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Abstract. Systems of systems are becoming more important in today’s global endeavors. 

In this paper use of model-based systems engineering is examined from the viewpoint of 

understanding connections, that is the transfer of items between system of systems. The 

conclusion is that systems engineering models must include executable models in order to 

best understand the effects of transfer of items in system of systems. 

 
1.0 Introduction  

In this paper the importance of SoS connections is discussed, SoS connections are 

characterized, and the connection characterization is related to challenges of applying 

model based systems engineering to the development of analysis of SoSs. 

 

There is increased interest in what has been become known as a system of systems (SoS) 

and the systems engineering of SoSs. In addition to military SoSs such as command, 

control, computer, communications and information (C4I) systems (Pei, 2000), 

intelligence, surveillance and reconnaissance (ISR) systems (Manthrope, 1996), 

intelligence collection management systems (Osmundson et al., 2006), there are 

important commercial SoSs such as electrical power distribution systems (Casazza and 

Delea, 2000) and financial systems, such as the transportation logistics networks. These 

systems are usually comprised of a large number of component systems and subsystems, 

human operators, and software agents.  

 

There are many definitions of SoSs. A SoS is described by Maier and Rechtin (Maier and 

Rechtin, 2002) as systems which are operationally independent, managerially 

independent, evolutionary developed, with emergent behavior and are geographically 

distributed. (Madni, 2007) says that: “A SoS is a complex ensemble of independent 

systems developed and introduced over different time frames by multiple independent 

authorities to provide multiple, interdependent capabilities in support of multiple 

missions. The capability of a SoS typically exceeds the sum of the capabilities of the 

member systems.”  

 

There is not universal agreement on a definition of the term system of systems but many 

definitions have basic thoughts in common. (Sage and Cuppan, 2001) describe an SoS as 
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having operational and managerial independence of the individual systems as well as 

emergent behavior.  Other definitions include operational and managerial independence, 

and geographical separations of the component systems. Here we will consider an SoS to 

consist of separately developed systems that are usually operated by separate 

organizational entities and are usually geographically dispersed. 

 

Operational independence of the independent system elements of the SoS implies that if 

the SoS is disassembled into its component systems the component systems must be able 

to operate usefully independently. The SoS is composed of systems which are 

independent and operate usefully in own right. The component systems are often 

separately acquired and integrated, rather than designed and built as interoperable, 

independent systems. A SoS’s development and existence is usually evolutionary with its 

functions and purposes modified with experience. An SoS may exhibit emergent behavior 

that cannot be localized to any component system.  

 

 An SoS may be developed and managed to fulfill specific purposes and may be centrally 

managed during long-term operation. The component systems maintain an ability to 

operate independently, but their normal operational mode is subordinated to the central 

managed purpose. For example an integrated air defense network is usually centrally 

managed to defend a region against enemy systems, although its component systems may 

operate independently. Collaborative SoSs are distinct from directed systems in that the 

central management organization does not have coercive power to manage the system 

(i.e. command, control, communicate, plan, organize, and operate as a team). 

 

 The component systems must, more or less, voluntarily collaborate to fulfill the agreed 

upon central purposes. From the perspective of users, the Internet is a model of a 

collaborative system, whereby derived benefits and network externalities incentivize 

participation, with the net result to carry out collaborative research (for example). From 

the perspective of managing the protocols and standards that enable the Internet, 

agreements among the central players on service provision and rejection provide 

enforcement mechanisms to achieve various levels of network performances. The 

Internet began as a directed system, controlled by the Advanced Research Projects 

Agency (ARPA, now DARPA), to share computer resources over telephone lines. Over 

time it has evolved from central control through unplanned collaborative mechanisms to a 

decentralized network that routed data to some, but not every node. Virtual systems lack 

a central management authority and may lack a centrally agreed upon purpose. Large 

scale behavior emerges, and may be desirable, but the SoS must rely upon relatively 

invisible mechanisms to maintain it. A virtual system may be deliberate or accidental. 

