to be malicious, unauthorized, or illegal
[7]. Files with hashes that match to a blacklist can be tagged as suspicious and investigated
further.

An example of a blacklist used by digital forensic investigators is a database held by the
FBI’s Child Victim Identification Program (CVIP) [9]. This database contains hashes of
images that depict Sexual Exploitation of Children (SEOC) offenses. Analysts can compare
the hash values of files in the CVIP database to hash values from seized files to quickly
identify if a SEOC image is present on searched media.

2.2.3 Limitations of Whitelisting and Blacklisting
While whitelists and blacklists help forensic investigators find previously known content,
they do not help identify material that an investigator is not looking for in advance. For
example, the CVIP database will not help identify new cases of child exploitation, since it
can only find images that match to a database of victims that have been previously identi-
fied. In addition, storage requirements may be an issue. For example, if one is attempting
to store a whitelist of all files known to be benign, it becomes difficult to store and search
through these files.

2.3 File Hash Matching
Forensic investigators have traditionally used file hashing techniques along with hash
databases to determine if targeted content is contained within seized storage media, such as
hard drives or mobile phones [10]. By comparing the hash values of files found on seized
media to a database of known file hashes, investigators can identify the presence of illegal,
malicious, or unauthorized files. File hash identification greatly reduces the amount of time
it takes an investigator to search a storage device for targeted content, since an investigator
no longer has to manually examine the content of each file. However, the effectiveness of
file hash matching is limited by several constraints. First, file hash matching relies on exact

9



matches. If a target file on searched media is modified, a match will not be returned. Also,
file hash matching relies on the file system to provide access to target files, often requiring
a recursive walk of the entire directory structure. This process may take a considerable
amount of time, and does not work on unallocated space, unless the exact byte offset of the
file is known. Although deleted files can sometimes be recovered through "carving," or re-
assemblying blocks in unallocated space, reassembly algorithms are often computationally
expensive and recovery is not guaranteed.

2.3.1 Avalanche Effect
Cryptographic hash functions are designed such that a small change to the input results in
a very large change to the output [1]. This property is known as the avalanche effect. Even
a single character change results in a completely different hash value, as seen in Figure 2.2.
While this property provides the cryptographic hash function with pre-image resistance, it
also poses a problem for digital forensic investigators who are using hash databases that
rely on exact matches.

Suppose that a forensic analyst is searching a seized hard drive for the presence of known
incriminating files. During the course of the investigation, the analyst creates a copy of the
seized drive and hashes all of the files. The analyst then looks for hash matches to their
database of known target files. However, if the target files on the seized drive have been
corrupted, partially deleted, or modified, they will not match the hashes in the database.
Valuable evidence for an investigation can be missed this way. Thus, it is necessary to find
a more robust method for identifying targeted content.

2.4 Sector Hash Matching
An alternative approach for identifying target files on digital storage media involves match-
ing chunks of files against chunks of the same size on storage media. We focus primarily on
this approach. We adopt the terminology defined by Taguchi [3] where a block is defined
as a fixed-length segment of a file and a file block as a 4096-byte chunk of file. Sectors are
defined as 4096-byte sections of the searched disk.

As with file hashes, block hashes from target files can be stored in a database for future
reference. When a hard drive is searched, 4096-byte sectors are read. These sectors are
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Input: The admin password is secret
md5: 9fae77b095e4a834b48534282a34bc16

Input: The admin password is Secret
md5: 6c2a077b7c4b5004466039b26f464c85

Figure 2.2: An illustration of the avalanche effect: a change in a single character results in
a completely different hash value.

then hashed and compared to block hashes in the database.

Traditional file hash identification methods require that an entire unmodified target file be
present on a drive for a match to be returned (i.e., an exact match). However, sector hashing
can detect files that have been modified, deleted, or partially overwritten. If enough blocks
from a target file are found on a seized drive, the digital forensic investigator may determine
that there is enough evidence to conclude that the file resides on that drive.

There are limitations to sector hashing, however. One limitation is that generating block
hash databases requires that more hashes be stored and queried than traditional file hash
databases. In addition, interpreting matches to block hashes is more complex. Not all
blocks are unique to the file that they belong to and may be found across multiple files.
Garfinkel and McCarrin define three types of blocks [2], [4].

2.4.1 Types of Blocks
Garfinkel defines a distinct block as a block that will not arise by chance more than once.
If a copy of a distinct block is found on a storage device, then there is strong evidence that
the file is or was once present on that device. If a block is shown to be distinct throughout
a large and representative corpus, then the block can be treated as if it was universally
distinct [2].

A common block is a block that appears in more than one file. These blocks are generally
of limited value to forensic investigators, and frequently indicate data structures common
across files [4].

A probative block is a block that can be used to state with high probability that a file is or
once was present on a drive [4].

11



THIS PAGE INTENTIONALLY LEFT BLANK

12



CHAPTER 3:
Related Work

The need to analyze ever greater quantities of data has motivated the development of alter-
natives to traditional forensic methods. This chapter will discuss recent innovations in hash
matching techniques as well as the applications of these techniques in identifying targeted
content on storage media.

3.1 Challenges to Traditional File Identification
During the “Golden Age” of digital forensics (1999-2007) forensic investigators were able
to use digital forensics to trace through a criminal’s steps and recover incriminating evi-
dence [11]. Garfinkel states that forensic investigators were aided by the following circum-
stances [11]:

• The widespread prevalence of Microsoft Windows XP.
• The number of file formats of forensic interest were relatively small, and consisted

mostly of Microsoft Office documents, JPEGs, and WMV files.
• Investigations predominantly involved a single computer system that had a storage

device with standard interfaces

Garfinkel [11] predicts that current forensics tools and procedures will fail to keep up with
the rapid pace of market-driven technological change. Consumers now have access to
affordable terabyte storage drives, cloud computing, and personal data encryption. It is
also common for consumers to own a wide variety of devices (e.g., cell phones, tablets,
gaming consoles), each running different operating systems with different storage formats.
Garfinkel et al. [2] explain that many file hash identification techniques involve reading an
entire file system, which takes a significant amount of time. The tree structure of modern
file systems is also an obstacle, as it makes it difficult to parallelize disk analysis. This
new age of digital forensics leaves investigators with more data than can be processed. To
make matters worse, the growing diversity of operating systems, applications, and storage
formats makes it likely that investigators will miss information pertinent to their investiga-
tions.
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3.2 File Hash Matching Limitations
Young et al. [12] argue that file hashes are not a robust method of identification. First,
using file hashes to identify known content is limited by the avalanche effect. This allows
individuals with incriminating files to avoid detection by making trivial changes to their
files, such as by appending a few random bytes. Second, if a target file has been deleted
and partially overwritten by new data, the hash values of the file fragments will likely no
longer match the original. A third limitation of file hashing is that if sections of a file
are damaged or corrupted, file hash identification will fail once again. Since a file hash
database contains the hashes of complete, unmodified target files, file hash identification
will fail to detect the presence of target files with any alterations—no matter how small.

Furthermore, recent technological advances threaten to severely reduce the usefulness of
file hash identification. File hash identification techniques do not scale well to the rapid
increase in the size and type of data seized during investigations [11] .

3.3 Alternatives to File Hash Matching Techniques
In order to overcome some of the limitations imposed by file hash matching techniques,
several new techniques have been proposed.

3.3.1 Context Triggered Piecewise Hashing
Kornblum developed a technique to identify similar files using Context Triggered Piecewise
Hashes (CTPH) [13]. Similarity matching helps forensic investigators overcome the exact
match problem caused by the avalanche effect. CTPH can be used to identify homologous
sequences between a target file and modified versions of that file. Files with homologous
sequences have large sequences of identical bits in the same order. To determine a similarity
score between two files, Kornblum takes each file and generates a string of hashes that is up
to 80 bytes long and that consists of smaller, 6-bit piecewise hashes. Similarity between two
hashes, h1 and h2, is calculated using a weighted edit distance score to measure how many
changes, deletions, or insertions it would take to mutate h1 into h2. Files are then assigned
a final score between 0 and 100, with 0 representing no homology and 100 representing
almost identical files.

Kornblum implemented the CTPH technique in the ssdeep program [14]. Using ssdeep,
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Kornblum was able to match a file containing Abraham Lincoln’s Gettysburg Address with
a modified version that included several insertions and deletions. ssdeep gave the modified
version a score of 57, indicating significant similarity between the two files.

The CTPH technique also works for finding partial files. Kornblum took a file of size
313,478 bytes and split it into two smaller files. File 1 consisted of the first 120,000 bytes
from the original file while File 2 consisted of the last 113,478 bytes. After running both
files through ssdeep, File 1 received a score of 54 while File 2 received a score of 65,
indicating that both files had high similarities to the original file [13].

3.3.2 Similarity Digests
Roussev [10] also developed a technique for identifying similar files. His technique in-
volves identifying statistically-improbable 64-byte features. Statistically-improbable fea-
tures are features that are unlikely to occur in other data objects by chance. Roussev im-
plemented his technique for feature selection in sdhash [15].

sdhash views a file as a series of overlapping 64-byte strings called features. All possible
64-byte sequences are considered for each file using a sliding window. Features are then
given a popularity rank and are selected as characteristic features if their rank exceeds a
threshold.

The sdhash feature selection algorithm attempts to avoid choosing weak features that are
likely to occur in multiple data objects by chance. Roussev finds that features that have
low entropy tend to occur in multiple files and are therefore not statistically-improbable
[10]. Features with near maximum entropy are also disqualified since, Roussev argues that
these features likely arise from algorithmically generated content, such as Huffman and
Quantization headers in JPEGs, which have high entropy, but are likely to occur across
multiple files. By reducing the number of weak features, sdash can reduce the rate of false
positive matches.

After characteristic features have been selected, the features are hashed using SHA-1,
which creates a 160-bit digest. This digest is then split into 32-bit subhashes. Each subhash
is inserted into a bloom filter with a maximum size of 160 or 192 elements, depending on
whether sdhash is in continuous or block mode. When a bloom filter reaches its maximum
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size, a new one is created. A similarity digest (SD) for an object is created by concatenating
all its bloom filters.

Two similarity digests are compared by taking the smaller SD and comparing each of its
bloom filters with each of the bloom filters in the larger SD. For each filter in the smaller
SD, the maximum similarity score is selected. A final score is calculated from the average
of the maximum scores.

sdhash fixes the exact match problem but requires O(nm) comparison time, where n and m

are the total number of bloom filters in target and reference sets. While sdhash may work
for small datasets, it is not scalable.

3.3.3 Sector Hash Matching
In order to address some of the limitations of the methods described above, Young et al. [12]
propose a different framework for analyzing data on a disk. Instead of analyzing a drive
through file-level hashes and relying on the file system, the authors propose hashing small
blocks of bytes in order to identify targeted content through a procedure known as sector
hashing. Their sector hashing approach takes blocks of either 512 bytes or 4096 bytes in
order to align with the sectors on most drives. These hashes can then be compared against
pre-built block hash databases for matches. Unlike bloom filters, block hashes can easily
be organized in a tree structure for scalable, O(logN) lookup times. Garfinkel [2] found
that block sizes of 4096 work best on most file systems and take up 1/8 less storage space
than block sizes of 512 bytes.

However, sector hashing might not work for matching files that are not sector aligned,
especially if the underlying drive image uses 512-byte sectors, and the file system begins
at an offset that is not an even multiple of 4096. When target blocks can start on any sector
boundary, only target blocks that are block aligned can be found, since non-block aligned
target blocks will only contain part of the data being searched for. In his thesis, Optimal

sector sampling for drive triage [3], Taguchi performs sector sampling experiments to find
the presence of target data on a drive by using a target size of 4096 bytes. He defines
the transaction size as the amount of data read from searched media. Taguchi states that
transaction sizes greatly affect the probability of locating target data on a drive.
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In order to deal with the alignment problem, Taguchi [3] proposes using transaction sizes
that are larger than target blocks. Larger transaction sizes can be used to find non-block
aligned blocks as long as the transaction fully covers the block. When sector sampling
using 4096-byte (4KiB) target blocks, Taguchi proposes using a transaction size that is
at a minimum double the target block size, since the sample read will contain enough
block offsets so that at least one will be aligned on a 4KiB boundary. In his experiments,
Taguchi found that a 65,536-byte (64KiB) transaction size was the ideal transaction size
when conducting 90% target confidence sampling on a terabyte drive.

3.3.4 Benefits of Sector Hashing
There are many advantages to sector hashing. First, since sectors are being read as bytes
directly off of storage media, there is no longer a need to go through a file system. This al-
lows for drive images to be split up into chunks and analyzed in parallel, greatly increasing
search speeds. In addition, reading bytes directly off a disk provides a file-system-agnostic
way to search for content. This is significant considering the rapid growth in the different
types of storage formats available today. Another advantage of sector hashing is that it
helps deal with the avalanche effect problem. By splitting a file into multiple blocks, the
probability of finding a match increases, since we are no longer searching for a single file
hash.

An added benefit to sector hashing is that statistical sampling can be used to to detect
the presence of targeted content on a drive. This procedure can be described by the Urn
Problem of sampling without replacement [3].

