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Analysts using simulation models often must assess a large number of alternatives in order to determine
which are most effective. If effectiveness corresponds to the likelihood of yielding the best outcome, this
becomes a multinomial selection problem. Unfortunately, existing procedures were developed primarily for
evaluating small sets of alternatives, so parameters required to implement them may not be readily available
or the sampling costs may be prohibitive when a large number of alternatives are present. We propose
a truncated, sequential multinomial subset selection procedure that restricts the maximum subset size.
Numerical comparisons show that our procedure can be much more efficient than the leading unrestricted
procedure. Our procedure requires only one calculated parameter rather than four. We provide extensive
tables for cases involving large numbers of alternatives.
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1. INTRODUCTION
Decision making under uncertainty is prevalent in our lives. A decision-making process
is a procedure—either formal or informal—that examines several alternatives and
makes assessments about their merits. Examples abound. Commuters have the choice
of several routes to take to their place of work and may wish to identify those that are
consistently the fastest. Pharmaceutical companies may have several potential new
treatment programs, from which they will choose the most promising one(s) for further
research and development. Military planners usually have more than one strategy or
plan that can be used in a specific combat situation and may need to assess which one
has the greatest probability of achieving the desired results.

If the consequences of making a poor decision are minimal, informal decision-making
processes are commonly used. If the consequences are moderate to severe, it is best
to support the decision with quantitative assessments of the alternatives rather than
rely on anecdotal evidence or expert opinion. The ANalysis Of VAriance (ANOVA)

Authors’ addresses: H. Vieira Jr., K. H. Kienitz, and M. C. N. Belderrain, Instituto Tecnologico de Aeronáutica,
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10:2 H. Vieira Jr. et al.

approach is often used for studying multiple systems, but the inferences resulting
from the ANOVA approach are limited and can be extremely unsatisfying. In the
ANOVA approach, the null hypothesis is that all alternatives are identical. Rejecting
the null hypothesis only allows us to state that they are different—we cannot formally
state which alternatives are better or worse. Conversely, failing to reject the null
hypothesis may simply indicate an insufficient sample size (i.e., lack of statistical
power). In contrast, statistical Ranking and Selection (R&S) procedures attempt to
address questions of interest to decision makers directly rather than indirectly.

R&S procedures can be classified according to one of three different formulations,
each of which provides some type of guarantee on the minimum probability of correct
selection (P(CS)).

—Indifference-zone formulation: These procedures answer questions such as “which
alternative is best?” by selecting a single alternative from the many choices. They
require the decision maker to prespecify a minimum distance (difference or ratio) be-
tween parameters of the best and second-best alternative that is of practical interest
to detect. The guarantee on the P(CS) is achieved whenever the true distance meets
or exceeds this value. Put in other words, this value defines the region in which the
P(CS) guarantees must be met.

—Subset selection formulation: These procedures answer questions such as “which
alternatives are good?” by selecting a nonempty subset, of random size, that contains
the best alternative with some specified probability of correct selection.

—Multiple comparison formulation: These procedures answer questions such as “how
good are the alternatives?” by using simultaneous confidence intervals to estimate
the magnitudes of the differences among the alternatives’ means, with high proba-
bility of correctly doing so. In some cases, Multiple Comparison with the Best (MCB)
methods can augment indifference-zone or subset selection approaches (e.g., Nelson
and Matejcik [1995]; Hsu [1996]).

Most of the R&S procedures define the best alternative as that having the largest
expected response µ. In this article, we define the best alternative more broadly as that
which has the largest probability of yielding the desired response. Here, the desired
response could be the largest value, the smallest value, the smallest deviation from a
target value, the smallest variance, and so forth. Procedures that adopt this definition
of best are known as multinomial selection procedures and result in selecting the system
most likely to be the best [Kim and Nelson 2006].

A subset selection procedure outputs a subset that has a random size. If the alterna-
tives are truly very close to each other—or if, simply by chance, the sampling makes the
choice of the best alternative more difficult—the size of the subset can be quite close
to the original number of alternatives. In this case, restricting the size of the selected
subset so that it will not exceed some prespecified value is beneficial. This is called a
restricted subset selection problem [Gupta and Panchapakesan 1979].

A few multinomial selection procedures are available in the literature:

(1) Indifference-zone procedures: These procedures were born with the single-stage
procedure MBEM [Bechhofer et al. 1959]. Bechhofer et al. [1968] proposed an open-
ended, sequential sampling procedure (MBKS) for selecting the single multinomial
event that has the largest probability. The main difference between single-stage
and open-ended procedures is that the former will always sample a fixed number of
observations, whereas the latter will sample observations until a rule is triggered.
Bechhofer and Goldsman [1986] later added two new stopping rules to procedure
MBKS; their procedure MBG limits the total sampling required and reduces the
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observed overprotection on the probability of correct selection when compared to
MBKS. The MAVC (All Vector Comparisons) procedure was proposed by Miller et al.
[1998] as an improvement to the MBEM procedure when there are measured val-
ues for each alternative on each trial (i.e., the measurements are quantitative),
resulting in 34% to 44% savings in their experimental settings.

(2) Multinomial subset selection procedures: Gupta and Nagel [1967] were the first to
address the multinomial subset selection problem with the procedure MGN. Later,
Chen and Hsu [1991] added several stopping and truncation rules to MGN, with
the goal of reducing the expected size of the selected subset.

Parameters needed for using these procedures must often be determined numerically
rather than analytically. The papers mentioned previously (and others in the literature)
tend to present these parameters for situations where only a small set of alternatives
(typically, 10 or fewer) exist. Our work is motivated by the need to run restricted
multinomial subset selection procedures in a simulation environment, where there can
be a large number of alternatives (say, 20 to 100).

In this article, we adapt the indifference-zone procedure MBG of Bechhofer and
Goldsman [1986] to the restricted multinomial subset selection problem. Chen [1988]
suggested that in future research, the sampling and stopping rules of the MBKS
indifference-zone procedure could also be utilized in a subset selection approach. How-
ever, to the best of our knowledge, this article contains the first such adaptation. It is
clear that our proposal is a combination of the strong features of indifference-zone and
subset-selection procedures—that is, it is a hybrid procedure.

In Section 2, we provide mathematical definitions of the selection goal, along with
other notation. Section 3 contains detailed descriptions of the original procedure of
Bechhofer and Goldsman [1986] on which our proposal is based, as well as the procedure
of Chen and Hsu [1991]. We describe our procedure in Section 4 and present numerical
results in Section 5 for selection experiments involving small and large numbers of
alternatives. Our conclusions appear in Section 6.

2. THE SELECTION NOTATION AND GOAL
Consider a selection problem involving ksystems π1,π2, . . . ,πk. These can be considered
cells in a multinomial distribution, and throughout this article, we use the terms
system and cell interchangeably. Let pi (i = 1, . . . , k) denote the unknown probability
associated with observing cell πi (0 ≤ pi ≤ 1), where the pi satisfy

∑k
i=1 pi = 1.

We denote the ordered values of the unknown cell probabilities by p[1], p[2], . . . , p[k],
where p[1] ≤ p[2] ≤ · · · ≤ p[k], and the corresponding cells by π[1],π[2], . . . ,π[k]. The
values of pi and p[ j] (i, j = 1, . . . , k), and also the pairing of πi with π[ j], are assumed
to be completely unknown. If a single observation is taken from this multinomial
distribution, and the outcome falls in cell πi, we define this a success for πi. Let yim
denote the total number of successes for πi after m observations are taken. Clearly,∑k

i=1 yim = m. Let y[1]m, y[2]m, . . . , y[k]m be the ordered values of yim, and let π̂[i] be the
cell associated with y[i]m.

Let P∗ denote the minimum desired P(CS) (1/k < P∗ < 1), let t denote the maximum
allowable size of the selected subset (1 ≤ t < k), and let θ∗ represent the smallest
ratio between the largest and second-largest probabilities that the experimenter is
interested in detecting. The region [p[k]/θ

∗, p[k]] is called the indifference zone, and all
systems with probabilities in this region are considered to be equally good for practical
purposes. P∗, t, and θ∗ are all specified by the experimenter before sampling begins.

The goal of the experimenter is the selection of a subset with bounded size t < k that
contains π[k] whenever the ratio between the largest and second largest probabilities
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is greater than or equal to a chosen value θ∗. If this goal is achieved, it is said that
a correct selection (CS) has been made. In other words, if p[k] ≥ θ∗ p[k−1], then the
experimenter would like to select a subset that contains π[k]; if p[k] < θ∗ p[k−i], for some
i, 1 ≤ i ≤ k − 1, then the experimenter is indifferent between a subset that contains
π[k] and another that contains π[k− j] for some 0 < j ≤ i.

If t = 1, this simplifies to the standard indifference-zone formulation, and a correct
selection is said to be made only if π[k] is selected. If p[k] ≥ θ∗ p[k−1], then the experi-
menter would like to select π[k]; if p[k] < θ∗ p[k−i], then the experimenter is indifferent
between alternatives π[k] and π[k−i].