Familiar examples are the World Wide Web and national economies. National economies 

and the social systems that surround them can be thought of as virtual systems.  

 

 

 

Because of the nature of SoSs the interconnections of the constituent elements may be 

very complex, the dynamics of the interactions may be complex, and there may be a wide 

range of possible probabilistic behaviors at all levels within the SoS, especially if human 



actors are among the constituent elements. All of these factors make the problem of SoS 

systems engineering particularly challenging.  

 

2.0 The Importance of Connections in Systems of Systems 
 

In order for an SoS to provide more capability than any of the individual systems, the 

systems have to interact and, therefore, the key to understanding and engineering an SoS, 

as well as understanding emergent behavior, is clearly defining the system-to-system 

interfaces, connectivity, and exchanges. Several approaches to modeling complex 

systems have been developed recently, including that of (Oliver, Keliher and Keegan, 

2007) and (Osmundson et al., 2004) that provide a clear elucidation of SoS interfaces and 

connections.   

 

Systems Modeling Language (SysML) (OMG, 2010) has been introduced to support the 

specification, analysis, design, verification, and validation of complex systems. Systems 

engineers can describe large complex SoSs using SysML in the same manner that 

software engineers describe large software systems using Unified Modeling Language 

(UML.) 

 

System elements in modeling language representations can be described as executable 

modeling icons by using modern software applications. This applies to system elements 

such as people and software agents, as well as hardware elements. These icons can be 

graphically linked to form models of physically distributed SoSs.  Models of SoSs can be 

constructed in a modular manner so that design factors are represented by an association 

with modeling application objects.  System options are represented by rearranging the 

objects and by varying the object attributes from model to model.  Design of experiments 

guides the development of executable models and the running of simulations.  

 

Interactions that provide new capability and other interactions that might result in 

emergent behavior may occur at interfaces between systems, between systems and 

operators and/or between systems and software agents. Each of these interface elements 

can be considered  as elements that seek to satisfy a goal governed by a set of rules whose 

inputs are provided through the SoS interactions. In some cases the goal-seeking element 

may have probabilistic behavior and/or may adapt to changing input conditions.  

 

In normal system design, the goals and the functional performances of the system and 

system elements are defined, subject to further iterations and refinements. In systems 

engineering, the system is designed to meet functional requirements to specified levels of 

performance. Now consider a complex system of systems where SoS elements may 

include people and software agents whose goals may be the same as, or different from, 

the original system goals. Unanticipated SoS behavior might then be due to miss-

application of the SoS’s rules by a person within the SoS. Another source of 

unanticipated behavior might be due to the fact a hardware element, a person, or a 

software agent correctly applied the rules, but for a set of input conditions that were 

unanticipated by the systems of systems engineers. A third source of unanticipated 

behavior might be adaptation of a person or a software agent to sets of inputs. 



 

The systems engineering challenge is to understand the interconnections of a complex 

SoS and the potential behaviors resulting from the interconnections well enough to ensure 

the desired SoS capability will be met and that undesirable behaviors will be minimized if 

not prevented.  

 
3.0 Characterization of Connections 

 

Key aspects of SysML that specifically apply to interactions are the concepts of ports and 

flows. A port is an interaction point between a block or part and its environment that is 

connected with other ports via connectors. The main motivation for specifying such ports 

on system elements is to allow the design of modular reusable blocks, with clearly 

defined interfaces and connectivity. 

 

Ports in SysML can be standard ports or flow ports. A standard port specifies the services 

provided (offered) by the owning block to its environment as well as the services that the 

owning block expects (requires) of its environment. The standard port is typed by the 

provided and/or required interfaces in order to specify the services. 

 

A flow port specifies the input and output items that may flow between a block and its 

environment. The flow port is typed with a specification of what can flow. A flow port 

may be typed with a single type representing the items that flow in or out, or typed with a 

flow specification which lists multiple items that flow. Flow ports send items to their 

owning block or to an internal connector that connects with the owning block’s internal 

parts.  If a block handles the port interactions itself, then the port is called a behavior port. 

