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Efficient, nearly orthogonal-and-balanced, mixed
designs: an effective way to conduct trade-off analyses
via simulation
H Vieira Jr1, SM Sanchez2*, KH Kienitz1 and MCN Belderrain1
1Technological Institute of Aeronautics, São Jose dos Campos, Brazil; and 2Operations Research Department,
Naval Postgraduate School, Monterey, USA

Designed experiments are powerful methodologies for gaining insights into the behaviour of complex simulation models. In recent
years, many new designs have been created to address the large number of factors and complex response surfaces that often arise in
simulation studies, but handling discrete-valued or qualitative factors remains problematic. We propose a framework for generating
a design, of specified size, that is nearly orthogonal and nearly balanced for any mix of factor types (categorical, numerical discrete,
and numerical continuous) and mix of factor levels. These new designs allow decision makers structured methods for trade-off
analyses in situations that are not necessarily amenable to other methods for choosing alternatives, such as simulation optimization
or ranking and selection approaches. These new designs also compare well to existing approaches for constructing custom designs
for smaller experiments, and may also be of interest for exploring computer models in domains where fewer factors are involved.
Journal of Simulation (2013) 7, 264–275. doi:10.1057/jos.2013.14
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1. Introduction

Simulation is often used to investigate alternatives. Before setting
up a new manufacturing plant, a company might be interested in
exploring different types of production and material handling
equipment, facility layouts, workforce capabilities, buffer sizes,
and processing protocols to determine suitable choices. Similarly,
military decision makers might wish to explore the potential
impact of different tactics, equipment, training, and logistical
support policies on operational efficacy. Alternatives are instan-
tiated as different combinations of settings for model factors (ie,
inputs, parameters, or components) that reflect key characteristics
of the real-world situation.

There are many methods for trying to identify the so-
called ‘optimal’ or ‘good’ alternatives. A broad categoriza-
tion includes simulation optimization, Ranking and Selection
(R&S) procedures, and designed experiments. Simulation
optimization methods seek to identify a combination of factor
settings that yields the best outcome. R&S approaches
examine a finite (often, relatively small) set of alternatives
and seek to select either the best one subject to some
minimum practical difference or a subset of random size that
contains the true best; all R&S procedures include some sort
of guarantee on the probability of correct selection. Experi-
mental design specifies the configurations that will be exam-
ined, and the choice of the design has bearing on the type of
analyses that can subsequently be conducted.

We assert that neither simulation optimization nor R&S is
directly appropriate for those interested in performing trade-off
analyses for complex scenarios. Simulation optimization methods
end up yielding a single alternative that may be a local (not
global) optimum. They do not provide information about so-
called ‘knees in the curve’, where increasing one type of resource
beyond a certain point leads to either diminishing or increasing
returns on overall performance. Similarly, simulation optimiza-
tion methods may not reveal the locations of tipping points,
where small changes in the input result in fundamentally different
output behaviour.

The same is true of indifference-zone R&S methods, where a
single alternative is designated as ‘best’ at the end of experi-
mentation. Subset selection methods can be used for first getting
a set of good alternatives with respect to one performance
measure, and then for making the final selection based on
different criteria. But since these procedures are still based on
the notion of the ‘best’ (minimum or a maximum) primary
performance measure, they do not directly apply when the
decision maker cares about intermediate response values.

To further complicate matters, decision makers are not neces-
sarily interested in the ‘best’ option with regard to any single
criterion at the end of the simulation study. Instead, the overall
decision is often made by assessing several performance mea-
sures. Consequently, decision makers need methods for gaining a
broad understanding of the simulation’s behaviour in order to
make effective trade-offs. Some of these measures (eg, cost,
throughput, or implementation time) might be quantitative, but
others (eg, ease of implementation, subjective assessments of
future risk) might be qualitative.
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For these reasons, well-designed experiments are the most
suitable approach if one wants to explore trade-offs. Fisher
(1925) pioneered the design of experiments (DOE) field, where
the basic principles are the use of randomization, replication, and
control to allow the analyst to make statistically valid inferences
about the behaviour of a system. As noted by Montgomery
(2005, p 21), ‘there is not a single area of science and engineering
that has not successfully employed statistically designed experi-
ments’. Simulation is one area that has benefitted; see, for
example, Santner et al (2003), Kleijnen (2007, 2008), Law
(2007), or Sanchez and Wan (2012) for a general discussion of
simulation experiments. Factory design (Montevechi et al, 2010),
large-scale networks (Van Vorst et al, 2012), and defence
applications (Sanchez et al, 2012) are just a few of the many
application areas. However, the basic designs in standard DOE
texts often do not suffice. The complexity of many simulation
models—in terms of both the number of model inputs (or factors)
that can be explored, and the complexity of a multidimensional
response surface—means that designs intended for use in
physical experiments cannot be used in the simulation environ-
ment without making restrictive or unwarranted assumptions.
Analysts need an expanded portfolio of designs in order to
effectively and efficiently conduct large-scale simulation experi-
ments (Kleijnen et al, 2005). The designs we propose here are
part of this expanded portfolio.

The title of this paper mentions several desirable design
properties that we now define.

● Mixed designs are those capable of handling different factor
types (categorical, discrete, and continuous) and/or discrete
factors with different numbers of levels (eg, Factor 1 with 10
levels, Factor 2 with 5 levels etc).

● A design is balanced if, for every column, every factor level
occurs equally often. We call a design nearly balanced if the
ratio of the actual to ideal number of occurrences is sufficiently
close to one.

● A design where the maximum absolute pairwise correlation
between any 2 quantitative factors is 0 is said to be an
orthogonal design. If this maximum absolute pairwise correla-
tion is sufficiently small (⩽ 0.05), this is considered a nearly
orthogonal design.

● Finally, we characterize a design as efficient if the number of
design points is acceptable. This concept is subjective and it is
problem driven.

The above concepts are important for several reasons. Simulation
problems usually have different factor types and factor levels, and
designs that accommodate this are needed. The balance property
allows correct analysis of heteroscedastic non-normal experi-
ments (Bathke, 2004). Orthogonality makes it possible to model
the effect of one factor independently of other factors (see, eg,
Montgomery (2005, p 91) and Ryan (1997, p 122)). Finally,
despite the ready availability of high-speed computing proces-
sors, brute-force computation cannot be used to explore large-
scale simulation experiments. Real-world simulation studies face

restrictions due to time, cost, number of computers available for
experimentation and so on. They need efficient designs, although
the number of design points is not the overriding consideration.

