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a b s t r a c t

In order for future imaging spacecraft to meet higher resolution imaging capability, it will
be necessary to build large space telescopes with primary mirror diameters that range
from 10 m to 20 m and do so with nanometer surface accuracy. Due to launch vehicle
mass and volume constraints, these mirrors have to be deployable and lightweight, such
as segmented mirrors using active optics to correct mirror surfaces with closed loop
control. As a part of this work, system identification tests revealed that dynamic
disturbances inherent in a laboratory environment are significant enough to degrade
the optical performance of the telescope. Research was performed at the Naval Post-
graduate School to identify the vibration modes most affecting the optical performance
and evaluate different techniques to increase damping of those modes. Based on this
work, tuned mass dampers (TMDs) were selected because of their simplicity in
implementation and effectiveness in targeting specific modes. The selected damping
mechanism was an eddy current damper where the damping and frequency of the
damper could be easily changed. System identification of segments was performed to
derive TMD specifications. Several configurations of the damper were evaluated, including
the number and placement of TMDs, damping constant, and targeted structural modes.
The final configuration consisted of two dampers located at the edge of each segment and
resulted in 80% reduction in vibrations. The WFE for the system without dampers was 1.5
waves, with one TMD the WFE was 0.9 waves, and with two TMDs the WFE was 0.25
waves. This paper provides details of some of the work done in this area and includes
theoretical predictions for optimum damping which were experimentally verified on a
large aperture segmented system.

Published by Elsevier Ltd. on behalf of IAA.
1. Introduction

The Naval Postgraduate School (NPS) has received a
3-m diameter segmented mirror telescope (SMT) that uses
active hybrid mirror (AHM) technology for the active
control of segmented mirrors [1–3].
r Ltd. on behalf of IAA.
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Before the system can be used operationally, the
mirrors must be aligned to very tight tolerances. These
mirrors are very lightweight and have low damping. As
such, the relative motions between segments are more
than a wavelength when exposed to the ambient condi-
tions of a clean room. This is due to the dynamic excitation
of segments caused by low level air pressure perturba-
tions. The phase diversity (PD) sensor used for segment
alignment is unable to perform as designed under such
high magnitude perturbations due to dynamic range
limitations. It is desirable to have the wavefront error
(WFE) less than one-quarter waves for this sensor.
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Fig. 2. Test frame rotation and tilt axes.

A.J. Yingling, B.N. Agrawal / Acta Astronautica 94 (2014) 1–132
Research performed at the Naval Postgraduate School
revealed several structural modes; however, the critical
modes significantly contributing to WFE were between
26 Hz and 45 Hz. These are modes that create relative
motion between the segments.

Although different techniques to increase damping of
those modes were considered, tuned mass dampers
(TMDs) were selected because of their simplicity in imple-
mentation and effectiveness in targeting specific modes.
The selected damping mechanism was an eddy current
damper where the damping and frequency of the damper
could be easily changed. System identification of segments
was performed to derive TMD specifications. Several con-
figurations of the damper were evaluated, including the
number and placement of TMDs, damping constant, and
targeted structural modes.

Section 2 discusses details of the SMT, Section 3
discusses vibration modes contributing to WFE, Section 4
discusses TMD theory, Section 5 discusses modal mass
approximation, Section 6 discusses experimental test
results, Section 7, quantifies the vibration in terms of
WFE, and Section 8 summarizes the results.
Fig. 3. Embedded face sheet actuator (FSA).

Fig. 4. The fine control actuators (FCAs) and coarse control actuators
(CCAs). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
2. The segmented mirror telescope

The SMT shown in Fig. 1 is located at NPS and was the
testbed for the work presented in this paper.

The primary mirror segments, secondary mirror, sec-
ondary tower, back-end optics, mounting ring and test
frame are annotated in Fig. 1. The mounting ring allows the
telescope to tilt up and down, and rotate about its optical
axis, as annotated in Fig. 2.