For either case (t > 1 or t = 1), the selection procedure should achieve or exceed a
specified minimum probability of correct selection. Put mathematically, the selection
procedure should provide the following probability guarantee:

P(CS) ≥ P∗ whenever p[k] ≥ θ∗ p[k−1]. (1)

Finally, let n be the maximum number of observations allowed to be taken, N be
the number of observations used by the algorithm, and S be the number of systems
in the output subset. Let E[N] and E[S] denote, respectively, the expected value of N
and S.

3. EXISTING PROCEDURES
We now describe, in detail, the two procedures that are the current best in the literature
for multinomial selection. The first, MBG, uses an indifference-zone approach to select a
single multinomial cell. The second, MCH, is a multinomial subset selection procedure.

3.1. The MBG Procedure
The MBG algorithm [Bechhofer and Goldsman 1986] added two new stopping rules,
called truncation and curtailment, to the MBKS algorithm [Bechhofer et al. 1968], which
is a sequential procedure for selecting the single multinomial event that has the largest
probability among the alternatives under comparison. An algorithmic description of the
procedure follows.

Procedure MMBG
Inputs from the decision maker:

P∗: The desired minimum probability of correct selection.
k: The number of cells in the multinomial distribution.

θ∗: The desired indifference-zone value.
Other inputs:

n: The maximum sample size (a function of P∗, k, and θ∗).
Sampling rule: Draw observations from the multinomial distribution
one at a time. Continue sampling until one of the following three stop-
ping criteria is met.
Stopping rule 1: Calculate

zm ←
k−1∑

i=1

(
1/θ∗)(y[k]m−y[i]m)

.

If zm ≤ (1 − P∗)/P∗, then stop.
Stopping rule 2: If y[k]m − y[k−1]m ≥ n − m, then stop.
Stopping rule 3: If m = n, then stop.
Return π̂[k] as the best. In case of ties, randomly select one of the πi ’s
associated with y[k]m as the best.
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Here, stopping rule 1 is the original stopping rule used in the open-ended procedure
MBKS. Stopping rules 2 and 3 are, respectively, the curtailment and truncation stopping
rules. Rule 3 was added because it was observed that stopping rule 1 overprotects the
probability of correct selection. With this truncation rule, it is possible to decrease the
expected number of observations taken while achieving (1). The curtailment stopping
rule 2 was added because if it holds, then the current π̂[k−1] will, at best, be tied with the
current π̂[k] after an additional n−mobservations are taken. This is true because using
rule 2 along with rule 3 allows the P(CS) to remain unchanged from using just rule 3.
Note that rule 3 is redundant since rule 2 will apply when m = n, but we have retained
it for consistency with the original algorithm in Bechhofer and Goldsman [1986].

The Least Favorable Configuration (LFC) is the configuration of the pi, 1 ≤ i ≤ k,
that minimizes the probability of correct selection. The slippage configuration, typically
written as p[i] ≡ p for i = 1, . . . , k − 1 and p[k] = θ∗ p, was stated (but not proven) to
be the LFC for procedure MBG [Bechhofer and Goldsman 1986]. Note that because∑k

i=1 pi = 1, the slippage configuration can be completely defined as

p[i] =






1
k − 1 + θ∗ if i = 1, . . . , k − 1; and

θ∗

k − 1 + θ∗ if i = k.

(2)

3.2. The MCH Procedure
Chen and Hsu [1991] proposed an algorithm we call MCH for multinomial subset
selection, which combines stopping rules proposed by Bechhofer and Chen [1991],
Panchapakesan [1971], and Ramey and Alam [1979] with a truncation rule. Note that
MCH does not allow the experimenter to restrict the maximum subset size.

Procedure MMCH
Inputs from the decision maker:

P∗: The desired minimum probability of correct selection.
k: The number of cells in the multinomial distribution.

Other inputs:
n: The maximum sample size (tabled choices depend on P∗ and k).
D, M, r: Other parameters for the procedure (functions of P∗, k, and
n).

Sampling rule: Draw observations from the multinomial distribution
one at a time. Continue sampling until one of the following four stopping
criteria is met.

Stopping rule 1: Stop if y[k]m− y[k−1]m ≥ n−m+ D. The selected subset
contains the single cell π̂[k].
Stopping rule 2: Stop if y[k]m = M. The selected subset contains the
single cell π̂[k].
Stopping rule 3: Stop if y[k]m− y[k−1]m = r. The selected subset contains
the single cell π̂[k].
Stopping rule 4: Stop if m = n. The selected subset contains all πi that
satisfy yin ≥ y[k]n − D.

The LFC for MCH is given by the form

(p[1], p[2], . . . , p[k]) = (0, 0, . . . , 0, u, p, p, . . . , p)
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for some 0 ≤ u ≤ p < 1. The determination of u is made numerically; usually it is equal
to either 0 or 1/k, but for some procedure parameters, it falls strictly between these
values.

Chen and Hsu [1991] wrote a FORTRAN program for finding the procedure param-
eters for k up to 50 that, unfortunately, is no longer available. In their paper, they
provide tables only for k ≤ 10.

4. A NEW RESTRICTED SUBSET SELECTION PROCEDURE
Our procedure adapts the open-ended sequential stopping rule of the MBKS procedure
(also used in MBG) so that it can be used for subset selection, not just for selecting the
single best multinomial cell. Like MBG and MCH, our procedure is truncated, which
is beneficial to those running experiments who may be faced with restrictions on the
maximum sample size due to real-world constraints on time or budget. UnlikeMBG, our
procedureMNEW allows the decision maker to select more than a single alternative; this
can substantially reduce the sampling requirements and may be particularly helpful
if several alternatives have similarly good performance and secondary criteria are of
interest. Unlike MCH, the MNEW procedure allows the decision maker to restrict the
bounded size of the selected subset. A description follows.

Procedure MMNEW
Inputs from the decision maker:

P∗: The desired minimum probability of correct selection.
k: The number of cells in the multinomial distribution.
θ∗: The desired indifference-zone value.
t: The maximum subset size to be selected.

Other inputs:
n: The maximum sample size (a function of P∗, k, θ∗, and t).

Sampling rule: Draw observations from the multinomial distribution
one at a time. Continue sampling until one of two stopping criteria is
met.

Stopping rule 1 (sequential rule): Define

Ps(CS) ← 1 −
s∏

c=1

(
zcm

1 + zcm

)
, s = 1, 2, . . . , t,

where

zcm ←
k−c∑

i=1

(
1
θ∗

)(y[k−c+1]m−y[i]m)

.

For the smallest s for which Ps(CS) ≥ P∗, stop and randomize
the order of those π̂[i] that have equal counts. Return the subset{
π̂[k−s+1], π̂[k−s+2], . . . , π̂[k]

}
.

Stopping rule 2 (curtailment and truncation rule): If stopping
rule 1 does not apply and if y[k−t+1]m − y[k−t]m ≥ n − m, stop and ran-
domize the order of those π̂[i] that have equal counts. Return the subset{
π̂[k−t+1], π̂[k−t+2], . . . , π̂[k]

}
.

Note that stopping rule 2 will always return a subset of size t, whereas stopping
rule 1 will return a subset of size s, where 1 ≤ s ≤ t. Note further that stopping rule 2
corresponds to curtailment if m < n and truncation if m = n.
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4.1. Theoretical Properties
In this section, we consider some properties of MBG and MNEW under the slippage
configuration. Consider again the MBG stopping rule 1, which stops sampling if

zm ≡
k−1∑

i=1

(1/θ∗)(y[k]m−y[i]m) ≤ 1 − P∗

P∗ . (3)

For a given zm, note that

zm ≤ 1 − P∗

P∗ ⇐⇒ P∗ ≤ 1
1 + zm

.

Define

Pm = 1
1 + zm

; (4)

this is the maximum value of P∗ for which procedure MBG would terminate at m,
given the outcome vector −→ym = (y1m, y2m, . . . , ykm)T . Correspondingly, under the slippage
configuration, 1 − Pm is the probability of making an incorrect selection (i.e., Pr(π[k] *=
π̂[k]) at stage m, given the outcome vector −→ym, if we stop and select the cell associated
with y[k] as best.