P =
n

∏
i=1

((N − (i−1))−M)

(N − (i−1))

N is the number of sectors on the digital media

M is the size of the target data as a multiple of the sector size

n is the number of sectors sampled

Garfinkel et al. [2] used random sampling to scan a terabyte drive looking for 100MB
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of target content in 2–5 minutes, as opposed to hours using traditional file forensics. By
sampling 50,000 sectors from the terabyte drive, there is a 99% chance that at least one
sector of the 100MB file will be found. Taguchi [3] also used random sampling to determine
that less than 10MiB of target data was present on a 500GB drive with a 90% confidence
by sampling the drive for only 15 minutes.

3.4 Distinct Blocks
Young et al. [12] examined three large file corpora (GovDocs, OpenMalware 2012, 2009
NSRL RDS) and found that the vast majority of both executable files and user-generated
content were distinct. The authors hashed these several million file corpora into 512-byte
and 4096-byte blocks and classified the blocks according to the number of times that they
appeared. Blocks that occurred only once were termed singleton blocks. Blocks that oc-
curred only twice were termed paired blocks. Finally, blocks that occurred more than twice
were termed common blocks.

Table 3.1 shows their results [12]. Clearly, singleton blocks comprised the vast majority of
the total blocks found in the file corpora. These blocks were considered distinct, and the
authors proposed that they could be used to identify targeted content, since they were not
likely to occur by chance anywhere other than in copies of the files they belonged to.

Govdocs1 OCMalware NSRL2009
Total Unique Files 974,741 2,998,898 12,236,979
Average File Size 506 KB 427 KB 240 KB

Block Size: 512 Bytes
Singletons 911.4M (98.93%) 1,063.1M (88.69%) N/A N/A
Pairs 7.1M (.77%) 75.5M (6.30%) N/A N/A
Common 2.7M (.29%) 60.0M (5.01%) N/A N/A

Block Size: 4096 Bytes
Singletons 117.2M (99.46%) 143.8M (89.51%) 567.0M (96.00%)
Pairs 0.5M (.44%) 9.3M (5.79%) 16.4M (2.79%)
Common 0.1M (.11%) 7.6M (4.71%) 7.1M (1.21%)

Table 3.1: Singleton, pair, and common blocks in the Govdocs, OCMalware, and
NSRL2009 file corpora. Source: Young et al. [12]
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Foster [16] found that most nondistinct blocks were low entropy or contained repeating
byte patterns. She also found multiple occurrences of common blocks that were made up
of data structures present in Adobe files or Microsoft Office files. These findings show
that sector hashing presents its own set of problems. Since sector hash matches are based
entirely on byte-level analysis, it is possible that there will be matches for file blocks that
may have little content-level similarity. For example, Microsoft Office Documents that
have been created using the same template will share many blocks in common [16] . These
matches are false positives that distract investigators from finding their intended targets.
Investigators searching for target files do not care about the "envelope" containing the file
content—they are interested in the content itself.

3.5 Probative and Common Blocks
Garfinkel and McCarrin [4] propose using hash-based carving to search for target files on
a storage device. Their approach involves comparing hashes of 4096-byte blocks on the
storage device to same sized blocks in a database of target file blocks. Their technique
expands on the work done by Foster [16] and Young et al. [12] by using block hashing
to find probative blocks on searched drives. They make a distinction between probative
blocks and distinct blocks due to the fact that it is difficult to know when a block is truly
distinct. Contrary to what Garfinkel [2] hypothesized, Garfinkel and McCarrin [4] found
that a block that appears to be rare in a large data set cannot be assumed to be universally
distinct just because it only appears once in a large data set. They found that many of
the singleton blocks identified by Foster [16] were rare enough to only appear once in the
million file Govdocs corpus, but common enough to be found among other files when a
larger file corpus was examined. Matches on these blocks are false positives for a target
file, since they do not match content generated by a user, but instead match data structures
common across files.

In order to filter out blocks that appear in multiple files, Garfinkel and McCarrin devised
three rules [4]:

1. The Ramp rule attempts to filter out blocks that contain arrays of monotonically in-
creasing 16-bit numbers padded to 32-bits. These blocks are common in Microsoft
Office Sector Allocation Tables (SAT). If half of the 4096-byte block contains this
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pattern, the block is eliminated from consideration as a probative block.

2. The Histogram rule attempts to filter out blocks with repeated 4-byte values, which
were found to be common among Apple QuickTime and Microsoft Office file for-
mats. To apply this rule, a block is read as a sequence of 1024 4-byte integers and a
histogram is computed of how many times 4-byte values appear. If a value appears
more than 256 times, the rule is triggered and the block is filtered. If there are only
one or two distinct 4-byte values, the rule is also triggered.

3. The Whitespace rule attempts to filter out blocks that contain over three-quarters of
whitespace characters, such as spaces, tabs, and newlines. These blocks were found
to be common among JPEGs produced with Adobe PhotoShop.

Garfinkel and McCarrin [4] also considered using an entropy threshold to filter out com-
mon blocks. Foster [16] states that most blocks with low entropy are common, and that
blocks with high entropy are unlikely to be present in two distinct files [16]. Garfinkel and
McCarrin found that blocks flagged by their ad hoc rules support Foster’s statement that
common blocks have low entropy. They found that [4]:

1. Blocks flagged by the ramp test had an entropy score around 6.
2. Blocks flagged by the whitespace test had an entropy score between 0 and 1.
3. Most blocks flagged by the histogram test had an entropy score of 5 or less (although

the entropy score for these blocks ranged from 0 to 8.373)

Garfinkel and McCarrin [4] determined that an entropy threshold of 7 identified an equal
number of non-probative blocks as their ad hoc rules. However, they also found that the
entropy method suppressed a far greater number of probative blocks than the ad hoc rules.
For 12.5% of their target files, the entropy method flagged over 90% of those files’ blocks,
while only 1.6% of target files had over 90% of their blocks flagged with the ad hoc rules.
Since the probability of reconstructing a file is greatly reduced when fewer than 10% of the
file’s blocks remain, Garfinkel and McCarrin state that they preferred the ad hoc rules to
the entropy method for their use case. However, they also caution that this conclusion may
not hold for the general case.
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This thesis expands on Garfinkel and McCarrin’s [4] work by examining their methods
against a much larger data set, the Real Data Corpus. Our methodology is explained in
Chapter 4 and our results in Chapter 5.
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CHAPTER 4:
Methodology

We begin this chapter by discussing the data sets and tools used in our experiments. We
then provide an overview of our experimental process and provide an outline for each
experiment. In Sections 4.4, 4.5, and 4.6, we describe building a sector hash database
and discuss using that database to scan drive images for matches, as well as our process
for interpreting matches. We conclude the chapter by explaining our iterative process for
experiment design, which led to the development of our second phase of experiments.

4.1 Datasets
To conduct our sector hashing experiment, we need a dataset to represent our target files
and another dataset to represent our searched media. For our set of target files, we use the
Govdocs corpus. For our set of searched media, we use drives from the Real Data Corpus.

4.1.1 Govdocs Corpus
The Govdocs corpus is a collection of nearly 1 million files consisting of a diverse set of
formats (e.g., PDF, JPG, and PPT files) taken from publicly available U.S. government
websites in the .gov domain [17]. We use all of the files in the Govdocs corpus as our set of
target files for our experiments. A full listing of file types available in the Govdocs corpus
is shown in Table 4.1 [16].

4.1.2 The Real Data Corpus
The Real Data Corpus (RDC), is a collection of disk images extracted from storage devices
(e.g., hard drives, cell phones, USB sticks) that were purchased in the secondary market
in the U.S. and around the world [17]. These drives are used by forensic researchers to
simulate the type of data that may be found when conducting a real-world investigation.
We use 1,530 RDC drives for our set of searched media. Since the RDC contains drives
that originate from both U.S. and non-U.S. citizens, we opted to only use the non-U.S.
drives in our experiments to mitigate data privacy concerns.
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Count Extension Count Extension Count Extension Count Extension
231,512 pdf 10,098 log 254 txt 14 wp
190,446 html 7,976 unk 213 pptx 8 sys
108,943 jpg 5,422 eps 191 tmp 7 dll

83,080 text 4,103 png 163 docx 5 exported
79,278 doc 3,539 swf 101 ttf 5 exe
64,974 xls 1,565 pps 92 js 3 tif
49,148 ppt 991 kml 75 bmp 2 chp
41,237 xml 943 kmz 71 pub 1 squeak
34,739 gif 639 hlp 49 xbm 1 pst
21,737 ps 604 sql 44 xlsx 1 data
17,991 csv 474 dwf 34 jar
13,627 gz 315 java 26 zip

Table 4.1: Distribution of file extensions in the Govdocs Corpus. Source: Foster [16]

4.2 Tools and Computing Infrastructure
Our objective was to create a block hash database that we could use on searched media
to learn more about filtering non-probative blocks. This section will describe the tools we
used to build our block hash database, scan our searched media for matches, and verify the
presence of target files on searched drives.

4.2.1 Building the Govdocs Block Hash Database
We used the following tools and computing infrastructure to build a block hash database
for files in the Govdocs corpus:

1. md5deep. md5deep is used to recursively calculate MD5 hash values for files in
directories and subdirectories. It supports treating a file as a series of arbitrary sized
blocks and calculating the hash value for each block. [18].

2. DFXML. The Digital Forensics XML (DFXML) format [19] provides a standard
format for sharing information across different forensics tools and organizations [11].
DFXML is supported by md5deep as an output format, and by hashdb as an input
format.

3. Hashdb. Hashdb is a tool used to create and store databases of cryptographic hashes,
with a search speed of more than a hundred thousand lookups per second [20]. It can
import block hashes created by other tools (e.g., md5deep) to create a hash database.

4. Hamming Cluster. The Naval Postgraduate School’s (NPS) Hamming Cluster is a
supercomputer consisting of more than 2,000 cores and 2 TB of RAM [21].
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4.2.2 Bulk_Extractor
bulk_extractor is a tool that can scan disk images, directories, or files for information rele-
vant to forensic investigations (e.g., emails, credit card numbers, URLs). It is a particularly
useful tool since it does not rely on a drive’s file system or file system structures to process
data, which allows it to identify information in areas of a drive that are not visible to the
file system, (e.g., unallocated space). Since bulk_extractor is file system agnostic, it can
be used to scan any type of digital storage media. In addition, it has a built-in module for
scanning a drive using hashdb databases.

4.2.3 Expert Witness Format and Libewf
The Expert Witness Compression Format (EWF) [22] is a file format used to store digital
media images, such as disk and volume images. Data from digital media can be stored
across several files, referred to as segment files, and can be stored in an uncompressed or
compressed format [22].

Libewf [23] is an open-source library that allows users to interact with EWF files. Included
in this library is ewfexport, a utility used to convert compressed EWF files to the Raw
Image Format (RAW). The RAW format is used to store a bit-for-bit copy of raw data on a
disk or volume [24].

4.2.4 The Sleuth Kit (TSK)
We used the following TSK tools to extract files from RDC drives:

1. Tsk_loaddb. Tsk_loaddb is a utility that takes a drive image and saves the image,
volume, and file metadata to an SQLite database [25].

2. mmls. mmls displays the layout of partitions on a drive [26].
3. icat. icat takes an inode number and outputs the contents of a file to standard out [27].
4. blkls. blkls outputs file system blocks, such as NTFS and FAT data clusters, given a

start-stop range and offset into a file system partition [28].

4.2.5 Examining Raw Data
We used the following tools to examine blocks in the Govdocs corpus and raw data on RDC
drives:
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1. xxd. xxd takes an input and creates a hex dump of that input, along with the ASCII
representation of the data [29]

2. dd. The dd utility takes an input and copies a specified number of bytes to an output
file [30].

4.2.6 File Type Inspectors
We used the following tools to examine the control and data structures present in different
file formats:

1. OffVis. OffVis [31] is a Microsoft Office visualization tool for .doc, .ppt., and .xls
Microsoft files. It can parse Microsoft binary format files and display data structures
as well as values, offset locations, sizes, and data types for each structure.

2. ASTiffTagViewer. ASTiffTagViewer [32] is a tiff file format inspector that can parse
tags in tiff files (e.g., tag code, data type, count, and value).

4.3 Experiment Overview
Our experiment can be summarized as follows:

1. Create a hashdb database (govdocs.hdb) of 4096-byte block hashes from files in the
Govdocs corpus.

2. Run bulk_extractor against the 1,530 RDC drives, looking for sector matches to gov-
docs.hdb.

3. Examine the matches and determine whether or not they are probative for the target
file they matched to.

4. Eliminate non-probative matches from consideration.

To perform steps 3 and 4, we conducted seven experiments in two phases. For the first
phase, we examined matches for all file types. For the second phase we narrowed our
test set to just JPEG files. In each experiment, we examine the matches returned by
bulk_extractor and determine how many matches are true positive matches to files in the
Govdocs corpus. We also conduct an analysis of the blocks causing false positive matches
to Govdocs files. Our experiments follow an iterative process in which our analysis of false
positives is incorporated into the design of each subsequent experiment. The 7 experiments
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are outlined below:

Phase 1: General Hash-based Carving (all File Types):

• Experiment 1: Naïve Sector Matching. For this experiment we consider all matches
initially returned by bulk_extractor when conducting an analysis of true and false
positive matches to Govdocs files.

• Experiment 2: Sector Matching with rule-based non-probative block filter. We filter
non-probative blocks by using the ad hoc rules (see Section 4.6.3) before conducting
our analysis of true and false matches.