An implicit characteristic of a design for trade-off analyses is
its space-filling behaviour. When factors are continuous, space-
filling designs are useful for exploratory studies because they
provide insight about the simulation behaviour throughout the
region of interest. An analogy for discrete-valued factors is that
they take on many (perhaps all) of the potential levels of interest.
For example, a design where x assumes levels ‘x∈ {0, 1} (in
weeks) is less space-filling than a design where x assumes levels
‘x∈ {1,2,…, 7} (in days). For categorical factors, we assume that
‘x may need to be large in order to adequately reflect the
complexity of the real-world situation being modelled and/or that
a moderate to large number of categorical factors exists.

There are several ways to assess the quality of designs. For
traditional designs, the most usual methods are known as
alphabetic optimality criteria and include, but are not restricted
to, the A-, D-, and I-optimality, where the most widely known
and cited in the literature is D-optimality. We refer the readers to
Atkinson and Donev (1992) for further information about these
alphabetic criteria, but note that despite the term ‘optimality’ in
the names these designs are often generated by heuristics.
Various ‘optimized’ Latin hypercubes (LHs) are also used for
analysing simulation experiments. These are constructed optimiz-
ing a criterion, though once again the methods are often heuristic
and a true optimal solution is not guaranteed. Space-filling
measures are commonly used to construct and evaluate these
designs. Maximin LHs maximize the minimum distance between
two points, while minimax LHs minimize the maximum distance
between two points. Santner et al (2003) have further information
about these optimized LHs. Others, including Cioppa and Lucas
(2007), Joseph and Hung (2008), and Hernandez et al (2012),
have explored ways to construct designs that perform well in
terms of orthogonality and space-filling behaviour. Lu et al
(2013) propose an algorithm to construct small-sample designs
that perform well on three criteria, by identifying designs that lie
on the Pareto frontier (ie, are not dominated in all criteria by any
other design). As our research is focused on correctly identifying
the factors that most drive the outcome, rather than seeking
models that make accurate predictions, we are more interested in
orthogonality (or near-orthogonality) than these other criteria.
Nonetheless, we will show that our designs perform well on a
variety of measures.

This paper focuses on design, but design and analysis go hand
in hand. We have found that metamodel construction and
partition trees (also known as classification and regression trees)
are particularly useful, but other graphical and analytic techniques
are possible. Kriging or stochastic kriging metamodels make few
assumptions about the response behaviour. A detailed discussion
of potential analysis approaches is beyond the scope of this paper,
but the reader should be aware that the choice of the design places
restrictions on the types of analyses that can subsequently be
conducted. For example, two-level designs such as fractional
factorials or Box-Behnken (BBH) designs do not allow for the
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estimation of quadratic effects. Some two-level designs, such as
saturated factorials, do not allow for the estimation of any
interaction effects.

Because we wish to facilitate trade-off analysis, we seek space-
filling designs; they can be used to fit (very) high order
metamodels to the data if the simulation behaviour is complex,
and they are amenable to trade-off analysis using non-parametric
techniques such as partition trees. At the same time, our designs
should still have very good properties if the true underlying
response behaviour is simple. For example, we want good
estimates of the factor effects if the I/O relationship for a
particular response of interest is characterized well by a linear
metamodel involving a few inputs. This means that orthogonality
(or near-orthogonality) is also a desirable property. Optimization
methods can be applied directly to the metamodels to identify
(potentially) good alternatives, but, as we discuss above, better
results may be achieved when decision makers gain a broad
understanding of the simulation’s behaviour, rather than receive a
specific recommendation. Robust design is often of interest for
large-scale simulation studies, because decision makers may be
interested in identifying combinations of the controllable decision
factors that lead to good results across a variety of combinations
of noise factors; see, for example, Kleijnen et al (2005), Dellino
et al (2012), or Sanchez and Wan (2012). In this context, there is
often less of a concern about the ability to identify noise factor
contributions; even so, designs capable of handling large num-
bers of factors are necessary. The analysis flexibility provided by
space-filling designs makes them particularly useful when there is
little prior knowledge about the underlying responses.

2. Notation

Let M denote an n×K design matrix, with elements mrc, and for
notational convenience let c and sc denote the mean and standard
deviation of column c, respectively. Here, n is the number of
design points and K is the number of factors. In the statistical
literature, n is often referred to as the number of runs, but we use
design points to avoid confusing ‘run’ with the act of running the
simulation model. For stochastic simulations, the design may be
replicated multiple times.

The entries in column x of M are the values 1, 2, …, ‘x, so ‘x
represents the number of distinct levels of factor x. An expanded
matrix ~M will also be useful for presenting our Mixed Integer
Programming (MIP) formulation. Here, a single column is used
for any quantitative factor (continuous or discrete). A qualitative
factor x with ‘x levels in M needs ‘x− 1 indicator variable
columns in ~M, denoted by x1; x2; ¼ ; x‘x - 1. The entry in row r
for the indicator variable column xi has the form:

xir ¼

1 if xr ¼ i; i<‘x;

- 1 if xr ¼ ‘x;

0 otherwise:

8
>><

>>:
(1)

Other indicator variable codings are possible, such as a two-level
0/1 coding with the omitted factor representing the baseline, but

this three-level coding assures that when regression models are fit
to the resulting data, the intercept represents the overall mean
response. Note that for quantitative factors, the levels for factor x
in M (or ~M) can be converted from the coded levels 1, 2,…, ‘x to
the natural units of the problem by simple scaling before running
the experiment. Similarly, for qualitative factors, the coded
entries in M can be converted to appropriate labels.

Let ρmap denote the maximum absolute pairwise correlation
between any two columns of ~M. Let wi,x denote the number of
occurrences of level i for factor x in M. Let δx denote the
imbalance associated with column x of M, that is,

δx ¼ max
i¼1; ¼ ; ‘x

wi; x - n=‘xð Þ
n=‘xð Þ

!!!!

!!!!: (2)

Let δ≡max{δx, x= 1,…, K} denote the maximum imbalance of
design M.

3. Test cases

We are interested in designs that can handle mixed factor types.
As a test case, let L1 denote one set of 10 factors that includes a
single factor with each of 2, 3, …, 11 distinct levels. Li will
denote a larger design problem with 10i factors, that is, i factors
with each of 2, 3,…, 11 levels. Let Si denote the set of 15i factors
that augments Li with 5i continuous-valued factors. We will at
times use Li and Si as test cases when comparing different design
construction methods. Design characteristics such as the number
of design points n, the non-orthogonality ρmap, and the design
imbalance δ will be important in these comparisons.