The only optical elements in the optical train that
contain curvature are the primary, secondary, and tertiary
mirrors. As such, the SMT is considered a three mirror
system. The other optical components in the optical train
are flat mirrors and serve to redirect the light path to the
image plane. The primary optic of the SMT consists of six
actuated hybrid mirrors (AHMs).

The structure of each AHM is composed of a silicon
carbide (SiC) substrate, to which a highly reflective nano-
laminate is epoxied. The nanolaminate serves serves as the
mirror face.
Fig. 1. The segmented mirror telescope (SMT).
As shown in Fig. 3, face sheet actuators (FSAs) are
embedded in the bottom of the SiC and serve to change
the optical prescription of the segment.

The FSAs are composed of lead magnesium niobate
(PMN) that expand when voltage is applied across them.
Each SMT segment is embedded with 156 FSAs.

The SiC is supported at three locations by fine control
actuators (FCAs) that move the segment in piston, tip, and
tilt with nanometer and nanoradian precision. Each FCA is
supported by two coarse control actuators (CCAs) in the
bi-pod arrangement shown in Fig. 4.

Together the CCAs move the segments in all six degrees
of freedom with micrometer and microradian precision.
The CCAs are mounted to the precision support structure
(PSS), shown green in Fig. 4.
3. Vibration induced WFE

Vibration-induced WFE is caused by dynamic motion of
optical surfaces. Fig. 5 depicts a perturbed optic surface
vibrating at an amplitude of ∂ZðxÞ.
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The optical path difference (OPD) a light ray travels is
twice this perturbation as it traverses this distance both
before and after reflection.

There are many OPDs across the aperture, one for each
ith pixel on the image plane. WFE is then defined as the
standard deviation of all the non-zero OPDs,

WFE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N�1
∑
N

i ¼ 1
ðOPDi�τÞ2

s
where τ¼ 1

N
∑
N

i ¼ 1
OPDi: ð1Þ

In this work, color scales were used such that large
WFE values produced sharp contrasts, as seen in Fig. 6(a),
and small WFE values are hard to distinguish from the
Fig. 5. Optical path difference (OPD).

Fig. 6. Optical path difference (OPD) maps. (For interpretation of the references
this article.)

Fig. 7. SMT mode shape types. (a) Frame modes, (
background, as seen in Fig. 6(b). In Fig. 6 positive WFE is
red in color, negative WFE is blue, and WFE of zero value
is green.

Three modes shape types were seen during system
identification tests; as shown in Fig. 7, they were (a) frame
modes, (b) rocking modes, and (c) curvature modes.

The contribution of these modes to WFE is shown in
Fig. 8, of which (b) the rocking modes are the primary
contributor. Fig. 8 clearly indicates that of the three mode
shape types, the critical modes requiring dampening are
the rocking modes. These modes range from 26 Hz to
45 Hz, as shown in Fig. 9.

The rocking modes result due to flexibility in the
latches connecting the PSS to the hex ring annotated in
Fig. 10.

As discussed in [2,3], the rocking modes are predicted
mode shapes in the finite element. Fig. 11 depicts the
segments edge-wise, rocking about the latch, and approx-
imates the mode as a beam rocking about the node point
with a latch stiffness kp.

Note that while none of the mass at the node point
participates in this mode, all of the mass at other points
participates with the maximum the outer edge of the
segment. As such, the effective mass participating in this
mode is a percentage of the total mass. This is called the
modal mass mp and can be used to idealize the rocking
mode as the spring-mass system shown in Fig. 12.

The theory derived in the next section builds off of the
idealization shown in Fig. 12.
to color in this figure legend, the reader is referred to the web version of

b) rocking modes and (c) curvature modes.



Fig. 8. The total wavefront error (WFE) induced by (a) frame modes (b) rocking modes and (c) curvature modes.

Fig. 9. Frequency response functions (FRFs) of the primary mirror (PM)
segments.

Fig. 10. Segment latch locations.

Fig. 11. Rocking mode approximation.

Fig. 12. Rocking mode idealization.

Fig. 13. Rocking mode idealization with TMD.
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4. Tuned mass damper theory

A TMD can be idealized as a spring-mass-damper
added to the existing system. This is shown in Fig. 13.