We generalize the statistics zm and Pm of Equations (3) and (4) as follows:

zcm =
k−c∑

i=1

(
1/θ∗)(y[k−c+1]m−y[i]m) (5)

Pcm = 1
1 + zcm

. (6)

Under the slippage configuration, Pcm is the conditional probability that π[k] is associ-
ated with π̂[k−c+1], conditioned on π[k] /∈ {π̂[k−c+2], . . . , π̂[k]} for the given m and −→ym. When
c = 1, (5) simplifies to (3) and (6) simplifies to (4). The main idea behind MNEW is as
follows: the probability that the cell which truly has the largest p[k] is contained in the
subset {π̂[k−s+1], π̂[k−s+2], . . . , π̂[k]} is the complement of the probability that none of the
subset components are associated with π[k]. This fact leads to

Pr
(
π[k] /∈

{
π̂[k−s+1], . . . , π̂[k]

})

= Pr
(
π[k] *= π̂[k−s+1] | π[k] /∈

{
π̂[k−s+2], . . . , π̂[k]

})

× Pr
(
π[k] /∈

{
π̂[k−s+2], . . . , π̂[k]

})

= (1 − Psm) × Pr
(
π[k] /∈

{
π̂[k−s+2], . . . , π̂[k]

})
. (7)

Using successive expansions of Pr(π[k] /∈ {π̂[k−s+2], . . . , π̂[k]}) leads to

Pr
(
π[k] /∈

{
π̂[k−s+1], . . . , π̂[k]

})
=

s∏

c=1

(1 − Pcm) =
s∏

c=1

(
zcm

1 + zcm

)
,

and hence, if sampling stops at stage m with a subset of size s ≤ t,

P(CS)m = 1 − Pr
(
π[k] /∈

{
π̂[k−s+1], . . . , π̂[k]

})
= 1 −

s∏

c=1

(
zcm

1 + zcm

)
, (8)

where P(CS)m is the probability of correct selection if the sampling stops at stage m.
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Fig. 1. Achieved P(CS) and E[S] for given P∗ in stopping rule 1, k = 100, t = 5, slippage configuration.

Equation (8) provides the P(CS)m value if the sequential stopping rule is employed.
Like MBG, on which it is based, the sequential rule is almost always conservative.
Except in rare instances, a value will exist that will allow the procedure to be truncated
while still meeting the probability requirement when t = 1. If truncation is employed,
then curtailment does not affect the P(CS), nor does it affect the size of the selected
subset. As in MBG, when curtailment applies, it reduces the sampling required—that
is, stopping rule 2 halts the procedure with m < n.

A key requirement of any selection procedure is a guarantee that P(CS) ≥ P∗ for
some 1/k < P∗ < 1 of interest. If the form of the LFC can be proven, then by finding
the parameters that guarantee the desired P(CS) in the LFC, all other configurations
will have a P(CS) ≥ P∗. Appropriate parameters can sometimes be found analytically
but often require either computationally intensive exact expansions or numerical sim-
ulations. Proofs of LFCs tend to be much more complicated for multinomial selection
problems than for other types of selection procedures because the yi ’s are not indepen-
dent; see, for example, Kesten and Morse [1959] and Gastaldi [2005]. At the time of
this writing, a proof of the LFC for MBG is not yet available, although Bechhofer and
Goldsman [1986] conjecture that the slippage configuration is the LFC. Similarly, we
conjecture that the slippage configuration given by (2) is the LFC for procedure MNEW.
This is the motivation for designing our procedure’s sample-size calculations based on
the slippage configuration.

Finally, we illustrate an interesting property of our procedure in Figure 1. This
provides the achieved P(CS), as a function of n, when we fix the P∗ in stopping rule 1 of
MNEW at 0.75, 0.90, and 0.95. Such a plot could be used to determine the appropriate
values of n to achieve the desired overall P(CS), although we used a smarter search
algorithm for finding n. The curves were constructed by performing 200,000 Monte
Carlo replications for 1(1)30(5)60(10)120(30)450. In line with the theoretical properties,
the general P(CS) trends rise rapidly and then stabilize at values slightly higher
than the nominal P∗. (Recall, however, that P(CS) is not strictly monotonic in nbecause
of the discrete nature of the multinomial sampling.) The curves all start out providing
essentially the same performance guarantee but then diverge. This suggests that there
are multiple ways to achieve a desired P(CS) using procedure MNEW. The tabled values
of n that we provide correspond to using the overall P∗ as the criterion for stopping in
stopping rule 1 and lead to the lowest E[S] values. However, one could get by with a
lower n and achieve the same overall probability guarantee, P(CS) ≥ P∗, by using a
P ′ > P∗ as the criterion in stopping rule 1. In particular, we ran a variant of MNEW
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that never invokes stopping rule 1 and display the results in Figure 1 as P ′ = 1.0
(single stage). This last curve will never reach the value 1.0, but where it crosses a
P(CS) value of interest (such as 0.90), it provides values of n that correspond to a
single-stage procedure that always returns a subset of size t. We prefer the MNEW
procedure as reported, because when there are clear differences in the multinomial cell
probabilities, the procedure can terminate early with a subset substantially smaller
than t. Nonetheless, it is interesting to see how a single-stage procedure could be
obtained. An intermediate procedure between the reported procedure and the single
stage one can also be used. For example, the dashed vertical line in Figure 1 corresponds
to n = 120. If P ′ = 0.75, the procedure will achieve P(CS) = 0.783 and E[S] = 2.83; if
P ′ = 0.90, the procedure will achieve P(CS) = 0.888 and E[S] = 3.01; if P ′ = 0.95, the
procedure will achieve P(CS) = 0.916 and E[S] = 3.08; and if a single stage procedure
that always selects five cells is used, the achieved P(CS) = 0.937. In other words, by
accepting a slight increase in E[S], we can achieve a much higher P(CS) by using
P ′ = 0.95 instead of P ′ = 0.75.

5. RESULTS
We examine the performance of our procedure in Sections 5.1, 5.2, and 5.3; discuss
tables for its use in Section 5.4; and provide some examples where it might be beneficial
in Section 5.5.

5.1. Performance Comparison
Before proceeding, a more detailed discussion about indifference-zone and subset se-
lection procedures is in order. Indifference-zone procedures require that the decision
maker establishes a minimum distance between the parameters of the best and second-
best alternative, whereas subset selection procedures do not need such establishment
(as discussed in Section 1). Accordingly, indifference-zone procedures guarantee that
P(CS) ≥ P∗ for a more limited set of probability configurations than subset selec-
tion procedures. As these procedures are defined under distinct parameter spaces, a
straightforward comparison of their performances is challenging. Nevertheless, if the
decision maker is willing to establish an indifference zone, it is interesting to see how
MNEW compares in relation to a classical subset selection procedure. This comparison
has a practical motivation rather than a methodological one: we would like to see how
efficient our procedure is when compared with MCH in case the decision maker accepts
as output a subset instead of only a single alternative and he or she can establish an
indifference-zone parameter.

We compare the performance of MNEW with the results of MCH for k ∈ {3, 4},
P∗ ∈ {0.75, 0.90, 0.95}, t ∈ {1, 2}, and θ∗ = 3.0 in the slippage configuration
(p, p, . . . , p, θ∗ p). We decided on procedure MCH because Bechhofer et al. [1995,
p. 241] suggest that it is the best algorithm proposed so far in the literature for
multinomial subset selection by recommending it when the required constants
(D, M, r) are available. Table I shows the results of this comparison, where P(CS) is
the achieved probability of correct selection, E[S] is the expected subset size, and E[N]
is the expected sample size. Our simulations were based in 20,000,000 Monte Carlo
replications for P∗ = 0.90 and 0.95, and 40,000,000 replications for P∗ = 0.75, so that
the standard errors of all estimates are quite small. The P(CS) was calculated as the
observed proportion of correct selections among the replications.

Chen and Hsu [1991] consider values of n = 10(5)30 when θ∗ = 3.0. They remark that
multiple combinations of the remaining parameters (D, M, r) are available that achieve
the minimum probability requirements, but that the (D, M, r) combinations that yield
the smallest E[S] values may not be optimal for minimizing E[N]. To perform the
comparisons, we first compute n for MNEW for t = 1, 2. For comparisons against t = 1,
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Table I. Comparison between MNEW and MCH

MNEWa MCHb
Rel. Eff. of

MNEWa to MCHb

k P∗ (t, n) P(CS) E[S] E[N] (D, M, r, n) P(CS) E[S] E[N] n E[S] E[N]

0.75 (1,5) 0.7573 1.000 3.24 (0,3,2,10) 0.7962 1.000 3.68 0.50 1.00 0.88
(2,2) 0.8000 2.000 1.00 0.20 2.00 0.27

3 0.90
(1,12) 0.9030 1.000 6.97 (0,5,3,15) 0.9004 1.000 6.76 0.80 1.00 1.03
(2,5) 0.9109 2.000 2.85 (0,5,3,10) 0.9042 1.047 6.61 0.50 1.91 0.76

0.95 (1,20) 0.9505 1.000 8.90 (0,7,4,20) 0.9505 1.000 9.77 1.00 1.00 0.91
(2,8) 0.9578 2.000 4.93 (1,6,4,10) 0.9604 1.261 8.11 0.80 1.59 0.61

0.75 (1,9) 0.7519 1.000 4.91 (0,3,3,10) 0.7542 1.000 5.17 0.90 1.00 0.49
(2,2) 0.7778 2.000 2.00 0.20 2.00 0.38

4 0.90 (1,19) 0.9037 1.000 9.84 (0,6,4,25) 0.9075 1.000 11.00 0.76 1.00 0.89
(2,9) 0.9067 1.762 6.02 (1,5,3,10) 0.9186 1.424 7.68 0.90 1.24 0.78

0.95 (1,26) 0.9512 1.000 12.97 (0,8,5,30) 0.9527 1.000 14.81 0.87 1.00 0.88

(2,14) 0.9523 1.911 8.22 (1,7,4,15) 0.9522 1.239 11.43 0.93 1.54 0.72
(2,5,4,10) 0.9611 1.829 8.59 1.40 1.04 0.96

aStandard error of estimate ≤ 0.0001 for P(CS) and E[S], and ≤ 0.0002 for E[N].
bSource: Chen and Hsu [1991, pp. 408–409].

we choose the (D, M, r) values from Chen and Hsu [1991] associated with the smallest
n for which E[S] = 1.000. For comparisons against t = 2, we choose the (D, M, r) values
associated with values nNEW rounded to the nearest multiples of five, or the minimum
nCH reported in their table. By nNEW and nCH, we mean, respectively, the values of n for
the procedures MNEW and MCH.

