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Abstract 

This paper describes a solution to the following plant- 
controller optimization (PCO) problem: given an au- 
tonomous underwater vehicle (AUV) - with a fixed base- 
line body configuration - that is required to operate over 
a finite number of representative trimming conditions in 
the vertical plane, determine the optimal size of the bow 
and stern control surfaces so that a weighted average J 
of the power required at  trimming is minimized, sub- 
ject to the conditions that: i) a given set of open loop 
requirements are met, and ii) stabilizing feedback con- 
trollers can be designed to meet desired time and fre- 
quency closed loop performance requirements about each 
trimming point. The solution proposed is rooted in the 
theory of Linear Matrix Inequalities (LMIs) and leads 
to efficient PCO algorithms that build on a recently re- 
leased LMI Toolbox. 

1 Introduction 

This paper addresses the problem of integrated design of 
AUV plant parameters and feedback controllers to op- 
timize the vehicle’s performance over a set of operating 
conditions arising in the course of a given mission sce- 
nario. This research topic has been motivated by the fact 
that significant energy savings and increased dynamic 
performance can be obtained if the process of control 
system design is integrated with the design of the vehi- 
cle itself, thus departing considerably from the classical 
approach where the plant structure is essentially fixed a 
priori. 

As a contribution towards the solution of that gen- 
eral problem, this paper formulates and solves the fol- 
lowing simplified problem: given an AUV - with a fixed 
baseline body configuration - that is required to operate 
over a finite set of representative trimming conditions 
in the vertical plane, determine the optimal size of the 
bow and stern control surfaces so that a weighted av- 
erage of the power required at the trimming conditions 
is minimized, subject to the conditions that: i) open 
loop requirements are met and ii) stabilizing feedback 
controllers can be designed to meet time and frequency 
closed loop performance requirements about each trtm- 

*The work of C. Silvestre and A. Pascoal was partially sup- 
ported by the Portuguese PRAXIS XXI Programme under the IN- 
FANTE project. The work of the first author was also supported 
by NATO Scholarship 17/A/94/PO The second author benefited 
from a NATO Fellowship during his 1996-98 sabbatical at the Naval 
Postgraduate School. 

ming point. Open loop requirements include the pos- 
sibility of achieving trim at each operating point and 
meeting a desired degree of open-loop stability. Closed 
loop requirements include maneuverability specifications 
in response to depth commands, hard limits on surface 
deflections, and actuator bandwidth constraints. 

The paper introduces a new methodology to  solve the 
above combined plant / controller optimization problem 
and describes its application to the selection of the op- 
timal size of the bow and stern surfaces for a prototype 
AUV. This work has been strongly influenced by and 
extends previous work described in [4] where the au- 
thors studied the problem of combined plant-controller 
optimization in the related field of aircraft control. The 
methodology proposed is firmly rooted in the field of con- 
trol systems theory and borrows heavily from the areas 
of Linear Matrix Inequalities and Convex Optimization, 
which are the subject of current research 111. 

The key idea in the new methodology for combined 
plant-controller optimization is to cast the problem in the 
form of a new constrained optimization problem where 
the cost J to be minimized is the average power required 
at trimming, and the search is done over the set of feed- 
back controllers which meet open loop and closed loop re- 
quirements. From physical considerations, it follows that 
the cost J can be written explicitly in terms of the con- 
trol surface sizes. Furthermore, the open loop and closed 
loop requirements considered can be expressed as Linear 
Matrix Inequalities (LMIs) [l] that are also functions of 
the surface sizes. Thus, one is left with the problem of 
minimizing a certain function of the surface sizes, while 
satisfying a finite set of LMI constraints. This prob- 
lem is solved numerically by resorting to efficient convex 
optimization algorithms that are the basis of a recently 
released LMI Toolbox for use with Matlab’. 