Fig. 15. Transmissibility curves.

Fig. 16. Damping ratio as a function of mass ratio.
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As shown in Fig. 13, a disturbing force f ðtÞ is perturbing
the system, causing a vertical displacement of the segment
yp and vertical displacement of the TMD ya. The disturbing
force also causes a transmitted force fs.

The equation of motion for the segment is

mp €ypþkpyp�kaðya�ypÞ ¼ f ðtÞ; ð2Þ

and the equation of motion for the TMD is

ma €yaþkaðya�ypÞ ¼ 0; ð3Þ

where for convenience, the stiffness and damping compo-
nents have been written together as

ka ¼ kaþ jωba; ð4Þ
and ω is the disturbance frequency.

The objective of adding a TMD to a segment is to reduce
the response of the segment to f ðtÞ. Mathematically this is
shown by taking the laplace transform,

LfhðtÞg �
Z 1

0
hðtÞe�stdt; ð5Þ

of the TMD equation of motion in Eq. (3) and rewriting
it as

Lfma €yaþkaya ¼ kaypg ) ðka�ω2maÞYaðsÞ ¼ kaYpðsÞ ð6Þ

In Eq. (6) it is evident that if one properly selects the
stiffness ka and mass ma of the TMD for a given disturbing
frequency ω, then the terms inside the parentheses would
cancel each other. Due to equivalence, the right hand side
of the equation then requires that the segment displace-
ment yp also be zero.

The blue dashed line in Fig. 14 shows the nominal
response of the segment without TMDs.

The non-dimensional parameters used in Fig. 15
include the dimensionless disturbing frequency,

g� ω

ωp
; ð7Þ

where the resonant frequency of the segment is

ωp �
ffiffiffiffiffiffiffi
kp
mp

s
: ð8Þ
Fig. 14. Segment responses for various TMD configurations. (For inter-
pretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
The TMD damping is defined as

ζ� ba
2

ffiffiffiffiffiffiffiffiffiffiffi
kama

p : ð9Þ

The mass ratio is defined as

μ�ma

mp
: ð10Þ

The frequency ratio is defined as

α� ωa

ωp
; ð11Þ

where the resonant frequency of the TMD is

ωa �
ffiffiffiffiffiffiffi
ka
ma

s
: ð12Þ

Fig. 15 shows that by adding a TMD, a degree of
freedom has been added to the system. Thus two resonant
frequencies exist where before there was only mode at
g¼1. The other curves in Fig. 16 show that by varying μ, α,
and ζ, the response of the segment can be affected.



Fig. 17. Rocking mode description (side view).

Fig. 18. Rocking mode description (top view).
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The parameters in Eqs. (9)–(11) can be designed to
optimize the amount of damping imparted to the system.
To do this, the transfer function of the disturbing force to
the transmitted force is defined as

GðωÞ � f s
f ðtÞ: ð13Þ

As shown in [3,4], rewriting Eq. (13) in terms of the
non-dimensional parameters is accomplished by taking
the Laplace of Eqs. (2) and (3) and rewriting them into
matrix form, which yields

kpþka�ω2mp �ka

�ka ka�ω2ma

" #
yp
ya

" #
¼ f

0

� �
; ð14Þ

where the forcing function f is assumed to oscillate at a
single frequency ω such that it is a constant in the Laplace
domain.

Solving (14) for the displacements yp and ya simulta-
neously yields

yp
ya

" #
¼ 1
Δ

ka�ω2mp ka

ka kpþka�ω2mp

" #
f

0

� �
; ð15Þ

where Δ is

Δ¼ ðkpþka�ω2mpÞðka�ω2maÞ�k
2
a ¼mpmaω

4

�½kaðmpþmaÞþkama�ω2þkpka: ð16Þ
considering that the transmitted force fS shown in Fig. 13 is

f s ¼ kp � yp; ð17Þ

The non-dimensional transfer function G(ω) can be
written as

GðωÞ ¼ f s
f
¼ kpyp

f
¼ kp

Δ
ka�ω2ma

� �
: ð18Þ

Substituting Eq. (4) into (18) and writing Δ (16) out
explicitly yields

GðωÞ ¼ kpðkaþ jωba�ω2maÞ
mpmaω4�½ðkaþ jωbaÞðmpþmaÞþkpma�ω2þkpðkaþ jωbaÞ

:

ð19Þ
Non-dimensionalizing (19) by substituting in Eqs. (7)–

(11) yields

GðgÞ ¼ α2�g2þ2jζαg
g4�½ðα2þ2jζαgÞð1þμÞþ1�g2þðα2þ2jζαgÞ: ð20Þ

Fig. 16 shows Eq. 20 for various amounts of damping.
As described in [3,4], by noting that all the curves in

Fig. 15 pass through points A and B, the dependence of the
frequency ratio on the mass ratio can be derived,

α¼ 1
1þμ

: ð21�

Also described in [3,4], optimum damping is found to
be dependent on μ by noting that the transmissibility is
minimized when points A and B are also the locations of
peak response such that a line with zero slope can be
drawn between them. This yields

ζ2 ¼ 3μ
8ð1þμÞ3

: ð22Þ
Noting that the only dependent variable is μ, it becomes
important to select the optimum mass ratio, which is
found by setting the derivative of Eq. (22) to zero and
solving for μ,

∂ζ2

∂μ
¼ 3
8
ð1þμÞ�3�9μ

8
ð1þμÞ�4 ¼ 0 ð23aÞ

μopt ¼
1
2
: ð23bÞ

A comparison of the mass ratios used for this research
with those used in industry is shown in Fig. 16. Note that
the optimum mass ratio is well above what is typically
used in industry.

Eq. (22b) reveals that accurately predicting the modal
mass mp of the segment rocking mode is of utmost
importance. Predicting the modal mass is discussed in
the next section.
5. Modal mass approximation

Rayleigh′s method [3,5] was used to determine the
modal mass of the rocking mode. This method requires
approximating the small Z-axis displacement of the seg-
ment in both space and time,

zðx; tÞ ¼ ~zðxÞ sin ðωntþϕÞ ð23Þ

where ~zðxÞ is a shape function and zðx; tÞ assumes oscilla-
tory motion with a natural frequency of ωn. Figs. 17 and 18



Fig. 19. Modal and TMD mass relations.

A.J. Yingling, B.N. Agrawal / Acta Astronautica 94 (2014) 1–13 7
depict the rocking mode of the segment and introduces
parameters used to derive ~zðxÞ.

The rocking mode is characterized by the following
boundary conditions,

~zð0Þ ¼ �L1 sin θ ð24Þ

~zðLÞ ¼ ~zmax ¼ L2 sin θ ð25Þ

~zðL1Þ ¼ 0 ð26Þ

~z′ðxÞ ¼ constant ð27Þ

~z″ðxÞ ¼ 0 ð28Þ

As shown in [3], a solution to these boundary condi-
tions is

~zðxÞ ¼ x
L2
�L1
L2

ð29Þ

which is unitless because it has been normalized such that
the maximum displacement at the outer edge is 1.

To find the modal mass, the general form of the kinetic
energy equation is used,

T � 1
2
mV2: ð30Þ

The time derivative of Eq. (23) is

Vðx; tÞ ¼ _zðx; tÞ ¼ ~zðxÞωn � cos ðωntþϕÞ: ð31Þ

Writing the kinetic energy Eq. (30) in terms of Eq. (31)
yields

Tðx; tÞ � 1
2
mðxÞV2ðx; tÞ; ð32Þ

where the mass is allowed to vary across the segment.
To find the total kinetic energy, Eq. (32) must be

integrated across the segment,

TtotalðtÞ � 1
2

Z L

0
γ � V2ðx; tÞdx; ð33Þ

where the mass is assumed to be evenly distributed,

γ ¼mðxÞ ¼m
L
: ð34Þ

As shown in [3], substituting Eq. (31) into Eq. (33) and
simplifying yields

Ttotal ¼ 1
2
ð
Z L

0
γ � ~z2ðxÞdxÞω2

n cos
2ðωntþϕÞ; ð35Þ

where the term inside the brackets is the modal mass mp,
and the term outside the brackets is the normalized
velocity ~V ðtÞ squared. This can be written as