Analysis of Table I shows that although neither procedure dominates, our procedure
competes favorably with the current best procedure in the literature. When t = 1,
MNEW always has a smaller maximum sample size n. MNEW also performs well with
respect to E[N]. In one instance, it requires 3% additional sampling, on average;
however, in the others, the relative efficiency in E[N] ranges from 49% to 91%.

When t = 2, our procedure uses a larger n in only one case (k = 4, P∗ = 0.95, t = 2),
whereas it achieves as much as an 80% reduction in n in other situations. In terms of
E[N], when t = 2, MNEW requires between 27% and 96% of the sampling required by
MCH, on average. These reductions do come at the cost of a larger expected subset size,
but E[S] increases by less than 1.0 in all cases. The experimenter may be quite willing
to end up with a slightly larger subset in exchange for substantial reductions in the
maximum and expected sampling requirements, particularly if the time available to
perform the experiment is limited.

Besides usually requiring both smaller n and E[N], MNEW has other advantages over
MCH. First, after the decision maker establishes the indifference-zone value θ∗, for a
given k and P∗, MNEW needs only two parameters: t and n. Both of these are natural
for a decision maker to interpret, and if the decision maker is able to specify either
one, then a one-dimensional search can be used to determine the other. In contrast,
for a given k and P∗, the procedure MCH needs four parameters (D, M, r, and n). This
makes the search space for suitable parameter combinations much larger. We remark
that due to the discrete nature of the sampling, the values of the achieved P(CS),
E[N], and E[S] are not always monotonic in n, particularly for small problems. This
fact complicates the search for both procedures—but especially the higher-dimensional
search for MCH.

If the decision maker is not willing to establish an indifference zone, either because
he or she does not feel comfortable in doing this or because the decision maker wants a
P(CS) guarantee when all systems have essentially the same probability of occurrence
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Table II. Estimates for the Performance of MNEW for Different Configurations
When P∗ = 0.90, θ∗ = 3.0, k = 10, and t = 3

Statistic Configuration ntied t = 1 t = 2 t = 3

E[N]

Slippage — 24.016 20.856 18.081
Random — 16.365 12.147 8.950

MCHWC
t + 1 10.601 8.213 8.962

t 4.000 5.813 7.262
t − 1 — 4.000 5.814

E[S]

Slippage — 1.000 1.773 2.593
Random — 1.000 1.623 2.391

MCHWC
t + 1 1.000 1.885 2.655

t 1.000 1.875 2.398
t − 1 — 1.000 1.875

(i.e, the equal-probability configuration with θ∗ = 1.0), then we recommend the use of
procedure MCH instead of ours.

5.2. Performance Under Alternative Configurations
As stated earlier, we conjecture that the slippage configuration is the LFC for MNEW.
This means that our procedure may perform much better on practical problems than
would be indicated by looking at the E[N], E[S], and P(CS) values in Table I and all
of the Tables in Appendix A. In addition to the slippage configuration, we examine two
other types of configurations.

The first is a random configuration, which we generate as follows:

(1) Let wi be independent U (0, 1) numbers, i = 1, . . . , k − 1;
(2) Set wk = θ∗ × max (wi);
(3) Set pi = wi/

∑k
j=1 w j .

Second, we consider configurations similar to the worst case configuration for pro-
cedure MCH, which we call “MCHWC.” Here, p[i] = 1/ntied for i = k − ntied + 1, . . . , k
and pi = 0 otherwise. In other words, there are exactly ntied alternatives tied for the
best. In these cases, a correct selection is made for MNEW whenever the selected subset
contains at least one of the ntied best alternatives. Although these are difficult configu-
rations for the selection goal of MCH, they are very favorable configurations for MNEW
in terms of the achieved P(CS); they are also associated with lower E[N] as long as
ntied is not much larger than t.

Table II illustrates the expected sample sizes and the expected subset sizes for these
three types of configurations for a representative case where k = 10, θ∗ = 3.0, and
P∗ = 0.90. We provide results for ntied = t − 1, ntied = t, and ntied = t + 1 in the
MCHWC configuration. All computations are based on 500,000 Monte Carlo replica-
tions. By replications, we mean different sample paths for the slippage and MCHWC
configurations, and different random wi values for the random configurations.

The results in Table II show that E[N] is much smaller for the random and MCHWC
configurations, stopping after 17% to 68% of the sampling (on average) that would be
required under the conjectured LFC. The differences in expected subset size are smaller
and less consistent; the reductions in E[S] are largest when MCHWC has fewer than
t alternatives tied for best.

The cumulative distribution functions of N for the various alternatives are given
in Figure 2 for P∗ = 0.90, k = 10, and t = 3. These provide a more detailed look at
the performance of the procedures. In addition to the configurations of Table II, we
also furnish the results for the equal-probability case. MNEW halts very quickly in the
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Fig. 2. Cumulative distribution functions of the sample size N for different configuration types, using MNEW
when P∗ = 0.90, θ∗ = 3.0, k = 10, and t = 3.

MCHWC when ntied is small. For the slippage configuration and the equal-probability
configuration, the distributions are multimodal with high probabilities of requiring all
n samples. Similar behavior occurs for other combinations of probability configurations,
P∗, k, and t.

5.3. Performance in Large-Scale Problems
Figure 3 illustrates the behavior of our procedure for k = 10(10)100(100)500, P∗ = 0.75,
t = 5, and θ∗ = 5. As the reader can see, MNEW can be used in very big problems. The
trade-off of using our procedure in such big problems is the total number of observations
to be taken—for example, to select a subset of bounded size of t = 5 with required
probability of correct selection of P∗ = 0.75 when the indifference-zone parameter is
θ∗ = 5, it will be necessary to take as many as n×k = 916×500 = 458, 000 observations
for k = 500. Despite not being a theoretical limit, we believe that problems bigger than
k = 500 will not be practical in the real world.

Another interesting phenomenon in Figure 3 is the reduction of E[S] and the ratio
E[N]/n as the number of systems increases. This occurs because in the slippage con-
figuration, the cell probability for any system other than the best is inversely related
to the number of systems under evaluation. If a very large number of systems are tied
for second best, it is unlikely that t − 1 or more will remain consistently close to the
true best as sampling progresses. The sequential stopping rule is more likely to be
invoked before the curtailment and truncation rule, and tends to be associated with
reduced sampling requirements. It is also the only rule that can result in a subset size
S smaller than t.

5.4. Tables
Our work was motivated by a need for readily accessible (or easy to compute) pa-
rameters for multinomial subset selection procedures involving a large number of
alternatives. In Tables III through XII of Appendix A, we present the truncation
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Fig. 3. n, E[N], and E[S] for k = 10(10)100(100)500 in the slippage configuration when P∗ = 0.75, t = 5,
and θ∗ = 5.

numbers n needed to implement our procedure. We provide tables for k ∈
{3, 4, . . . , 9, 10, 20, . . . , 100}, P∗ ∈ {0.75, 0.90, 0.95}, and several values of t and θ∗.
Although the n values are all that are needed to implement the procedure, we also
report estimates of P(CS), the expected subset size E[S], and the expected sample size
E[N] under the associated slippage configurations. All values were calculated using
500,000 Monte Carlo replications.

The values of θ∗ in Tables III through X are the same ones that Bechhofer and
Goldsman [1986] use for k = 2, 3, . . . , 6. For k = 7, 8, 9, 10, we use the values from
their first paper [Bechhofer and Goldsman 1985]; for k = 20, 30, . . . , 100, we use a
different approach for specifying θ∗ values. In these cases, we first specify an unnor-
malized difference δu between the best and second-best alternatives (e.g., δu = 0.05).
This, in turn, determines the value of θ∗ in the slippage configuration as follows:

θ∗ = 1 + (k − 1)δu

1 − δu
.