4. Modifying designs constructed for categorical factors

Orthogonal arrays (OAs) have played an important role in
experimental design (see Hedayat et al, 1999 for more informa-
tion). Consider an n×K design matrix M. If any subarray of size
n× g contains all possible combinations of values equally often as
rows, then M is said to be an OA of ‘strength g’. OAs of strength
2 can be used to estimate main effects models for categorical
factors, those of strength 3 can be used to estimate main effects
and two-way interactions, and so on. The strength corresponds to
special types of balance, and means that OAs can be used for
exploring quantitative and categorical factors. However, this
flexibility comes at the cost of large designs: ‘x− 1 degrees of
freedom are needed to estimate the main effects for a categorial
factor with ‘x levels and (‘x− 1)(‘y− 1) degrees of freedom are
needed to estimate the two-way interaction effects between two
categorical factors x and y. This means that n⩾1 +

PK
x¼1ð‘x - 1Þ

design points are needed for a strength 2 experiment involving K
categorical factors, and at least

PK
x¼1

PK
y¼1ð‘x - 1Þð‘y - 1Þ addi-

tional design points are required in order to estimate all two-way
interactions.

Now suppose that the experiment includes quantitative factors
and categorical factors. If OAs are to be used, a (numerical)
discrete factor x with ‘x levels will use ‘x− 1 degrees of freedom
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as above. In contrast, if x is treated as a quantitative factor, then a
single degree of freedom is sufficient for estimating the main
effect of x (two degrees of freedom can be used to estimate a
quadratic relationship and so forth). Clearly, treating the factor as
quantitative is more efficient if a parsimonious representation of
the response’s dependence on x can be obtained.

OAs are most efficient if all the ‘x are small, so there is a
temptation to set ‘x= 2 for any quantitative factor x. However, the
resulting designs will have poor space-filling behaviour, and so
are far less useful for trade-off studies than other designs. But if
the ‘x are large, then the size of the OA can be immense. The
number of design points must be divisible by the lowest common
multiple (LCM) of the numbers of factor levels to achieve perfect
balance. In real-word experiments, the LCM usually is a big
number: the LCM for L1 is 27 720.

Another difficulty in using OAs for trade-off analysis is the
availability of suitable OAs. Extensive online libraries are
available in Sloane (2007) and Kuhfeld (2010), but these designs
have largely been developed for other types of applications, and
tend to involve relatively small numbers of factors and/or limited
mixes of the ‘x. Crossing several small OAs to obtain a larger OA
can result in extremely large designs. For example, in order to
obtain a design that could be used for a L1 by crossing OAs from
Sloane’s online library, the OA would require 9 979 200 design
points. This is only 25% of the amount required by a full
factorial, but nonetheless it is an enormous number. A corre-
sponding design capable of exploring L20 would require over
2.3× 1033 design points, which is effectively infinite.

Some work has been done on nearly orthogonal (rather than
completely orthogonal) arrays. These typically require software
algorithms to generate solutions, and the solutions may depend
on the pseudo-random numbers used within the algorithms, but
once again they are not intended for very large-scale simulation
studies. For example, the Gendex software developed by Nguyen
(http:// designcomputing.net/gendex/noa/) limits the user to spe-
cifying designs with at most 100 design points, and factors with
at most 17 (categorical) levels. L1 can be explored using 56
design points: 50 runs of the programme, each choosing the best
design based on 100 trials, yielded designs with δ= 0.1786
and 0.10⩽ ρmap⩽ 0.46 when they were applied to discrete
factors. These designs do not meet our near-orthogonality
criteria of ρmap⩽ 0.05. L1 can also be explored in 56 design
points using the Custom Design capability in JMP 9.0
Professional: 25 runs of the programme, each choosing the
best design based on 100 trials, yielded designs with
0.214⩽ δ⩽ 0.375 and 0.137⩽ ρmap⩽ 0.246. Once again, these
designs do not qualify as nearly orthogonal. The minimum
number of design points required rises as the number of
blocks increases (eg, L10 can also be analysed in JMP 9 using
551 design points with ρmap= 0.0878 and δ= 0.1325), but the
memory requirements rapidly become prohibitive once these
designs get larger. Note that the algorithms used by both
Gendex and JMP involve randomness, so choosing a ‘good’
design involves invoking the design construction methods a
number of times with different random number seeds.

The lowest achievable design matrix imbalance is not mono-
tonic in n. Figure 1 illustrates the analytic minimum design
imbalance for L1, which is identical to that of Li or Si (i> 1). We
need n⩾ 46 to ensure δ⩽ 0.20, n⩾ 100 to ensure δ⩽ 0.10, and
n⩾ 200 to ensure δ< 0.05; even with n= 500, the minimum
imbalance is 0.011. This value may not be achievable if ρmap is
constrained.

We will revisit nearly orthogonal arrays (NOAs) for small-scale
experiments later in this paper, and compare them with the new
designs we propose. For now, note that OAs and NOAs are not
readily available for mixed factor experiments involving several
categorical, discrete, or continuous factors. If they do exist, they
will likely require an excessively large number of design points.

5. Modifying continuous-factor designs for use with
discrete factors

An alternative to adapting OAs (or other categorical factor
designs) for use with discrete factors is to adapt designs originally
constructed for quantitative, continuous-valued factors.

LHs are probably the most familiar space-filling designs.
Randomly generated LHs have been widely used for computa-
tional experiments (Sacks et al, 1989). They tend to have good
space-filling and orthogonality behaviour if n≫K, but when n≈K
they can perform quite poorly. Cioppa and Lucas (2007) con-
structed efficient, space-filling, nearly orthogonal Latin hyper-
cubes (NOLHs) that have proven useful for investigating con-
tinuous factors in a number of studies. To overcome the limited
combinations of K and n for which NOLHs were available,
Hernandez et al (2012) developed a MIP approach that allows for
the construction of NOLHs for non-saturated cases (2<K< n),
and reviewed other NOLH designs available in the literature.