The paper is organized as follows. Section 2 describes 
a general model for a prototype AUV in the vertical 
plane. Section 3 defines the concept of trimming trajec- 
tories, derives the vehicle linearized model a t  trimming 
and computes the average propulsion power required to 
perform a given mission scenario. Section 4 discusses 
open loop and closed requirements and derives the corre- 
sponding LMI formulation. Finally, Section 5 introduces 
the constrained optimization problem that is the main 
focus of this paper, indicates its numerical solution and 
describes a design example. 

Due to space lzmitatzons, the presentation i s  brief and 

lMatlabTM is a trademark of the Mathworks Inc. 
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many details are omitted. The reader is referred to [7] 
for a complete treatment of the plant / controller opti- 
mization problem summarized here. 

2 AUVModel 
This section introduces the dynamic model of the IN- 
FANTE AUV depicted in Figure 1, which is a modifi- 
cation of the prototype MARIUS AUV described in [5 ] .  
The vehicle is 4.5 m long, 1.1 m wide, and 0.6 m high. 
Propulsion is assured by two main back propellers. Two 
rudders for vehicle steering in the horizontal plane are 
mounted directly aft the thrusters. For diving maneu- 
vers, the vehicle is equipped with two pairs of all mov- 
ing control surfaces (bow and stern planes). Following 

Figure 1: The INFANTE AUV 

standard practice, the equations of motion of the AUV 
are developed using a global coordinate frame { I }  and a 
body-fixed frame { B }  that moves with the vehicle. For 
simplicity of presentation, we restrict the vehicle motion 
to the vertical plane. The following notation is required: 

p = [z, z]’ - position of the origin of { B }  measured 
in { I }  ; 

v = [U, w]’ - velocity of the origin of { B }  relative 
to { I }  , expressed in { B }  (i.e., body-fixed linear 
velocity) ; 

8 - pitch angle that describes the orientation of 
frame { B }  with respect to { I }  ; 

q - angular velocity of { B }  relative to { I }  ; 

q; = [U, w, q]’ - extended vehicle velocity vector in 
the vertical plane. 

Let 6 := [6b,6,]’ denote the vector of bow and stern 
plane deflections, and let T denote the thrust generated 
by the main propellers. With this notation, the rele- 
vant dynamics and kinematics of the AUV in the vertical 
plane can be written in compact form as [6] 

M R B , , ~  +CRB,(&)& = rv(qw,qu,8,6,T) (1) 

0 = q;  i = -wine + wcose (2) 
where r ,  denotes the vector of external forces and mo- 
ments, and MRB, and CRB, denote the rigid body in- 
ertia matrix and the matrix of Coriolis and centrifugal 
terms, respectively. The vector r ,  can be further decom- 
posed as 

~w(Pw,&J,~,6,T)  = r V , . & ( f 4  +7u,,,j(Pvrilu) + 
7 w s u r . ,  ( c l w ,  6 )  + 7 W , , < , d U  (4w, 6 )  + 7,  ,,,.<, 1’(T) 

where ru,.,st denotes the (restoring) forces and moments 
caused by gravity and buoyancy, and is the added 
mass term. The term r,,,ur.f captures the effects of the 
deflections of the control surfaces, rub+, consists of the 
hydrodynamic forces and moments acting on the ve- 
hicle’s body, and rwr,,.,,,, represents the forces and mo- 
ments generated by the main propellers. The following 
notation will be used in the text: ut = (u2 + w2)lI2 
is the the absolute value of the linear velocity vector, 
LY = arcsin(w/wt) is the angle of attack, and y = 6 - a 
is the flight path angle. 

The problem addressed in this paper required that the 
vehicle model be parameterized in terms of the sizes of 
the bow and stern planes. This was done by assyming 
that: 

0 the cord c and length d of the control surfaces are 
such that their aspect ratio AR = d / c  is constant. 

the control surfaces have a constant profile. 

