
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

1974

High-level language simplifies

microcomputer programing

Kildall, Gary A.

Electronics, June 27, 1974.

http://hdl.handle.net/10945/45140

High-level
language
simplifies

microcomputer
• program1ng

Just as Fortran and Basic
sharply reduce the time and

effort required to program large
computers, so Intel's PL / M eases the
programing of systems based on LSI

microprocessors; here are
step-by-step directions

by Gary A. Kildall,
Naval Postgraduate School. Monterey. Calif.

Closing the loop

R~aders who would like to discuss the PLIM language
With Mr. Kildall may call him at (408) 646-2240 during
the week of July 15, between the hours of 9 a.m. and
12 noon , Pacific Daylight Time.

Electronics/ June 27 , 197 4

D The microcomputer is being applied to more and
more tasks that are not economically feasible for a mini
computer, with its larger instruction set and higher
speed and cost. Although the microprocessor is slower
than the central processor of a minicomputer, it can eas
ily perform many tasks that are complex enough to re
quire extensive digital processing.

What's more, microprocessors, which serve as central
processors of microcomputers and are generally made
with MOS large-scale integration, are constantly attain
ing higher speeds and higher circuit density per chip. As
the capabilities of microcomputers are being ever ex
tended, programing aids are being developed to simpl
ify their use, while minimizing design and development
time. These aids sometimes require use of a larger com
puter; when this is the case, they can be used either on
commercial time-sharing networks or on a user's own
large in-house computer.

The microcomputer may be viewed as a ROM-driven
LSI logic chip because the microcomputer can execute
complicated sequences of instructions stored in an ex
ternal memory. Thus, the microcomputer chip con
nected to a read-only memory containing the proper
data can appear to be a single custom chip. In this way,
the system designer can substitute microcomputer pro
graming for traditional hard-wired logic design or cus
tom chip fabrication, gaining advantages in reduced de
velopment time, ease of design change, and reduced
production costs.

The application of microcomputers points up the
common ground between software and hardware de
signers. While software-system designers can use micro
computers most effectively when they are aware of the
hardware environment, the hardware designer is well
advised to learn the basic techniques of the programer.

These techniques include how to use assemblers,
compilers, and processor simulators, which are effective
tools in developing and debugging large and small mi
crocomputer programs. This article introduces these
programing tools to the hardware designer and specifi
cally examines the advantages of the PL/ M language,
which make possible rapid design of systems around
the MCS-8 microcomputer, made by Intel Corp.

The MCS-8 is based on the 8008 microprocessor, one
of a new class of devices being offered by several manu-

1. Symbolic. This simple program for choosing the larger of two
numbers takes nine lines of code in symbolic or assembly language,
but typically only one line in a higher-levellanguage. such as PL!M.

LABEL INSTRUCTION

SHL B
LAM
SHL A
CPM
JFC L 1
LAM
SHL C
LMA
END

COMMENT

LOAD ADDRESS OF B
LOAD B INTO ACCUM
LOAD ADDRESS OF A
COMPARE B WITH A
JUMP TOll IF B ~A
LOAD A INTO ACCUM
LOAD ADDRESS OF C .
STORE ACCUM INTO C
END OF PROGRAM

103

facturers as a result of recent advances in semicon
ductor electronics. The PLIM programing aid is a good
example of the service that these manufacturers can
offer to simplify the use of their products.

Minimizing software costs

Like other programing tools, the PL/ M approach
automates the production of programs to counteract the
rapidly increasing cost of software production at a time
when hardware costs are decreasing. And, in addition to
rapid production turnaround, the programs can be fully
checked out early in the design process. What's more,
the self-documentation of PL/M programs enables one
programer to readily understand the work of another,
which dramatically reduces program-maintenance costs
and provides transportability of software between
programers and to other Intel processors as they are in
troduced.

Additional cost reductions will also result from stan
dardization of parts and modules, and alterability of the
final program often outweighs benefits of random-logic
designs or custom-chip fabrication.

The PL/M compiler, which is another program,
translates the PL/ M program into machine language.
This compiler, which can be run on a medium- or large
scale computer, is available from several nationwide
time-sharing services.

Last but not least, PL/ M programs can be recom
piled as improved optimizing versions of the compiler
are released, as Intel has recently done. A recent revi
sion of the PL/ M compiler, for example, makes possible
reduction of genera ted code by about 15%.

erals. Such a compiler would require several passes to
reduce a PL/ M source program to machine language,
using the developmental system itself, and eliminating
the need for large-system support.