Ttotal ¼ 1
2
ðmpÞ ~V 2ðtÞ; ð36Þ

where

mp ¼
Z L

0
γ � ~z2ðxÞdx; ð37Þ
and

~V ðtÞ ¼ ωn cos ðωntþϕÞ: ð38Þ

Substituting Eq. (29) into Eq. (37) and integrating yields

mp ¼
Z L

0
γ � x

L2
�L1
L2

� �2
dx¼m

L2

3L22
� L
L2

þ1

" #
; ð39Þ

where both Eq. (29) and L1 ¼ L�L2 were substituted into
Eq. (39).

Given that L¼ 1 m and L2 ¼ 0:8 m, Eq. (39) reduces to

mp ¼m
12

3ð0:8Þ2
� 1
0:8

þ1

" #
¼ 0:27 m: ð40Þ

thus, for a segment weighing 29 lbs, the modal mass is

mp ¼ 0:27ð29 lbsÞ ¼ 8 lbs; ð41Þ
and the optimum TMD weight is found using Eqs. (10)
and (17),

ma ¼ μoptmp ¼ 1
2
8 lbs¼ 4 lbs: ð42Þ

The results of this section are summarized in Fig. 19.

6. Experimental test results

Initial testing was accomplished on one segment. The
test setup is shown in Fig. 20.

An impact hammer instrumented with a force transdu-
cer was used to input impulse excitations into the system.
The impact location is annotated in Fig. 20. Seismic
accelerometers sensitive to 1000 mV/g were placed
around the segment to measure its response. These instru-
ments are shown in Fig. 21.

As indicated in Fig. 20, various TMD locations and
configurations were tested. Each TMD was 2 lbs in weight.
The mass ratios for each TMD configuration are given in
Table 1. Note that the optimum mass ratio is found in the 2
TMD configuration.



Fig. 20. One segment test setup.

Fig. 21. Impact hammer and tri-axial accelerometer (not to scale).

Table 1
Mass ratios for TMD configurations.

# of TMDs μ

0 0
1 ¼
2 ½
3 ¾

Fig. 22. All TMD configurations for segment 5.
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As shown in Fig. 22, over thirty configurations were
tested for segment 5.

For each configuration in Fig. 20, the TMDs were tuned
according to their mass ratios, as given in Eqs. (15) and (16).

The magnetic TMDs are shown in Fig. 23. Fig. 23(a)
shows the outer-casing of the TMD which houses copper
windings. The inner-core of the TMD is depicted in Fig. 23
(b) of the same figure and shows a magnetic core con-
nected to the outer-casing by three flexures. Fig. 23(c)
depicts that the relative motion between the inner-core
and outer-casing produces eddy currents, which dampen
the motion.

Tuning was accomplished by changing the flexure
lengths of the springs. As depicted in Fig. 24(b), the
flexures were slotted and attached to the outer-casing of
the TMD using bolts. By loosening the bolts, twisting the
outer-casing, and re-tightening, the effective length of the
spring can be changed, changing the resonant frequency of
the TMD. Noting that the flexure is essentially a cantilev-
ered beam, the stiffness of the TMD is

ka ¼ 3EI

L3
; ð43Þ

where E is the modulus of elasticity, I is the cross-section
moment of inertia, and L is the effective length of the
spring.

Before placed on the SMT, the TMD is tuned atop a
shaker, such that the transmissibility curve indicates the
resonance ωa and damping ζof the TMD. An example is
shown in Fig. 24.

In addition to the number of TMDs, TMD locations,
TMD stiffness, TMD damping and targeted modes were all
varied. All segments were tested in similar manner. Five
configurations are summarized in Fig. 25 for a resonance at
33.5 Hz.

