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ABSTRACT

The collection of signals intelligence via passive direction finding and geolocation of radio
frequency signals is of great concern to the military for its contribution to the development
of battlespace awareness. Basic subspace direction finding techniques provide a method
of determining the direction-of-arrival (DOA) of multiple signals on an array of receivers,
but they have an inherent limitation in that they are narrowband by design.

The impact of various signal frequencies, bandwidths, and signal to noise ratios
present in the source signals received by a sparse array using the multiple signals
classification (MUSIC) subspace direction-finding algorithm are evaluated in this thesis.
Additionally, two performance enhancements are presented: one that reduces the MUSIC
computational load and one that provides a method of utilizing collector motion to resolve
DOA ambiguities.
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Executive Summary

Background
Joint Publication 1-02 defines signals intelligence (SIGINT) as intelligence derived from
communications, electronic, and foreign instrumentation signals [1]. Direction finding and
geolocation are important parts of that intelligence; passive direction finding is the process
of estimating an emitter’s direction from the receiver’s position, and geolocation is then the
process of using one or more direction-of-arrival (DOA) results in combination with known
information about receiver or emitter motion and relative geometry in order to determine
the emitter’s position in terms of an earth-fixed coordinate system. For the military, obtain-
ing location information for emitters is a vital part of understanding an adversary’s order
of battle and force strength.

In the future, the signal environment will only become more dense, and the signals
themselves will become lower power and wider bandwidth. These trends mean that sig-
nals will become more difficult to detect and more likely to overlap in time and bandwidth.
Airborne and space-based collectors are ideal for conducting SIGINT because they provide
more area coverage and their motion enables finer location resolution than terrestrial sys-
tems, but they have limitations on the size and number of receivers which can be carried.
The large coverage area exacerbates the possibility of signal overlap, and the distance can
make detection of low power signals difficult. Subspace algorithms provide an ability to
resolve multiple overlapping signals, but many are based on a narrowband assumption or
require strict receiver antenna array arrangements, which can limit their usefulness [2], [3].

Objective
In order to evaluate its performance with wideband signals and sparse arrays, the multiple
signals classification (MUSIC) algorithm of [2] has been implemented and examined.
MUSIC was one of the first subspace algorithms to be developed; many modifications
and improvements to it have been made since its introduction [4]–[6], but an analysis of
the performance of the basic algorithm will provide a baseline reference to which other
methods can be compared. Additionally, it is a goal of this thesis to evaluate how wideband
the input signals can be before the algorithm breaks down. Two enhancements to the al-
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gorithm have also been developed: a method of improving the computational performance
of MUSIC without sacrificing resolution, and a method of utilizing collector motion to
determine emitter location for an array with ambiguities.

Performance Analysis
For the majority of the analysis, a sparse array with six elements, a large baseline, and no
ambiguities was utilized for the collector. For the emitters, variations of three basic signal
types were modeled: pure sinusoid, linear frequency modulation (LFM), and quadrature
phase-shift keying (QPSK). The evaluation was divided into four areas examining the
effects on the MUSIC results: signal center frequency, bandwidth, DOA, and signal-to-
noise ratio (SNR).

Signals with center frequency other than the collector’s center frequency were found to
have a shifted DOA in the MUSIC results. This shift can easily be corrected, however,
assuming that an accurate estimation can be made of the source signal center frequencies.
A corrected DOA can be determined using the ratio of the collector center frequency to the
estimated source signal’s center frequency.

Signal bandwidth leads to more complicated distortions that cannot be as easily cor-
rected as can signal frequency offsets. The first effect to note is that the amplitude of the
MUSIC response decreases with increased bandwidth, though even at bandwidths up to 40
percent of the center frequency a peak of sufficient amplitude above the background can be
resolved. In testing signals with two widely separated DOAs but significantly overlap in
bandwidth, it was found that MUSIC was easily able to resolve the two signals. A third test
was conducted to determine the performance for wideband signals with close DOAs but
separation in frequency, and MUSIC was again able to resolve the DOAs of two signals.
In this test, however, the signals were imperfectly reconstructed with blending of the two
signals present which became worse with an increase in bandwidth.

A final bandwidth analysis with a third signal which was separated in DOA but over-
lapped in frequency with one of the prior two was then evaluated. It was found that when
the overlap is slight (narrow bandwidth third signal), the DOAs are all able to be resolved
via MUSIC, but when the overlap is large (wide bandwidth third signal), the MUSIC re-
sponse becomes degraded: the two closely spaced signals can no longer be resolved and
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the third signal response can be distorted.

The effect of DOA on the MUSIC response is related to the bandwidth. For sinusoidal
signals, the DOA has little to no impact on the MUSIC response, but for wideband signals
the amplitude of the MUSIC peak can widen and decrease drastically as the offset from
array boresight increases.

The last signal parameter evaluated was the effect of SNR. One might expect that the
MUSIC peak amplitudes would decrease with decreased SNR, and this was found to be the
case. An examination of the statistics of the Monte Carlo simulation reveals more infor-
mation, at low SNRs the mean estimated DOA is still accurate, but the standard deviation
increases drastically. A second evaluation of SNR effects was conducted with two closely
spaced signals, and it was found that the signal DOAs were easily resolvable at 10 dB SNR
and just resolvable at 0 dB SNR, but at -10 dB SNR there was only a single peak present.
A final analysis examined the impact of multiple signals with different SNRs. Here band-
width played a role again in leading to additional distortions beyond those of narrowband
signals. In general, sinusoidal signals could be still be resolved up to a 20 dB SNR differ-
ence, but signals with 10% bandwidth could only be resolved up to a 10 dB difference in
SNR.

Computational Enhancement
One of the major limitations of the MUSIC algorithm is that the search over the angular
visible range is computationally expensive. The primary driver of that computation is not
the MUSIC calculation itself, but the fact that the MUSIC calculation must be performed
over a discrete range of possible signal DOAs. In order to obtain a high resolution estimate
of the DOA a small angular step size must be used which means a large number of discrete
angles must be evaluated. A method of reducing the number of discrete angles without
also reducing the resolution would be to run the MUSIC algorithm more than once. On the
first run, a large step size should be used which provides only a rough estimate of signal
direction. Those estimates can then be used to re-run MUSIC with a much smaller step
size over only the angles surrounding each of the signal direction estimates, with the result
of obtaining the high resolution DOA estimate desired. With two signals present, it was
found that a ∼ 30× improvement could be obtained on an azimuth-only evaluation with a

xvii



final resolution of approximately 100 ft at a distance of nearly 200 nmi.