A program for the Intel 8008 microprocessor is a se
quence of instructions from its normal instruction set
(see "Hardware for PL/ M," p. 105) that performs a par
ticular task. Given no programing ·aids, the designer
must determine the machine codes that represent each
of the instructions in his program and store these codes
into program memory. This approach to programing
quickly becomes unwieldy. in all but the most trivial
projects.

Nearly all manufacturers of microprocessors (and
mini- and maxicomputers as well) provide symbolic as
semblers- programs that ease the programing task by
eliminating the need to translate instructions manually
into machine-readable form. The designer can express
his program in terms of mnemonics, which are abbre
viations that suggest individual instructions. Then the
assembler translates each mnemoni<:: instruction into its
binary representation.

Symbolic addresses

In addition, the programer can refer to memory loca
tions by symb9lic-name, rather than actual numeric ad-
dress; the assembler translates these, as well as the in
structions. The assembler usually runs on a larger
computer, although both Intel Corp. and National
Semiconductor Corp. have assemblers that run directly
on their microcomputer-based development systems,
and symbolic programs for Rockwell microcomputen
can be assembled on a machine built around that unit
by Applied Computer Technology Inc. The assembler
requires significantly less development and check-out

The Intel M
croprocess
and read-01
~ngle-chi p
1 8-bit par;
1 Seven 8-
1 16,384-\'
-ead / wri te 1

1 Up to 32

Although PL/M requires a cross-compiler- one that
runs only on a larger machine-a resident compiler that
uses the microcomputer itself to produce its programs is
technically feasible with the advanced state of micro
computer development and today's inexpensive periph-

time than manual translation, and there are fewer cod- r-- -
ing errors.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

STATEMENT

DECLARE MESSAGE DATA (1WALLA WALLA WASH•),
(CHAR, I, J, SENDBIT) BYTE;

I* SEND EACH CHARACTER FROM MESSAGE VECTOR TO TELEPRINTER *I
00 I = 0 TO LAST(MESSAGE);
CHAR= MESSAGE(!);
SENDBIT = 0;

I* SEND EACH BIT FROM CHAR TO TELEPRINTER *I

END ;

DO J = 1 TO 11;
OUTPUT(O) = SENDBIT:
CALL TIME (91); I* WATTS 9 . 1 MS *I
SENDBIT =CHAR AND 1; .
I* ROTATE CHAR FOR NEXT ITERATION *I
CHAR= ROR (CHAR OR 1, 1);
END;

2. Serial sender. To print a short message on a Teletype, this routine in PL!M transmits 11 pulses at 9.1-millisecond intervals for each ct~a•
acter in the message, stopping after the last one. The pulse train consists of one start pulse. eight data pulses. and two stop pulses.

104

Assembly-I
Y closely

use instruc
esponden

e program1
. ck of the l1
•1 usage tha
· problem.
On large-s1
n develop
_tly of par

tmg the tri
"ties includ
d prirnitiv1
ns of progJ

or example
merical co'
llgraJUing l
0~riate . Or
~tcular cla
Jch system

lated to the
In a systen
rrespond d"

V I
. ersely, e·

·level lar

4. SIM8-01 ; This Intel product checks out a
program written in MCS-8 machine code or
compiled into machine code from the PL!M
language. Erasable ROMs store the pro
gram, and a Teletype gives input / output.

5. lntellec 8. This developmental system
can check out programs written in PLIM. It
also serves as a prototype for production

systems based on the MCS-8.

106

ose ne
to work
gra~ng
Jl)OVtng

. d ~ qulfe . •
a high-It
language

In any
various I
be intelli
applicati
ample, a
500 byte
struction

if

--~~~~But larg<

Electronics/June 27,

turn

c

The PI
statement
cal, and<
tities can
braic not
natural ""
out the PI

For ex:
locations
PL/M sta

I F
or the r
shown in
the value
to equal P

Additio
trol to per
cuted rep
routine fa
modular 1
braries.