The dashed blue line is the nominal or 0TMD config-
uration with a non-dimensional resonance at 1,

ω

ωn
¼ 2π � 33:5 Hz
2π � 33:5 Hz

¼ 1: ð44Þ

The solid blue line is the 1TMD with a slightly mistuned
TMD at 25 Hz. Note that according to Eq. (20), the
frequency ratio should be

α¼ 1
1þ1=4

¼ 4
5
; ð45Þ

which, according to Eq. (11), requires tuning the TMD to

f a ¼
ωa

2π
¼ α� ωb

2π
¼ 4
5
� ð2π � 33:5 HzÞ

2π
¼ 27 Hz ð46Þ

As shown by the solid red curve in Fig. 25, properly tuning
the 1TMD configuration to 27 Hz further reduces the
response.

The 2TMD configuration shown by the solid green
curve in Fig. 25 provides the optimum damping, verifying
the predictions given in Eq. (22b).

Given the success on one segment, TMDs were imple-
mented on all the segments. To test these configurations,



Fig. 23. The magnetic tuned mass damper (TMD).

Fig. 24. TMD transmissibility curve.

Fig. 25. Select TMD configuration for segment 6. (For interpretation of
the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 26. Laser vibrometer test setup.

Fig. 27. Laser vibrometer test index. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of
this article.)
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it was impractical to instrument accelerometers on all
segments simultaniously. Instead, a laser-vibrometer was
used. This setup is shown in Fig. 26.
As seen in Fig. 26, the vertex of each segment was fitted
with retro-reflectors to provide high-quality laser return
signatures to the scanning laser.

As indicated in Fig. 27, only the 0, 1, and 2TMD
configurations were tested this time; however, TMDs were
mounted to all of the segments.

The blue circles in Fig. 27 indicate the 1TMD config-
uration. The green circles indicate the 2TMD configuration.
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The numbering on the segment vertices are the index
values used throughout the test.

As described previously, an impact hammer was used
to excite the structure; however, instead of using accel-
erometers to measure the response, vibrations amplitudes
were calculated using Doppler shifts in the return signa-
ture of the laser emitted from the scanning head of the
laser vibrometer. This is shown in Fig. 28.

The “vibrating plate” annotated in Fig. 28 represents
the retro-reflectors on the segment vertices. The “input
signal” originates from the force tranducer of the impact
hammer that is providing the excitation.

Also indicated in Fig. 28, many fast Fourier transform
(FFT) analyses were produced during the testing and
include auto spectral density (ASD), power spectral density
(PSD), and frequency response functions (FRFs). The spec-
tral resolution for this testing was ¼ Hz per line,

Δf ¼ 200 Hz
800lines

¼ 1
4

Hz=line ð47Þ

The displacement response for the first index point
is shown in Fig. 30 for the nominal (0TMD), 1TMD, and
2TMD configurations.
Fig. 28. Laser vibrometer equipment.

Fig. 29. Index 1 impulse displacement response. (For interpretation of
the references to color in this figure legend, the reader is referred to the
web version of this article.)
As annotated in Fig. 29, the impact location is marked
with an “X” and is the same location used for the single
segment testing described previously. However, the
response was measured on the front side of the mirror at
the location indicated by the star.
Fig. 30. Index 1 ambient displacement response. (For interpretation of
the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 31. TMD vibration amplitude reduction.

Fig. 32. The frame modes (0–20 Hz).
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Shown as a solid red curve in Fig. 29, the nominal response
to an impulse excitation is 3.5 microns. This response is
significantly reduced to 1.5 microns with 1TMD, shown as a
Fig. 33. Frame modes move all optics identically.

Fig. 34. The SMT time-domain response. (For interpretation of the references to colo

Fig. 35. The SMT time-domain response with frame modes removed. (For inte
referred to the web version of this article.)
solid blue curve. The 2TMD configuration virtually eliminates
the resonant mode all-together with amplitudes less than 0.5
microns.

After tuning and impact testing, operational deflection
shapes (ODS) were captured using the reference laser
shown in Fig. 27. For this testing, no excitation was applied
to the segments. Instead, the response of the segment as it
was perturbed by the ambient environment was recorded.
The results for index point 1 are shown in Fig. 31.