• Experiment 3: Sector Matching with entropy-based non-probative block filter. We
use an entropy threshold (see Section 4.6.4) to filter non-probative blocks before
conducting an analysis of true and false matches to Govdocs files.

• Experiment 4: Sector Matching with a modified rule-based non-probative block filter.
In our last Phase I experiment, we modify the histogram rule (see Section 4.6.3), and
use it to filter non-probative blocks before conducting an analysis of true and false
positive matches to files in the Govdocs corpus.

Phase 2: Hash-Based Carving of JPEGs:

• Experiment 5: Sector Matching with entropy-based non-probative block filter on

RDC image AT001-0039. We examine entropy values ranging from 0–12 in order
to find an entropy threshold that has the highest precision, true positive rate, and ac-
curacy when it comes to identifying matches to Govdocs JPEG files on RDC drives.

• Experiment 6: Sector Matching with entropy-based non-probative block filter on

RDC image TR1001-0001. We repeat the experiment described above with a sec-
ond drive to help us establish our entropy threshold.

• Experiment 7: Sector Matching with entropy-based non-probative block filter on

1,530 Drives in the RDC. After selecting an entropy threshold of 10.9, we filter non-
probative matches that do not meet this threshold before conducting an analysis of
true and false matches to Govdocs JPEG files.
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4.4 Building the Block Hash Database with Hashdb
To build a block hash database out of the Govdocs corpus, we used Hashdb [20]. The first
step in creating the Govdocs hashdb database was to hash every file found in Govdocs. In
order to do this, we used the md5deep command [18] to recursively go through all 1000
directories in the Govdocs corpus, calculate block hashes for every file in each directory,
and report the output in the Digital Forensics XML (DFXML) format [19]. For each file in
each directory, we calculated MD5 hashes in piecewise chunks every 4096 bytes. Garfinkel
has found that most drives align sectors at 512-byte or 4096-byte boundaries [2]. Most
modern filesystems, however, have shifted towards storing data in 4096 byte sectors [4].
Since a 4096 byte sector can be thought of as eight adjacent 512-byte sectors, we opted
to use 4096-byte blocks [2]. This also has the added benefit of decreasing the size of
our database by 1/8 without losing much of the resolution provided by 512-byte blocks,
since most target files will be larger than 4096 bytes [4]. However, it is also possible that
many target files will not be sector aligned on a disk. For example, the NTFS file system
stores small files in the Master File Table [2]. We discuss how bulk_extractor addresses the
alignment problem in Section 4.5.

In order to process multiple directories in parallel, we made use of the Naval Postgraduate
School’s (NPS) Hamming Cluster [21]. One DFXML file was generated for each direc-
tory and was imported into hashdb to create a block hash database. Once a block hash
database had been created, we used a built-in hashdb function, deduplicate, to deduplicate
the database so that only one instance of each hash would be found in each database. After
all 1,000 hashdb databases had been created and deduplicated, we merged them all into a
single hashdb database we called govdocs.hdb.

4.5 Scanning for Matches with BulkExtractor
Once we had a block hash database for the entire Govdocs corpus, we took our 1,530 RDC
drives and scanned them for matches against our Govdocs database using bulk_extractor
[33]. Since bulk_extractor is file system agnostic, it has no way of knowing where a file
system starts on a drive. If we want to compare disk sectors to file blocks, however, we
need to make sure that the sectors are aligned to the file blocks; otherwise, no matches to
our target files will be found. Bulk_extractor deals with the alignment problem by reading
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eight 512-byte sectors in a 4096-byte sliding window, shifting 512-bytes and repeating for
all possible alignments [4].

The 1,530 RDC drive images are stored in the Encase image format [22]. The Encase
format allows digital media to be segmented into multiple, compressed evidence files.
bulk_extractor is able to read the Encase headers and reconstruct the disk image. To scan
each of these 1,530 drives, we ran bulk_extractor on the Hamming Cluster using the gov-
docs.hdb database as our set of target block hashes. For each RDC image, bulk_extractor
created a report directory listing the results of scanning for the target hashes on the image.
Each report directory with positive hits contains an identifiedblocks.txt file, listing the hash
and offset in the RDC image where a match was found.

4.6 Interpreting Block Hash Matches
Since our two datasets were independently created and there is no known reason to expect
to find Govdocs files on RDC drives, we initially assumed that all RDC matches for files
in the Govdocs corpus were false positives. However, there were instances where we were
able to verify that Govdocs files were actually present on RDC drives.

Scanning the Real Data Corpus drives for matches in the govdocs.hdb database can result
in three possible scenarios: [4]:

1. None of the sectors in an RDC drive match a block in the govdocs database.
2. An RDC drive contains matches for all of the block hashes of a particular target file.
3. An RDC drive contains matches for some of the block hashes of a particular target

file.

The first scenario indicates that the target file is likely not present on the drive being an-
alyzed. However, it is possible that the file resides on the drive but has been encrypted,
compressed, or obfuscated with some other encoding scheme.

The second scenario indicates that the file is present entirely on the target drive and can
be reconstructed. While we did observe matches as high as 99%, we did not observe any
cases where an RDC drive matched all of the block hashes of a particular file. This most
likely occurred because the length of the Govdocs files to which the sector hashes matched
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was not an exact multiple of 4096. Out of the nearly 1 million files in the Govdocs corpus,
there were only 88 files with a size that was exactly divisible by 4096. For the rest of the
files, a 100% match was not possible. When constructing govdocs.hdb using md5deep, we
only included blocks that were exactly 4096 bytes (i.e., we discarded the ends of the files.

The third scenario is the most challenging to interpret. One explanation for only finding
some of the blocks of a Govdocs file on an RDC drive is that the file was once present but
has been deleted and overwritten by new data. Another explanation is that the drive has
been corrupted, and only part of the file remains. This is of particular concern with our
sample of Real Data Corpus drives. Since these drives were purchased in the secondary
market, the drives are used and may be damaged [17]. A third explanation is that the sector
matches are the result of blocks found in the target file that are shared across multiple files.
These common blocks occur when file formats, such as JPEGs, contain data structures that
are found in many files of the same type. In cases where only some blocks are found, we
need to determine whether the matching blocks are probative or not.

A probative block is a block that indicates with a high likelihood that a target file is or was
once present on a drive [4]. These blocks do not occur in any other file, except as a copy
of the original. Young et al [12] had previously called these blocks distinct, but Garfinkel
and McCarrin found that blocks that appeared to be distinct in one dataset were shown to
be not distinct once larger data sets were considered [4].

The majority of our matches fell under the third scenario. When only some matches to a
Govdocs file are returned, we cannot be certain if the Govdocs file is really present on an
RDC drive or not. One surprising observation was that we identified a Govdocs file that was
over 75% present on an RDC drive (734918.pdf), but that turned out to be a false positive.
Due to the uncertainty associated with the third scenario, we required further analysis of
the matches returned to blocks in Govdocs files and the drives we found them on.

4.6.1 Extracting Files from RDC Drives
To help us determine whether matching sectors on RDC drives were probative or not, we
first needed to know which Govdocs file the hash matched to. Hashdb can read the out-
put file reported by bulk_extractor and associate the hash matched to a file in the target
database. We also needed to know if the Govdocs file was actually present on the RDC
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drive. However, since bulk_extractor is file system agnostic, it only reports the byte offset
in the RDC image where the match was found, not the filename.

To extract files from RDC drives, we made use of various tools. Some tools did not work
with the compressed EWF format that RDC images were saved in, so we first needed to
convert EWF files to to the RAW format using ewfexport [23]. Once we converted RDC
drive images to RAW, we were able to use tsk_loaddb to create an SQLite database for
each RDC drive we examined. From there, we used a Python script to query the database
and pull out the filenames associated with matched sector hashes as well as other useful
metadata such as inode numbers. Inodes were particularly useful, since we could use the
inode number to extract a file from the drive using icat [27]. By using this contextual
information about our matches, we were able to determine if sector hashes matched to
common blocks found across many files, or if they matched to probative blocks that could
be used to indicate the presence of a target file.

Some drives, however, were not compatible with ewfexport or tsk_loaddb because the im-
age was damaged or corrupted in some way. Without the metadata structures, we could not
retrieve filenames or inode numbers to extract files from these RDC drives. To handle these
cases, we resorted to using other TSK tools that do not rely on file system metadata, but
instead look at the data units on a drive, such as NTFS and FAT data clusters [34]. Using
blkls [28] we were able to extract blocks of data by specifying a start and end block given
an offset into a file system partition. Partition locations were determined using mmls [26].
Since we also knew which file we were trying to match to, we were able to use the dd [30]
utility to clean up the data blocks returned by blkls and fully extract files from the RDC
drives.

4.6.2 Evaluating Matches
For cases where we could fully extract a file from an RDC drive that was generating
matches to a Govdocs file using an inode, we would confirm a true match by visually
comparing the RDC file with the Govdocs file to see if they were the same. There were
many cases, however, where an inode on the RDC drive was not available. For these situ-
ations, we would use xxd [29] to examine the sectors that matched to Govdocs blocks, as
well as adjacent sectors that did not. Tracing through the hexdump of blocks in the Gov-
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docs corpus and RDC sector matches allowed us to see whether the two files were the same
as well as the point at which the two files stopped having the same content. We would use
all information available in the hexdump to make this call, such as file headers, footers,
and ASCII strings. As mentioned before, some files had high similarity (one Govdocs file
matched over 75% to data in an RDC file) but were not the same. Other files were the same
and we were able to extract them using dd [30] once we knew the start and end location for
the RDC file based on our hexdump trace of the Govdocs file.

In addition, in order to understand portions of RDC files that were causing false positive
matches to Govdocs files, we used specific file format inspectors. For example, we used
OffVis, a Microsoft Office visualization tool to parse the data structures present in .doc,
.ppt. and .xls files. By inspecting the portions of these files that were causing false positives,
we were able to gain further insight into common blocks present across multiple files.

In the next sections, we discuss two methods we used for helping us identify the probative
blocks in our set of sector hash matches. The first method involves flagging non-probative
blocks using a set of 3 tests developed by Garfinkel and McCarrin, known as the ad hoc

rules [4]. The second method involves flagging non-probative blocks by using an entropy
threshold. For our tests, we exclude files that are smaller than 3 blocks. Garfinkel [2]
observes that sector hashing does not work well against files made up of small blocks,
since many small files in NTFS filesystems are not stored sector aligned.

4.6.3 Ad hoc Rules
To help us identify probative sector hash matches, we used the ad hoc rules developed
by Garfinkel and McCarrin [4]. These rules attempt to flag common blocks shared across
multiple files that do not help us determine whether a target file is or was present on a drive.

The 3 ad hoc rules are referred to as the histogram, ramp, and whitespace rules. Figure 4.1
shows an example of a block flagged by the histogram rule that consists of a single 2-byte
value, 0x3f00 repeated throughout the block. Figure 4.2 shows an example of a block con-
taining 32-bit ascending numbers, which was flagged by the ramp rule. Finally, Figure 4.3
consists of a block of all whitespace characters that was flagged by the whitespace rule.

Chapter 5 discusses how well the ad hoc rules helped us identify the probative blocks in
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0000000: 3f00 3f00 3f00 3f00 3f00 3f00 3f00 3f00 ?.?.?.?.?.?.?.?.
0000010: 3f00 3f00 3f00 3f00 3f00 3f00 3f00 3f00 ?.?.?.?.?.?.?.?.
0000020: 3f00 3f00 3f00 3f00 3f00 3f00 3f00 3f00 ?.?.?.?.?.?.?.?.
0000030: 3f00 3f00 3f00 3f00 3f00 3f00 3f00 3f00 ?.?.?.?.?.?.?.?.
0000040: 3f00 3f00 3f00 3f00 3f00 3f00 3f00 3f00 ?.?.?.?.?.?.?.?.
0000050: 3f00 3f00 3f00 3f00 3f00 3f00 3f00 3f00 ?.?.?.?.?.?.?.?.
0000060: 3f00 3f00 3f00 3f00 3f00 3f00 3f00 3f00 ?.?.?.?.?.?.?.?.
0000070: 3f00 3f00 3f00 3f00 3f00 3f00 3f00 3f00 ?.?.?.?.?.?.?.?.
0000080: 3f00 3f00 3f00 3f00 3f00 3f00 3f00 3f00 ?.?.?.?.?.?.?.?.
0000090: 3f00 3f00 3f00 3f00 3f00 3f00 3f00 3f00 ?.?.?.?.?.?.?.?.
00000a0: 3f00 3f00 3f00 3f00 3f00 3f00 3f00 3f00 ?.?.?.?.?.?.?.?.
00000b0: 3f00 3f00 3f00 3f00 3f00 3f00 3f00 3f00 ?.?.?.?.?.?.?.?.
00000c0: 3f00 3f00 3f00 3f00 3f00 3f00 3f00 3f00 ?.?.?.?.?.?.?.?.
00000d0: 3f00 3f00 3f00 3f00 3f00 3f00 3f00 3f00 ?.?.?.?.?.?.?.?.
00000e0: 3f00 3f00 3f00 3f00 3f00 3f00 3f00 3f00 ?.?.?.?.?.?.?.?.
00000f0: 3f00 3f00 3f00 3f00 3f00 3f00 3f00 3f00 ?.?.?.?.?.?.?.?.
0000100: 3f00 3f00 3f00 3f00 3f00 3f00 3f00 3f00 ?.?.?.?.?.?.?.?.