The ovt
easily der
teleprinteJ
output po

ash
2; it indi

_ _,nm,.·--· system-language programs usually translate
to the machine-language level, and the
finds all the machine's facilities directly

- ·llu••v•- to him. PL/ M, an example of such a Ian
was designed for use with the 8008 micro

and is also usable with Intel's newer 8080 mi
[Eieclronics, April 18, p . 95], which has

useful machine-level instructions and a considera
faster instruction cycle than its predecessor.

some hardware designers, particularly
newly introduced to software systems, may prefer

work at a comfortable level, which may mean pro
.rauJJ·, .. b in absolute machine code initially and then
_ Jvw•J; to assembly language as more capability is re

Simjlarly, they can easily make the transition to
high-level language when programing in assembly-

.a~•~;•""b- becomes teilious.
any case, the designer soon becomes familiar with

· levels. One of these levels can then
selected as most appropriate for a given

level has its own advantages. For ex-
a program in PL/ M that compiles into about

of memory space when using the 8008's in-
attuctlon set might require perhaps as much as 30% less

::•'!anJu~e if it were coded directly in assembly language.
larger programs running l ,000 bytes or more usu
tum out to be more compact when written in PL/ M

in assembly language because the compiler can
track more easily of memory-reference areas, reg

and other resources. The amount of machine
generated in assembly language or PL/ M varies,

course, with program complexity and style. Thus, an
comparison between the two is not possible.

The PL/M language consists of a number of basic
statement types in which complicated arithmetic, logi
cal, and character operations on 8-bit and 16-bit quan
tities can be expressed in a form resembling usua l alge
braic notation. Relational tests can be expressed in a
natural way to control conditional branching through
out the PL/ M program.

For example, to move the larger of two numbers in
locations A and B into the location called C, either the
PLIM statement,

.IF A~B, THEN C=A; ELSE C=B
the nine-instruction assembly-language program

in Fig. 1 can be used. The statement reads, "If
value of A is greater than the value of B, then set C

equal A; otherwise set C to equal B."
Additional language structures provide iteration con

to permit program segments to be "looped," or exe
repeatedly a prescribed number of times. Sub

facilities include mechanisms that are useful for
r ·v• .. u •·cu programing and construction of subroutine li-

The over-all structure of the PL/ M language is most
demonstrated by a simple example. Suppose a

is connected to the least-significant bit of an
port of the Intel 8008. A PL!M program that

a short message to the teleprinter is shown in Fig.
individually times the transmission of the bits

/June 27, 1974

through the output port. This program can be trans
lated into machine code loaded into the memory of the
MCS-8, and then it is executed .

The program begins with a data declaration that de
fines a string of Ascii characters- the words ' 'Walla
Walla Wash" as shown in line 1. The 16 individual
characters of this string are labeled from 0 to 15 so that
they can be addressed by the program (spaces are char
acters, too). Four variables, or 8-bit memory locations,
CHAR, I, J, and SENDBIT, are defined on line 2.

Any names

These designations are wholly arbitrary; the pro
gramer may use any names he wants, so long as he de
fines them before he uses them. CHAR holds each char
acter of the message in succession for transmission, I
identifies the position of the character in the message,
and J controls the position of the bit in the character.
The right-most bit of location SEND BIT is the next bit to
be transmitted.

Since the instructions between lines 5 and 17 are exe
cuted repetitively, they are collectively called a loop.
Before each repetition, the variable I is incremented un
til its value indicates the position of the last character in
MESSAGE- in this case, 15.

First, the value of all bits in SENDBIT is set to 0 on line
7 to send a start pulse as the first bit (line 11). Then the
individual bits of the selected character are sent in the
inner loop between lines 10 and 16. This loop is exe
cuted 11 times, corresponding to the start pulse, 8 data
bits, and 2 stop pulses, during each passage through the
outer loop, beginning on line 5.

Each successive bit is sent on line 11 , followed by a
9. 1-millisecond time-out. This time delay is a standard
feature in PL/M; the compiler implements it by insert
ing a wait loop in the program. The wait loop stores an
appropriate number in a counter, decrements it once
each processor cycle, and allows the program to con
tinue when the counter reaches zero.

On each inner-loop iteration, the right-most bit of
CHAR is selected on line 13 by the AND function, and it
is stored in SENDBlT. The operation on line 15 places a l
in the right-most position of CHAR and then rotates the
result one step to the right. This step gradually fills
CHAR with Is, working from left to right in each itera
tion, so that two stop pulses, which are ls, are sent prop
erly on the lOth and 11th iterations.

The operation of the PL/M compiler and its PLM 1
and PLM2 subdivisions is shown graphically in Fig. 3.
PLM l accepts a PL/ M source program from a card
reader, time-sharing console, or other input device. This
first pass produces a listing of the source program, along
with any error diagnostics, and analyzes the program
structure. An intermediate file that contains a linearized
version of the original program is written, and the sym
bols used in it are listed.

Although the linearized version does not resemble ei
ther an assembly language or PL/ M, it has been re
duced to a highly simplified form of the original pro
gram. PLM2 uses this intermediate file as input a nd
generates machine code for the 8008 microcomputer.