Ambiguity Resolution
Array ambiguities, which arise when the minimum receive element spacing is too large,
are unresolvable for fixed arrays using subspace methods. Ambiguity resolution can be
accomplished, however, when the collector is moving at a known velocity and multiple
collections of the same signal can be obtained. This is because the true DOA will always
point in the direction of the emitter, but any ambiguous DOAs will tend to drift. By track-
ing the intersection points of DOA vectors from subsequent collections, it should easily
be determinable that one set of crossing points remains relatively fixed while another set
drifts. Based on this, a metric was developed which uses the motion of subsequent DOA
intersection points and can provide an estimate of the correct DOA in only three collections.

It was found that this metric was less accurate for wideband and low SNR signals be-
cause in those cases the estimated DOAs of each collection were less accurate due to the
distortions discussed in the section on performance analysis. Based on an observation that
the DOA intersection points of the true DOAs tended to jitter around the true locations, a
more robust metric which uses the center point of two subsequent DOA intersections was
developed; this method can provide an estimate of the correct DOA in four collections.

Conclusion
It is hoped that the results of this thesis, which are a first step towards deeper investigations
into the subspace direction-finding algorithms, will enable an expansion of the geolocation
research which has been on-going at the Naval Postgraduate School to include more anal-
ysis beyond the more traditional two-receive element geolocation methods. The ability to
accurately utilize MUSIC in moderate to low bandwidth environments, despite it being de-
rived specifically for sinusoidal signals, was also demonstrated in this thesis. Additionally,
the density of radio frequency (RF) emitters is increasing around the world, and with that
comes an increase in the likelihood of receiving overlapping signals. Methods of accurately
resolving and geolocation those overlapping signals are likely to be of interest to the mil-
itary in the future, which means that now is the time for research into subspace direction
finding and other promising methods of multiple signal geolocation.
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CHAPTER 1:

Introduction

1.1 Background
With radio-frequency signals, one is frequently only concerned with the signal content, or
message. There are numerous situations and signal types, however, where descriptive in-
formation about the signal may be more useful. With radar, the timing and doppler return
of a signal provide information about a target. With beacons, the desire is to determine
one’s position with respect to one or more fixed emitters, or an emitter’s location with
respect to a known position. For the military, Joint Publication 1-02 defines signals in-
telligence (SIGINT) as intelligence derived from communications, electronic, and foreign
instrumentation signals [1]. By examining received radar pulses, determinations can be
made about the type of radar, its location, and sometimes even the specific piece of equip-
ment; similarly, through evaluation of received communication signals, determinations can
be made about an emitter’s location and sometimes about the content being transmitted.
Passive direction finding is the process of estimating an emitter’s direction from the re-
ceiver’s position, and geolocation is then the process of using one or more direction-of-
arrival (DOA) results in combination with known information about receiver or emitter
motion and relative geometry in order to determine the emitter’s position in terms of an
earth-fixed coordinate system. For the military, obtaining location information for emitters
is a vital part of understanding an adversary’s order of battle and force strength.

In detecting a signal and obtaining an accurate geolocation, numerous complications can
arise. Low power and short duration signals are both more difficult to detect. Additionally,
the task of geolocation is complicated when multiple signals overlap in time, frequency, or
direction. Airborne and space-based collectors are ideal for conducting SIGINT because
they provide more area coverage and their motion enables finer location resolution than
terrestrial systems, but they have limitations on the size and number of receivers which
can be carried. While the time overlap of short-duration signals are generally unlikely, the
likelihood increases with increased collector coverage area and in particularly signal-dense
environments. Many of the current algorithms for separating overlapping signals are based
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on a narrowband assumption or require strict receiver antenna array arrangements, which
can limit their usefulness [2], [3].

1.2 Objectives
The implementation and performance of the multiple signals classification (MUSIC) sub-
space direction-finding algorithm with a sparse receive antenna array is examined in this
thesis. MUSIC is based on a narrowband assumption, and it is a goal of this thesis to
evaluate how wideband the input signals can be before the algorithm breaks down. Basic
representative types of narrowband and wideband signals are utilized which may overlap
in time, frequency, and direction and the impact of those overlaps and interactions on the
ability to accurately determine an emitter’s DOA is evaluated. Specific focus is made on
the effects of signal frequency, bandwidth, DOA, and signal-to-noise ratio (SNR) on the
MUSIC output. Additionally, a method of improving the computational performance of
MUSIC without sacrificing accuracy is presented. Finally, a method of utilizing collec-
tor motion to determine emitter location in the presence of multiple ambiguous DOAs is
developed for the case of a sparse array with inherent ambiguities.

This analysis was conducted solely as a software simulation written in MATLAB. In
addition to implementation of the MUSIC algorithm, test signal generation, a least-squares
emitter location estimation algorithm, and a signal reconstruction algorithm based on the
estimated DOAs have also been implemented. The code is included in Appendix B for the
reader to reference or utilize for future work.

1.3 Related Work
The mathematics behind traditional passive direction finding and geolocation have been
presented in numerous papers and reports. Specifically for this thesis, the clear presentation
of the methods of geolocation for two receiver elements in reports by Professor Herschel
Loomis [4] and Michael Price [5] were invaluable to gaining an understanding of the basic
direction finding and geolocation processes and the uncertainties involved.

In order to determine the DOA of multiple simultaneous signals, a receiver antenna
array with three or more receive elements is required. There are two primary methods
of performing the analysis of such an array—maximum-likelihood and signal subspace
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methods. The maximum-likelihood estimator is based on a minimization of the likelihood
function, which is a non-linear optimization problem and is generally computationally in-
tensive to calculate, while subspace methods are based on the eigen-decomposition of the
signal covariance matrix, for which an estimate is relatively simple to compute [6]. The
MUSIC method of direction finding developed by Schmidt [2] was one of the first sub-
space methods proposed; since its proposal there have been multiple modifications to the
MUSIC algorithm to improve resolution or reduce computational complexity, most notably
Barabell’s root-MUSIC [7]. The advantages of the original MUSIC algorithm are that it is
relatively simple to understand and can be applied to receiver arrays of arbitrary spacing,
though it is still computationally intensive because it relies on a search across all possi-
ble signal DOAs. Root-MUSIC avoids this search by examining the roots of the spectrum
polynomial, but is only applicable for uniformly spaced arrays. Another method proposed
by Roy and Kailath called estimation of signal parameters via rotational invariance tech-
niques (ESPRIT) [3] is a popular subspace method which is contingent on a matched pair
of arrays of which the sensors all have identical displacement vectors; like root-MUSIC
it also avoids a computationally intensive search, but it is a poorer choice for aerospace
applications due to the requirement for twice as many receivers as the original MUSIC
algorithm.