Figure 4.1: This block matched to a Tagged Image File Format (tiff) image contained in
an Encapsulated Postscript (eps) file in the Govdocs corpus. The block contains a single
2-byte value, 0x3f00 repeated throughout the block.

0000000: 8100 0000 8200 0000 8300 0000 8400 0000 ................
0000010: 8500 0000 8600 0000 8700 0000 8800 0000 ................
0000020: 8900 0000 8a00 0000 8b00 0000 8c00 0000 ................
0000030: 8d00 0000 8e00 0000 8f00 0000 9000 0000 ................
0000040: 9100 0000 9200 0000 9300 0000 9400 0000 ................
0000050: 9500 0000 9600 0000 9700 0000 9800 0000 ................
0000060: 9900 0000 9a00 0000 9b00 0000 9c00 0000 ................
0000070: 9d00 0000 9e00 0000 9f00 0000 a000 0000 ................
0000080: a100 0000 a200 0000 a300 0000 a400 0000 ................
0000090: a500 0000 a600 0000 a700 0000 a800 0000 ................
00000a0: a900 0000 aa00 0000 ab00 0000 ac00 0000 ................
00000b0: ad00 0000 ae00 0000 af00 0000 b000 0000 ................
00000c0: b100 0000 b200 0000 b300 0000 b400 0000 ................
00000d0: b500 0000 b600 0000 b700 0000 b800 0000 ................
00000e0: b900 0000 ba00 0000 bb00 0000 bc00 0000 ................
00000f0: bd00 0000 be00 0000 bf00 0000 c000 0000 ................
0000100: c100 0000 c200 0000 c300 0000 c400 0000 ................

Figure 4.2: This block matched to a Microsoft Word document in the Govdocs corpus. The
block contains an ascending sequence of 16-bit numbers padded to 32-bits by zeros.

our set of matches.

4.6.4 Entropy Threshold for General Hash-based Carving
The second method we used for identifying probative sector hash matches was to flag all
blocks that fell below a fixed entropy threshold. To develop our threshold, we began by
examining the entropy distribution of blocks in the Govdocs Corpus (Figure 4.4). For our
experiments we used 2-byte shannon entropy values [35]. Blocks in the Govdocs corpus
have an average entropy value of about 8.9, and a median entropy value of 10.76.
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0000000: 2020 2020 2020 2020 2020 2020 2020 0d0a ..
0000010: 2020 2020 2020 2020 2020 2020 2020 2020
0000020: 2020 2020 2020 2020 2020 2020 2020 2020
0000030: 2020 2020 2020 2020 2020 2020 2020 2020
0000040: 2020 2020 2020 2020 2020 2020 2020 2020
0000050: 2020 2020 2020 2020 0d0a 2020 2020 2020 ..
0000060: 2020 2020 2020 2020 2020 2020 2020 2020
0000070: 2020 2020 2020 2020 2020 2020 2020 2020
0000080: 2020 2020 2020 2020 2020 2020 2020 2020
0000090: 2020 2020 2020 2020 2020 2020 2020 2020
00000a0: 2020 0d0a 2020 2020 2020 2020 2020 2020 ..
00000b0: 2020 2020 2020 2020 2020 2020 2020 2020
00000c0: 2020 2020 2020 2020 2020 2020 2020 2020
00000d0: 2020 2020 2020 2020 2020 2020 2020 2020
00000e0: 2020 2020 2020 2020 2020 2020 0d0a 2020 ..
00000f0: 2020 2020 2020 2020 2020 2020 2020 2020
0000100: 2020 2020 2020 2020 2020 2020 2020 2020

Figure 4.3: This block matched to Extensible Metadata Platform (XMP) structure inside a
Govdocs JPEG file. The block contains whitespace characters 0x20 (space), 0x0d (car-
riage return), and 0x0a (newline).

We considered entropy thresholds ranging from 6–10 and examined how many files would
have over 90% of their blocks flagged by each entropy threshold being considered. As
Garfinkel and McCarrin [4] caution, filtering too many probative blocks results in being
unable to successfully identify target files. Table 4.2 shows the effects of each entropy
threshold.

Percent Ent<6 Ent<7 Ent<8 Ent<9 Ent<10
90–100 39,567 108,278 260,358 419,785 427,864
80–90 25,415 38,111 43,606 10,607 10,818
70–80 29,904 36,255 41,371 10,034 13,354
60–70 26,535 29,162 33,208 10,627 13,734
50–60 22,769 20,735 20,040 10,221 14,616
40–50 27,142 27,777 29,150 18,704 26,120
30–40 55,307 60,595 48,446 34,156 41,559
20–30 56,080 61,601 46,147 42,761 54,157
10–20 127,254 129,539 85,812 85,734 89,801
00–10 455,552 353,472 257,387 222,896 173,502

Table 4.2: The first column shows bins that correspond to the percent of a file’s blocks that
have been flagged by each entropy threshold. The other columns show the number of files
that fall into each bin for each threshold. We examine a total of 865,525 files. Files made
up of less than three 4096-byte blocks are excluded from this table.

Since we do not want to eliminate 12.5% of files from consideration, we limited our analy-
sis to an entropy threshold of 6 for our sector hash matching experiments that involved all
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Figure 4.4: Cumulative distribution function showing the entropy distribution of blocks in
the Govdocs corpus.

file types. Chapter 5 discusses how well an entropy threshold of 6 helped us identify the
probative blocks in our set of matches.
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4.7 Iterative Experiment Design
The experiments outlined in Section 4.3 build upon each other. Each subsequent experi-
ment was designed after an analysis of the results generated by the previous experiment.
After several iterations of this process, we realized that the general hash-based carving
problem was too difficult. This led to the creation of our second phase of experiments
where we focus on a single file type, since it is easier to focus on one file format instead of
trying to tackle the whole problem of file identification in general.

We chose to focus on JPEG files because the JPEG format is a popular format that is highly
relevant to forensic investigations, since JPEGs are widely used by individuals and orga-
nizations. Among the Govdocs corpus, JPEG files had the third highest count, accounting
for about 11 percent of all files in the corpus. See Table 4.1 for a distribution of file formats
in the Govdocs corpus. In addition, JPEG files have a higher than average entropy, which
we believed would work well with entropy thresholds for flagging non-probative blocks.
Figure 4.5 shows the block entropy distribution for JPEG file blocks. In Section 5.11, we
discuss the results of using entropy thresholds to identify Govdocs JPEG files on 1,530
RDC drives.
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Figure 4.5: Cumulative distribution function showing the entropy distribution JPEG file
blocks in the Govdocs corpus. We can see that more than 80% of JPEG blocks had an
entropy value greater than 10.
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CHAPTER 5:
Results

In this chapter, we discuss the results of running bulk_extractor against our set of 1,530
Real Data Corpus (RDC) drives for matches to govdocs.hdb, our database of sector hashes
for target files in the Govdocs corpus. First, we discuss the matches obtained without
filtering for non-probative blocks. Next, we discuss the results of filtering matches with
the ad hoc rules and entropy thresholds. We then compare the two methods and evaluate
their performance based on the number of non-probative blocks filtered and the number of
probative blocks suppressed. Finally, we examine how well entropy-based non-probative
block filters perform when narrowing our search to JPEG files.

5.1 Phase I: General Hash-based Carving (all File Types)
We began our experiments with the assumption that all RDC matches for files in the Gov-
docs corpus were false positives. However, as our experiments progressed, we learned
that there were Govdocs files that were actually present on RDC drives. We empirically
determined that these true matches were those where 90% or more of a Govdocs file was
present on an RDC drive (see Table 5.1). For our general hash-based carving experiments,
we define ground truth as follows: a target file is considered present if the drive contains
over 90% of the target file’s blocks in sequence; otherwise we assume that the target file
is not present. Using this rule, we identified 116 files in the Govdocs corpus that are ac-
tually present on our set of 1,530 RDC drives. In addition, we tentatively assume that all
blocks that match to our set of true positive files are probative. We do not expect all of
these matches to be truly probative, but this method provides us with a lower bound on the
number of common blocks not flagged by our classifiers.

5.2 Experiment 1: Naïve Sector Matching
For this experiment, we classify a positive as a target file that has any block match to a
sector on a drive. We classify a negative as a target file where no sectors match a block in
the target file.
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Govdocs File RDC Drive RDC Matched Blocks Govdocs File Blocks % Matched
864164.jpg TR1001-0001 336 337 99.7%
877715.jpg TR1001-0001 275 276 99.6%
733719.jpg TR1001-0001 124 125 99.2%
369594.jpg TR1001-0001 63 64 98.4%
580812.swf TR1001-0001 61 62 98.4%
882039.jpg TR1001-0001 40 41 97.6%
127839.jpg TR1001-0001 27 28 96.4%
382935.jpg TR1001-0001 25 26 96.2%
752484.jpg TR1001-0001 22 23 95.7%
583453.swf TR1001-0001 15 16 93.8%
775682.jpg TR1001-0001 12 13 92.3%

Table 5.1: Table shows 11 Govdocs files that were over 90% present and fully recoverable
on the Real Data Corpus drive, TR1001-0001.

Bulk_extractor reported 7,819,881 total matches after scanning the 1,530 RDC drives for
hits to sector hashes in our Govdocs database. Of these matches, 202,344 were unique
sector hashes that matched to 18,847 files in the Govdocs corpus. Table 5.2 shows the
top 50 sector hash matches by count; these account for about 50% of the total matches.
Table 5.3 shows a confusion matrix for the file matches returned when no block filtering
was in place.

Our initial prediction about the top 50 matches was that they were not probative due to
their high frequency of occurrence. We believed that these matches would most likely be
common data blocks found across many files, such as a block of all NULLs (0x00). We
manually examined the blocks corresponding to each sector hash match and confirmed that
all 50 were not probative, that is, none of the matches could be used to demonstrate that the
target files the matches came from were on a drive. We found that the matches came from
blocks that had been programmatically generated and that were common across multiple
files. Most of these blocks could be classified as blocks of single repeating values, repeating
n-grams, or pieces of font structures. Table 5.4 shows a description of the top 50 blocks.

The most seen sector hash match, cc985e1d7a59e9917a303925bb20a2b7, matched an
Encapsulated PostScript (eps) file in the Govdocs corpus, /raid/govdocs/687/687479.eps,
307,200 bytes into the file. We examined the hexdump of 687479.eps and learned that the
match consisted of a 4096-byte block of a single repeated value, 0x3f00, that had actu-
ally occurred within a Tagged Image File Format (tiff) file contained in the eps file. We
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Rank Sector Hash Govdocs Source Count %of Total Matches