Where a flow port is a behavior port, the flowing items must be relayed either to/from 

some feature of its owning block. Alternatively the block could have a delegation port 

where responsibility is delegated to a nested part or parts, via ports on their interfaces. 

(Friedenthal, 2008) If a flow port is connected to multiple connectors, then the items can 

be sent simultaneously to all connectors that have matching properties at the other ends. 

 

Items (called item flows in SysML) are things that flow between blocks and/or parts and 

across connectors and type matching between the items and ports is used to assist in 

interface compatibility analysis. The items flowing between flow ports must match the 

flow properties of the ports at each end.  Items flowing from objects may be depicted  in 

activity diagrams or as signals sent from state machines across a connector. 

 

The SysML convention described above is simplified, as shown in Figure 1,  in order to 

facilitate the discussion of SoS interactions. Objects in Figure 1 correspond to blocks in 

SysML and connectors in Figure 1 correspond to SysML ports. Items are the things that 

flow from object-to-object through connectors. 



 
Figure 1. Object-to-object connections 

 

Flow Item Types. When discussing flow ports the OMG’s SysML specification (OMG,  

2010) states that “Flow ports are interaction points through which data, material, or 

energy can enter or leave the owning block.” (Langford, 2012) takes a broader view and 

states that objects interact with other objects through Energy, Matter, Material wealth, 

and Information (EMMI). EMMI expresses the interactions between objects. And, the 

conditions by which these flow ports send or receive items are termed the boundary 

conditions. 

 

There is no attempt here to enumerate all of the possible flow item types, but rather give 

some examples categorized by major types. Adopting the concept of EMMI there are the 

following examples in each of the four major categories: 

 

1. Matter. Items of matter include, as examples, parts, finished goods, fluids such as 

water or gas, and people. Typical SoSs involving the flow of items or matter are 

logistics systems, transportations systems and manufacturing systems.  

 

2. Information. Information systems are perhaps the most commonly discussed type of 

SoS and examples of items of information include various forms of data, video and 

graphics.  

 

3. Energy. Items of energy include electrical energy and kinetic energy. An example of 

a complex SoS that transmits electrical energy is the North American power grid 

(Osmundson, Huynh and Langford, 2008.)  Automobiles are an example of a system 

(or some might argue a SoS) in which kinetic energy is transmitted through drive 

trains. 

 

4. Material Wealth. Examples items of material wealth are the flow of  material wealth 

are notes, currencies, and liens that are transmitted through banking systems  andother  

monetary systems. The globalization of the economy is resulting in complex financial 

systems, some of which have exhibited emergent behavior (Osmundson, Langford 

and Huynh 2009), making this an area ripe for application of SoS systems 

engineering and analysis. 



 

In addition to intended interactions (Ulrich and Eppinger,  2008) point out that there are 

unintended interactions, which they call incidental interactions that include vibration, 

friction, thermal interactions, RF interference, stray light and acoustic noise, as examples. 

These types of interactions may or may not be amenable to modeling in SysML but they 

do have to be included in a holistic SoS systems engineering analysis. 

 

Interaction Protocols.. Interactions have requirements and constraints. Flows may be 

one-way or two-way. Flows may be synchronized or asynchronous.   Flows may require 

a request to send, a request to be sent, and/or acknowledgements. Flows may be 

scheduled or associated with time constraints such as deadlines. 

 

Connector Characteristics. Interface compatibility must be assured between connectors. 

This is most obvious for information system connectors that must assure that correct 

physical medium, link, and network layer requirements are met. A complication is that 

connectors may have state behavior; a simple example is a connector that can be in an 

“on” state or an “off” state. Further, a connector may be in an “on” state but unable to 

receive additional items because of a full buffer or lack of storage capacity. 

 

Connectors may also have other time-varying conditions. Connectors may have some 

probability of failure or non-availability. A pipeline may be subject to corrosion over 

time that could affect its ability to transport matter.   

  

Additional services that the responsible connector or block must provide are checks 

against constraints. Safety and security requirements must be met. Many monetary 

transactions must undergo validation checks: is the access ID correct, is there sufficient 

balance in the account, is the currency valid? 