A PL/ M program can often be checked out by simu
lating the 8008 microcomputer's actions on a larger rna-

107

STRING COMPARISON PROGRAM
TYPE SOURCE STRI NG: A B C D
TYPE TEST STRING:

A B C D
* * * *
TYPE SOURCE STRING: 666 666 666
TYPE TEST STRING : 6
666 666 666
*** *** ***
TYPE SOURC E STRING : AAAAAAAABABABA

. TYPE TEST STRING: AB
AAAAAAAABABABA

* * *
TYPE SOURCE STRING : XXX XXXX$
TYPE TEST STRING: XXXX
xxxxxxx

TYPE SOURCE STRING : WALLA WALLA WASH
TYPE TEST STRING: WALLA$
WALLA WALLA WASH

6. Test run. Sample PL!M program pro
duced this printout. Manually entered data is
in color. and mar;hine output is in black.
Techn ique is valuable debugging tool.

*

chine. A third program, called lnterp/8, is available for
this purpose. The three programs PLMl, PLM2, and
Interp /8 are written in ANSI standard Fortran IV, and
will run on most larger computer systems.

A new version of the PL/ M compiler is available for
use with the extended instruction set of the 8080. Con
sisting of sections PLM81 and PLM82, it is accom
panied by a new simulator called Interp/ 80. New cod
ing is not required for the 8080. Working with old
PL/ M programs written for the 8008, the compiler ean
produce binary code requiring 10% to 20% less storage
than the 8008 requires, and h aving the advantages of
new interrupt and decimal-arithmetic cap abilities.

Experience with PLIM will enable designers of future
Intel microprocessors to incorporate new machine-level
instructions that will make more efficient use of the
PL/ M language. Furthermore, if Intel so chooses, it can
alter its processor· architecture in future designs, as it
did between the 8008 and 8080, without affecting the
user of PL/ M at all, except possibly to improve the per
formance of this a pplication.

A number of microcomputer manufacturers are con
sidering the use of high-level languages to augment
their assembly-language products, although none have
been announced yet. Several minicomputer producers,
however, offer high-level applications languages, and at
least one minicomputer company, Microd ata Corp.,
provides a systems language. In fact , Microdata's MPL
language [Electronics, Feb. 15, 1973, p . 95) closely re
sembles PL/ M ; both of them, in fact, were essentially

108

*

derived from the same basic system language.
Once the PL / M program is written and checked o 1

the machine code is punched on paper tape (Fig. 3) anc 1
loaded into memory of a microcomputer developmen 1
system. Again, the program is verified, and all real·ti ' f
and environmental considerations are checked out. fl a
nal production systems can then be developed from ;
prototype. The production system, for example, m. a
use read-only memory for the program when the dev t1

opmental system's memory is read /write. It

How to go on the air ~
G iven a PL/ M program and an MCS-8 micr. t<

computer, how does a programer actually go throu:
0 the compilation and execution process? As mentJOn.

previously, the PL/ M compiler is available from seve"
nationwide time sharing services. These are the Gen P
Electric, Tymshare, National css, Applied Logic Co~ dt
and United Computing Services facilities. Documen st
tion for general programing is available from lni d<
Corp., and the time-sharing services provide syst tit
dependent operating instructions. ps

Once the programer has a contract with the com se
cial service, he is assign ed a work area in the host S) th
tern in which he can store PL/ M programs. These .
grams are created on line by using the time-sba.
service's ed itor, which allows the programer to en
and alter program fi les. When a particular prograrn
created, it is saved in a permanent file for subsequ
compilation.

Electronics/Ju ne 27. 1· h

~SH

;e.
checked ouL
: (Fig. 3) and
:velopmental
all real-time

eked out. E
ped from tb::
~ample, rna\
en the devef

In the compila tion process, PLM I is executed first,
-
0

the saved PL/ M program as input. Any diagnos
~51 Jessages are printed a t the time-sharing console. If
uc rogram errors are detected during the PLM I pass,
~e~ the programer can call for PLM2. This second pass

1
aves code in MCS-8 machine language, which corre
~nds to the original program in the user's work area.
s With this code, the programer may execute the
lnterp/8 program, which reads the machine code and
jroulates the actions of the MCS-8, as previously dis
~ussed. If execution errors appear during simulation,
the programer can alter the original PL/ M program
and repea t the compilation and simulation process.
When the programer is convinced the program is cor
rect he can punch the machine language on paper tape
ordther medium at his local console.

programing at home

When a large amount of development work is to be
done, the user may find it feasible to purchase the
pLfM compiler and CPU simulator directly from Intel
and run them on an in-house computer system. The
user, at his option, can program either in batch or time-
sharing mode.