The probabilities in the slippage configuration are then determined from Equation (2).
The numbers in Tables XI and XII represent differences of δu = 0.02, 0.05, and 0.08.
Note how efficient MNEW can be: an analyst interested in a difference of at least
δu = 0.08 can go from a set of 100 alternatives to a subset of five or fewer, with at most
89 multinomial observations, while guaranteeing that the P(CS) ≥ 0.95.
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5.5. Examples
Example 1: Pandemic modeling. Disease transmission rates may vary for different de-
mographic segments of a population, along with the severity of the symptoms. Several
types of interventions may be possible, including school closings, treatment alternatives
following diagnosis, and broad-based or targeted vaccinations. Public health officials
in a particular city may be interested in using simulation models to explore the effects
of various disease characteristics and potential interventions on the local population.
Suppose that there are three different policies for school closings, five treatment al-
ternatives, and four different ways in which vaccines can be distributed (including no
vaccines). As the intervention can only be executed a single time, then selecting the
best interventions based on long-run performance (expected value) makes no sense!
It is more natural to approach this problem with a multinomial selection procedure
instead of a selection-of-the-best procedure—one that aims to select the system (or
subset) associated with the best performance measure expected value. Of the 60 al-
ternatives that result from combining these interventions, officials are interested in
a subset, of no more than three, that contains the intervention most likely to yield
the best results. If they desire a P(CS) guarantee of 0.90 whenever δu = 0.05, then
Table XII indicates that n = 170 is the maximum number of observations needed by
MNEW.

Example 2: Military tactic development. Air-to-air combat tactics can be evaluated
through simulation models. Vieira Jr. [2011] studied beyond-visual-range combat with
the objective of identifying the optimal tactic. Several of the decision variables involved
in an air-to-air combat are continuous (e.g., distance, altitude, and speed) and must be
discretized when running the simulation. Even with a parsimonious discretization of
these variables, a very large number of alternatives must be compared to each other.
Clearly, the overriding consideration in air-to-air combat problem involves the risk
factor. A nation is not interested in having a slightly greater average success than
its enemy over a period of several years of combat. What really matters is to have
the greatest probability of being the winner in each individual engagement (i.e., each
unique trial). Again, using a selection-of-the-best procedure is not the appropriate
solution, and the MNEW procedure can be a useful screening procedure for this class
of problems. The reason is that it is an efficient way to winnow the large number of
alternatives down to a small number that can be examined in more depth. If there
are 80 variants under investigation, the decision maker is interested in identifying at
most eight tactics to study in more detail, and wants a P(CS) guarantee of 0.95 when
δu = 0.02, then Table XIII shows that MNEW needs at most n = 702 observations and,
on average, will end after observing E[N] = 376.52 samples. The output set will have
an average size of E[S] = 6.274.

6. CONCLUSIONS
In this article, we adapt a truncated sequential indifference-zone multinomial selection
procedure, proposed by Bechhofer and Goldsman [1986], to the restricted multinomial
subset selection problem. We compare the performance of our hybrid procedure, MNEW,
to the procedure of Chen and Hsu [1991], which is considered the best unrestricted
multinomial subset selection procedure currently available, and show that MNEW per-
forms favorably with respect to a variety of measures. MNEW is easier to implement,
because it has only one calculated parameter that the decision maker is not free to
choose (n), whereas MCH has four such parameters (D, M, r, and n). This makes it
easier to use MNEW than MCH, as well as making it easier to obtain suitable parame-
ters for configurations not covered by existing tables. Under the slippage configuration,
MNEW typically requires less sampling than MCH, in terms of both the maximum and
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expected sample size, at the cost of a small increase in the expected size of the selected
subset.

Our work was motivated in part by a need to run restricted multinomial selection
procedures in a simulation environment where there are a large number of alter-
natives. Consequently, in addition to providing tables of the truncation numbers n
needed to implement our procedure for small numbers of systems under evaluation
(k = 2, 3, . . . , 10), we also provide tables for large values of k (k = 20, 30, . . . , 100).

APPENDIX
A. TABLES TO IMPLEMENT MNEW

Table III. The Value of n for k = 3 with the Estimated P(CS), E[S], and E[N] under the Slippage Configuration

P∗ = 0.75 P∗ = 0.90 P∗ = 0.95
θ∗ t n P(CS) E[S] E[N] n P(CS) E[S] E[N] n P(CS) E[S] E[N]

3.0 1 5 0.7578 1.000 3.24 12 0.9027 1.000 6.97 20 0.9506 1.000 8.90
2 1 0.8003 2.000 1.00 5 0.9109 2.000 2.85 8 0.9578 2.000 4.93

2.8 1 6 0.7622 1.000 3.70 15 0.9053 1.000 7.77 22 0.9517 1.000 10.48
2 1 0.7905 2.000 1.00 5 0.9075 1.784 3.30 9 0.9517 2.000 5.06

2.6 1 7 0.7536 1.000 3.94 16 0.9021 1.000 9.17 25 0.9514 1.000 12.26
2 1 0.7828 2.000 1.00 5 0.9059 2.000 3.32 12 0.9509 1.847 5.80

2.4 1 8 0.7595 1.000 5.40 22 0.9017 1.000 10.43 31 0.9519 1.000 14.48
2 1 0.7726 2.000 1.00 5 0.9038 2.000 4.15 11 0.9509 2.000 6.80

2.2 1 10 0.7501 1.000 6.00 25 0.9011 1.000 13.31 41 0.9508 1.000 17.58
2 1 0.7615 2.000 1.00 8 0.9080 2.000 4.96 14 0.9504 2.000 8.22

2.0 1 14 0.7579 1.000 8.24 34 0.9015 1.000 17.18 52 0.9510 1.000 23.03
2 2 0.7502 2.000 1.00 10 0.9038 2.000 5.98 19 0.9509 2.000 10.52

1.8 1 19 0.7569 1.000 11.61 50 0.9004 1.000 23.73 71 0.9502 1.000 32.63
2 2 0.7918 2.000 2.00 14 0.9015 2.000 7.78 31 0.9507 2.000 14.10

1.6 1 32 0.7522 1.000 17.63 84 0.9007 1.000 37.32 125 0.9503 1.000 50.30
2 2 0.7683 2.000 2.00 23 0.9017 2.000 11.99 46 0.9506 2.000 21.58

1.4 1 72 0.7511 1.000 34.12 169 0.9004 1.000 73.64 262 0.9504 1.000 99.08
2 3 0.7514 2.000 2.34 47 0.9004 2.000 22.43 89 0.9501 2.000 41.87

1.2 1 279 0.7510 1.000 118.02 680 0.9001 1.000 253.94 960 0.9500 1.000 345.42
2 12 0.7520 2.000 7.84 173 0.9001 2.000 73.96 362 0.9502 2.000 137.61

Table IV. The Value of n for k = 4 with the Estimated P(CS), E[S], and E[N] under the Slippage Configuration

P∗ = 0.75 P∗ = 0.90 P∗ = 0.95
θ∗ t n P(CS) E[S] E[N] n P(CS) E[S] E[N] n P(CS) E[S] E[N]

3.0
1 9 0.7531 1.000 4.90 19 0.9031 1.000 9.84 26 0.9514 1.000 12.98
2 4 0.7501 1.668 2.00 9 0.9066 1.763 6.02 14 0.9525 1.912 8.22
3 1 0.8336 3.000 1.00 3 0.9173 3.000 2.67 6 0.9523 3.000 4.50

2.8
1 9 0.7514 1.000 5.99 21 0.9008 1.000 11.16 30 0.9507 1.000 14.74
2 2 0.7620 2.000 2.00 10 0.9042 1.922 6.29 16 0.9507 1.829 9.40
3 1 0.8280 3.000 1.00 3 0.9081 3.000 2.68 7 0.9550 3.000 5.15

2.6
1 11 0.7552 1.000 7.06 26 0.9029 1.000 13.21 36 0.9503 1.000 17.19
2 4 0.7709 2.000 2.99 13 0.9042 2.000 7.05 19 0.9503 1.894 10.77
3 1 0.8213 3.000 1.00 3 0.9089 3.000 3.00 9 0.9515 3.000 5.45

2.4
1 15 0.7572 1.000 8.28 31 0.9029 1.000 15.94 44 0.9513 1.000 20.65
2 5 0.7707 2.000 3.32 14 0.9022 1.937 8.48 23 0.9510 1.962 12.54
3 1 0.8155 3.000 1.00 5 0.9031 3.000 3.38 9 0.9515 3.000 6.45

Continued
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Table IV. Continued

P∗ = 0.75 P∗ = 0.90 P∗ = 0.95
θ∗ t n P(CS) E[S] E[N] n P(CS) E[S] E[N] n P(CS) E[S] E[N]

2.2
1 17 0.7502 1.000 10.43 39 0.9003 1.000 19.81 56 0.9509 1.000 25.77
2 5 0.7568 1.903 3.65 17 0.9009 1.940 10.60 30 0.9509 1.946 15.62
3 1 0.8070 3.000 1.00 4 0.9007 3.000 3.58 11 0.9514 3.000 7.74

2.0
1 24 0.7549 1.000 13.78 54 0.9007 1.000 25.77 75 0.9508 1.000 33.94
2 8 0.7531 2.000 4.22 22 0.9004 1.973 13.41 38 0.9508 1.982 20.12
3 1 0.8003 3.000 1.00 7 0.9070 3.000 5.03 17 0.9509 3.000 9.50

1.8
1 34 0.7509 1.000 19.25 75 0.9010 1.000 36.90 106 0.9505 1.000 48.19
2 9 0.7528 2.000 6.04 33 0.9009 2.000 18.71 52 0.9501 1.990 28.25
3 1 0.7910 3.000 1.00 9 0.9018 3.000 6.18 22 0.9507 3.000 12.97