  

State Dependence. In addition to connector state dependence many SoSs have state 

dependence that impacts interactions. As an example, consider a layered missile defense 

system consisting of an outer layer, an intermediate layer and an inner – or point defense 

– layer. Each layer can and does operate as a separate system. Assume that the outer layer 

detects a long range missile attach aimed at a region defended by the intermediate layer, 

while at the same time the intermediate layer is engaged in responding to a mid-range 

attack on its defended area. The SoS battle manage determines an optimum target-

weapon pairing solution that involves collaboration between the outer and inner layers 

and transmits the firing solutions to both layers. If the intermediate layer is in the midst of 

computing its own target weapon pairing solution it may be unable stop its current 

computations and switch to the SoS firing solutions within the engagement timeline 

constraints. This example would be difficult to describe using SysML typing and other 

conventions. 

 

Probabilistic Conditions. SoSs are subject to probabilistic conditions and behavior. SoS 

conditions can go beyond normal limits of operation, people can exhibit unexpected 

behavior, there can be unanticipated confluences of conditions. Probabilistic conditions 

can effect SoS interactions in numerous ways. It would be difficult at best to describe 



possible probabilistic conditions in a typical SysML model, yet these conditions may 

result in lack of SoS capability or undesirable behavior. 

 

Timing. Blocks in a SySML model may have attributes associated with time, such as 

time of detection for a sensor, time that the detection message is sent to the 

communications network and time that the detection message is transmitted to a receiving 

node. 

 

 Active objects respond only when they execute a receive action and the point at which an 

active object responds is determined solely by the behavior of the active object. Once an 

active object has accepted a message, no further messages are accepted until the next 

receive action is executed. Waiting messages are stored in a buffer which can be a FIFO 

queue, priority queue, etc.  

 

Passive objects respond when a message arrives, regardless of whether the object is 

occupied processing a previously arrived message. 

 

In a SySML model the objects can have attributes, some of which are time-related. As 

examples, an object could have an item transmittal time and an item needed to receive 

time, both of these times being dynamic – in other words their values would be 

determined during execution of a thread. Assume an event triggers a thread, causing the 

execution of process. The length of time that process takes may be scenario dependent. 

For example, in a missile defense system, the length of time that a target-weapon pairing 

algorithm process requires can depend on the number of targets and the number of 

available weapons.  

 

4.0 Implications for SoS Analysis 
 

Model based systems engineering utilizing SysML offers many advantages: a means to 

describe systems and SoSs specifications, design elements and design rationale, test cases 

and interrelationships in standard modeling language using both text and graphics.   

 

However, as (Soley, 2007) points out, SoSs are becoming more complex and that 

tendency leads to difficulties understanding designs and introduction of unexpected 

behaviors. (Madni, 2006) says that complexity in a  SoS is imposed by the dynamic mix 

of systems and emergent behavior and the biggest challenge in SoSs is interoperability at 

the programmatic, constructive and operational levels. In order for an SoS to provide 

more capability than any of the individual systems, the systems have to interact and, 

therefore, the key to understanding and engineering an SoS, as well as understanding 

emergent behavior, is clearly defining the system-to-system interfaces and connectivity. 

 

One of the important uses of models is to give insight into why things behave as they do 

and in this regard static SysML models do not give the necessary insight into potential 

complex behavior. Static SysML models representing systems and SoSs in terms of 

SysML constructs are useful in specifying interfaces and checking for interface 

consistencies. SysML also has mechanisms for specifying and representing time behavior 



and probabilistic behavior, using constructs such as activity diagrams, sequence 

diagrams, state diagrams and system lifelines.  These constructs, while very useful in 

specifying timing behaviors and timing constraints, do not easily lend themselves to 

consistency checking of complex time behavior. Likewise, while SysML models have 

mechanisms for specifying probabilistic behavior these do easily lend themselves to 

analyzing the effects of probabilistic behaviors on system and SoS performance. 