A parameterized model of the vehicle has been computed 
by modifying the original model for the MARIUS AUV 
described in [6] that was derived from first principles of 
physics and experimental hydrodynamic data obtained 
in tank tests with a Planar Motion Mechanism (PMM). 
The methodology adopted consisted of subtracting the 
estimated effect of the original surfaces and adding the 
estimated effect of the new ones. The estimates were 
based on theoretical predictions using thin airfoil theory 
and experimental airfoil data. 

3 Trim points. Linearized vehicle models 
Given the nonlinear model of the vehicle in the vertical 
plane, it is important to compute the corresponding set 
of equilibrium (also denoted trim) points, that is, the set 
of input and state variables for which the net sum of the 
forces and moments acting on the vehicle is zero. From 
(I), an equilibrium point is a vector (q,,, , 6bo,  6,, , e,, To) 
that satisfies CRB,, (awc, kw0 - 7, (0, ilvo , 0, , 6, , To = 0. 
In the equation, quo = (U, ,W, ,~,)’ .  It is assumed that 
the inputs are restricted by physical constraints that are 
known in advance (e.g. the stall angles for the control 
surfaces and the maximum thrust available as a function 
of forward speed). 

It is straightforward to show that the only equilibrium 
points of the AUV in the vertical plane are those that 
correspond to straight line trajectories, which can be pa- 
rameterized in terms of the total speed ut and flight path 
angle y [6]. Given desired values of ut, and 7, it is possi- 
ble, using equation (l), to determine if a corresponding 
trimming condition is achieved and in the affirmative 
to compute the corresponding surface deflections 6 ,  and 
thrust q,. Due to the existence of two control surfaces, 
however, the solution is not unique and therefore an ad- 
ditional constraint must be imposed on the state or input 
variables. One solution consists of fixing the angle of at- 
tack a. This is of little practical utility, since the angle of 
attack is hard to measure in practice. The preferred ap- 
proach is to set the deflection of the bow planes to zero at  
trimming, since this condition is easily enforced in prac- 
tice by including a ”washout” in that variable during the 
control design phase. In the first case, straightforward 

. 
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algebraic manipulations show that the values of the bow 
and stern plane deflections can be written as 

1 
&bo = (a0 7 ut0 7 70) ; 6so  = 'K 6, (a0 7 V t o  7 " l o )  

Cb CS 

where &,(.), and K s S ( . )  are nonlinear functions of the 
state variables and Cb and <, denote the sizes (areas) 
of the bow and stern planes, respectively. Notice how 
the deflection at trimming varies with the inverse of the 
surface sizes. 

In the second case, the dependence of the stern plane 
deflection on the trimming point can still be wrjtten in 
closed form as 6,, = Ks, (-yo, uto, 6,  CS), where Kb,, (.) is 
a nonlinear function of the trimming variables yo and 
vio and the control surface areas and CS.  However, 
the control surface sizes do not factor out in as simple a 
manner as in the previous case. Close exam of the above 
equation reveals that it can be locally approximated by 
a first order Taylor expansion in the variable only, 
to obtain 

where (bo and to are nominal values about which the 
expansion is done. Figure 2 compares the actual and 
approximate values of the stern plane deflection at trim- 
ming for the case where vto = 1.5 m/s and "lo = 15 deg. 
The solid line is the approximation computed about the 
nominal values 6, = Cso = 0.4 m2. The dashed lines are 
practically coincident and represent the actual function 
obtained for (bo E (0.3,  0.4, 0.5, 0.6, 0.7) m2. As seen 

Figure 2: Stern plane deflection at trimming and its first 
order Taylor approximation. 

in the figure, the approximation is quite good even over 
a large interval of stern plane areas and is fairly inde- 
pendent of the bow plane area. Identical behaviour is 
obtained. for different trimming points. Using this ap- 

given trimming point 6, < d,,,,, can be locally written 
as 

proximation, a constraint on the stern surface area for a 

Rk,, (Cs) := 

< 
Cs (K:s (70 7 w t ~  7 [bo 7 [ S O  ) - 6sIIlax) 

-Kis (70 7 ut0 7 <bo , <SO) 
which is a linear inequality in the stern control surface 
area C,. An identical linear inequality Rt,,,,,(&) is ob- 
tained for the additional constraint 6, > 6,,,,,,,. 