1.6
1 57 0.7523 1.000 31.07 126 0.9006 1.000 58.74 182 0.9503 1.000 76.30
2 14 0.7515 2.000 9.19 55 0.9003 2.000 29.10 91 0.9501 2.000 43.94
3 1 0.7814 3.000 1.00 16 0.9023 3.000 9.14 36 0.9502 3.000 19.58

1.4
1 123 0.7513 1.000 62.17 274 0.9006 1.000 117.37 381 0.9503 1.000 153.15
2 32 0.7503 2.000 17.87 118 0.9006 2.000 56.72 195 0.9503 2.000 86.79
3 1 0.7736 3.000 1.00 30 0.9005 3.000 16.56 75 0.9500 3.000 37.25

1.2
1 485 0.7502 1.000 218.66 1052 0.9002 1.000 414.03 1443 0.9501 1.000 539.28
2 118 0.7518 2.000 60.65 452 0.9001 2.000 195.48 753 0.9507 2.000 298.97
3 1 0.7624 3.000 1.00 113 0.9009 3.000 52.25 283 0.9500 3.000 121.48

Table V. The Value of n for k = 5 with the Estimated P(CS), E[S], and E[N] under the Slippage Configuration

P∗ = 0.75 P∗ = 0.90 P∗ = 0.95
θ∗ t n P(CS) E[S] E[N] n P(CS) E[S] E[N] n P(CS) E[S] E[N]

3.0
1 12 0.7618 1.000 7.44 24 0.9040 1.000 13.10 34 0.9512 1.000 16.49
2 5 0.7537 2.000 3.50 14 0.9000 1.902 8.05 20 0.9501 1.847 11.41
3 2 0.7954 3.000 2.00 7 0.9021 2.742 5.13 12 0.9500 2.783 7.71

2.8
1 13 0.7520 1.000 8.36 28 0.9023 1.000 15.02 39 0.9514 1.000 19.20
2 6 0.7684 1.918 4.02 16 0.9012 1.852 9.34 24 0.9509 1.888 13.02
3 2 0.7831 3.000 2.00 8 0.9053 2.920 5.52 13 0.9500 2.769 8.89

2.6
1 17 0.7557 1.000 9.81 34 0.9016 1.000 17.43 46 0.9512 1.000 22.64
2 7 0.7514 1.924 4.23 18 0.9003 1.887 10.96 29 0.9509 1.907 15.27
3 2 0.7700 3.000 2.00 9 0.9028 3.000 6.19 17 0.9516 2.880 10.25

2.4
1 20 0.7543 1.000 11.94 41 0.9008 1.000 21.09 58 0.9512 1.000 27.10
2 8 0.7577 1.910 5.80 22 0.9004 1.921 13.01 35 0.9507 1.920 18.17
3 2 0.7553 3.000 2.00 12 0.9037 2.907 7.43 19 0.9502 2.938 11.89

2.2
1 26 0.7557 1.000 15.18 52 0.9005 1.000 26.69 74 0.9509 1.000 33.95
2 10 0.7514 1.979 6.70 29 0.9009 1.932 16.17 43 0.9503 1.918 22.76
3 3 0.7799 3.000 2.77 13 0.9021 2.958 9.16 25 0.9506 2.944 14.68

2.0
1 34 0.7507 1.000 19.76 71 0.9006 1.000 35.18 98 0.9502 1.000 45.05
2 14 0.7501 2.000 8.39 37 0.9003 1.953 21.07 59 0.9512 1.960 29.68
3 3 0.7587 3.000 2.78 18 0.9006 2.993 11.41 33 0.9501 2.971 18.90

1.8
1 50 0.7514 1.000 28.34 104 0.9018 1.000 50.37 141 0.9502 1.000 64.42
2 19 0.7510 1.997 11.95 55 0.9010 1.988 29.62 84 0.9503 1.979 41.93
3 6 0.7546 3.000 3.80 27 0.9008 3.000 15.74 48 0.9506 2.991 26.26

1.6
1 85 0.7505 1.000 45.58 174 0.9001 1.000 81.19 241 0.9501 1.000 103.60
2 32 0.7505 2.000 19.08 91 0.9001 2.000 47.03 138 0.9506 1.999 66.81
3 7 0.7525 3.000 5.50 44 0.9002 3.000 24.38 78 0.9504 3.000 41.30
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Table V. Continued

P∗ = 0.75 P∗ = 0.90 P∗ = 0.95
θ∗ t n P(CS) E[S] E[N] n P(CS) E[S] E[N] n P(CS) E[S] E[N]

1.4
1 182 0.7501 1.000 92.42 369 0.9001 1.000 163.99 513 0.9502 1.000 209.85
2 68 0.7504 2.000 37.92 192 0.9002 2.000 93.74 289 0.9504 2.000 133.40
3 15 0.7506 3.000 9.38 89 0.9005 3.000 47.77 166 0.9501 3.000 80.81

1.2
1 738 0.7503 1.000 331.35 1462 0.9004 1.000 584.90 1974 0.9500 1.000 747.07
2 269 0.7506 2.000 131.67 769 0.9004 2.000 328.83 1136 0.9502 2.000 468.89
3 56 0.7511 3.000 30.74 363 0.9002 3.000 162.47 655 0.9502 3.000 278.82

Table VI. The Value of n for k = 6 with the Estimated P(CS), E[S], and E[N] under the Slippage Configuration

P∗ = 0.75 P∗ = 0.90 P∗ = 0.95
θ∗ t n P(CS) E[S] E[N] n P(CS) E[S] E[N] n P(CS) E[S] E[N]

3.0
1 16 0.7554 1.000 9.30 30 0.9017 1.000 16.03 41 0.9505 1.000 20.32
2 10 0.7541 1.864 4.90 20 0.9014 1.760 10.89 27 0.9502 1.848 14.61
3 3 0.7771 3.000 2.78 12 0.9025 2.838 7.57 19 0.9519 2.722 11.04

2.8
1 18 0.7517 1.000 10.73 35 0.9012 1.000 18.52 48 0.9503 1.000 23.54
2 9 0.7527 1.813 6.31 22 0.9004 1.835 12.48 32 0.9507 1.829 16.91
3 3 0.7623 3.000 2.79 14 0.9012 2.799 8.30 22 0.9511 2.826 12.43

2.6
1 21 0.7514 1.000 12.92 42 0.9012 1.000 21.96 57 0.9509 1.000 27.93
2 10 0.7522 1.907 6.92 25 0.9013 1.889 14.56 38 0.9516 1.871 19.99
3 5 0.7601 2.897 3.71 15 0.9017 2.810 9.92 25 0.9501 2.844 14.68

2.4
1 26 0.7520 1.000 15.76 52 0.9005 1.000 26.76 72 0.9506 1.000 33.57
2 13 0.7559 1.958 8.35 31 0.9004 1.876 17.67 45 0.9502 1.923 23.83
3 6 0.7500 2.954 3.97 18 0.9001 2.921 11.45 31 0.9514 2.917 17.50

2.2
1 34 0.7511 1.000 19.76 66 0.9009 1.000 33.77 91 0.9505 1.000 42.54
2 16 0.7514 1.943 10.33 40 0.9005 1.911 22.16 59 0.9508 1.914 30.10
3 7 0.7503 2.906 4.65 24 0.9011 2.943 14.20 39 0.9509 2.912 21.61

2.0
1 46 0.7535 1.000 26.42 89 0.9005 1.000 44.80 122 0.9502 1.000 56.59
2 22 0.7527 1.982 13.26 53 0.9012 1.949 29.13 77 0.9500 1.943 39.55
3 8 0.7504 3.000 5.97 30 0.9002 2.959 18.61 50 0.9504 2.953 28.08

1.8
1 67 0.7510 1.000 37.81 132 0.9007 1.000 64.44 178 0.9506 1.000 81.51
2 31 0.7519 1.984 19.00 78 0.9005 1.976 41.13 113 0.9504 1.977 56.37
3 12 0.7506 2.975 8.33 44 0.9004 2.988 25.96 72 0.9501 2.978 39.78

1.6
1 114 0.7501 1.000 61.35 224 0.9013 1.000 104.83 300 0.9503 1.000 131.95
2 52 0.7509 1.999 30.20 128 0.9010 1.998 65.93 186 0.9502 1.995 90.54
3 20 0.7545 3.000 13.03 72 0.9005 3.000 41.03 121 0.9508 2.996 63.20

1.4
1 248 0.7507 1.000 125.49 479 0.9005 1.000 213.25 640 0.9504 1.000 268.42
2 109 0.7501 2.000 60.64 272 0.9001 2.000 132.90 399 0.9503 2.000 182.76
3 41 0.7509 3.000 25.07 158 0.9008 3.000 81.72 258 0.9500 3.000 125.97

1.2
1 991 0.7504 1.000 452.95 1872 0.9004 1.000 766.86 2486 0.9501 1.000 964.41
2 443 0.7514 2.000 215.61 1045 0.9002 2.000 470.76 1543 0.9504 2.000 648.16
3 162 0.7509 3.000 85.93 617 0.9002 3.000 284.91 989 0.9502 3.000 440.32
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Table VII. The Value of n for k = 7 with the Estimated P(CS), E[S], and E[N] under the Slippage Configuration