 

 SysML models must be augmented by dynamic models that are capable of incorporating 

time behavior, including state behavior, and probabilistic behavior. Some dynamic 

modeling approaches have been demonstrated that do in fact seem to allow analysis and 

understanding of system and SoS dynamic behavior. (Rao, Ramakrishnan and Dagli, 

2008) have implemented executable models based on colored Petri nets to analysis of the 

global earth observation SoS while discrete event SoS models and simulations have been 

used  to study emergent behavior in electrical power grids (Osmundson, Huynh and 

Langford, 2008), financial systems (Osmundson, Langford and Huynh, 2009) and 

regional economies (Osmundson, Huynh and Langford, 2011.) 

 

System elements in SysML representations can be described as executable modeling 

icons by using modern software applications. This applies to people as well as hardware 

and software elements. These icons can be graphically linked to form models of 

physically distributed SoSs.   

 

 It is not always necessary to model an entire SoS in dynamic models. SysML models can 

be used to identify sequences of interactions that are end-to-end threads or segments of 

SoS end-to-end threads that are then converted into dynamic models. In some situations 

segments of large complex SoSs representing large numbers of similar elements – for 

example large numbers of people – might be treated as an aggregate with a range of 

probabilistic behavior.  

 

As an example consider an electrical power generation and distribution system operating 

in a free market manner, that is, in an unregulated manner. Figure 2 shows a simple 

model of a highly abstracted power grid system, consisting of five power generating 

nodes, three trading agents, three consumer nodes, transmission lines linking the power 

generating nodes and the consumer nodes, and a transmission network router. The power 

generating nodes generate given rates of electricity at initial offering prices unique to 

each node. The consumer nodes have a rate of demand and initial buying prices unique to 

each node. The transmission lines have unique capacities and probability of failures that 

are dependent on their load relative to their capacity. The trading agents seek to 

maximize their profit by buying from the lowest price generator and selling to the highest 

bidder. If a generating node is successful in selling an increment of power, it raises its 

selling price, and lowers its price if it were unsuccessful. Consumer nodes lower their 

buying bid if they were successful in purchasing power and raise their bid if they were 

not successful.  The behavior of the electrical power market can be analyzed by analyzing 

the dynamic behavior of the production, bidding and distribution process of the SoS. 

 

 



 

 

 

 

 
 

Figure 2. Representation of a model of an abstracted power grid system of 
systems 

 

The model shown in figure 2 illustrates a transformation of a SysML representation of a 

electrical power grid SoS into a representation that can be further transformed into a 

discrete event model and simulation. 

 

Figure 3 shows the bidding process involving one power producing node, one broker and 

one consumer in SysML activity diagram format. The actual bidding process, involving 

decision rules and delays cannot be captured in SysML diagrams nor can it be easily 

captured in supporting text. However the detailed bidding process can be captured in 

algorithms, delays and probabilistic behavior that is incorporated in dynamic models 

based on the SysML representation.  

 

 



 
 

Figure 3.  Simplified power system bidding process in SysML activity diagram 
format 

 

Simulations of the dynamic model can be run and the time dependent price of electrical 

power can be obtained for various assumptions and operating conditions. Results could 

be used by systems engineers and systems analysts to study the effects on system 

behavior – in this example the market price of electricity – as a function of varying 

operating rules and conditions. 

 

5.0 Conclusion 
 
 Understanding interactions is important in determining whether the desired new SoS 

capability can be realized and in attempting to determine whether any undesirable 

emergent behavior or potentially desirable emergent behavior is likely. Model based 

systems engineering using SysML has many of the features needed to develop a 

comprehensive view of a SoS that includes all of the important considerations of SoS 

interactions. However, the complexity many SysML SoS models may obscure the most 

important aspects of the interactions. 

 



SysML models must be augmented by executable models that provide detailed 

representations of protocols, state behavior and other timing behavior, and probabilistic 

behaviors. SysML models can certainly inform the development of executable models, 

but the ability of executable models to include time dependent behavior and probabilistic 

behavior results in higher confidence in results of systems engineering analyses. 
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