One issue relating to all of the LH designs is that they were
initially intended for continuous-valued factors. Applying them
to discrete-valued factors requires rounding. A limited amount of
rounding is acceptable, but if there are several factors with small
numbers of levels, coupled with a relative small number of design
points, this can destroy the near-orthogonality of the designs.
Figure 2 illustrates this phenomenon for two different size
problems: 15 factors in 18 design points and 135 factors in 162
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Figure 1 Minimum design matrix imbalance, as a function of n,
for L1.
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design points. The first pair of box plots show the distribution of
ρmap based on 1000 randomly generated LH designs. Note that
these suffer from a lack of orthogonality: ρmap is substantially
higher than 0.05 for all cases. The second pair of box plots
indicates that modifying these randomly generated LH designs
to obtain the desired levels for the limited-level factors in S1,
and S9 has little impact on the respective ρmap values. The third
pair of box plots shows that ρmap drops dramatically when the
method of Florian (1992) is applied to the initial, randomly
generated, continuous-valued designs. This approach yields
designs that meet our near-orthogonality criterion of ρmap<
0.05 roughly 96% of the time when K= 135; the minimum
ρmap was 0.057 when K= 15. However, as the fourth pair of
box plots shows, this improvement in ρmap is not maintained
when the columns in these designs are, in turn, rounded for S1

and S9. The last two pairs of box plots show that rounding has
little impact on ρmap for maximin LH designs, but these do not
meet our near-orthogonality criteria. A nearly orthogonal
design for continuous factors can deteriorate substantially
when it is modified for discrete-valued factors with limited
numbers of levels. In fact, it appears that difficult-to-find,
nearly orthogonal designs are more likely to suffer when the
factor levels are rounded. Similar problems arise when starting
with other types of space-filling designs, such as uniform
designs or sphere-packing designs.

If rounding a particular design M causes problems, there are a
few steps the analyst can take to mitigate these problems. First,
the analyst could construct a new design based on n′> n design
points to determine whether the reduction in granularity of the
base design reduces the correlations induced by rounding. Even
so, achieving good orthogonality in the presence of rounding is
not guaranteed. Alternatively, the analyst could construct several
designs and stack them until suitable near-orthogonality is
achieved. However, this is an ad hoc method. If the original
NOLH (for continuous factors) has n design points, then each
stack has ≈n design points as well. In addition, while the non-
orthogonality problems associated with rounding may be over-
come by constructing substantially larger designs, there are times

when computing budget or time constraints make this brute force
approach prohibitive.

Even if the rounding problem is solved, the resulting designs
deal only with numerical factors. Although someone unfamiliar
with experimental design might be tempted to use the entries in a
column constructed for a discrete-valued factors as codes for
levels of a qualitative factor, this can lead to severe problems in
the analysis phase (see, eg, Vieira et al, 2011b, for details).

6. Crossing separately constructed designs

If suitable designs can be created for each type of factor
separately, then these smaller designs can be crossed to obtain
one that, overall, is close to orthogonal. For example, an OA
design M1 can be used for factors that are categorical or discrete
with a limited number of levels. A space-filling design M2 can be
used for continuous factors, and for discrete factors with many
levels of interest. However, if designs M1 and M2 have n1 and n2
design points, respectively, then the crossed design M1×M2 will
have n1× n2 design points. It is difficult to obtain efficient designs
when there are moderate or large numbers of factors in each
category.

7. Directly constructing nearly orthogonal-and-balanced
(NOAB) mixed designs

Our proposal takes a more direct approach for constructing
NOAB designs for mixed factors. This builds on the work of
Hernandez et al (2012), who proposed a MIP formulation in
order to construct nearly orthogonal designs for continuous
factors. The MIP was extended and enhanced in Vieira et al
(2011a) in order to construct orthogonal designs, or improve
existing OAs, for experiments involving quantitative factors with
limited numbers of levels of interest. However, it is not possible
to obtain orthogonal designs for every n for a specific set of
factors and levels. In subsequent studies involving the MIP of
Vieira et al (2011a), we noticed that we were often able to find
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Figure 2 Distributions of ρmap for various designs involving 15 factors in 18 design points (grey), and 135 factors in 162 design points
(black). Each box plot is based on 1000 replications.
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new columns with very low maximum absolute pairwise correla-
tion but were not able to find orthogonal ones. We also found that
the balance constraints were often tight. In other words, even
though the use of discrete (versus categorical) factors reduces the
minimum number of design points required, trying to simulta-
neously achieve perfect orthogonality and balance is hard.

We create NOAB designs one column at a time, starting with a
randomly generated column that satisfies the balance constraint.
We then use one of three potential MIP formulations to add the
next column, where the formulation depends on the type of factor
(discrete, continuous, or categorical). Continuous factors are
sampled at n distinct, equally spaced levels, so the columns for
the continuous factors constitute a lattice LH. Details appear in
the Appendix, but a brief overview of our approach follows.
Algorithmic descriptions of the initialization and NOAB con-
struction procedures are provided in Tables 1 and 2, respectively.

For notational convenience, let C(x) denote one of three
constraint sets for the MIP: C(x)= 1 for continuous factors, 2 for
discrete factors, and 3 for categorical factors, respectively. The
inputs to our procedure are provided in Table 1, along with an
initial balance feasibility test based on the discrete and categorical
factors. This ensures that n is sufficiently large that the minimum
analytically achievable imbalance does not exceed our criteria δ,
and avoids situations like some in Figure 1 where no design will

be able to satisfy the nearly balanced criterion. The requirement
that 0⩽ δ*< 1 in Table 1 ensures that every level of every factor
appears at least once—an important feature for trade-off analyses.

Once the initial balance feasibility is confirmed, we consider
orthogonality. The pairwise correlation between columns x and y
of M is:

ρxy ¼

Pn

r¼1
mrx - xð Þ mry - y

" #

sxsy
: (3)

If we fix all columns of M except column x, this means that the
mry, y, and sy are all constants for y≠x. Define

ρ*xy ¼ ρxysx ¼

Pn

r¼1
mrx - xð Þ mry - y

" #

sy
: (4)

Table 1 Inputs and balance feasibility test for NOAB construction

INPUTS:
Study characteristics:
K Number of factors of interest
C(xj) Type of the jth factor xj (1 for continuous, 2 for discrete,

3 for categorical)
‘xj Number of levels (⩽ n) associated with factor xj

Design characteristics:
n Number of design points (n⩾K +

P
‘xj - 2
" #

,
where the summation is taken over all xj satisfying
C(xj)≠1)

α* Maximum allowable ρmap (0⩽α*<1)
δ* Maximum allowable imbalance (0⩽ δ*< 1)

MIP and heuristic parameters:
tmin Minimum allowable time for MIP solution search
tmax Maximum allowable time for MIP solution search
h* Maximum number of iterations per column
b* Maximum number of macro-iterations