P∗ = 0.75 P∗ = 0.90 P∗ = 0.95
θ∗ t n P(CS) E[S] E[N] n P(CS) E[S] E[N] n P(CS) E[S] E[N]

3.0
1 19 0.7548 1.000 11.63 36 0.9022 1.000 19.47 49 0.9505 1.000 24.06
2 11 0.7557 1.796 7.22 24 0.9004 1.801 13.65 34 0.9518 1.800 18.09
3 6 0.7534 2.911 4.09 17 0.9019 2.689 10.06 25 0.9512 2.750 14.14

2.4
1 33 0.7520 1.000 19.45 63 0.9006 1.000 32.35 85 0.9505 1.000 40.37
2 19 0.7558 1.906 11.16 40 0.9007 1.870 22.41 56 0.9500 1.897 29.74
3 9 0.7586 2.913 6.41 27 0.9014 2.875 15.95 40 0.9505 2.869 22.90

2.0
1 57 0.7501 1.000 33.09 109 0.9006 1.000 54.89 148 0.9505 1.000 68.43
2 31 0.7528 1.972 18.41 69 0.9011 1.939 37.37 98 0.9506 1.936 49.80
3 16 0.7537 2.974 9.87 44 0.9009 2.929 26.05 69 0.9502 2.931 37.58

1.6
1 145 0.7509 1.000 78.21 271 0.9001 1.000 128.99 364 0.9503 1.000 160.99
2 73 0.7506 1.997 42.22 167 0.9009 1.993 85.85 236 0.9504 1.990 114.99
3 36 0.7512 3.000 22.12 105 0.9003 2.995 58.49 164 0.9505 2.989 85.47

Table VIII. The Value of n for k = 8 with the Estimated P(CS), E[S], and E[N] under the Slippage Configuration

P∗ = 0.75 P∗ = 0.90 P∗ = 0.95
θ∗ t n P(CS) E[S] E[N] n P(CS) E[S] E[N] n P(CS) E[S] E[N]

3.0
1 23 0.7531 1.000 13.71 42 0.9013 1.000 22.61 57 0.9504 1.000 28.02
2 15 0.7525 1.814 8.60 31 0.9013 1.771 16.45 41 0.9519 1.795 21.55
3 11 0.7511 2.665 5.31 21 0.9001 2.617 12.78 31 0.9514 2.657 17.46

2.4
1 40 0.7540 1.000 23.68 74 0.9005 1.000 38.24 99 0.9503 1.000 47.24
2 23 0.7515 1.880 14.45 50 0.9009 1.861 27.39 69 0.9501 1.880 35.74
3 13 0.7516 2.898 9.01 35 0.9006 2.818 20.44 51 0.9503 2.822 28.41

2.0
1 70 0.7513 1.000 40.28 130 0.9010 1.000 65.30 173 0.9507 1.000 80.62
2 40 0.7505 1.958 23.81 85 0.9014 1.928 45.85 121 0.9510 1.929 60.42
3 22 0.7503 2.958 14.25 58 0.9005 2.908 33.64 87 0.9503 2.907 47.14

1.6
1 176 0.7501 1.000 95.64 321 0.9002 1.000 154.39 428 0.9506 1.000 191.01
2 96 0.7518 1.994 55.41 205 0.9002 1.990 106.51 288 0.9504 1.986 140.39
3 52 0.7505 2.998 32.16 141 0.9016 2.991 77.06 209 0.9502 2.982 108.61

Table IX. The Value of n for k = 9 with the Estimated P(CS), E[S], and E[N] under the Slippage Configuration

P∗ = 0.75 P∗ = 0.90 P∗ = 0.95
θ∗ t n P(CS) E[S] E[N] n P(CS) E[S] E[N] n P(CS) E[S] E[N]

3.0
1 26 0.7509 1.000 16.21 48 0.9015 1.000 26.07 65 0.9508 1.000 31.90
2 17 0.7532 1.828 10.63 35 0.9007 1.769 19.40 47 0.9502 1.782 24.91
3 10 0.7526 2.745 7.14 27 0.9020 2.666 15.31 37 0.9501 2.632 20.62

2.4
1 47 0.7509 1.000 27.63 85 0.9004 1.000 44.17 113 0.9504 1.000 54.24
2 29 0.7523 1.865 17.74 59 0.9006 1.847 32.43 81 0.9505 1.871 41.91
3 18 0.7540 2.834 11.70 44 0.9020 2.800 25.09 62 0.9504 2.804 34.11

2.0
1 82 0.7503 1.000 47.55 149 0.9001 1.000 75.74 198 0.9501 1.000 93.09
2 50 0.7523 1.948 29.54 102 0.9007 1.919 54.72 141 0.9511 1.922 71.03
3 30 0.7504 2.940 18.83 73 0.9003 2.889 41.63 107 0.9507 2.888 57.16

1.6
1 208 0.7500 1.000 113.54 374 0.9002 1.000 180.31 492 0.9504 1.000 221.27
2 118 0.7501 1.990 68.83 247 0.9006 1.986 127.99 341 0.9504 1.982 166.55
3 71 0.7507 2.994 43.19 174 0.9006 2.984 95.73 255 0.9502 2.975 132.46
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Table X. The Value of n for k = 10 with the Estimated P(CS), E[S], and E[N] under the Slippage Configuration

P∗ = 0.75 P∗ = 0.90 P∗ = 0.95
θ∗ t n P(CS) E[S] E[N] n P(CS) E[S] E[N] n P(CS) E[S] E[N]

3.0
1 31 0.7540 1.000 18.59 55 0.9019 1.000 29.43 73 0.9503 1.000 35.95
2 22 0.7549 1.800 12.49 41 0.9008 1.747 22.29 55 0.9511 1.769 28.58
3 16 0.7516 2.699 8.82 32 0.9004 2.593 18.09 44 0.9509 2.639 23.89

2.4
1 54 0.7526 1.000 32.01 97 0.9004 1.000 50.38 129 0.9510 1.000 61.47
2 34 0.7501 1.860 20.99 68 0.9001 1.842 37.54 92 0.9501 1.856 48.10
3 23 0.7526 2.835 14.54 52 0.9008 2.768 29.72 75 0.9511 2.773 40.12

2.0
1 96 0.7512 1.000 55.18 169 0.9003 1.000 86.47 224 0.9501 1.000 105.75
2 59 0.7512 1.941 35.29 119 0.9007 1.911 63.88 161 0.9501 1.914 81.81
3 38 0.7511 2.919 23.78 89 0.9007 2.874 49.84 126 0.9500 2.870 67.20

1.6
1 242 0.7509 1.000 132.13 433 0.9005 1.000 207.23 561 0.9500 1.000 252.84
2 145 0.7510 1.987 83.38 292 0.9009 1.983 150.33 396 0.9507 1.979 193.54
3 90 0.7505 2.988 54.92 210 0.9000 2.977 115.48 300 0.9505 2.968 156.92

Table XI. The Value of n for k = 20, 30, 40, with the Estimated P(CS), E[S] and E[N] under the Slippage
Configuration

P∗ = 0.75 P∗ = 0.90 P∗ = 0.95
k δu θ∗ t n P(CS) E[S] E[N] n P(CS) E[S] E[N] n P(CS) E[S] E[N]

20

0.02 1.408
1 1313 0.7515 1.000 697.96 2114 0.9006 1.000 1011.45 2675 0.9502 1.000 1200.59
2 914 0.7500 1.990 508.59 1563 0.9000 1.987 802.22 2025 0.9503 1.988 984.85
3 688 0.7501 2.984 399.72 1282 0.9001 2.975 682.53 1697 0.9501 2.974 862.64

0.05 2.053
1 219 0.7503 1.000 128.55 360 0.9001 1.000 187.63 460 0.9503 1.000 223.38
2 162 0.7511 1.873 95.84 282 0.9005 1.858 151.54 365 0.9502 1.865 185.93
3 127 0.7503 2.804 76.75 239 0.9013 2.755 130.69 313 0.9501 2.751 164.26

0.08 2.739
1 93 0.7515 1.000 56.19 153 0.9001 1.000 82.28 196 0.9502 1.000 98.36
2 70 0.7518 1.767 42.76 123 0.9009 1.745 67.41 161 0.9508 1.730 82.63
3 57 0.7511 2.610 34.88 105 0.9004 2.556 58.71 141 0.9501 2.529 73.80

30

0.02 1.612
1 1008 0.7506 1.000 566.82 1572 0.9000 1.000 797.62 1970 0.9501 1.000 937.60
3 617 0.7509 2.904 364.32 1073 0.9005 2.881 580.80 1378 0.9505 2.878 714.41
4 521 0.7509 3.884 311.75 938 0.9004 3.839 522.30 1251 0.9513 3.826 656.83