1 cc985e1d7a59e9917a303925bb20a2b7 /raid/govdocs/687/687479.eps 2,112,860 27.02%
2 0336fe5fb011d886e3fc078120a53377 /raid/govdocs/244/244578.ppt 731,014 9.35%
3 fea5c666b8d94bd1e72cb4cd03ae2d66 /raid/govdocs/023/023278.doc 269,378 3.44%
4 3a504d1dcd1623cb779ed3fcfffbfdab /raid/govdocs/656/656479.ppt 111,567 1.43%
5 97149adf997695140e3fcb31c1100776 /raid/govdocs/024/024043.ppt 111,559 1.43%
6 72e8c783a6656cb50528e6281bd680bb /raid/govdocs/024/024043.ppt 110,911 1.42%
7 a948038b42db285a99fd310f2dc3ccd1 /raid/govdocs/923/923551.jpg 104,082 1.33%
8 a87c19f66c8899535ed0a375c54b13e0 /raid/govdocs/468/468215.xls 60,961 0.78%
9 59576cae5bf4a3233065a52d7bf5d7ee /raid/govdocs/180/180001.doc 40,283 0.52%
10 1141af71f2f9a1c1711609b4e6e9f2be /raid/govdocs/185/185903.doc 36,118 0.46%
11 197a76f0b5d2cde86e5696699196fd0d /raid/govdocs/678/678724.eps 27,135 0.35%
12 2e1f1db4554d0f31ca5d4244112c59fb /raid/govdocs/994/994081.doc 19,455 0.25%
13 7f641a3991cfee311cb49012ac28d284 /raid/govdocs/055/055142.doc 18,121 0.23%
14 7fcad0052ea504b1ad3a08e7c6d63105 /raid/govdocs/055/055142.doc 14,566 0.19%
15 5647a235945a7286436d75ba8616859b /raid/govdocs/674/674507.eps 10,899 0.14%
16 a4277d14b330fa3b10b3507986349844 /raid/govdocs/229/229075.xls 10,847 0.14%
17 14be16700aa3bad62809154e8df0842e /raid/govdocs/055/055142.doc 10,461 0.13%
18 4cb46c63e664f4bd9581a5a465e05580 /raid/govdocs/166/166420.text 8,258 0.11%
19 17fb70af9a4ad363c9b807779c0cb4dc /raid/govdocs/535/535579.swf 7,588 0.10%
20 94afd4fd6f4f1db99d063e7a57839de2 /raid/govdocs/037/037634.ppt 7,407 0.09%
21 275d31cb45a7ac3be4b54d1ca642a9eb /raid/govdocs/037/037634.ppt 7,403 0.09%
22 61ea1b5d782e844571979ca7b85e175c /raid/govdocs/592/592551.ppt 6,899 0.09%
23 7f99c4c8f14027aafcb2a1487d7bf68e /raid/govdocs/595/595107.pdf 6,119 0.08%
24 f07c2f8cc366fb35b494aeac5f4dbc98 /raid/govdocs/569/569152.pdf 5,555 0.07%
25 a5b55cabb7d9edc1334c294803fd0ff4 /raid/govdocs/569/569152.pdf 5,543 0.07%
26 67fd1ba632407fce9a5f017b2bf4a49c /raid/govdocs/569/569152.pdf 5,537 0.07%
27 bdf58f11c668b2bf84bf6fcb06142d8c /raid/govdocs/569/569152.pdf 5,536 0.07%
28 1f4176d49e00d134cc3eb6e0e3524a0d /raid/govdocs/569/569152.pdf 5,534 0.07%
29 c21b0132c044def07944a8544285969d /raid/govdocs/569/569152.pdf 5,533 0.07%
30 efb065c43ec215c8e57a043d64bec19d /raid/govdocs/569/569152.pdf 5,531 0.07%
31 a9b5f5cb6f618509d38430d07fc79fdb /raid/govdocs/569/569152.pdf 5,527 0.07%
32 c09b860194e55bb50abe83f51074dc2a /raid/govdocs/569/569152.pdf 5,527 0.07%
33 bc76bcacc8a56e0c020b0cb4932826a2 /raid/govdocs/569/569152.pdf 5,526 0.07%
34 912c612ce5efe5d8495e38182838fb04 /raid/govdocs/569/569152.pdf 5,522 0.07%
35 97327bbcae50b4eb1c10131f30477147 /raid/govdocs/384/384797.pdf 5,308 0.07%
36 618fb335f96220dc53ff5007c8c181ec /raid/govdocs/970/970013.pdf 5,300 0.07%
37 a8ed8e0f1f503f6309527823706fd6b2 /raid/govdocs/970/970013.pdf 5,295 0.07%
38 e27fa81e36e933db0587a420d7d80433 /raid/govdocs/970/970013.pdf 5,289 0.07%
39 25fd9d55b6d5fc9684334d86dd5445b5 /raid/govdocs/661/661889.ppt 5,264 0.07%
40 96dcc9aea1c5e9924a449abd8b8a4ee6 /raid/govdocs/656/656483.ppt 4,931 0.06%
41 d500f394824a413c9423df33610c6782 /raid/govdocs/050/050386.rtf 4,307 0.06%
42 24253c6f3198f9c7fcd815fbc15d97f1 /raid/govdocs/050/050386.rtf 4,258 0.05%
43 22a7e72e82d2f0c87d9e67c75be88d8d /raid/govdocs/050/050386.rtf 4,245 0.05%
44 4b0745c03f76cdb0402f813881f98cda /raid/govdocs/050/050386.rtf 4,243 0.05%
45 e163ba7a62eba9faf4b1927e733677c9 /raid/govdocs/498/498339.rtf 4,243 0.05%
46 16a276144902e299a3381cdd40c26a9d /raid/govdocs/050/050386.rtf 4,219 0.05%
47 fdced9c106de3a16d91d225fd452766b /raid/govdocs/050/050386.rtf 4,219 0.05%
48 6f52ebcc9f4e77efd074157ebf6dcc1f /raid/govdocs/050/050386.rtf 4,215 0.05%
49 ad7c4c81d6279e7f91ff01149f72ec76 /raid/govdocs/050/050386.rtf 4,208 0.05%
50 2599a1aaf2a65030e1fdff5dc62df039 /raid/govdocs/050/050386.rtf 4,201 0.05%

Table 5.2: Top 50 RDC Sector Hash Matches to the Govdocs Corpus. The 50 matches
shown above account for 50% of total matches found.

inspected the tiff image using ASTiffTagViewer [32], as shown in Figure 5.1. According
to ASTiffTagViewer, the tiff image we extracted was using a Palette color scheme where
colors are stored in an RGB Color Map and indexed by pixel value [36]. Using a hex editor,
we replaced the block of 0x3f00 values with 0xffff and confirmed that the 0x3f00 values
were being used to control the background color in the tiff image. Figure 5.2 shows that we
were able to modify the image by replacing parts of the background with black horizontal
lines.

Table 5.4 shows that the rest of the top 50 hash matches were mostly made up of other
single-value blocks, repeating n-grams, and parts of fonts. For example, the second in the
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Actual Positive Actual Negative
Predicted Positive 116 18,731
Predicted Negative 0 896,199

Table 5.3: Confusion matrix for our naïve sector matching experiment. The accuracy for
naïve sector matching was 97.95%, while the true and false positive rates were, 100% and
2.05%, respectively.

Figure 5.1: ASTiffTagViewer parses out tags in a tiff file. The photometric tag shows that
this tiff image is using a palette color scheme to index colors to an RGB color map.

list of most seen sector hash matches consists of a block of repeated values of 0x0020 while
Number 9 in the list consists of a block of repeated values of 0xa56e3a. An interesting
observation was that the blocks corresponding to numbers 5, 6, and 7 from the top 50 list
contained the same repeating n-gram, 0x00ff00, but at different start offsets. Blocks 41–50
also shared a repeating n-gram at different start offsets. We also observed blocks with
no discernible pattern. For example, blocks 23–38 consisted of random-looking values.
However, upon further inspection of adjacent blocks in the files they matched to, we learned
that blocks 23–38 were part of font structures (e.g., Times New Roman, Courier New).

The top 50 matches account for just over half (50.88%) of the total matches. These blocks
were programmatically generated and can be found in multiple distinct files. Since they
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Rank Sector Hash Block Description Entropy

1 cc985e1d7a59e9917a303925bb20a2b7 0x3f00 0.00
2 0336fe5fb011d886e3fc078120a53377 0x0020 0.00
3 fea5c666b8d94bd1e72cb4cd03ae2d66 0xff7f 0.00
4 3a504d1dcd1623cb779ed3fcfffbfdab 0x00ff00 1.58
5 97149adf997695140e3fcb31c1100776 0xff0000 1.58
6 72e8c783a6656cb50528e6281bd680bb 0x0000ff 1.58
7 a948038b42db285a99fd310f2dc3ccd1 0xcc33 0.00
8 a87c19f66c8899535ed0a375c54b13e0 0x0000 0000 0001 0000 0.81
9 59576cae5bf4a3233065a52d7bf5d7ee 0xa56e3a 1.58
10 1141af71f2f9a1c1711609b4e6e9f2be 0xecd8e9 1.58
11 197a76f0b5d2cde86e5696699196fd0d 0x5d00 0.00
12 2e1f1db4554d0f31ca5d4244112c59fb 0x0001 0000 1.00
13 7f641a3991cfee311cb49012ac28d284 0x3f00 0080 1.00
14 7fcad0052ea504b1ad3a08e7c6d63105 0x0000 c842 1.00
15 5647a235945a7286436d75ba8616859b 0xfe00 0.00
16 a4277d14b330fa3b10b3507986349844 0x1100 followed by all 0x0000 0.01
17 14be16700aa3bad62809154e8df0842e 0x4200 00c8 1.00
18 4cb46c63e664f4bd9581a5a465e05580 Repeated 0x00 except for 0x01 at block offset 0xffd 0.01
19 17fb70af9a4ad363c9b807779c0cb4dc 0x0040 0.00
20 94afd4fd6f4f1db99d063e7a57839de2 0xffccff 1.58
21 275d31cb45a7ac3be4b54d1ca642a9eb 0xffffcc 1.58
22 61ea1b5d782e844571979ca7b85e175c 10 bytes of 0x00 followed by 0xffff 0.02
23 7f99c4c8f14027aafcb2a1487d7bf68e Arial Cyrillic font 7.78
24 f07c2f8cc366fb35b494aeac5f4dbc98 Courier New Bold font 9.79
25 a5b55cabb7d9edc1334c294803fd0ff4 Courier New Bold font 9.64
26 67fd1ba632407fce9a5f017b2bf4a49c Courier New Bold font 9.53
27 bdf58f11c668b2bf84bf6fcb06142d8c Courier New Bold font 8.46
28 1f4176d49e00d134cc3eb6e0e3524a0d Courier New Bold font 8.18
29 c21b0132c044def07944a8544285969d Courier New Bold font 10.08
30 efb065c43ec215c8e57a043d64bec19d Courier New Bold font 9.39
31 a9b5f5cb6f618509d38430d07fc79fdb Courier New Bold font 9.65
32 c09b860194e55bb50abe83f51074dc2a Courier New Bold font 9.01
33 bc76bcacc8a56e0c020b0cb4932826a2 Courier New Bold font 9.39
34 912c612ce5efe5d8495e38182838fb04 Courier New Bold font 9.67
35 97327bbcae50b4eb1c10131f30477147 Times New Roman, Bold Italic font 8.04
36 618fb335f96220dc53ff5007c8c181ec Courier New Bold Italic font 9.74
37 a8ed8e0f1f503f6309527823706fd6b2 Times New Roman font 9.96
38 e27fa81e36e933db0587a420d7d80433 Courier New Bold Italic font 9.99
39 25fd9d55b6d5fc9684334d86dd5445b5 Repeated 0xffff except for 0x0000 at offset 0x79e 0.01
40 96dcc9aea1c5e9924a449abd8b8a4ee6 Repeated 0xffff except for 0x0000 at offset 0x82e 0.01
41 d500f394824a413c9423df33610c6782 0x66 (89 times) 0x0d0a 0x66 (39 times) 0.23
42 24253c6f3198f9c7fcd815fbc15d97f1 0x66 (13 times) 0x0d0a 0x66 (115 times) 0.23
43 22a7e72e82d2f0c87d9e67c75be88d8d 0x66 (91 times) 0x0d0a 0x66 (37 times) 0.23
44 4b0745c03f76cdb0402f813881f98cda 0x66 (47 times) 0x0d0a 0x66 (81 times) 0.23
45 e163ba7a62eba9faf4b1927e733677c9 0x66 (57 times) 0x0d0a 0x66 (71 times) 0.23
46 16a276144902e299a3381cdd40c26a9d 0x66 (7 times) 0x0d0a 0x66 (121 times) 0.23
47 fdced9c106de3a16d91d225fd452766b 0x66 (81 times) 0x0d0a 0x66 (47 times) 0.23
48 6f52ebcc9f4e77efd074157ebf6dcc1f 0x66 (85 times) 0x0d0a 0x66 (43 times) 0.23
49 ad7c4c81d6279e7f91ff01149f72ec76 0x66 (71 times) 0x0d0a 0x66 (57 times) 0.23
50 2599a1aaf2a65030e1fdff5dc62df039 0x66 (73 times) 0x0d0a 0x66 (55 times) 0.23

Table 5.4: Block descriptions of the top 50 sector hash matches. Most blocks consisted
of single-values, repeating n-grams, and parts of fonts. We do not consider any of these
blocks to be probative since they are programmatically generated blocks that are common
across multiple files.

are not probative matches, we want to flag these blocks so that they do not distract forensic
investigators who are searching for target files. In order to do this, we used the ad hoc rules
and entropy threshold methods to try to eliminate the top 50 matches and other common
blocks from consideration.
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Figure 5.2: The original tiff image taken from the encapsulated postscript file appears on
the left. Blocks of repeated 0x3f00 were replaced by 0xffff to produce the image on the
right with the added black horizontal lines. It appears that the blocks of 0x3f00 in the tiff
image were indexes into a palette color map used to produce the background color.

5.3 Experiment 2: Sector Matching with a Rule-Based
Non-Probative Block Filter

For this experiment, we classify a positive as a target file that has any block match a sector
on a drive, as long as the block has not been flagged as non-probative by the ad hoc rules.
We classify a negative as a target file where no sectors match a block in the target file, or
the only sectors that match are flagged by the ad hoc rules.

We ran the ad hoc rules proposed by Garfinkel and McCarrin [4] against our set of matches
to see if they would flag non-probative blocks found across multiple files in our Govdocs
database. Table 5.5 shows that 28,831 out of the 202,344 unique sector hash matches were
flagged as non-probative, or about 14%. In addition, 6,655,930 out of the 7,819,881 total
matches were flagged by the ad hoc rules as non-probative, eliminating about 85% of the
total matches to the Govdocs corpus from consideration. However, the ad hoc rules also
suppress some probative blocks. Our analysis of our Govdocs database revealed that the ad

hoc rules flag over 90% of blocks for 1.65% of files in the Govdocs corpus, a measure of
loss we found acceptable.

Out of the 50 top sector hash matches we described above, the ad hoc rules flagged 34 as
non-probative. The 16 blocks that were not flagged were numbers 23–38 in Table 5.4. As
Table 5.4 shows, these blocks were part of font structures such as Courier New and Times
New Roman. The ad hoc rules failed to flag these blocks as non-probative because they
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Rule Sector Hashes Flagged Match Count
Ramp 5,794 297,105
Space 5 251
Hist 23,288 6,361,856
Ramp+Space 0 0
Ramp+Hist 251 3,031
Space+Hist 5 251
Ramp+Space+Hist 0 0
Total 28,831 6,655,930

Table 5.5: Table shows the number of unique sector hashes that were flagged by each
rule as well as the total matches flagged. Since some rules flag the same blocks as other
rules, we subtract out matches that were flagged by more than one rule to avoid double
counting.