Two drawbacks to all of the subspace methods listed above are that they are non-
coherent, meaning that they will not work if two or more of the received signals are highly
correlated, and they are designed to work with narrowband signals. The first drawback can
be overcome via application of spatial smoothing [8], [9]. The second drawback has led
to the development of various alternative processing methods. Two similar methods which
derive a composite covariance matrix through a combination of interpolations of the array
manifold for different frequency bands were developed by Weiss, Doron, and Friedlan-
der [10], [11]. Any of the subspace methods listed in the previous paragraph can then be
applied to this modified covariance matrix; these methods also have the added advantage
of being coherent and able to handle correlated signals.

In terms of performance analysis, Kaveh and Barabell [12] conducted an in-depth sta-
tistical analysis of the resolution threshold with respect to SNR of two very closely spaced
narrowband plane waves, and Swindlehurst and Kailath [13] investigated the performance
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of MUSIC in light of the uncertainties inherent in estimation of the array covariance matrix
and the array manifold. An analysis of the performance of a sparse array in the presence
of wideband signals of varying frequencies is not readily apparent in the literature, though
an understanding of these cases is useful for the implementation of a subspace algorithm
in an airborne or spaceborne environment and for being able to make informed decisions
about appropriate selection of a wideband correction method, if one is required at all for
the target signals-of-interest.

1.4 Thesis Organization
Some background information on the importance of emitter location, especially for the
military, was provided in this chapter. The thesis objective was also presented as was
related research on which this thesis builds.

The mathematical algorithms upon which the thesis work relies is discussed in Chapter
2, Emitter Location Processing. First presented are the basic types of direction finding pro-
cessing with one or two receive antennas, followed by a discussion of geolocation methods.
The MUSIC algorithm and the underlying concepts of the matrix pseudo-inverse, eigen-
decompositions, and covariance matrices are then detailed. A subspace visual depiction of
the MUSIC algorithm is also provided to assist with understanding the algorithm from a
geometric perspective.

In Chapter 3, MUSIC Performance Analysis, an in-depth analysis of the MUSIC al-
gorithm’s response to variations in the frequency, bandwidth, DOA, and SNR of a set of
standardized test signals is provided. In particular, situations where the algorithm breaks
down and the results are degraded or distorted are pursued and analyzed for their most
likely causes.

In Chapter 4, MUSIC Performance Enhancements and Limitations, two enhancements
to the MUSIC algorithm and some of the limitations inherent in a real-world implementa-
tion are provided. The first enhancement is a method of reducing the computational com-
plexity without loss of resolution, and the second is a method of using collector motion to
resolve array ambiguities.

In Chapter 5, Conclusion, the analysis conducted, its significance, and recommendations
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for future work are discussed.

In Appendix A, Subspace Processing Specifics, the differences and similarities of time-
domain and frequency-domain methods of subspace processing as well as considerations
for the implementation of MUSIC processing at intermediate frequencies are discussed. In
Appendix B, MATLAB Code, the MATLAB code used to implement the MUSIC algorithm
and conduct emitter geolocation is provided.
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CHAPTER 2:

Emitter Location Processing

2.1 Basic Direction Finding

There are four primary methods of passively determining the DOA of signals when only
one or two receivers are utilized: angle-of-arrival (AOA), interferometry, time difference-
of-arrival (TDOA), and frequency difference-of-arrival (FDOA). The following paragraphs
will expand on the processing methodologies for each in two dimensions; the expansion to
three dimensions is straightforward. The methods are listed below in order of increasing
processing complexity.

AOA requires the least amount of signal processing, but it is contingent on the use of a
high-gain, narrow-beamwidth receiver. The estimated signal DOA is simply the direction
in which the receiver is pointed, or scanned in the case of a phased array antenna. AOA
is also unique among the direction-finding methods for only requiring one receiver; it is
historically referred to as radio direction finding [4].

Interferometry could also be called phase difference-of-arrival, because the phase dif-
ference of the signal incident on two or more receiving elements is exploited to determine
the DOA [5]. A depiction of the two-receive element case in two dimensions, where the
distance between receive elements (R1,R2) in the array is d, is provided in Fig. 1. The
emitter (E) location is defined in terms of polar coordinates with distance r and angle from
receiver array broadside θ , which is defined from a common origin point of the array. Ad-
ditionally, the emitter is assumed to be in the far field (r >> d) with the signal arriving
at the receivers as a plane wave. Unless the emitter is directly broadside to the receivers
(θ = 0◦), this plane wave will arrive at one of the receivers before the other, resulting in a
phase difference φ at each of the receiving elements. The path difference δ which the wave
travels to reach the second receiver is related to the DOA θ and the receiver separation d

by the relationship δ = d sinθ . From this, the phase difference can be determined as

φ = kδ = 2π
d
λ

sinθ , (2.1)
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where the wavenumber k = 2π/λ and λ is the wavelength; (2.1) also assumes that the
signal frequency and wavelength do not change during the additional transit time. Deter-
mining the DOA is then simply a matter of solving for θ in (2.1) [5]. One of the primary
drawbacks of this method is that since the phase is cyclical over φ ∈ [−π,π), the maximum
unambiguous spacing between elements over θ ∈ [−90◦,90◦] is d = λ/2. At separations
larger than this, the number of ambiguities present will depend on d, λ , and θ .

Figure 1. Two-element interferometer, after Ref. [5].

TDOA takes advantage of the same difference in path length as interferometry except
that the time difference τ is being utilized vice the phase difference. For TDOA, the path
difference is defined as δ = cτ . Solving for θ directly as was done in the interferometric
case limits τ to a narrow interval in order to avoid phase ambiguities; instead one can treat
the emitter’s location as an unknown position (xe,ye) and express the path difference as [4]

δ =

√(
xe +

d
2

)2

+ y2
e−

√(
xe−

d
2

)2

+ y2
e , (2.2)

assuming that the receivers are equidistant from the origin and lie on the x-axis. Equation
(2.2) can be re-arranged to the form [4]

1 =
x2

e

δ 2

4

− y2
e

d2−δ 2

4

, (2.3)
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which is recognizable as the formula for a hyperbola. This hyperbola, known as an
isochrone, connects all the possible emitter locations which result in the same TDOA;
the proper leg of the hyperbola over θ ∈ (−90◦,90◦) can be determined by the sign of the
path difference. An example of a set of isochrones is presented in Fig. 2. In this manner,
the only practical limit to receiver spacing lies in ensuring that both receivers can still re-
ceive the same signal wavefront at approximately the same power, and receivers can thus be
spaced much further apart than λ/2. The TDOA method of direction finding is generally
only applied by itself to signals which have characteristics enabling precise time-of-arrival
determination such as radar pulses.