Note that the amplitudes in Fig. 30 are much smaller
than the amplitudes in Fig.29. This is because the ambient
excitation sources only provide small perturbations. The
solid red curve in Fig. 30 shows the nominal response
of the segment. As before, the 1TMD configuration, the
solid blue curve, significantly reduces the problem mode.
r in this figure legend, the reader is referred to the web version of this article.)

rpretation of the references to color in this figure legend, the reader is
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The 2TMD configuration performs even better and has a
nice broadband effect that also dampens adjacent modes.

Averaging the results of all the test indices, it was found
that the vibration amplitudes of the rocking modes were
reduced by 80%. Although not targeted, the frame modes,
and curvature modes were also significantly reduced.
These results are summarized in Fig. 31.
Fig. 36. Interpolation between test indices. (For interpretation of the
references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 37. a, b, c: 0TMD, 1TMD,

Fig. 38. Vibration amplitudes (left ordinate) and associated WFE (right ordinate
reader is referred to the web version of this article.)
7. Quantifying wavefront error

As can be seen in Fig. 32, the frame modes below 20 Hz
are large in magnitude with regard to the rocking modes
near 30 Hz.

Further, Fig. 32 shows that the secondary mirror (SM)
amplitudes are equivalent in magnitude to the primary
mirror (PM) amplitudes.

It can also be seen that the PM and SM optics are
moving in phase with each other, as shown in Fig. 33. Thus
for the frame modes, the optical path lengths between the
PM and SM are not changing. This is depicted in Fig. 34.

The curves in Fig. 34 were generated by transforming
the spectral data presented previously into the time-
domain using the Fourier transform,

xðtkÞ ¼ ∑
N

n ¼ 1
Xðf nÞei2πnk=N ; ð48Þ

for N discrete time samples.
The result of the Fourier transform, as shown in Fig. 34,

shows that the SM data, shown as yellow curves, are in
phase with the PM data, shown as green curves. Note that
this is because the 15 Hz frame mode is dominating the
results. Fig. 36 shows the frame modes filtered from the
data, then Fourier transformed.
and 2TMD OPD maps.

). (For interpretation of the references to color in this figure legend, the
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Fig. 35 indicates relative motion between the SM,
shown as the yellow curve, and the PM, shown as the
green curve, as the curves are no longer in phase with
each other.

It is the relative motion between optics that causes
WFE. Thus it is necessary to remove the frame modes to
quantify WFE.

The next step becomes to estimate the displacements
across the entire aperture, not just at the test indices
indicated in Fig. 27. This was accomplished by interpolat-
ing displacement values across each segment from the
data existing at test indices. An example of this is shown in
Fig. 36 for the nominal configuration; text indices are
annotated as blue circles.

The results of the procedure described above generated
the OPD maps shown in Fig. 37 for each configuration:
nominal (0TMD), 1TMD, and 2TMD.

Fig. 37 shows that the WFE was reduced from 1.25
waves, λ/0.8, to 0.25 waves, λ/4. This is a reduction of a
factor of 5 and should allow for testing to be conducted on
the SMT that was previously not possible to the magnitude
of the vibrations.
8. Conclusions

This work revealed that the segment rocking modes
were the primary modes contributing to WFE. Addition-
ally, theoretical predictions were given to optimize the
reduction of these modes using TMDs. To do so, the modal
mass was approximated to be 27% of the total mass of the
segment and the optimum TMD mass was predicted to be
half of the modal mass. These results were experimentally
verified.
Further, implementation of the optimized TMDs resulted
in reduction in vibration amplitudes by 80% and a reduction
of WFE by a factor of 5.

These results are summarized in Fig. 38. The vibration
displacements are shown in red and their magnitudes
are on the left ordinate. The associated WFE with the
vibrations are shown in blue and their magnitudes are on
the right ordinate. The dashed lines in Fig. 38 indicate
the nominal configuration and the solid line indicates the
2TMD configuration.
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