0000000: 002f 0046 0056 021d 400d 070d 9946 d946 ./.F.V..@....F.F
0000010: 0269 1e7a 1e02 04ba 03ce 0002 ffc0 b509 .i.z............
0000020: 0d34 0202 00bd 03cb 0006 0028 03cb 0006 .4.........(....
0000030: 03cf b420 1e1e 082c b803 cb40 0f0f 231f ... ...,...@..#.
0000040: 236f 237f 23ef 2305 2323 0813 ba03 cf00 #o#.#.#.##......
0000050: 0f03 cbb7 1840 090b 3418 181c bb03 c400 .....@..4.......
0000060: 0a00 0b03 cf40 0a60 0870 0802 0808 4438 .....@.‘.p....D8
0000070: 48b8 ffc0 b509 1934 4848 43b8 ffd4 400b H......4HHC...@.
0000080: 1f21 3444 4345 3033 3338 31bf 03bc 0030 .!4DCE03381....0
0000090: 003c 03cf 0045 03c4 0046 ffc0 b309 0e34 .<...E...F.....4
00000a0: 46b8 03c7 4009 6030 7030 0260 3001 30b8 F...@.‘0p0.‘0.0.
00000b0: ffc0 b509 0c34 3030 3eb8 03cb b538 4009 .....400>....8@.
00000c0: 0c34 38b8 ffc0 b61f 2034 c038 0138 b8ff .48..... 4.8.8..
00000d0: c0b3 2225 3438 b8ff c0b3 3132 3438 b8ff .."%48....1248..
00000e0: c0b3 363a 3438 b8ff c0b3 3c3e 3438 b8ff ..6:48....<>48..
00000f0: c0b3 4e4f 3438 b8ff 8040 1551 5334 3851 ..NO48...@.QS48Q
0000100: 1c15 0b0b 150f 0f1a 1515 0d40 292a 340d ...........@)*4.

Figure 5.3: Hexdump of part of a courier new bold font block.

do not contain easily recognizable patterns (e.g., repeating n-grams). In fact, it is difficult
to imagine a rule that could be used to categorize blocks of font structures since they are
usually high entropy blocks with random looking data. Figure 5.3 and Figure 5.4 show
hexdumps of parts of blocks 24 and 37, which matched to Courier New Bold and Times
New Roman fonts, respectively.

5.3.1 Evaluating the Ad Hoc Rules
The remaining 173,513 unique sector hash matches not flagged by the ad hoc rules matched
to 9,101 files in the Govdocs corpus.
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0000000: 3704 1bfc ac35 2719 283b 3e04 2074 1047 7....5’.(;>. t.G
0000010: 2e23 2e09 01de 1028 1920 3e1e fddb 4a3f .#.....(. >...J?
0000020: 2d20 122a 0001 0089 ffb2 0499 074d 0007 - .*.........M..
0000030: 0082 402d 0306 0707 3b02 0314 0207 0002 ..@-....;.......
0000040: 0306 0505 4c04 0314 0404 0300 0707 4c02 ....L.........L.
0000050: 0114 0207 0602 0105 0403 0308 0709 0606 ................
0000060: 01b8 017c 4010 2803 0706 0609 0208 2801 ...|@.(.......(.
0000070: 1002 0208 0a7f b901 db00 182b 2b10 3c01 ...........++.<.
0000080: 2f2b 3c2b 10c0 0119 1239 2f00 183f 2bed /+<+.....9/..?+.
0000090: 0039 0111 1239 1217 3987 082e 2b05 7d10 .9...9..9...+.}.
00000a0: c487 0e2e 182b 7d10 c487 082e 182b 870e .....+}......+..
00000b0: 7dc4 3130 0133 0101 0727 2501 044f 4afe }.10.3...’%..OJ.
00000c0: c8fe 10c6 2201 2d01 9507 4df8 6503 fd5b ....".-...M.e..[
00000d0: 4097 fcc9 0001 005a ff00 0565 052f 0039 @......Z...e./.9
00000e0: 00ff 401f 5528 7526 8728 8637 8738 9628 ..@.U(u&.(.7.8.(
00000f0: 9737 9638 0869 1d01 0000 0102 0304 0507 .7.8.i..........
0000100: 0809 0aba 02ce 02cf 02d0 400d 2256 0026 ..........@."V.&

Figure 5.4: Hexdump of part of a times new roman font block.

After comparing the remaining 173,513 blocks that were not flagged by the ad hoc rules
to the blocks in our set of 116 true positive files, we learned that 20,755 out of 173,513,
or about 12% of the blocks, matched 116 of our true positive files. Since we are assuming
that all of the block matches are probative, this means that the ad hoc rules failed classify
the remaining 88% of the blocks as non-probative. Table 5.6 shows a confusion matrix for
our experiment repeated with the ad hoc rules in place as a filter.

Actual Positive Actual Negative
Predicted Positive 116 8,985
Predicted Negative 0 905,945

Table 5.6: Confusion matrix for the ad hoc rules non-probative block filter experiment. The
accuracy for the ad hoc rules was 99.02%, while the true and false positive rates were,
100% and 0.98%, respectively.

5.4 Experiment 3: Sector Matching with an Entropy-
Based Non-Probative Block Filter

For this experiment, we classify a positive as a target file that has any block match a sector
on a drive, as long as the block has not been flagged as non-probative by an entropy thresh-
old of 6. We classify a negative as a target file where no sectors match a block in the target
file, or the only sectors that match are below an entropy threshold of 6.
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Figure 5.5: Cumulative distribution function for entropy values of RDC blocks that matched
to the Govdocs corpus.

As mentioned in Section 4.6.4 blocks in the Govdocs corpus have an average entropy value
of 8.9 and a median entropy value of 10.76. Figure 4.4 shows a Cumulative Distribution
Function of block entropy values in the Govdocs corpus.

In contrast, for RDC blocks that matched to blocks in our Govdocs database, the average
entropy value is 2.03 and the median entropy value is 0.006. Figure 5.5 shows a Cumulative
Distribution Function of the entropy values for RDC blocks that match to the Govdocs
database. We can see that a majority of matching blocks (69%), have an entropy value
of less than 1 and that 90% of matching blocks have an entropy value of less than 10.
Table 5.7 shows how many unique sector matches and total matches are flagged using
different entropy thresholds.
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Entropy Threshold Blocks Flagged % Total Blocks Match Count % of Total Matches
< 1 11,834 5.85% 5,406,337 69.14%
< 2 14,326 7.08% 6,024,325 77.04%
< 3 16,515 8.16% 6,103,402 78.05%
< 4 21,081 10.42% 6,170,182 78.90%
< 5 28,486 14.08% 6,249,018 79.91%
< 6 30,621 15.13% 6,312,375 80.72%
< 7 39,263 19.40% 6,685,921 85.50%
< 8 45,249 22.36% 6,813,496 87.13%
< 9 52,819 26.10% 6,950,770 88.89%
< 10 63,921 31.59% 7,152,249 91.46%
< 11 202,140 99.90% 7,817,949 99.98%
< 12 202,344 100.00% 7,819,881 100.00%

Table 5.7: Table shows the number of unique blocks that were flagged by each entropy
threshold as well as the total matches flagged.

For the top 50 matches, the last column of Table 5.4 shows the block entropy values. We can
see that blocks made up of 2-byte repeating values, such as Blocks 1, 2, and 3, have entropy
values of zero, since there is no variation throughout the block. Blocks with repeating n-
grams that are longer than 2-bytes had entropy values that ranged from 0.006 to 1.585.
Blocks that were part of font structures had much higher entropy values, ranging from
7.783 to 10.076. We found that an entropy threshold of 7 flags the exact same 36 blocks
from the top 50 matches as the ad hoc rules. Additionally, an entropy threshold of 7 flags
19% of unique block matches and 85.5% of total matches, compared to 14% of unique
block matches and 85.12% of total matches flagged with the ad hoc rules. In order to
eliminate all but one of the font blocks (number 29), we would need to use an entropy
threshold of 10.

As with the ad hoc rules, using entropy thresholds also suppresses some probative blocks.
Figure 4.2 shows that an entropy threshold of 7 would flag over 90% of blocks for 12.5%
of files in the Govdocs corpus while an entropy threshold of 10 would flag over 90% of
blocks for almost half of all files in the Govdocs corpus. When more than 90% of a file’s
blocks are flagged, the probability of carving the file is greatly reduced [4]. We find that
for a general entropy rule, the number of files lost is too high for entropy thresholds of 7
and above. A more acceptable threshold level is an entropy threshold of 6, which only flags
over 90% of blocks for less than 5% of files in the Govdocs corpus. An entropy threshold of
6 flags the exact same 36 blocks from our top 50 matches as the entropy threshold of 7 and
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the ad hoc rules. However, the total matches flagged with an entropy threshold of 6 falls to
80.72%, compared to 85.50% with an entropy threshold of 7, and 85.11% for the ad hoc

rules. The percentage of unique block matches flagged was 15% for an entropy threshold
of 6, compared to 19% for an entropy threshold of 7, and 14% for the ad hoc rules.

5.4.1 Evaluating an Entropy Threshold of 6
Since we found an entropy threshold of 7 to be too aggressive at flagging blocks, we re-
peated the procedure described in Section 5.3.1 with 171,723 blocks that were not flagged
by an entropy threshold of 6 (i.e., blocks that had an entropy value of 6 or greater). Using
the same set of 116 true positive files, we were able to match 20,495 out of the 171,723
blocks, or about 12%, to 116 true positive files. Since we are assuming that all of these
matches are probative, this means that 88% of the remaining blocks are non-probative,
similar to the ad hoc rules. Table 5.8 shows a confusion matrix for our experiment with
blocks below an entropy threshold of 6 discarded. Compared to the ad hoc rules, an entropy
threshold of 6 had a lower accuracy, lower precision, and higher false positive rate.

Actual Positive Actual Negative
Predicted Positive 116 10,797
Predicted Negative 0 904,133

Table 5.8: Confusion matrix for using an entropy threshold of 6 as a non-probative block
filter. The accuracy for an entropy threshold of 6 was 98.82%, while the true and false
positive rates were, 100% and 1.18%, respectively.

5.5 False Positives not Eliminated by the Ad Hoc Rules vs.
Entropy Threshold

In order to learn more about the differences in the types of blocks being flagged by the ad

hoc rules and entropy threshold methods, we examined the following types of blocks:

1. Blocks flagged by the ad hoc rules that had high entropy.
2. Blocks not flagged by the ad hoc rules that had low entropy.

We did not expect blocks with high entropy to be flagged by the ad hoc rules because high
entropy blocks generally do not consist of obvious patterns (e.g., repeating n-grams). We
also did not expect the ad hoc rules to fail to flag low entropy blocks since they generally do

49



consist of obvious patterns. The highest entropy value we could find for blocks that were
flagged by one of the ad hoc rules was an entropy value of 8.53. The lowest entropy value
we could find for blocks that were not flagged by one of the ad hoc rules was 1.66. For the
following sections, we define high entropy as a value of 8 or greater, and low entropy as a
value of less than 2.

5.5.1 High Entropy Blocks Flagged by the Ad Hoc Rules
Out of the set of blocks that are flagged by the ad hoc rules, there are 9 blocks with an
entropy value above 8. All of these blocks are flagged by the histogram rule. Table 5.9
gives a description of each block. The first block in the table contains Microsoft Office
symbols, which is where the block’s high entropy value comes from. Figure 5.6 shows a
portion of that block. The histogram rule is triggered for this block because it contains 260
4-byte values of NULLs (probably used for padding) before reaching the start of the symbol
characters. This exceeds the histogram rule’s threshold of a maximum of 256 instances of
a single 4-byte value (one-fourth of a 4096 byte block), so the block is flagged.

Sector Hash Govdocs Source Block Description Entropy
1 f613bc772c6838dc24e5b6af3dd6e21a /raid/govdocs/718/718287.doc Microsoft Word symbols 8.12
2 7009af9e4b945fdc8961039225ac9801 /raid/govdocs/952/952525.jpg XMP structure, Nikon ICC Profile 8.23
3 d74d8166ea52fe4d3d525229102487be /raid/govdocs/053/053350.jpg XMP structure, Nikon ICC Profile 8.29
4 af0e1ae76c9b8702d0f46b0f0767c576 /raid/govdocs/588/588015.ppt XMP structure, Nikon ICC Profile 8.03
5 2718534f9ef5c03ed379e4973d731fa5 /raid/govdocs/704/704318.ppt Berrylishious Template 8.12
6 2590c852c36424bbd0deaaddee64e838 /raid/govdocs/717/717367.ppt Native American Template 5 8.52
7 bada54e8fd72480054946ee99af0293c /raid/govdocs/717/717367.ppt Native American Template 5 8.36
8 65384f5b5784ddeea0bc86d5bb74ff29 /raid/govdocs/717/717367.ppt Native American Template 5 8.53
9 7c3b81c3201ffb3c385fb89ab1e81e89 /raid/govdocs/717/717367.ppt Native American Template 5 8.52

Table 5.9: Table shows the 9 blocks with entropy greater than 8 that were flagged by the
histogram rule and the structures they match to.