0.05 2.579
1 182 0.7515 1.000 109.68 293 0.9006 1.000 155.88 365 0.9500 1.000 183.18
3 123 0.7505 2.586 73.89 213 0.9008 2.528 117.23 273 0.9504 2.523 143.40
4 106 0.7504 3.489 64.04 193 0.9007 3.362 106.78 251 0.9503 3.340 133.36

0.08 3.609
1 79 0.7512 1.000 49.52 128 0.9001 1.000 70.56 164 0.9507 1.000 82.75
3 58 0.7521 2.385 34.57 98 0.9008 2.288 54.27 127 0.9502 2.277 66.38
4 50 0.7502 3.174 30.44 89 0.9006 3.015 49.92 116 0.9502 2.996 61.90

40

0.02 1.816
2 668 0.7503 1.881 390.55 1067 0.9004 1.874 572.14 1344 0.9502 1.878 682.50
4 493 0.7511 3.743 294.11 853 0.9005 3.678 471.16 1101 0.9503 3.661 580.83
6 381 0.7505 5.704 234.38 705 0.9005 5.570 405.29 944 0.9502 5.525 515.81

0.05 3.105
2 134 0.7511 1.675 80.93 218 0.9009 1.639 118.70 269 0.9504 1.667 140.67
4 103 0.7505 3.237 62.94 181 0.9003 3.106 100.09 232 0.9501 3.060 122.55
6 83 0.7503 4.978 51.54 154 0.9009 4.740 87.66 207 0.9501 4.648 110.88

0.08 4.478
2 60 0.7505 1.594 37.69 99 0.9000 1.545 55.51 126 0.9508 1.529 65.93
4 48 0.7511 2.886 30.48 83 0.9014 2.775 47.63 111 0.9506 2.691 58.29
6 42 0.7509 4.571 25.49 72 0.9000 4.156 42.45 100 0.9502 4.102 53.18
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Table XII. The Value of n for k = 50, 60, 70, with the Estimated P(CS), E[S] and E[N] under the Slippage
Configuration

P∗ = 0.75 P∗ = 0.90 P∗ = 0.95
k δu θ∗ t n P(CS) E[S] E[N] n P(CS) E[S] E[N] n P(CS) E[S] E[N]

50

0.02 2.020
2 601 0.7500 1.826 356.61 946 0.9003 1.811 513.78 1187 0.9502 1.819 607.45
5 417 0.7505 4.546 252.15 719 0.9000 4.414 404.59 940 0.9502 4.380 500.20
7 336 0.7509 6.494 209.94 623 0.9004 6.277 359.66 817 0.9505 6.201 454.76

0.05 3.632
2 125 0.7504 1.609 76.47 197 0.9011 1.596 109.79 253 0.9502 1.580 129.84
5 93 0.7505 3.854 56.47 165 0.9012 3.594 90.13 206 0.9503 3.557 109.62
7 81 0.7513 5.708 47.87 145 0.9011 5.204 81.34 190 0.9500 5.022 101.59

0.08 5.348
2 56 0.7511 1.557 36.30 94 0.9006 1.471 52.47 116 0.9505 1.508 61.55
5 45 0.7523 3.493 27.76 77 0.9001 3.314 43.33 98 0.9509 3.047 53.19
7 38 0.7506 5.388 23.29 69 0.9004 4.760 39.21 92 0.9502 4.217 49.93

60

0.02 2.225
3 492 0.7501 2.598 293.46 787 0.9001 2.551 431.97 999 0.9505 2.548 515.85
6 364 0.7502 5.311 223.23 635 0.9003 5.116 360.61 836 0.9506 5.049 445.61
9 287 0.7513 8.230 179.19 534 0.9001 7.884 312.69 716 0.9500 7.748 398.04

0.05 4.158
3 108 0.7502 2.197 65.68 170 0.9008 2.146 95.81 219 0.9501 2.081 114.31
6 89 0.7515 4.515 51.89 147 0.9002 4.105 82.54 192 0.9502 4.005 101.05
9 69 0.7512 6.886 43.09 132 0.9005 6.410 73.58 166 0.9501 6.122 91.99

0.08 6.217
3 48 0.7504 2.118 31.49 84 0.9005 1.924 46.68 104 0.9503 1.908 55.43
6 43 0.7508 4.400 25.09 74 0.9000 3.656 40.69 89 0.9507 3.409 49.75
9 35 0.7517 6.305 21.78 64 0.9011 5.425 36.95 80 0.9506 5.216 45.96

70

0.02 2.429
3 472 0.7520 2.512 279.73 745 0.9005 2.457 406.11 922 0.9503 2.459 480.76
7 334 0.7500 6.051 203.56 585 0.9000 5.769 328.98 751 0.9501 5.676 406.34

10 271 0.7513 8.948 168.63 504 0.9010 8.507 291.53 667 0.9500 8.315 369.17

0.05 4.684
3 103 0.7517 2.150 63.34 166 0.9016 2.052 92.01 207 0.9504 1.992 108.99
7 78 0.7506 4.961 48.74 135 0.9002 4.537 77.31 183 0.9511 4.368 95.23

10 68 0.7501 7.212 42.43 124 0.9003 6.576 70.66 167 0.9501 6.581 87.87

0.08 7.087
3 49 0.7509 2.034 30.90 80 0.9004 1.850 45.16 102 0.9509 1.812 53.59
7 37 0.7505 4.649 23.67 67 0.9002 3.900 39.16 88 0.9518 3.869 47.17

10 35 0.7503 5.936 22.07 62 0.9012 5.301 36.85 80 0.9504 5.798 43.53

Table XIII. The Value of n for k = 80, 90, 100, with the Estimated P(CS), E[S] and E[N] under the Slippage
Configuration

P∗ = 0.75 P∗ = 0.90 P∗ = 0.95
k δu θ∗ t n P(CS) E[S] E[N] n P(CS) E[S] E[N] n P(CS) E[S] E[N]

80

0.02 2.633
4 414 0.7515 3.232 245.68 663 0.9007 3.124 362.92 820 0.9503 3.107 432.04
8 307 0.7511 6.777 188.26 544 0.9000 6.403 305.35 702 0.9504 6.274 376.52

12 242 0.7506 10.660 151.04 453 0.9003 10.015 265.34 617 0.9500 9.761 338.14

0.05 5.211
4 94 0.7506 2.661 57.79 151 0.9008 2.530 84.58 187 0.9502 2.449 100.32
8 74 0.7505 5.364 47.10 125 0.9010 4.872 73.57 171 0.9509 4.804 90.09

12 56 0.7502 9.089 37.79 107 0.9002 7.675 65.75 154 0.9502 7.705 82.25

0.08 7.957
4 47 0.7502 2.730 27.71 73 0.9000 2.199 42.25 95 0.9503 2.259 49.64
8 35 0.7525 4.414 23.66 64 0.9012 3.962 38.47 85 0.9508 4.402 44.28

12 33 0.7505 7.496 20.08 53 0.9013 6.747 34.11 79 0.9502 6.539 40.98

90

0.02 2.837
4 396 0.7502 3.138 237.37 628 0.9003 3.024 347.21 783 0.9502 2.998 411.60
9 288 0.7506 7.510 176.16 510 0.9004 7.021 286.57 659 0.9503 6.824 353.50

13 232 0.7508 11.284 145.32 437 0.9003 10.576 253.19 599 0.9505 10.279 322.21

0.05 5.737
4 90 0.7502 2.620 56.56 147 0.9002 2.425 82.67 180 0.9504 2.405 96.94
9 71 0.7501 5.886 45.13 120 0.9004 5.373 70.65 157 0.9500 5.131 85.98

13 55 0.7511 10.155 36.40 106 0.9002 8.490 63.15 152 0.9502 7.622 80.49
Continued
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Table XIII. Continued

0.08 8.826
4 46 0.7505 2.659 27.37 68 0.9001 2.186 41.15 93 0.9500 2.180 48.48
9 34 0.7516 4.519 23.73 62 0.9007 4.496 36.95 81 0.9500 4.626 42.81

13 31 0.7517 8.287 19.68 53 0.9001 8.084 32.32 73 0.9506 6.246 40.65

100

0.02 3.041
5 361 0.7518 3.834 216.17 575 0.9006 3.642 319.72 724 0.9501 3.590 380.83

10 279 0.7504 8.153 167.27 486 0.9009 7.603 271.38 630 0.9507 7.351 334.67
15 210 0.7502 12.924 134.18 404 0.9004 12.076 236.25 550 0.9503 11.602 301.86

0.05 6.263
5 77 0.7501 3.144 52.23 138 0.9006 2.846 78.00 170 0.9506 2.787 91.53

10 67 0.7501 6.975 42.08 117 0.9002 6.094 67.13 151 0.9501 5.258 83.19
15 57 0.7523 11.807 34.84 109 0.9002 10.059 59.29 135 0.9500 8.363 76.99

0.08 9.696
5 41 0.7509 2.909 26.25 65 0.9021 2.438 39.84 89 0.9502 2.443 46.40

10 33 0.7502 5.123 23.36 54 0.9009 5.426 34.52 79 0.9507 4.627 42.43
15 27 0.7513 10.795 17.76 53 0.9014 9.635 30.92 64 0.9501 6.116 40.19
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