Figure 2. Example set of TDOA isochrones, from Ref. [4].

Rather than being based on the path difference, FDOA arises from an artifact of receiver
motion during signal collection – Doppler effect. Since the two receivers have different
velocities relative to the emitter, a difference in Doppler frequency can be determined and
exploited to assist in geolocation [5]. Making the assumption that the emitter is not moving,
we find that the Doppler shift at one receiver is the product of the frequency with the ratio
of the closing velocity with the speed of light: ∆ f = f vclosing/c. The FDOA γ is then
the Doppler difference between the two emitters, γ = f (vclosing,1− vclosing,2)/c. Since the
closing velocity can be expressed as the dot product of the receiver velocity and the unit
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Figure 3. Example set of FDOA isodops, from Ref. [4].

vector in the direction of the emitter, in the x-y plane the FDOA can be expressed as [4]

γ =
f
c

(
vx(xe + s)+ vyye√

(xe + s)2 + y2
e
−

vx(xe− s)+ vyye√
(xe− s)2 + y2

e

)
, (2.4)

under the assumption that the receivers have the same velocity vector and are both on the
x-axis at distance s from the origin, and where vx and vy are the closing velocities in the
x- and y-directions. The curves connecting points of equal FDOA are termed isodops.
While not obvious from (2.4), this equation defines a leminscate, or “two-leafed rose,”
when the receivers are moving along the x-axis, which is illustrated by the example set
of isodops in Fig. 3; when the receivers are moving along the y-axis, a “four-leafed rose”
shape arises [5]. While a single FDOA isodop does not provide an indication of signal
DOA like a single isochrone from TDOA or interferometry, it is highly useful in improving
the position accuracy when used with an isochrone.

2.2 The Cross-Ambiguity Function
When either the transmitter or receivers are moving, the Doppler difference in the received
signals prevents the determination of TDOA via direct correlation, and the cross-ambiguity
function (CAF) must be used to estimate both TDOA and FDOA simultaneously. The
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generalized form of the CAF is [14]

AF(τ,γ) =
∫ T

0
s1(t)s∗2(t + τ)e− j2πγt dt, (2.5)

where s1 and s2 are the analytic signals at the two receivers, ∗ indicates the complex conju-
gate, and τ and γ are the possible TDOA and FDOA values over which the analysis is con-
ducted. The estimated TDOA and FDOA of the collected signal will be where |AF(τ,γ)|
has a peak [14]. The TDOA and FDOA results of the CAF improve in resolution with
increases in the signal bandwidth and the collection duration, respectively; thus, the rela-
tively long collection durations possible on continuous wave signals also make them prime
candidates for analysis via CAF due to the fine FDOA resolution [14].

2.3 Position Estimation
A set of DOA estimates obtained from any of the methods above can be combined to
estimate the emitter’s location. In three-dimensional space, a minimum of three DOAs is
required for a position estimate, though two can be used with an assumption that the emitter
is located on the surface of the earth. Use of more DOA measurements will result in an
over-constrained solution; however, due to noise and measurement and timing inaccuracies,
the DOAs will not all intersect at a single point. In such a case a least-squares solution is
desired, which determines the point of minimum residue. Since their defining equations
((2.3), (2.4)) are non-linear, the traditional solution using TDOA, FDOA, or CAF results is
to derive a linear approximation in the vicinity of an estimated position and use an iterative
method such as Newton-Raphson to converge on the local minima [4].

2.4 Subspace Methods of Direction Finding
When the possibility exists of q signals being simultaneously incident on a collector, the
individual signal DOAs generally cannot be determined unless the collector employs an
array of p receivers, where p > q. The previously discussed direction-finding methods
are designed for use on a single signal incident on two receivers and cannot be directly
applied; therefore, alternative methods which can simultaneously process information from
all p receivers are desirable. The subspace direction-finding methods comprise one set of
these alternative techniques. For a generic situation with q signals and p receivers, the
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sum-of-signals at each receiver can be viewed as the vector multiplication problem

x = As+w, (2.6)

where x is the p-length vector of received signals, A is the signal steering matrix (often
referred to as the array manifold), s is the q-length vector of source signals, and w is the
p-length additive noise process [15]. For the azimuth-only case, (2.6) can be expanded as


x1(t)

x2(t)
...

xp(t)

=


a1(θ1) a1(θ2) · · · a1(θq)

a2(θ1)
. . . ...

... . . . ...
ap(θ1) · · · · · · ap(θq)




s1(t)

s2(t)
...

sq(t)

+


w1(t)

w2(t)
...

wp(t)

 (2.7)

to highlight the structure of the steering matrix, where a j(θi) is the phase shift of the ith
source signal at the jth receiver. It should be noted that while (2.7) is expressed as a time-
domain relationship, it can just as easily be expressed in the frequency domain. Addition-
ally, the math is simplified by working with analytic signals; thus, if an arbitrary signal
si(t) is a sine wave at frequency fi, it would be represented as si(t) = Re

{
e j(2π fit−π/2)

}
.

Since the real portion of all of the signals is utilized, it is simpler to drop the Re{} notation
and work with just the complex representation, which is known as the analytic signal. In
this situation, the a(θi) columns of the steering matrix, known as the steering vectors, are
a p-length vector of the phase shifts applied to each signal relative to the distance of the
receive elements from a common origin:

a(θi) =
[
e jφi1 e jφi2 · · · e jφip

]T
, (2.8)

where φi j = kd j sin(θi) for a linear array as defined in (2.1), and d j is the distance from the
jth receive element to the origin. The phase shift is positive for positive d j and θ because
the signal at the jth emitter leads the signal at the origin; in other words the wavefront
arrives at the jth emitter prior to arriving at the origin. The a(θ) steering vectors serve to
map the signals into p-dimensional space, and the range of x will be limited by the range
of A, neglecting the effects of the additive noise w. Given that x and A are known and
s is desired, since p > q the problem is over-determined and a least-squares solution can
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generally be found, understanding that the result will be noisy since w is unknown. Since
θ (and, thus, A) and s are both unknown, a direct least-squares problem cannot be solved.