FEASIBILITY TEST
δ←∞
for j= 1, j<K do
if C(xj)∈ {2, 3} do

δxj  
‘xj
n

$ %
max n

‘xj

l m
- n

‘xj

$ %
; n

‘xj
- n

‘xj

j k$ %$ %

δ minðδ; δxjÞ
end

end
if δ> δ*
RETURN “No feasible solution exists with current balance

constraints. Increase n until the feasibility check is passed, or set
δ*= δ”
else RETURN “Initial balance feasibility check passed”

Table 2 NOAB construction method

b← 0
if {b< b*}
M0  ;; ~M0  ;
j← 0
if {j<K} do
solution j+ 1← “FALSE”
h← 1
if {h< h* AND solution j+ 1= “FALSE”} do
t← tmin
x← an n×1 vector, randomly generated from x 2 ~B n; !cj + 1

" #

if { t⩽ tmax AND solution j+1= “FALSE” } do
callMIP using ~Mj, δ*, t, x, ‘x, and C(x).
v*← MIP objective function value
x*← MIP modified column vector
sx*  standard deviation of x*
if v*⩽ α*sx* do
solution j+1← “TRUE”

end
else if {v*>α*sx* AND t< tmax} do
t← t+ tmin

end
else do
h← h+ 1
t← tmin

end
end

end
if {solution j+1= “TRUE”} do
if C(x)= 3 (ie, x is categorical) do
x*i← ith indicator vector associated with x* (i=1,…, ‘x−1)
~Mj + 1  ~Mj x*1 x*2 $ $ $ x*ð‘x - 1Þ

& '

end
else do

~Mj + 1  ~Mj x*
& '

end
M j+1← [Mj x*]
j← j+1

end
end
if {solution K= “TRUE”} RETURNMK
else b← b+1

end
RETURN “No solution found that meets near-orthogonality criteria”
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If x is balanced, the order in which its components are arranged
does not affect its standard deviation sx. This means that ρ*xy∝
ρxy, and that optimizing z* ¼ arg minmax

y≠ x
ρ*xy
!! !! is equivalent to

optimizing z ¼ arg minmax
y≠ x

ρxy
!! !!. Although mathematical pro-

gramming approaches cannot deal directly with this form of an

objective function, we can define a quantity v and constrain it to

satisfy v⩾maxy≠ x ρ*xy and v⩾ -maxy≠ x ρ*xy. With suitable con-

straints, one can then optimize v as a linear function of the entries
in x. If the resulting v= 0, then x is orthogonal to all other
columns in M. A MIP formulation is required because integer-
valued variables are used in the design construction process. This
approach was taken in Vieira et al (2011a).

For nearly balanced designs with discrete factors, Equation (4)
does not decouple so easily. Let ~B n; ‘ð Þ denote the set of nearly
balanced vectors of length n with levels 1, …, ‘. Then as long as
the maximum imbalance δ is small, for any xi; xj 2 ~B n; ‘ð Þ we
have sxi% sxj . Thus, ρ*xy ~/ ρxy, where ~/ means approximately
proportional. As in Hernandez et al (2012) and Vieira et al
(2011a), with suitable constraints we can optimize v as a linear
function of the entries in x. We no longer require the solutions to
achieve v= 0, but merely that M retains its near-orthogonality
property after the addition of column x. A similar approach is
used for categorical factors, although it requires us to move to an
indicator factor characterization and modify some constraints.

~B n; ‘ð Þ can be very large, which makes a formulation even
more advantageous than random search. Our MIP starts with a
feasible vector to work from at each step. These can easily be
generated: include n=‘b c of each level, and then add the
remaining values by sampling without replacement from a set
that contains n=‘d e- n=‘b cð Þ instances of each level.

Even if the balance feasibility check of Table 1 passes for a
specified combination of δ*, α*, and n, this does not imply that
the NOAB construction method will necessarily find a solution.
Our experience shows that it is best to build the design beginning
with categorical or discrete factors with low numbers of levels,
and then add the continuous factors.

8. Large-study designs and performance

Our motivation for creating these nearly balanced, nearly ortho-
gonal mixed designs arose from needs for large-scale simulation
studies in a variety of application areas related to defense and
national security. Rather than provide details about the factors,
settings, results, and interpretation for any single study, we now
provide brief descriptions of the design characteristics for some
recent simulation experiments.

8.1. A flexible, customizable design for numerical factors

To allow analysts to quickly construct a customized design for a
variety of settings without having to use the iterative MIP
solution method, we constructed a ‘general’ big design with 512
design points. It can handle up to 100 continuous-valued factors

and 10 blocks of 20 k-level discrete-valued factors, k=2,3,…,11,
for a total of 300 quantitative factors, with δ=0.1133 and ρmap=
0.0356. This simplifies the implementation of efficient, large-scale
simulation experiments. An analyst with a problem involving up
to 100 continuous factors and up to 20 k-level discrete factors,
k∈ {2,3,…,11}, can quickly construct a design without having to
implement our MIP procedure, simply by selecting the columns
corresponding to his or her problem levels. For example, a design
for 12 continuous factors, 3 two-level discrete factors and 7 nine-
level discrete factors can be constructed from the first 12
continuous columns, the first 3 two-level columns, and the first 7
nine-level columns of our NOAB(300, 512) design, resulting in
ρmap=0.0252 and δ=0.1035. Two-level qualitative factors can
also be accommodated with this design.

There are few competitors for the NOAB(300, 512) design. A
two-level fractional factorial can be constructed, but this has
extremely poor balance (δ= 255.0) because it samples only at the
low and high levels of the factor range; central composite and
D-optimal designs have similar problems. As Figure 2 demon-
strates, constructing space-filling designs and then rounding them
does not work as well as one might expect. We constructed six
different space-filling designs: a maximin LH design, a sphere
packing design (Johnson et al, 1990), a maximum entropy design
(Shewry and Wynn, 1987), a minimum potential design, as well
as a Sobol and scrambled Sobol sequence (Sobol, 1967). Round-
ing these to obtain designs comparable to our NOAB (300 512),
we find that they have a wide range of performance in terms of
balance (δ ranging from 0.033 for maximin LH to 248.5 for
sphere-packing), but none came close to the NOAB in terms of
correlation (ρmap ranging from 0.168 for sphere-packing to 0.965
for the Sobol sequence design). We did not construct a Uniform
design (Fang and Wang, 1994) because the estimated time
required was over 25 234 CPU hours.