Consider now a mission scenario where it is required 
that the AUV go through a finite set of trimming tra- 
jectories, each trajectory being allocated a time duration 

that is a given percentage of the complete mission time. 
Then, it is important to compute the average power that 
is spent in trimming the vehicle at those cruising condi- 
tions as a function of the control surface sizes. By defin- 
ition, and assuming that the vehicle's angle of attack is 
sufficiently small, the thrust power Pt at trimming equals 

the development above, the thrust Tt at trimming can 
be approximated by 

pt (yo , uto, Cb I Cs) = Tt (70 7 u t o  I Cb 7 5s )ut" where, in light of 

%(Yo , V t , ,  , Cb,  c's) FT("l(1, ut0 7 Cbi Cs, Crl I C l 1 )  

where Fl- is linear in the variables Cb,  Cs, Crl, and 
and depends on the nominal values of CO at which the 
Taylor expansion for dso is done. The average propul- 
sion power J corresponding to a given mission is then 
computed as 

J ( C b i  Cs) = ~ % p ~ ( " l ~ ,  vio, [by Cs), 
2 

where P,"(yA, wt,, , Cb,  C,) is the power required to trim the 
vehicle at the flight condition i specified by 7; and vio, 
and p ,  is the percentage of total mission time that IS 
spent at that trim condition. From the above discussion, 
the approximation to J ( C b , C 8 )  is linear in the variables 

For control system design purposes, we now derive the 
linearized equations of motion of the AUV about its trim- 
ming points. In preparation for the sections that follow 
we parameterize the linearized models in terms of the 
bow and stern control surface sizes Cb and C,, respec- 
tively. In what follows, it is assumed that the AUV for- 
ward speed uto is maintained constant by a dedicated 
controller. In this case, the AUV vertical plane model 
can be written in the form xw = Fv(xv, U,,, 6,  Q),where 
F, is a nonlinear function, xw = (a, q,  8, z)' is the state 
vector, and U, = ( b b ,  6,)' is the input vector. The above 
equations can be linearized about an AUV trimming 
point defined by the flight path angle ̂ /o and total speed 
uto to obtain 

Cb, Cs, Crl, and <l1. 

X w  = A ( ' Y ( j r ~ t o , < b , < s ) X w  + B ( " l o , ~ t o , C b , < s ) %  

where A ( . )  and B(.) are matrices that depend on the 
trimming point and on the control surface sizes. Fur- 
thermore, using the approximations introduced in the 
previous section it can be shown that the linearizations 
can be re-written as 

X W  [Ao + C6bA1 f <bqA2] xw $- [Bo f CbbBl + C6qB2] 

where At = A ~ ( ? ; , , u t o i C b h o , C s o ) ;  Bt = B z ( ' Y o , ~ t o , b o , b o ) .  
Notice the important fact that the approximate lineariza- 
tions show a linear dependence with the variables Cb and 

4 Open and closed loop requirements: an LMI 
formulation. 

We now tackle the problem of AUV control about the op- 
erating points that arise in the course of a given mission 
scenario. The methodology adopted for control system 
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design was 3-1, [3]. The key step in this methodology is 
to convert the usual specifications for command tracking, 
controller bandwidth, disturbance rejection, and robust 
stability specifications into the requirement that the gain 
( 7-1, -norm) of a conveniently defined weighted closed 
loop operator be bounded by a given fixed number. In 

Figure 3: Feedback interconnection. 