Subspace direction-finding methods solve this problem by exploiting the eigen-decomposition
of the array spatial covariance matrix [15]. In general, the covariance function between
times t1 and t2 of two signals x(t) and y(t) which are modeled as random processes is
defined as [6]

Cxy(t1, t2) = E
{
[x(t1)−E {x(t1)}] [y(t2)−E {y(t2)}]∗

}
, (2.9)

where E{} is the expectation operator. The covariance of the same zero mean signal x(t)

with itself collapses to the autocorrelation function,

Rxx(t1, t2) = E {x(t1)x∗(t2)} . (2.10)

Since the signals of interest in this direction-finding problem are sums of sinusoids,
they are by definition zero-mean. In matrix form over the received signal vector x then, the
covariance matrix of zero-mean signals can be defined as

Rxx = E
{

xxH} , (2.11)

where H represents the conjugate transpose, also known as the Hermitian operator. It should
be noted at this point that C and R are traditionally used by many textbooks to denote the
covariance and correlation functions, respectively. Most of the subspace method literature
appears to use the R notation but defines it as the array covariance matrix; since zero-mean
signals are generally assumed, the covariance and correlation matrices will be equal, but
the notation can still be slightly confusing. The convention utilized by previous subspace
papers is used in this thesis. In practice, Rxx cannot be determined exactly since the signal
information is not known for all time, but an estimate can be made over a collected sample
set as [6]

RXX =
1
N

XXH , (2.12)

where the rows of X are the collected samples, making X p×N, assuming N samples at
each receiver. Substituting (2.6) into (2.11), we derive the p× p array covariance matrix in
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terms of the transmitted signal and noise

Rxx = E
{

xxH}= E
{
(As+w)(As+w)H}=

E
{

AssHAH +w(As)H +(As)wH +wwH}=
E
{

AssHAH +wwH}= ARssAH +Rww

, (2.13)

where Rss is the source signal covariance matrix and Rww is the noise covariance matrix.
In this derivation, the assumption is made that s and w are uncorrelated. If the further
assumption is made that the noise is additive white gaussian noise (AWGN), then Rww =

σ2
wIp, where σw is the standard deviation of the noise and Ip is the p× p identity matrix.

By construction, Rss is q× q and rank q; pre- and post- multiplying by A makes ARssAH

p× p, but it will still be rank deficient with rank q. The received signal covariance matrix
Rxx and the AWGN σwIp are p× p with rank p, and some conclusions can then be drawn
about the eigen-space of each of the matrices.

An eigenvalue/eigenvector pair are a scalar and a vector which satisfy the equation

Av = λv, (2.14)

where A is an arbitrary square matrix, v is an eigenvector, and λ is the eigenvalue. There are
numerous methods of conducting the eigen-decomposition of matrix which can be found
in many textbooks and will not be reviewed here. It is often useful to think about eigen-
vectors in a geometric sense: let B be a 2×N set of (x,y) sampled measurements which
are randomly distributed over an ellipse, such as a cannon being fired N times and the
cannonball’s landing position being recorded. The covariance matrix of the data would
then be the 2× 2 matrix RBB. This matrix will have two 2× 1 eigenvectors which will
be vectors in the directions of the major and minor axes of the data, and the eigenvalue
associated with the semi-major eigenvector will be larger than that associated with the
semi-minor eigenvector. Additionally, a covariance matrix is always Hermitian symmetric
and positive semi-definite, so the eigenvalues will always be ≥ 0 and the eigenvectors will
be orthogonal. The eigenvalues will also be equal to the variance of the original data in
that direction [6]. If the set of samples in B were all exactly along a line, then one of the
eigenvalues of RBB would be zero since the matrix B has no information in the direction of
the eigenvector associated with the zero eigenvalue (i.e., zero variance); since orthogonal
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eigenvectors form a multidimensional basis, this means there is no information in one of
the dimensions.

Returning to (2.13), since ARSSAH is rank q and is positive semi-definite by construc-
tion, it will have p−q eigenvalues which are exactly equal to zero since a rank deficiency
indicates that there is no information in one or more dimensions. The AWGN, however,
notionally exists in all directions equally with p repeated eigenvalues of σ2

w. This means
that if the eigenvectors of σ2

wIp are matched exactly to the eigenvectors of ARssAH , the
eigenvalues of Rxx will be a combination of the eigenvalues of ARssAH and σ2

wIp. Since
p− q eigenvalues of ARssAH are zero, p− q eigenvalues of Rxx must be equal to σ2

w be-
cause the only contribution in those dimensions is the AWGN. Additionally, assuming the
SNR is greater than 0 dB, the q non-zero eigenvalues of ARssAH are larger than σ2

w and
the contribution from the array covariance matrix will dominate the q largest eigenvalues
of Rxx. Therefore, the received signal subspace can be thought of as having q signal eigen-
vectors (Es) and p− q noise eigenvectors (Ew). This is the basic predicate behind all of
the subspace direction-finding methods, but they differ in how they exploit this relation-
ship [15].

While this derivation was done using AWGN, the same method still applies in the pres-
ence of colored noise. The proof of eigenvalue/eigenvector relationships between Rxx,
ARssAH , and Rww in the colored nose case can be shown via the theory of generalized
eigenvectors [3], and if the noise covariance matrix is known, it can be used to whiten
the receiver data prior to processing [15] and can be used in estimation of the incident
signals [2].

2.4.1 Subspace Position Estimation
As discussed in Section 2.3, TDOA and FDOA require an iterative geolocation method such
as Newton-Raphson because isochrones and isodops are curved contours. The subspace
methods such as MUSIC are more related to basic interferometry with the direction finding
output being a DOA. Since a DOA is essentially a vector with unknown magnitude, a direct
solution can be determined from a set of collections of the signal from the same emitter,
without having to iterate.