Our NOAB(300, 512) has already been used for several
studies. As one example, it was used extensively over a 1-month
period as part of the model verification stage to determine
whether new features implemented in a Cultural Geography
(CG) simulation were working properly. The CG model was
developed by the US Army to explore how potential responses of
different demographic segments of population in the Khandahar
province of Afghanistan to various interventions and activities
conducted by the International Security Assistance Force or
insurgent groups. In all, over 30 000 runs were conducted in a 4-
week period. High-performance computing assets were used
extensively, but even so it could take up to 48 h to run 5
replications of our NOAB design. We conducted a series of
experiments involving between 15 and 45 factors of mixed types
and levels. The ability to adapt the design quickly in order to add
additional factors proved to be invaluable. The space-filling
nature of this design was also extremely important, because it
tested the software at a wide variety of input setting combina-
tions. This uncovered model bugs or anomalous behaviour that
might have not been evident with more limited testing, but
needed to be addressed before moving forward. Although our
primary purpose in this initial stage was to assist in model
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verification during this rapid model development cycle, the
ultimate goal was to conduct large-scale experiments involving
the CG model to examine trade-offs among various types of
interventions. For example, understanding the costs and benefits
of various combinations of infrastructure development projects
(such as schools, medical facilities, irrigation etc) may improve
the Army’s ability to make effective use of limited budgets.

8.2. Customized designs for numerical and qualitative
factors

In addition to the general-purpose NOAB(300, 512) design,
we have constructed customized designs for a number of
different applications. As a rule of thumb, we have found
that when constructing designs involving K quantitative
factors, designs of size n with 3K⩽ n⩽ 10K provide a good
mix of efficiency, statistical power, and analysis flexi-
bility. Similarly, for designs where L of the K factors are
qualitative, we generally seek designs of size n with

3 K - L +
P
x2L

ð‘x - 1Þ
( )

⩽ n⩽ 10 K - L +
P
x2L

ð‘x - 1Þ
( )

.

One recent example is a design used in a case study under
development by one of NATOModeling and Simulation Group’s
technical activities. This involves the protection of a small
combat outpost against an insurgent attack. There are 21 factors
related to equipment, soldier capabilities, and fire support that
could be requested in the event of an attack. Nine of these are
discrete with various low numbers of levels, and seven factors are
categorical with three or more levels. The NOAB design had 168
design points, ρmap= 0.0138, δ= 0.142, and was used to explore
trade-offs related to the formulation and effectiveness of various
force protection strategies. This case study highlights the benefits
of using large-scale designed experiments to gain operational
insights from simulation models, and is intended to serve as a
proof-of-concept demonstration about these benefits to the
broader NATO community.

We have also constructed customized designs for a variety of
other trade-off analyses, including applications to air reconnais-
sance missions, unmanned aerial vehicle capabilities, logistics life
cycle management, and other topics in defense and national
security. We refer the reader to Sanchez et al (2012) for a more
detailed illustration of the types of analyses that can be conducted.

9. Small-study performance comparisons

NOAB designs were initially intended for usage in large-scale
simulation experiments. They are well suited for trade-off
analyses involving large numbers of factors and levels of interest.
We have shown that alternative designs for trade-off analyses are
not readily available, and described a few of many studies that
have already benefitted from the use of NOAB designs. However,
other designs are available if we are studying simpler systems (or
restrict our attention to a limited number of factors a priori). We
now show that even in these more limited scenarios, this

approach can produce designs that outperform existing nearly-
orthogonal alternatives for discrete factors.

In addition to ρmap, some criteria often used to evaluate designs
for small-scale experiments are the number of non-orthogonal
pairs, along with the D-optimality and D-efficiency, typically
computed using a main-effects response model assumption. In
our experience, the complexity of responses for trade-off studies
means this assumption is inappropriate. Nonetheless, calculating
the D-optimality and D-efficiency for our designs does provide a
bound on how well (or poorly) our designs would perform
relative to the designs that yield the most precise effect estimates
in these idealized situations.

Wang and Wu (1992) compared their NOAs with those of
Taguchi (1959) and Tukey (1959). Later, Nguyen and Liu (2008)
did the same with the proposals of Wang and Wu (1992), Ma
et al (2000), and Xu (2002), producing arrays that outperform the
previous ones.

We compare our NOAB designs with those found by Nguyen
and Liu (2008) in Table 3. In their work, Nguyen and Liu (2008)
created designs for categorical data, so they calculatedD-optimality
as |R|1/k, where R is the correlation matrix of the K columns of the
matrix of orthogonal polynomial contrasts and |R| is its determi-
nant. As we aim to construct designs for numerical data, we also
calculate the D-optimality using the original design matrices. We
compute the number of non-orthogonal pairs and ρmap for both
the categorical and numerical approaches. We also present the
D-efficiency≡(1/n)|M′M|1/k for the numerical approaches.

The best results in each of the criteria for numerical designs are
highlighted in bold in Table 3. In 16 of the 21 cases, our proposal
produces as good or better results in all five criteria (number of
non-orthogonal pairs, δ, ρmap, D-optimality, and D-Efficiency)
than the benchmark. Of the five exceptions, the two smallest
designs are outperformed only in terms of imbalance. The other
exceptions are the L'18(9⋅28), L'24(3⋅221), and L'24(6⋅218), where our
approach still produces the best results in at least three of the five
criteria. For L'18(9⋅28), our design is slightly imbalanced and
underperforms the best design by very small amount (0.003) in
D-optimality. In the last two exceptions, we suggest that decreas-
ing ρmap from 0.408 to 0.102 (or 0.333 to 0.048) and increasing
the D-Efficiency by 0.024 or 0.027 is well worth the increase in
the number of non-orthogonal pairs.

Our NOAB designs in Table 3 do not satisfy the definition of
an OA, so we advocate their use only for discrete quantitative
factors, not for qualitative factors. However, for a fixed number
of design points, analysts can study a greater number of
quantitative factors with our designs than by using existing OAs.
Conversely, for a fixed number of factors, our designs often
require far fewer design points.

10. Balance, orthogonality, and space-filling comparisons
for small studies

Lu et al (2013) discuss recent work on methods for directly
constructing designs that perform well for multiple criteria, and
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propose methods for identifying designs that lie on the Pareto
frontier. They also provide examples for some small-scale studies
for applications where the total number of observations is
extremely limited, and examine the robustness of the design
choices to the weights assigned to different criteria. While this
approach of generating designs does not lend itself to large-scale
simulation studies, Pareto frontiers are useful ways of comparing
designs.