what follows, the general set-up and nomenclature in [3] 
is adopted, leading to the standard feedback system of 
Figure 3. In the figure, w is the input vector of ex- 
ogenous signals, 2; is the output vector of errors to be 
reduced, y is the vector of measurements that are avail- 
able for feedback, and U is the vector of actuator signals. 
The generalized plant g consists of the plant to be con- 
trolled, together with appended weights that shape the 
exogenous and internal signals. Suppose that the feed- 
back system is well-posed, and let l,w denote the closed 
loop transfer matrix from w to z. The 3-1, synthesis 
problem consists of finding, among all controllers that 
yield a stable closed loop system, a controller K that 
makes the infinity norm 11l,,11, of the operator GW 
less than a given number y > 0, We remind the reader 
that lll,wll, equals s u p { ~ , ~ ~ ~ ( l , ~ ( j w ) )  : w E %}, where 
umaz(.) denotes the maximum singular value of a matrix. 
The design of a controller to achieve a required closed 
loop H ,  (if at all possible) can be solved in an elegant 
manner using the theory of Linear Matrix Inequalities 
(LMIs) [l]. 

Let B admit the realization 

j. = Az+B,,,w+B,u .;( z = Cx+Du 
y = x  

where x E sn, w E Sm, U E %q, and z E V .  As- 
sume that all the states are available for feedback, the 
pair (A ,&)  is stabilizable and that matrix D has full 
rank. Then, there exits a state feedback controller K 
such that //l,wll, < y if and only if there exist a sym- 
metric positive definite matrix X E Rnxn and a matrix 
W E %qxn  such that the linear matrix inequality (LMI) 
R & ( X , W , y )  < 0 holds, where R,(X,W,y)  is defined 
by 

1 .  A X ,  + B,W + X,AT + W T B T  B,, X,CT + W T D T  
-71 DT 

C X ,  -I DW D -71 
(4) 

If the LMI is feasible, a state feedback gain K is obtained 
as K = WY-l .  In view of of the discussion in the pre- 
vious sections, the variables above should be viewed as 

[ 

functions of the vehicle's trimming point and the size of 
the control surfaces. However, the approximations intro- 
duced before guarantee that they depend linearly on the 
variables f& and &. 

Using the LMI framework for control system design, 
it is possible to set-up a finite number of simultaneous 
H ,  constraints to be satisfied at each operating point. 
This is simply done by stacking together the LMIs for 
the different operating points and viewing the inequality 
that results as a larger LMI to be satisfied. 

In some applications, the AUV maneuverability re- 
quirements are only important when the vehicle is in- 
specting the seabed in straight, level flight since in this 
case the vehicle must be able to change depth quickly 
in order to avoid unforeseen obstacles. In t b s  case, it is 
interesting to incorporate the additional constraint that 
the controller developed for the straight level maneuver 
stabilize the vehicle about the other operating points. 
The additional constraints can be easily cast as an LMI 
denoted R, where, for the sake of simplicity, the LMI 
arguments are omitted. Again, this LMI will be linear 
in the variables i b  and (,. 

Open loop constraints can also be easily incorporated 
in the design process by using the concept of LMI re- 
gions in the complex plane, as introduced by Chilali and 
Gahinet [2]. A simple example of an LMI region arises 
in the case where the eigenvalues of the matrix A are 
required to lie in the region defined by Re(z)  < -a. It 
is well known that this property is satisfied if and only 
if there exists a symmetric positive matrix X,Z > 0 that 
verifies the generalized stability Lyapunov inequality 

R,l(A, Xol,  U )  := ( A  + d ) X , l  + X,i(A + ~ 1 ) ~  < 0. (5) 

is satisfied. Again, open loop constraints can be easily 
cast in the LMI framework to force the AUV to display 
adequate open loop stability over a finite set of operating 
points. 