With only two collections the position estimation is trivial since it is simply the crossing
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point of two vectors. With three or more collections, the vectors are unlikely to cross at
the exact same position, and a least-squares estimate must be made. For the more general
three-dimensional case, the distance of a point from a line can be defined as [16]

h =
‖d× (a− c)‖
‖d‖

, (2.15)

where a is a point on the line, d is a vector along the line, c is the point in question,
‖ ‖ indicates the 2-norm, and × indicates the cross product. For this application, a is the
collector location, d is the DOA vector, and c is the estimated emitter location. A least-
squares solution for multiple lines can be obtained by solving for the value of c for which
the derivative of the sum of squares is zero:

n

∑
i=1

d
(
h2

i
)

dc
= 0, (2.16)

where n is the total number of collections being used to estimate the position, the notation
of a derivative with respect to a vector indicates that the derivative should be taken with
respect to each dimension separately, and 0 is the zero vector. For the two-dimensional
case, and additionally assuming d is a unit vector, expanding (2.15) results in

h = cxdy− cydx−axdy +aydx. (2.17)

By squaring (2.17), taking the derivative, and then summing the results for all n collections
as specified by (2.16), we can convert the problem into an AX = B type matrix equation
where c can be solved for directly:

n

∑
i=1

([
d2

yi −dxidyi

−dxidyi d2
xi

])[
cx

cy

]
=

n

∑
i=1

([
d2

yi −dxidyi

−dxidyi d2
xi

][
axn

ayn

])
. (2.18)

2.4.2 Signal Reconstruction

Once an estimate has been made of signal DOAs, the original signals can be reconstructed
by using (2.8) and (2.1) to recreate the steering matrix and then solving for s in (2.6) as
s = A−1x. Generally, the steering matrix will not be square, however, so its inverse cannot
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be taken directly. Instead, the pseudo-inverse can be calculated. For an m× n matrix A
where m > n and the columns of A are linearly independent, the Moore-Penrose pseudo-
inverse is defined as [17]

A+ =
(
AHA

)−1
AH . (2.19)

Since p > q and the steering matrix spans the signal subspace, its columns are linearly in-
dependent and this definition of the pseudo-inverse applies. Therefore, the original signals
can be estimated as

s = A+x. (2.20)

2.5 MUSIC

The MUSIC algorithm was proposed by Ralph Schmidt in 1979 [2] and was one of the
earliest subspace methods. MUSIC develops from a recognition that since the eigenvec-
tors of the array covariance matrix are a basis and are orthogonal to each other, the noise
eigenvectors will be orthogonal to the signal eigenvectors. Since the steering vectors must
by definition lie in the signal subspace, they will also be orthogonal to the noise eigenvec-
tors. Recall from (2.8) that, given a known array center frequency and layout, the steering
vector a is only a function of the signal DOA θ . The MUSIC algorithm is then a search
over all θ in the visible range for the steering vectors which are most orthogonal to the
noise eigenvectors of the array covariance matrix, resulting in peaks in the MUSIC DOA
spectrum P [2]:

PMUSIC(θ) =
aH(θ)a(θ)

aH(θ)EwEw
Ha(θ)

. (2.21)

Note that the normalization in the numerator is only required when the steering vectors are
not already normalized to magnitude 1. An example of the MUSIC spectrum using the
parameters from the following section is plotted in Fig. 4. Note that the y-axis is labeled
“Orthogonality”; since the denominator of the MUSIC algorithm is effectively an inner
product, the MUSIC response at each DOA is an indication of how orthogonal the steering
vector at each DOA is to the noise eigenvector(s). At exactly the correct DOA, assuming
no receiver noise, the MUSIC response should be infinite because the inner product will be
zero. Since the plots can have such a large dynamic range (theoretically infinite), the y-axis
is plotted in decibels.
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Figure 4. Sample MUSIC DOA spectrum for emitters at 74◦ and 116◦.

In any real-world implementation with a finite number of samples with which to esti-
mate the array covariance matrix, σw will not be exactly equal in all directions, and the
resulting noise eigenvectors will not be exactly orthogonal to the original signal subspace.
This will lead to slight errors in the MUSIC spectrum peaks for any particular collection
period. MUSIC is asymptotically unbiased, however, so the spectra averaged over multiple
collections will converge to the exact solution [2].

2.5.1 MUSIC Example
For the purposes of this example, let the receive elements be isotropic and arranged as the
points on an equilateral triangle with receiver spacing of λ/2 and the origin at the center,
as indicated in Fig. 5, where λ is based on the array center frequency of 200 MHz. Emitter
1 is transmitting a continuous cosine wave at 200 MHz and θ1 = 116◦, and Emitter 2 is
transmitting a 205 MHz cosine wave with θ2 = 74◦, and we assume there is no additive
noise in the receiver. The collection period is 100 ns and the sampling frequency is 800
MHz.

Since this array layout is not linear, the receiver array does not have a broadside, so
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Figure 5. Example collection geometry.

the φi j terms in (2.8) must be defined slightly differently. For this arrangement let φi j =

kd j cosαi j, where d j is the distance to the receiver from the origin and αi j is the angle
between the jth receiver, the origin, and the ith emitter, which is also equivalent to the
difference between the angle to the emitter and the angle to the receiver relative to the x-
axis. All three receivers are λ/(2

√
3) from the origin, R1 is at 0◦ from the x-axis, R2 is

at 120◦ from the x-axis, and R3 is at −120◦ from the x-axis, and the signal arrival angles
relative to the x-axis have already been specified. The product

kd j =
2π

λ

λ

2
√

3
=

π√
3

(2.22)

and the relative angles αi j will equal

α =

 74−0◦ 116−0◦

74−120◦ 116−120◦

74+120◦ 116+120◦

=

 74◦ 116◦

−46◦ −4◦

194◦ 236◦

 . (2.23)
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The steering matrix is then

A =


e j π√

3
cos74◦ e j π√

3
cos116◦

e j π√
3

cos−46◦ e j π√
3

cos−4◦

e j π√
3

cos194◦ e j π√
3

cos236◦

=

 e j0.500 e− j0.795

e j1.260 e j1.809

e− j1.760 e− j1.014

 . (2.24)

Since w = 0 and s =
[
e j(2π f1t) e j(2π f2t)

]T
, where f1 = 200 MHz and f2 = 205 MHz, the

received signal vector can now be defined:

x = As+w =

 e j(2π f1t+0.500)+ e j2π f2t−0.795)

e j(2π f1t+1.260)+ e j(2π f2t+1.809)

e j(2π f1t−1.760)+ e j(2π f2t−1.014)

 . (2.25)

The sample estimated array covariance matrix RXX must be determined numerically;
using MATLAB to generate the 3×100 received signal matrix and 3×3 covariance matrix
results in

RXX =

 0.7753 −0.0901− j0.7374 0.2370+ j0.6537
−0.0901+ j0.7374 2.6818 −2.7092+ j0.6237
0.2370− j0.6537 −2.7092− j0.6237 2.8917

 (2.26)

which, after an eigen-decomposition, has the eigenvalues and eigenvectors which are listed
in Table 1. Note that the third eigenvalue is zero because there is no signal (or noise) present
in this dimension; therefore, the third eigenvector is the only noise eigenvector.