Blocks 2–4 in Table 5.9 are all hybrid blocks containing parts of an Extensible Metadata
Platform (XMP) [37] structure and parts of an International Color Consortium (ICC) profile
[38]. Figure 5.7 shows a portion of block 2. The histogram rule is triggered for this block
due to 269 4-byte values of 0x20 (whitespace padding) contained in the XMP structure. The
high entropy comes from the rest of the block, which is an International Color Consortium
(ICC) profile for NIKON devices, as can be seen in the hexdump of Figure 5.7.

Blocks 5–9 in Table 5.9 are all part of design structures for Microsoft PowerPoint Slide
Templates. Figure 5.8 shows a portion of block 5 which represents the general format of
these 4 blocks. These blocks are hybrid blocks containing data padded by bytes of NULLs.
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Figure 5.6: Block containing Microsoft Office symbols

0000400: 2020 2020 2020 2020 2020 2020 2020 2020
0000410: 2020 2020 2020 2020 2020 2020 2020 2020
0000420: 2020 2020 2020 2020 2020 2020 2020 2020
0000430: 2020 2020 2020 2020 200a 2020 2020 2020 .
0000440: 2020 2020 2020 2020 2020 2020 2020 2020
0000450: 2020 2020 2020 2020 2020 2020 2020 2020
0000460: 2020 2020 2020 2020 2020 2020 2020 2020
0000470: 200a 3c3f 7870 6163 6b65 7420 656e 643d .<?xpacket end=
0000480: 2777 273f 3eff e221 cc49 4343 5f50 524f ’w’?>..!.ICC_PRO
0000490: 4649 4c45 0001 0100 0021 bc4e 4b4f 4e02 FILE.....!.NKON.
00004a0: 2000 006d 6e74 7252 4742 2058 595a 2007 ..mntrRGB XYZ .

Figure 5.7: This hybrid block consisting of 269 4-byte values of 0x20 exceeds the his-
togram rule’s threshold of 256 instances of a single 4-byte value. The 0x20 bytes are part
of an Extensible Metadata Platform (XMP) structure. The rest of the block is an Interna-
tional Color Consortium (ICC) profile for NIKON devices.

We learned that these blocks control the background design for Microsoft PowerPoint slides
after we replaced the 0x0000 values contained throughout the block with values of 0xffff.
The change distorted the slide design used in the PowerPoint document. The effects of the
change on the Berrylishious design template are shown in Figure 5.9. Similar effects were
achieved for the Native American Template 5 in blocks 6–9.
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00000a0: 2ae9 14ec bceb 76ae fbdb fb85 7fe4 7229 *.....v.......r)
00000b0: 6b7f 4667 4b7f bb32 e3b9 f0e9 e63f 56d2 k.FgK..2.....?V.
00000c0: f5c9 4ae4 afe5 bc45 a3d9 31ab 93e7 d9c4 ..J....E..1.....
00000d0: ab20 0000 0000 0000 0000 0000 0000 0000 . ..............
00000e0: 0000 0000 0000 0000 0000 0000 0000 0000 ................
00000f0: 0000 0000 0000 0000 0000 0000 0000 0000 ................
0000100: 0000 0000 0000 0000 0000 0000 0000 0000 ................
0000110: 0000 0000 0000 0000 0000 0000 0000 0000 ................
0000120: 0000 0000 0000 0000 0000 0000 0000 0000 ................
0000130: 0000 0000 0000 0000 0000 0000 0000 0000 ................
0000140: 0000 0227 ac03 97cc aeec 575c bc37 ea6f ...’......W\.7.o
0000150: 0ed8 7bcf 1b99 11f8 33e1 f24f f4a9 33fa ..{.....3..O..3.

Figure 5.8: This hybrid block consists of data separated by NULL bytes of padding. The
histogram rule is triggered for the block because the block contains more than 256 4-byte
values of 0x00.

Figure 5.9: The original Berrylishious slide design is shown on the left. After replacing
NULL bytes of padding with 0xff, the distorted image on the right was produced.

5.5.2 Low Entropy Blocks not Flagged by the Ad Hoc Rules
There are no blocks with an entropy value below 1 that are not flagged by the ad hoc rules.
There are 284 unique RDC matches to the Govdocs database that are not flagged by any
rule, but that have entropy values of less than 2. We manually examined 10 of these blocks
and observed that all 10 had the same general pattern, shown in Figure 5.10. The pattern
is a repeating 18-byte n-gram found in Microsoft Office Word files. We examined this
pattern using OffVis [31], a Microsoft Office visualization tool, and learned it is part of a
Microsoft Word list style structure, or LSTF, used in paragraph formatting [39]. Microsoft
Word LSTF structures contain an 18-byte array, rgistdPara, that specifies the style that is
linked to a list [40]. Figure 5.11 shows how we used OffVis to parse the rgistPara array
inside our matched blocks.
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0000000: 0000 0000 0000 0080 0000 0080 9a00 0000 ................
0000010: 0030 0000 0000 0000 0080 0000 0080 9a00 .0..............
0000020: 0000 0030 0000 0000 0000 0080 0000 0080 ...0............
0000030: 9a00 0000 0030 0000 0000 0000 0080 0000 .....0..........
0000040: 0080 9a00 0000 0030 0000 0000 0000 0080 .......0........
0000050: 0000 0080 9a00 0000 0030 0000 0000 0000 .........0......
0000060: 0080 0000 0080 9a00 0000 0030 0000 0000 ...........0....
0000070: 0000 0080 0000 0080 9a00 0000 0030 0000 .............0..
0000080: 0000 0000 0080 0000 0080 9a00 0000 0030 ...............0
0000090: 0000 0000 0000 0080 0000 0080 9a00 0000 ................

Figure 5.10: This block consists of a repeating 18-byte pattern. The pattern is part of a
Microsoft Word LSTF paragraph formatting structure.

Figure 5.11: The view on the left shows the repeating 18-byte pattern found in blocks that
were not flagged by any rule that had an entropy value of less than 2. The view on the
right shows the 18-byte rgistdPara array inside the LSTF structure which controls list styles
used in Microsoft Word paragraph formatting.

We created a rule to match the rgistdPara array 18-byte pattern and examined the 274
remaining blocks. We found that 273 of these remaining blocks matched our rule, giving
us a total of 283 blocks out of 284 that matched the rgistdPara array pattern. The remaining
block consisted of a repeating n-gram of 0x0d0a0d0a09 and is shown in Figure 5.12. The
histogram rule failed to flag this block because the histogram rule splits a 4096 byte block
into consecutive 4-byte values. Since the pattern repeats every 5 bytes, the same 4-byte
value is not seen until 6-bytes later. However, if the 4-byte value starts at a byte offset
relative to the beginning of the block (starting from offset 0) that is not divisible by 4, it is
not counted since the histogram rule only looks at 4-byte values that are aligned on a 4-byte
boundary. For the block in question, we only observed 205 instances of the same 4-byte
value, which failed to meet the threshold of 256 required by the histogram rule.
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0000000: 0d0a 0d0a 090d 0a0d 0a09 0d0a 0d0a 090d ................
0000010: 0a0d 0a09 0d0a 0d0a 090d 0a0d 0a09 0d0a ................
0000020: 0d0a 090d 0a0d 0a09 0d0a 0d0a 090d 0a0d ................
0000030: 0a09 0d0a 0d0a 090d 0a0d 0a09 0d0a 0d0a ................
0000040: 090d 0a0d 0a09 0d0a 0d0a 090d 0a0d 0a09 ................
0000050: 0d0a 0d0a 090d 0a0d 0a09 0d0a 0d0a 090d ................

Figure 5.12: This block consists of a repeating 5-byte pattern with an entropy value of less
than 2. This pattern is not flagged by the histogram rule because the histogram rule fails
to flag 4-byte values if they are not aligned on 4-byte boundaries relative to the beginning
of the block.

5.6 Replacing the Ad hoc Rules with a Single Modified
Histogram Rule

The histogram rule [4] attempts to filter out blocks with repeated 4-byte values. It reads in
a 4096-byte block as a sequence of 1024 4-byte integers and computes a histogram of how
many times values appear. If a value appears more than 256 times (more than one fourth of
the block), the rule is triggered and the block is filtered. If there are only one or two distinct
4-byte values, the rule is also triggered.

We decided to modify this rule to see if we could improve its performance. In particular,
we were concerned with finding blocks that consisted of patterns that were not aligned on
4-byte boundaries, such as the rgistdPara array described in Section 5.5.2. The first change
we made was to increase the block granularity by reading 2048 2-byte values instead of
1024 4-byte values. After this change was made, we needed to increase the count threshold
from 256 to 512 in order to keep the rule threshold at one fourth of the block. The original
rule also had an explicit test for only one or two 4-byte values. With this test in place,
the rule would trigger if there were 1024 instances of a single 4-byte value. It would also
trigger if there were at least 512 instances of a 4-byte value when only two distinct values
were present in the block. Since our new rule looks at 2-byte values, the corresponding
test would be to check for four distinct 2-byte values or less. If there are only four distinct
2-byte values, this means that there are at least 512 instances of a single 2-byte value.

However, a count of 512 represents one half of a block when 4-byte values are being read
and one fourth of a block when 2-byte values are being read. For the original histogram
rule that reads 1024 4-byte values, all blocks that meet the count threshold of 256, which
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accounts for one fourth of the block, will also meet the count threshold for 512. Thus,
explicitly testing for only one or two distinct 4-byte values in the original histogram rule is
redundant, since this test is implicitly included in the test that checks for a value appearing
more than 256 times in a block. The same reasoning applies to our modified histogram
rule. Our modified histogram rule triggers if there are 512 or more 2-byte values in a block.
This single test ensures that a block will be flagged if a 2-byte value accounts for more than
one-fourth of a block or if there are only four or less distinct 2-byte values.

To check how many blocks in our Govdocs database would be flagged by our new rule, we
ran it against the set of blocks in the Govdocs database. We found that less than 5% of files
in the Govdocs corpus have over 90% of blocks flagged by our new rule, which we found
to be an acceptable degree of loss.

5.7 Experiment 4: Sector Matching with a Modified Rule-
Based Non-Probative Block Filter

For this experiment, we classify a positive as a target file that has any block match a sector
on a drive, as long as the block has not been flagged as non-probative by the modified
histogram rule. We classify a negative as a target file where no sectors match a block in the
target file, or the only sectors that match are flagged by the modified histogram rule.

We ran our modified histogram rule against our set of RDC block matches to the Gov-
docs database. Our modified histogram rule flagged 32,172 out of 202,344 unique block
matches, or about 16%, compared to 14% with the 3 ad hoc rules. In addition, our modi-
fied histogram rule flagged 6,669,438 out of 7,819,881 total matches, about 85.3%, which
was slightly more than the 85.1% of total matches flagged by the ad hoc rules. The mod-
ified histogram rule also flagged the 283 rgistdPara array blocks and 5-byte n-gram block
described in Section 5.5.2. All of the blocks flagged by the original 3 ad hoc rules were
included in the set of blocks flagged by the modified hist rule.

We repeated the procedure described in Section 4.2.1 with the 170,172 remaining blocks
not flagged by our rule and were able to match 20,604 out of the 170,172 blocks, or about
12%, to 116 true positive files. Since we are assuming that all of these matches are pro-
bative, this means that 88% of the remaining blocks were non-probative, similar to the

55



original ad hoc rules. However, we found that the modified histogram rule had a higher
accuracy and a lower false positive rate than the three ad hoc rules. Table 5.10 shows a
confusion matrix for the modified histogram rule.

Actual Positive Actual Negative
Predicted Positive 116 7,778
Predicted Negative 0 907,152

Table 5.10: Confusion matrix for the modified histogram rule non-probative block filter
experiment. The accuracy for the modified histogram rule was 99.15%, while the true and
false positive rates were, 100% and 0.85%, respectively.

5.8 Phase II: Hash-Based Carving of JPEGs
In this section we discuss using entropy thresholds to identify Govdocs JPEG files present
on RDC drives. First, we discuss the set of Govdocs JPEG files present on RDC drives that
we are using as known true matches (i.e., our ground truth). Next, we discuss the results
of using different entropy thresholds to identify block matches to known true files. Finally,
we present the results of our final entropy threshold after using it on the entire set of 1,530
RDC drives.

5.8.1 Finding a Set of Govdocs JPEGs Present on RDC Drives
After narrowing our test set to just JPEG files, we define ground truth as follows: a target
file is considered present if the drive contains over 90% of the target file’s blocks in se-
quence, or if all but one block of the target file matches to the drive, as long as the target
file is larger than 2 blocks. We included this second check because we observed Govdocs
JPEG files that were actually present on a drive, but that had less than a 90% match, (e.g., 4
out of 5 blocks matched). We exclude JPEG files smaller than 2 blocks for this test because
matching 1 block out of 2 only gives a 50% match. In our analysis, we found that these
blocks were JPEG header blocks that were not probative for the Govdocs file they matched
to, resulting in a false match. We also exclude blocks with an entropy value of 11, since
we found that these high entropy blocks come from JPEG Quantization Tables, which are
commonly found in JPEG files [2]. After applying these conditions to our set of matches,
we identified 34 potential Govdocs JPEGs that we believed were present on RDC drives.