We follow the study by MacCalman et al (2013). In that
study, they propose a second-order NOLH and compare its
space-filling performance and orthogonality with that of the
following four traditional designs: the Faced Central Com-
posite Design (Myers et al, 2009), BBH design (Box and
Behnken, 1960), D-Optimal, and I-Optimal designs, as well
as several space-filling designs. They used the SAS Institute’s
JMP software (see http://www.jmp.com) to create each of the

Table 3 Comparison of small nearly orthogonal designs using five criteria (best instances in bold)

Nguyen and Liu (2008) Proposal NOAB Designs

Design Categorical* Numerical Numerical

#no ρmap Dopt #no
N δ ρNmap DN

opt DN
eff #no

N δ ρNmap DN
opt DN

eff

L′6(3·23) 3 0.333 0.901 3 0 0.333 0.877 0.830 1 0.333 0.333 0.971 0.880
L′10(5·25) 10 0.200 0.967 10 0 0.200 0.951 0.867 6 0.2 0.166 0.976 0.867
L′12(4·34) 6 0.250 0.946 6 0 0.250 0.973 0.676 0 0 0.000 1.000 0.692
L′12(23·34) 6 0.250 0.946 6 0 0.250 0.980 0.802 0 0 0.000 1.000 0.816
L′12(6·25) 4 0.333 0.959 4 0 0.333 0.933 0.847 1 0 0.098 0.998 0.896
L′12(6·26) 6 0.333 0.947 6 0 0.333 0.918 0.843 2 0 0.097 0.997 0.907
L′12(3·29) 8 0.333 0.933 8 0 0.333 0.927 0.900 4 0 0.204 0.982 0.948
L′12(2·35) 10 0.250 0.877 10 0 0.250 0.930 0.704 0 0 0.000 1.000 0.749
L′12(32·27) 8 0.333 0.888 6 0 0.333 0.871 0.815 7 0 0.204 0.965 0.893
L′12(33·25) 9 0.333 0.925 6 0 0.333 0.926 0.816 3 0 0.125 0.994 0.869
L′15(5·35) 10 0.200 0.882 10 0 0.200 0.959 0.654 0 0 0.000 1.000 0.678
L′18(2·38) 3 0.289 0.967 2 0 0.250 0.985 0.713 0 0 0.000 1.000 0.723
L′18(23·37) 3 0.333 0.970 3 0 0.333 0.949 0.737 3 0 0.111 0.996 0.770
L′18(9·28) 28 0.111 0.985 28 0 0.111 0.973 0.894 21 0.111 0.100 0.982 0.894
L′20(5·215) 18 0.200 0.956 18 0 0.200 0.947 0.910 7 0 0.070 0.997 0.958
L′24(8·38) 28 0.125 0.897 28 0 0.125 0.973 0.648 0 0 0.000 1.000 0.664
L′24(3·221) 8 0.333 0.968 6 0 0.408 0.966 0.951 15 0.125 0.102 0.992 0.975
L′24(6·215) 1 0.333 0.994 1 0 0.333 0.993 0.950 0 0 0.000 1.000 0.956
L′24(6·218) 6 0.333 0.974 6 0 0.333 0.969 0.934 11 0 0.048 0.999 0.961
L′24(2·311) 55 0.177 0.900 50 0 0.204 0.950 0.677 6 0 0.062 0.997 0.707
L′24(3·47) 21 0.236 0.872 19 0 0.200 0.972 0.590 0 0 0.000 1.000 0.605

*Source: Nguyen and Liu (2008, p. 5274). #no: categorical number of non-orthogonal pairs; ρmap: categorical maximum absolute pairwise correlation; Dopt:
categorical D-optimality; #no

N : numerical number of non-orthogonal pairs; δ: maximum imbalance; ρNmap: numerical maximum absolute pairwise correlation;
DN

opt: numerical D-optimality; DN
eff: numerical D-efficiency.
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alternative designs for their comparison by instantiating the
algorithm 500 times for the Sphere Pack, Uniform, and LH
designs, and 30 times for the D-Optimal, I-Optimal, and Max
Entropy designs and selecting the one with the lowest
maximum pairwise correlation among any two columns in a
second-order analysis matrix. They used as space-filling
measure the modified L2 discrepancy (ML2) (given by 5),
which assesses how well a design covers the entire design
region; the smaller the value, the better a design’s space-
filling property (Hickernell, 1998).

ML2 ¼
4
3

( )k

-
21 - k

n

Xn

d¼1

Yk

i¼1
3 - x2di
" #

+
1
n2

Xn

d¼1

Xn

j¼1

Yk

i¼1
2 - max xdi; xji

" #& '
ð5Þ

MacCalman et al (2013) consider only continuous-valued
factors, but we assume that our experiment has four discrete
factors with 3, 4, 5, and 7 levels, respectively, and apply
appropriate rounding. We also examine the designs (from JMP)
chosen as best out of 500 starts for each of the 6 space-filling
design approaches. This gives us 19 alternatives to our NOAB
design, each having 25 design points and 4 numerical factors.
These are compared with our NOAB design in Figure 3 in terms
of ρmap, δ, and ML2. As the reader can see, the NOAB outper-
forms all the others in at least one criteria. It is on the Pareto
frontier, and the nearest to the lower left corner.

11. Conclusions

In this paper, we provided a mixed-integer programming for-
mulation that allows us to construct efficient, nearly orthogonal,
nearly balanced designs for mixed factor problems. We call these
NOAB designs. Our focus is on efficient NOABs that will be
useful for practical applications involving trade-off analyses—
that is, designs suitable for large numbers of factors where the
factors may not all have the same number of levels.

For a specified number of design points n, our approach
generates a design that is nearly orthogonal and also nearly
balanced for any mix of factor types (categorical, numerical
discrete, and numerical continuous) and/or number of factor
levels. This can be used to create designs with low maximum
absolute pairwise correlation, along with low maximum imbal-
ance, for large-scale simulation problems involving any type of
factors. The designs we construct require orders of magnitude
fewer design points than many other approaches.

These new designs greatly expand the portfolio of designs
available for analysts conducting large-scale simulation experi-
ments. Consequently, there are much greater opportunities for
gaining insights about the behaviour of complex simulation
models—and the real-world situations they represent—in a
timely manner. This may be particularly valuable for those who
use simulation experiments as a quantitative basis for trade-off
analyses. An advantage of these designs is that they are amenable
to analysis using a variety of methods, including polynomial

model-fitting, partition tree analysis, graphical methods, and
more. The ability to handle large numbers of factors of different
types is beneficial for robust analysis as well.