Table 1. Circular array eigenvectors and eigenvalues.

eigenvalue 5.7753 0.5734 0
0.0679+ j0.1873 −0.3326− j0.9175 0.0304+ j0.0838

eigenvector −0.6637+ j0.1528 −0.0706+ j0.0163 0.7101− j0.1635
0.7046 0.2059 0.6791

The MUSIC DOA spectrum can then be obtained using (2.21); the result has already
been presented in Fig. 4, and the peaks are at the source signal DOAs of 74◦ and 116◦.
The additional hump at 260◦ is a near orthogonality which occurs at the mirrored DOA
angles. Because the plot peaks approach infinity but will not typically equal it due to
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additive noise, limitations in the angular step size which is searched, and rounding errors
during processing, the DOA spectrum is typically plotted in decibels so that the various
peak heights are visually similar.

The sharp-eyed reader may have noticed a discrepancy in the above example, in that
the wavelength used to construct the steering vector matrix in (2.24) is the array center
wavelength of 200 MHz for both signals, despite the fact that one of the signals is not at
the center frequency. This arises because the exact source signal frequencies are not known
a priori to conducting the subspace analysis to separate the signals, and one must assume
the array center frequency. The resulting DOA determined for the non-center frequency
signal will have an induced error which is proportional to the frequency offset. Methods of
correcting for this offset and for the effects of wideband signals are the focus of the rest of
this thesis.

2.5.2 MUSIC Visualization
As alluded to in the eigen-space discussion, the relationship between x, A, and s can also be
viewed geometrically. If the set of all possible steering vectors (θ = 0 : 360◦) is determined
and plotted in p-space, it will transcribe a continuous q-dimensional object. For p = 3 and
q = 2 this will be a line in three dimensional space; for p = 4 and q = 3 this will be a
surface in four dimensional space. If the array is linearly arranged, the steering vector
matrix will transcribe two overlapping 180◦ arcs; if it is not linearly arranged (i.e. two- or
three-dimensional), it will transcribe a closed loop.

If the signals are adjusted to be real vice analytic, the example above can be plotted in
three-dimensional space, where each dimension represents one of the receiver elements.
By doing this, the signal and noise eigenvectors can be visually distinguished, and the
orthogonality of the steering vectors in the signal DOAs to the noise eigenvector can also
be visually ascertained.

The results are plotted in Figs. 6 and 7. Even though the source signals are real, since
the steering vectors are complex phase terms, the received signals are complex, as are the
covariance matrix and eigenvectors, and the problem has to be separated into real and imag-
inary portions to be depicted . In both of these figures, the gray portions are the received
signals x, and the blue lines are the eigenvectors of RXX. From visual inspection, two of
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the eigenvectors in both the real and imaginary portion plots lie in the signal subspace and
the third is normal to the signal subspace; this third eigenvector is the noise eigenvector.

The black loop in both figures is the continuum of all steering vectors, and the red lines
indicate the steering vectors a(θ1) and a(θ2) at the signal DOAs. By visual inspection
the red steering vectors lie in the gray signal subspace and are orthogonal to the noise
eigenvector.

What the relationship looks like for the real portion of the signals when noise is in-
cluded at a 10 dB SNR is shown in Fig. 8. Because of the additive noise, the received
signal subspace is no longer only a two-dimensional plane. However, there are two domi-
nant dimensions which equate to the two largest eigenvalues, and the subspace dimension
with the smallest eigenvalue is still the noise subspace. The orthogonal relationship of the
steering vectors to the noise eigenvector remains despite the noise.
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2.6 Emitter Location Processing Review
In this chapter, the principles behind various direction finding and geolocation methods
were presented, with particular emphasis on explaining the derivation and providing an
example of the MUSIC subspace algorithm. In the next chapter, the MUSIC algorithm is
investigated to determine its performance characteristics for a sparse receiver array in the
presence of signals with varying frequency, bandwidth, DOA, and SNR.
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CHAPTER 3:

MUSIC Performance Analysis

3.1 Analysis Setup
For the purposes of this analysis, a linear array of six receivers on the x-axis with a visual
range of−90◦ to 90◦ relative to array boresight is modeled. Additionally, it is assumed that
all of the receive elements are isotropic. The array center frequency fc is 1 GHz, the search
bandwidth is 500 MHz to 1500 MHz, and sampling is conducted at 4 GHz. It should be
noted that this analysis is conducted at radio frequency (RF); see Appendix Section A.3 for
a discussion of implementing MUSIC at intermediate frequency (IF). This receiver array
is also referred to as the collector.

3.1.1 Array Configuration
In order to ensure low sidelobes and no ambiguities, the ideal receiver spacing would be a
uniform spacing of one half wavelength at the desired collection center frequency. With six
receive elements, such an array has a very short baseline of only two and a half wavelengths
and a relatively wide beamwidth. The direction finding resolution of an array varies with
the processing method and the signal parameters, but in general it is proportional to the
beamwidth and inversely proportional to the baseline; therefore, a large baseline is usually
desirable. With uniformly spaced elements, however, a large baseline means that many
receivers are required, which increases the weight and design complexity. Additionally,
receive element size may prevent the placement of elements as close as λ/2. Airborne and
spaceborne applications tend to be weight and space limited, so for those applications a
sparse layout may be more desirable. The tradeoff with a sparse array is that ambiguities
may exist and the sidelobes are higher than with a uniformly spaced array. These trade-
offs can be mitigated somewhat through careful design, such as by accepting ambiguities
outside of a particular limited visible range.

The sparse layout used throughout the rest of this chapter is

d =
[
0 0.5 1.5 3.5 6 10

]
wavelengths, (3.1)
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where di represents the location of a receiver relative to the origin; defining the first receiver
at the origin serves to help simplify the calculations. For the same number of elements, this
array has a four times increase in baseline over the uniformly spaced array and a narrower
main beamwidth. The sidelobes for this sparse array are significantly higher than for the
uniformly spaced array, however, as indicated in Fig. 9. In fact with this spacing scheme,
there are no ambiguous lobes, but all sidelobes are only ∼6 to 8 dB down from the main
beam. A depiction of the resolution difference between the uniform and sparse arrays using
the MUSIC algorithm is shown in Fig. 10. In this example there are two sinusoidal signals
at a 2◦ separation relative to the collector, but the uniform array (Fig. 10(a)) cannot resolve
them both and its MUSIC spectrum only has one peak, while the MUSIC spectrum of the
sparse array (Fig. 10(b)) clearly has two peaks. The reason is that the larger baseline of the
sparse array results in a narrower MUSIC response. Additionally, it is important to point
out that what appears as noise in Fig. 10(b) is actually the response of the array’s sidelines
to the signals present.
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Figure 9. Array patterns with six isotropic elements.