We selected the two RDC drives with the highest number of potential true positive matches
to Govdocs JPEG files, AT001-0039 from Austria, and TR1001-0001 from Turkey. AT001-
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0039 had 8 potential true positive matches, while TR1001-0001 had 9. We were able to
manually extract all 17 of these matches from their respective drives and confirmed that
they were true positive matches to JPEG files in the Govdocs Corpus.

For experiments 5-7, we classify a positive as a target JPEG file that has any block match a
sector on a drive, as long as the block has not been flagged as non-probative by an entropy
threshold of 10.9. We classify a negative as a JPEG target file where no sectors match a
block in the target file, or the only sectors that match are below an entropy threshold of
10.9.

5.9 Experiment 5: Sector Matching with an Entropy-
Based Non-Probative Block Filter on AT001-0039

With no entropy threshold in place, bulk_extractor reports matches to 76 unique JPEG files
in the Govdocs corpus for AT001-0039. Of these matches, 8 are actually present, while
68 are not present. With an entropy threshold of 10.9, we were able to remove all 68 false
positive matches and keep all but one of the true positive matches, resulting in one false
negative. Table 5.11 shows a confusion matrix for an entropy threshold of 10.9.

Figure 5.13 shows the results of using different entropy thresholds on AT001-0039. The
graph on the left shows the Precision vs. False Positive Rate (FPR) for entropy values
ranging from 0–10.9. A block is excluded by an entropy threshold if its entropy value is
below the threshold value. The graph on the right shows Recall (True Positive Rate) vs.
Precision for the same range of entropy values. With an entropy threshold of 10.9, we
achieved a precision of 100%, a false positive rate of 0%, and a Recall of 87.5%. The
accuracy for the entropy threshold of 10.9 was 99%.

Actual Positive Actual Negative
Predicted Positive 7 0
Predicted Negative 1 68

Table 5.11: Confusion matrix for using an entropy threshold of 10.9 as a non-probative
block filter on AT001-0039. The accuracy for an entropy threshold of 10.9 was 99%, while
the true and false positive rates were, 87.5% and 0%, respectively.
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Figure 5.13: This figure shows the results of using entropy thresholds to find Govdocs
JPEG files on RDC drive AT001-0039. The graph on the left shows how precision and
the false positive rate vary with entropy thresholds ranging from 0–10.9. The graph on the
right shows how precision and the recall rate vary with the different entropy thresholds. A
block with an entropy value below the entropy threshold is discarded as non-probative. As
the entropy threshold increases, so does the precision. At an entropy threshold of 10.9,
precision reaches 100%, while the false positive rate falls to 0%. However, the graph on
the right shows the recall rate fall to 87.5% once the threshold level reaches 10.

5.10 Experiment 6: Sector Matching with an Entropy-
Based Non-Probative Block Filter on TR1001-0001

With no entropy threshold in place, bulk_extractor reports matches to 129 unique JPEG
files in the Govdocs corpus for TR1001-0001. Of these matches, 9 are actually present,
while 120 are not present. With an entropy threshold of 10.9, we were able to remove
all 120 false positive matches and were able to keep all true positive matches. Table 5.12
shows a confusion matrix for an entropy threshold of 10.9.

Figure 5.14 shows the results for TR1001-0001. The graph on the left shows the Precision
vs. False Positive Rate (FPR) for entropy values ranging from 0–10.9. The graph on the
right shows Recall (True Positive Rate) vs. Precision for the same range of entropy values.
With an entropy threshold of 10.9, we achieved a precision of 100%, a false positive rate
of 0%, and a recall of 100%. The accuracy for the entropy threshold of 10.9 was 100%.
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Actual Positive Actual Negative
Predicted Positive 9 0
Predicted Negative 0 120

Table 5.12: Confusion matrix for using an entropy threshold of 10.9 as a non-probative
block filter on TR1001-0001. The accuracy for an entropy threshold of 10.9 was 100%,
while the true and false positive rates were, 100% and 0%, respectively.
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Figure 5.14: This figure shows the results of using entropy thresholds to find Govdocs
JPEG files on RDC drive TR1001-0001. The graph on the left shows how precision and
the false positive rate vary with entropy thresholds ranging from 0–10.9. The graph on the
right shows how precision and the recall rate vary with the different entropy thresholds. A
block with an entropy value below the entropy threshold is discarded as non-probative. As
the entropy threshold increases, so does the precision. At an entropy threshold of 10.9,
precision reaches 100%, while the false positive rate falls to 0%. The graph on the right
shows that the recall rate remains at 100% with an entropy threshold of 10.9.

5.11 Experiment 7: Sector Matching with an Entropy-
Based Non-Probative Block Filter on 1,530 Drives in
the RDC

With no entropy threshold in place, bulk_extractor reports matches to 1,107 unique JPEG
files in the Govdocs corpus for all 1,530 RDC drives. Out of the 1,107 matches, 34 are ac-
tually present, while 1,073 are not present. An entropy threshold of 10.9 returned matches
to 40 unique JPEG files. Table 5.13 shows a confusion matrix for an entropy threshold of
10.9. With our rule, we achieved a precision of 80%, a false positive rate of 0.7%, and a
recall of 94%. The accuracy for the entropy threshold of 10.9 was 99%.
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Actual Positive Actual Negative
Predicted Positive 32 8
Predicted Negative 2 1065

Table 5.13: Confusion matrix for using an entropy threshold of 10.9 as a non-probative
block filter on 1,530 RDC drives. The accuracy for an entropy threshold of 10.9 was 99%,
while the true and false positive rates were, 94% and 0.7%, respectively.

5.12 Results Summary
Table 5.14 shows a summary of all confusion matrices in Phase I experiments involving
general hash-based carving of all file types. Table 5.15 shows a summary of all confusion
matrices in Phase II experiments that only involved hash-based carving of JPEGs.

Exp 1 Actual Positive Actual Negative
Predicted Positive 116 18,731
Predicted Negative 0 896,199
Exp 2 Actual Positive Actual Negative
Predicted Positive 116 8,985
Predicted Negative 0 905,945
Exp 3 Actual Positive Actual Negative
Predicted Positive 116 10,797
Predicted Negative 0 904,133
Exp 4 Actual Positive Actual Negative
Predicted Positive 116 7,778
Predicted Negative 0 907,152

Table 5.14: Confusion matrices for all Phase I experiments involving general hash-based
carving of all file types. Exp 1: Naïve sector matching; Exp 2: Filtering non-probative
blocks with the ad hoc rules; Exp 3: Filtering non-probative blocks with an entropy thresh-
old of 6; Exp 4: Filtering non-probative blocks with a modified histogram rule.
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Exp 5 Actual Positive Actual Negative
Predicted Positive 7 0
Predicted Negative 1 68
Exp 6 Actual Positive Actual Negative
Predicted Positive 9 0
Predicted Negative 0 120
Exp 7 Actual Positive Actual Negative
Predicted Positive 32 8
Predicted Negative 2 1065

Table 5.15: Confusion matrices for all Phase II experiments involving hash-based carving
of JPEGs only. Exp 5: Filtering non-probative blocks on AT001-0039 with an entropy
threshold of 10.9; Exp 6: Filtering non-probative blocks on TR1001-0001 with an entropy
threshold of 10.9; Exp 7: Filtering non-probative blocks on 1,530 RDC drives with an
entropy threshold of 10.9.
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CHAPTER 6:
Conclusion

6.1 Summary

Digital forensic investigators need an alternative method of finding target files on digital
storage media. Traditional hash-based file identification techniques that rely on exact hash
matches to target files in a database are susceptible to the avalanche effect, where a small
change to a target file completely changes the value of its hash. Target files on searched
media that have been intentionally modified, partially deleted, or corrupted will not match
known files in a database. Valuable evidence may be missed this way. In addition, tradi-
tional file identification techniques rely on the file system to find target files, which is time
consuming and error prone.

In order to solve these problems Garfinkel [2] proposed using sector hashes to find target
files on searched media. Sector hashing solves many of the problems associated with tra-
ditional file hashing techniques. First, it does not require an entire target file to be present
on a drive for matches to be returned. With enough sector hash matches to a target file,
a forensic investigator may be able to determine its presence on a drive. Second, sectors
can be read and hashed sequentially off of searched media without relying on filesystem
metadata, such as disk partitions. This allows forensic investigators to break up a drive into
chunks and analyze them in parallel. Since sector hashing is nearly file system agnostic, it
is faster than conventional methods that require forensic investigators to process a drive’s
contents by seeking back and forth across the drive following file system pointers. Finally,
a third benefit of sector hashing are probative blocks. Probative blocks are blocks that help
forensic investigators demonstrate that a target file resides on a drive. A single probative
block can be used to demonstrate that a file is or was once present on a drive.

However, sector hashing presents its own set of problems. Not all blocks are probative
blocks, or blocks that can be used to demonstrate the presence of a target file with high
probability. Many blocks are programmatically generated and are found in many files.
Sector hash matches to these blocks are false positives for a target file, since they do not
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match content generated by a user, but instead match data structures common across files.

Garfinkel and McCarrin [4] proposed using three rules to identify common blocks: the
histogram, whitespace, and ramp rules. They called these 3 rules the ad hoc rules. We
evaluated the ad hoc rules by using the million file Govdocs corpus to create a database
of target block hashes and by using 1,530 drives from the Real Data Corpus (RDC) as
our set of searched media. We found that the ad hoc rules flagged 85% of the total sector
hash matches from RDC drives to block hashes in the Govdocs database. An entropy
threshold of 7 flagged an equivalent number of common blocks, but also flagged over 90%
of blocks for 12.5% of files in the Govdocs corpus, compared to 1.65% for the ad hoc rules.
When over 90% of blocks in a file are flagged, the probability of carving the file is greatly
reduced [4]. In order to not suppress a large number of probative blocks, we tested the ad

hoc rules against an entropy threshold of 6, which only flagged over 90% of blocks for less
than 5% of files in the Govdocs corpus. We found that filtering non-probative blocks with
the ad hoc rules resulted in a true positive rate of 100%, a false positive rate of 0.98%,
and an accuracy of 99.02%. Filtering non-probative blocks with an entropy threshold of 6
resulted in a true positive rate of 100%, a false positive rate of 1.18%, and an accuracy of
98.82%. Since the false positive rate was lower for the ad hoc rules and the accuracy was
higher for the ad hoc rules, we preferred the ad hoc rules over a simple entropy threshold
of 6 when searching for target files in general.

There were several limitations to the ad hoc rules, however. First, since the histogram and
ramp rules read a block as 1024 4-byte values, they failed to detect many patterns, such as
the 18-byte rgistdPara array Microsoft Word structure described in Section 5.5.2. Second,
they failed to flag font structures present in PDF files, resulting in a large number of false
positive matches for that file type. Third, the ad hoc rules only flagged about 14% of unique
block matches returned by scanning the RDC drives, which resulted in a precision of only
1.27% due to the number of false positive matches.

We found that a modified histogram rule that read blocks as 2048 2-byte values instead
of 1024 4-byte values flagged the patterns that the original histogram rule failed to detect,
including the rgistdPara array mentioned above. In addition, our modified histogram rule
captured all of the blocks flagged as non-probative by the three ad hoc rules. Filtering
non-probative blocks with the modified histogram rule resulted in a true positive rate of
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100%, a false positive rate of 0.85%, an accuracy of 99.15%, and a precision of 1.47%.
Since the modified histogram rule outperforms the three ad hoc rules on all measures, we
recommend that the ad hoc rules be replaced by the single modified histogram rule.

When searching for specific file types, we found that entropy thresholds can be used to
identify probative blocks. After focusing our search efforts on JPEG files, we found that
an entropy threshold of 10.9 was able to identify Govdocs JPEG files on RDC drives with
80% precision and 99% accuracy. We believed this occurred because JPEG blocks of
user-generated content have high entropy values. Thus, we were able to identify probative
blocks by filtering blocks with an entropy value below our threshold.

6.2 Future Work and Lessons Learned
There is still significant room for improvement when it comes to identifying non-probative
blocks. While we believe that we have dealt with the majority of common blocks that con-
tain easy to recognize patterns, such as repeating n-grams or ramp structures, it is difficult
to imagine rules for blocks that do not follow any obvious pattern, such as fonts. One ap-
proach for dealing with these blocks is to create a whitelist of known common blocks. If
a block is encountered that matches the whitelist, it is eliminated from being considered a
probative block. For example, we observed that the top 50 sector matches to blocks in our
Govdocs database accounted for over half (50.88%) of the total matches returned. These
blocks could be added to a whitelist to reduce the number of false positive matches, since
we know that they are non-probative blocks consisting of repeating n-grams and pieces of
font structures.

Another approach would be to use a byte shifting algorithm to detect similar patterns within
blocks that occur at different alignments. For example, we observed that 10 out of the top
50 matches to blocks in our Govdocs database consisted of the same 131-byte n-gram
aligned at different start offsets.

While a high entropy threshold could be used to flag non-probative blocks, one needs to un-
derstand the entropy distribution of specific file types in order to avoid suppressing a large
percentage of probative blocks. We successfully applied this approach to JPEG files and
believe that entropy thresholds can be used to identify other file types with high precision
and accuracy.
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After comparing the results from our hash-based carving experiments involving all file
types with the results from our JPEG only experiments, it is clear that general rules do not
work as well as file specific rules. Thus, we recommend that hash carving approaches be
tailored to suit the file type being searched.
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