5 Plant / Controller Optimization. A design example. 
Equipped with the mathematical tools described, it is 
now possible to set-up a combined plant controller op- 
timization problem where the objective is to minimize 
the functional J ( C b ,  C S )  subject to the conditions that a 
finite set of LMIs R,, R,, and R,i as well as the linear 
constraints RT,,,, and R;,,,, are met. Notice that the cost 
J ( C b ,  Cs) depends linearly on the variables c b ,  Cs, Ccl and 

and therefore it is not a linear function of Cb and 
Is only. However, the cost can be made linear by intro- 
ducing two extra variables r]b and 77, and enforcing the 
equalities q, = <; and r] ,  = C i 1  through a slack variable 
that is forced to zero in the minimization process. The 
structure of the particular problem studied here shows 
that this can be achieved by introducing an extra LMI 
constraint relating the above variables; see [7]. At this 
stage, one can resort to efficient interior-point optimiza- 
tion algorithms - that are available under the Matlab 
LMI Toolbox - to minimize a linear cost subject to LMI 
constraints. It is important to point out that the LMIs 
considered are separately linear in c b  and & and in the 
remaining arguments, but not in both simultaneously. 
This difficulty can be overcome by introducing a loop 
that alternatively holds constant the variables Cb, <, and 
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the remaining LMI parameters. See [7] for a complete 
discussion of the resulting algorithm and its implemen- 
tation using the LMI Toolbox. 

We now describe a design exercise in which the tools 
developed in the previous sections were applied to the re- 
sizing of the control surfaces for a prototype AUV to exe- 
cute the following three phase mission: i) Vehicle diving: 
ut = 1.5 m/s, y = -15 deg. Duration: 30% of total mis- 
sion time (TMT); ii) Vehicle on level flight: ut = 1.5m/s. 
Duration: 40% TMT; iii) Vehicle climbing: ut = 1.5m/s, 
y = +15 deg. Duration: 30% TMT. 

The objective of the design was to find the optimal 
size of the bow and stern planes so as to minimize the 
average mission power, subject to the following condi- 
tions: i) the open loop AUV system should exhibit an 
adequate degree of stability as specified by the require- 
ment that the real part of the eigenvalues be less than 
or equal to -0.1 rad/s, ii) the maximum deflection of 
the bow and stern planes at  trimming should not exceed 
15 deg, iii) there should exist a single state feedback con- 
troller that simultaneously stabilizes the AUV about all 
trimming conditions, iv) the resulting controller should 
exhibit satisfactory dynamic behaviour about the level 
flight condition, as measured by the requirements of zero 
steady state in response to depth commands, minimum 
depth command bandwidth of 0.5 rad/s, maximum bow 
and stern plane control bandwidths of 2 rad/s, and gain 
and phase margins of 8 db and 35 deg in the bow and 
stern plane channels, respectively. As usual, the crucial 
step in the design process was to convert the dynamic 
requirements into an H ,  constraint, as expressed in the 
design weights and the constant y. This was done by 
selecting a combination of bow and stern planes and car- 
rying out a separated controller design exercise until all 
dynamic specifications were met, after which the design 
weights and the value of y were frozen in the optimiza- 
tion process. 

The results of the constrained optimization procedure 
are summarized in figure 5, which shows the open loop 
and closed loop constraints as well as the evolution of the 
optimal search procedure. This figure should be exam- 
ined together with figure 4, which presents the bound- 
ary curve roo above which the surface sizes must lie in 
order to guarantee that an Nm controller exists that 
meets the design specifications. In this design example 
the minimum of the cost J is attained in roo. The strip 
region inside the two horizontal lines denoted I?+ and I? 
corresponds to the open loop degree of stability require- 
ment. Different scenarios will of course lead to other 
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Figure 5: Evolution of the cost J .  

optimal surface sizes, which are therefore mission depen- 
dent. Figures 4 and 5 illustrates very clearly that in 
some circumstances it is advantageous to use both bow 
and stern planes, instead of simply stern planes. 

6 Conclusions 
This paper introduced a new methodology for the inte- 
grated design of AUV plant parameters and feedback 
controllers to meet mission performance requirements 
with minimum energy expenditure. The results obtained 
indicate that the methodology developed holds great 
promise as a powerful tool to study tradeoffs among 
possibly conflicting AUV performance requirements as 
a function of plant parameters. 
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