Our large NOAB is available online, providing off-the-shelf
flexibility for analysts when designing a large-scale experiment.
We hope that this and other designs will become more readily
used, and so improve the insights that simulation studies can
provide to decision makers.
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Appendix

MIP formulation and constraint sets C(x)

In this Appendix, we provide the MIP formulation and constraint
sets. We assume the inputs have already been chosen so the initial
balance feasibility test is passed, as in Table 1. The MIP is called
with the inputs ~Mj, δ*, x, ‘x, and C(x). Note that ~Mj ¼ Mj if no
categorical factors have previously been added to the design.
Otherwise, ~Mj will include appropriate indicator variables for
these factors.

Some additional notation is needed. Let I(i) denote the set of
integers {1,2, …, i}. Let xr denote the value of the rth row of the
new column x. ‘x is the number of levels of column x, and π ¼
fπ1; π2; ¼ ; π‘xg is the set of the ‘x levels that the factor x can
assume. The binary decision variables θrl have value 1 if xr= πl,
and 0 otherwise.

The formulation for C(x)= 1 is adapted from Vieira et al
(2011a) (see also Vieira, 2011). We do not allow imbalance for
continuous factors, because that would mean one or more levels
were never investigated. The formulations for C(x)= 2 and
C(x)= 3 are adapted from Vieira et al (2011b), but we modify
the imbalance constraints (v) and (vi) to accommodate a slightly
different definition of imbalance.

FORMULATION for C(x)= 1: Adding a single
continuous factor

Minimize v

Subject to

ið Þ v⩾ 1
sc

Pn

r¼1
xr - 1

n

Pn

k¼1
xk

( )
mrc - cð Þ c 2 I jð Þ

iið Þ v⩾ - 1
sc

Pn

r¼1
xr - 1

n

Pn

k¼1
xk

( )
mrc - cð Þ c 2 I jð Þ

iiið Þ
Pn

j¼1
θrj ¼ 1 r 2 I nð Þ

ivð Þ xr ¼
Pn

‘¼1
π‘θr‘ r 2 I nð Þ

vð Þ θr‘ 2 0; 1f g r 2 I nð Þ; ‘ 2 I nð Þ

Constraint sets (i) and (ii), together with the minimization of v,
ensure that v= |ρ*xy|. Constraint set (iii) ensures that only one
level is assigned to each row of x. Constraint set (iv) converts the
binary decision variables to their corresponding integer-valued
levels.
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FORMULATION for C(x)= 2: adding a single discrete
factor

Minimize v

Subject to

ið Þ v⩾ 1
sc

Pn

r¼1
xr - 1

n

Pn

k¼1
xk

( )
mrc - cð Þ c 2 I jð Þ

iið Þ v⩾ - 1
sc

Pn

r¼1
xr - 1

n

Pn

k¼1
xk

( )
mrc - cð Þ c 2 I jð Þ

iiið Þ
P‘x

‘¼1
θr‘ ¼ 1 r 2 I nð Þ

ivð Þ xr ¼
P‘x

‘¼1
π‘θr‘ r 2 I nð Þ

vð Þ

við Þ

viið Þ

Pn

r¼1
θr‘⩽ ð1 + δÞ n

‘x

j k

Pn

r¼1
θr‘⩾ ð1 - δÞ n

‘x

l m

θr‘ 2 0; 1f g

‘ 2 I ‘xð Þ

‘ 2 I ‘xð Þ

r 2 I nð Þ; ‘ 2 I ‘xð Þ

Constraint sets (i) and (ii), together with the minimization of v,
ensure that v= |ρ*xy|. Constraint set (iii) ensures that only one of
the ‘x levels is assigned to each row of x. Constraint set (iv)
translates the binary decision variables to their corresponding
integer-valued levels. Constraint sets (v) and (vi) enforce the
balance property.

FORMULATION for C(x)= 3: Adding a single
categorical factor

Minimize v

Subject to

ið Þ v⩾ 1
sc

Pn

r¼1
xir -

1
n

Pn

k¼1
xik

( )
mrc - cð Þ c 2 I jð Þ; i ¼ Ið‘x - 1Þ

iið Þ v⩾ - 1
sc

Pn

r¼1
xir -

1
n

Pn

k¼1
xik

( )
mrc - cð Þ c 2 I jð Þ; i ¼ Ið‘x - 1Þ

iiið Þ
P3

‘¼1
θir‘ ¼ 1 r 2 I nð Þ; i ¼ Ið‘x - 1Þ

ivð Þ xir ¼
P3

‘¼1
ð‘ - 2Þθir‘; r 2 I nð Þ; i ¼ Ið‘x - 1Þ

vð Þ
Pn

r¼1
θir‘⩽ ð1 + δÞ n

‘x

j k
‘ ¼ 1; 3; i 2 Ið‘x - 1Þ

við Þ
Pn

r¼1
θir‘⩾ ð1 - δÞ n

‘x

l m
‘ ¼ 1; 3; i 2 Ið‘x - 1Þ

viið Þ
P‘x - 1

i¼1
θir3⩽1 r 2 I nð Þ

viiið Þ
P‘x - 1

i¼1
θir2⩽‘x - 2 r 2 I nð Þ

ixð Þ θir1 - θ
1
r1 ¼ 0 r 2 I nð Þ; i ¼ 2; 3; ¼ ; ‘x - 1

xð Þ θir‘ 2 0; 1f g r 2 I nð Þ; ‘ 2 I 3ð Þ; i 2 Ið‘x - 1Þ

Constraint sets (i) and (ii), together with the minimization of v,
ensure that v= |ρ*xy|. Constraint set (iii) ensures that only one of
the ‘x levels is assigned to each row of x. Constraint set (iv)
translates the binary decision variables to their corresponding
integer-valued levels. The imbalance limits are guaranteed by
constraint sets (v) and (vi); note that these are enforced only for
non-zero values of the indicator variables. Constraints (vii)–(ix)
are needed to construct the indicator variables properly. Specifi-
cally, (vii) ensures that no two indicator variables can have 1’s
assigned to the same row if they correspond to the same
categorical factor, that is, that multiple assignments do not occur
for a particular design point (row) of x. Constraints (viii) ensure
that at least one level is assigned to every row of x. Finally,
constraint (ix) ensures that all indicator variables associated with
x have a ‘− 1’ value assigned to the same row.
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