The machine code produced by the compiler can be
executed in several different ways. The easiest method
is with a developmenta l system, such as the Intel
SIM8-0l or Intellec 8 (Figs. 4 and 5) or equivalent pro
totyping hardware. These systems include hardware
and software for Teletype, as well as facilities for load
ing and checking out programs.

The machine code is loaded into the SIM8-0 l from
the Teletype into erasable read-only memories. These
chips are then inserted into sockets on the prototype
board, and the program is executed. With the Intellec 8
developmental system, the machine code is entered
from the Teletype into read/write memory, where the
program can be subsequently executed and tested. Both
approaches bypass the simulation stage.

After testing the program on a developmental system,
a production model making use of MCS-8 and a mix
ture of read-only and read/ write memory can be tai
lored closely to the fina l application. Although the
hardware is minimized in the production system to re-

. duce costs, the programs remain the same as in the pro
CS-8 m1cn> totype.
y go throu -
1.s mention Developing systems

: from sever. Intel Corp. has completed a numb~r of projects using
~ the Gener PLIM, including an assembler that runs on the lf!tellec 8
Logic Co developmental system. This assembler's characteristics
Document show the effectiveness of the PL/ M approach to system

e . from lnt development. For example, it has full macro capabili
>VJde syste hes, which means that a programer can define special

pseudo-instructions that cause the assembler to insert
the comm. sequences of instructions in the main program during
the host S) the assembly process. Macros are like subroutines, ex

ts .. These P~ etpt that the main program executes them as it com es 1o
tlme-shar them, instead of branching out of the main stream a nd

.mer to en hen returning, as it does with subroutines.
u program The assembler is also capable of conditional assem
>r subsequ ly, which means that it can react to such external sig-

als as the positions of console switches at the time of

!June 27 , 19 ltctronlcs/June 27, 1974

assembly. Such signa ls indicate conditions that a re not
necessarily known to the programer at the time he
writes the code- such as the availability of pa rticular
output equipment to which the assembler's results are
to be sent.

Another useful characteristic of the assembler is eval
uation of expressions at assembly time, which permits
the programer to specify certa in parameters algebra
ically instead of numerically or symbolically. Then
when a program is assembled, the assembler evaluates
the algebraic expressions and inserts the correct values
in the machine-language program. The process requires
the variables to be specified ahead of time, but it per
mits the programer to alter these variables by changing
their specification only once, rather than every time
they are used in the program. It's a great time-saver and
bug-killer.

· While these characteristics are not uncommon in ad
vanced assembly languages, high-level languages that
can handle them are quite rare. Yet by using PL/ M , the
assembler was coded in approximately 100 man-hours,
and it requires 6,000 bytes of program storage- equiva
lent to 3,000 words on a minicomputer with a 16-bit
word size. Intel estimates that the project would have
taken five times as long to code and debug directly in
assembly language, with little or no reduction in pro
gram-memory space. The resulting assembler is easy to
maintain and alter , and, equally important, it can be re
compiled for Intel's new 8080 microprocessor without
alteration.

A practical example

PL/ M permits many programing shortcuts, such as
dividing a complex task into individual subtasks, or
procedures, that are called upon when needed to sim
plify the job of writing the program itself. These proce
dures are conceptually simple and therefore easy to for
mulate and express in PL/ M , as well as easy to check
out before being incorporated in a larger program.

For example, consider a simple progra m for character
manipulation-one that might be part of the work of a
more comprehensive word-processing system. The func
tion is relatively simple: the program asks the keyboard
for two input-character strings, scans the first string for
all occurrences of the second, echoes the first string, and
types an asterisk under the starting position in the first
string of each occurrence of the second string. A sample
interaction with this program is shown in Fig. 6 ; a ll
lines typed by the operator are in color.

Stated in this way, th is example may seem to have
little or no practical value. But it is almost identical to a
program need ed to fetch the strings from two different
data-entry devices and do something more sophisticated
than printing an asterisk when it finds a match.

This suggests a practic~l application- a teleprinter to
check out a routine before it is embedded in a larger
program. When all the bugs are ouf of the routine, the
procedures tha t transfer data to and from the tele
printer can be replace<t with other procedures that, for
example, check sensors and turn indicators on and off.
The new procedures, of course, have to be checked out
in a real environrn,ent, but that's much easier when the
main routine is known to be bug-free. 0

109