At this point it should also be noted that in general, results are plotted in sinespace vice
degrees, where sinespace is defined as the sine of the angles in the visible range. This is
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(a) Uniform array, λ/2 spacing.
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(b) Sparse array of (3.1)

Figure 10. Six-element array resolution for 2◦ emitter separation.

because the MUSIC response of a signal is the same width across all of sinespace, whereas
the MUSIC responses plotted in degrees widen out as the signals are further from boresight.
Plotting in sinespace ensures that the primary distortions will be from signal bandwidth and
array sparsity. A sinespace step size of 0.001 is used for all of the scenarios in this chapter.

3.1.2 Emitter Parameters
The incident signals being modeled are variations of three basic signal types: pure sinusoid,
linear frequency modulation (LFM), and quadrature phase-shift keying (QPSK). All LFM
signals are modeled as an “up-chirp” centered on a desired frequency, and all QPSK sig-
nals utilize rectangular pulse shapes with phase terms generated using the randi function
in MATLAB. It should be noted at this point that pulsed QPSK modulation is not utilized in
phase-coded radar systems. This signal type has been chosen for this thesis because it has
a bandwidth profile which provides a reasonable approximation to a bi-phase or polyphase
coded radar pulse as well as a short segment of a phase modulated communications sig-
nal. Radar terminology for a phase-coded signal will be used when describing the QPSK
signals: a code is the full set of phases transmitted during the QPSK pulse, and a sub-
code is an individual phase term transmitted during one subpulse [18]; in communications
terminology the subcode would be a channel symbol [19].

Emitters are positioned across the visible range at distances between 100 and 200 nmi,
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and are assumed to be stationary. All of the emitted signals are modeled as pulses which
arrive at the array at time zero and last for 100 ns. The emitter parameters being varied in
this analysis are frequency, bandwidth, DOA, and SNR. For the purposes of simplifying
signal creation and processing, all signals are generated as analytic signals in the time
domain.

3.1.3 Collector Motion
When multiple collections are simulated, the collector is modeled as being mounted on the
side of an aircraft which is moving in the positive x direction at 300 knots. The altitude
is not being modeled as this analysis is conducted in only two dimensions; therefore, the
emitters are assumed to be in the same plane as the collector. For an aircraft at altitude this
could be the slant plane, though the intersection of that plane with the earth is not being
utilized as a constraint in the position estimation which was delineated in Section 2.4.1.

Collections are made every two minutes, and all signals being modeled are assumed to
be received at every collection time. Doppler shift due to collector motion is not included
in the model, and the collector is assumed to be stationary for the duration of a collection.
This first assumption simplifies the association of signals over multiple collections, and the
latter two assumptions are reasonable based on the short collection durations.

3.1.4 Processing Method and Results Presentation
For this analysis the frequency domain form of (2.6) was utilized (see Appendix A.2).
Working in the frequency domain provides some advantages because the signal frequencies
are more readily accessible without additional processing and band-limiting can be utilized
to reduce computation and noise influence. The source signals are generated in the time
domain, and the discrete Fourier transform (DFT) (specifically MATLAB’s implementation
of the fast Fourier transform (FFT)) is then used to convert the received signals to the
frequency domain for all further processing.

An overhead “map view” of the collection plane may also be included with the results,
especially when emitter motion is modeled. In these views the collector position(s) are
indicated by a black circle and the actual emitter positions by a black cross. Estimated
DOA lines colored to correspond to each received signal are plotted extending from the
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collector positions and, when applicable, black diamonds are used to indicate the least
squares estimated emitter positions.

3.2 Frequency Effects
In order to gain an understanding of the effects of frequency on the subspace DOA spec-
trum, three sinusoidal signals at the frequencies and locations in Table 2 were modeled
over five collections. No receiver noise was included, ensuring that only the frequency
variations would affect the results.

Table 2. Signals utilized in modeling frequency e�ects.

Signal Number Frequency (MHz) location (nmi)
1 1000 [-50, 90]
2 1323 [-40, 190]
3 811 [-100, 110]

The results are presented in Fig. 11. The MUSIC results for all five collections are
overlaid in Fig. 11(c) so that the relative change in emitter locations can be seen. From
Fig. 11(d), it can be seen that the DOA lines only intersect in the close vicinity of one of
the three actual emitter locations - Emitter #1, the one at the array center frequency.

As initially mentioned in Section 2.5.1, this direction finding and geolocation error
arises because the center frequency was assumed when constructing the steering vectors
for use in (2.21). There exists, however, a relatively simple solution which requires under-
standing of the origin of the steering vectors. Without loss of generality, the solution can be
found by examining the noiseless relationship of the ith emitter with the jth collector from
(2.8):

xi j = sie
j2π

d j
λi

sinθi. (3.2)

The effect of the exponential term is simply a phase shift, and the received signal magnitude
si will be the same regardless of the DOA. For a particular collection, xi j, si, and the
magnitude of the phase shift φi j are fixed. Note that there are essentially two unknown
variables in the phase shift, however: the wavelength λi and the DOA θi, which means that
there is a dependent relationship between the wavelength, the DOA, and the phase shift and
that there are an infinite number of wavelength/DOA pairs which taken together provide the
correct phase shift. In order to solve for the DOA using MUSIC, an assumption was made
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(d) Map view of DOAs.

Figure 11. Results of MUSIC processing on narrowband signals with di�erent frequencies.

about the wavelength; therefore, if the wavelength is incorrect then so is the resulting DOA.
The value of the phase shift is fixed, so an equality can be configured to solve for the actual
DOA as

φi j = 2π
d j

λc
sinθi,MUSIC = 2π

d j

λi,est
sinθi,est , (3.3)

which can be further reduced to

fc sinθi,MUSIC = fi,est sinθi,est , (3.4)
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where λc is the wavelength at the array’s center frequency at which the MUSIC algo-
rithm was run, λi,est and fi,est are the ith signal’s estimated wavelength and frequency, and
θi,MUSIC is the DOA of the ith signal as determined by the MUSIC algorithm. There are
still two unknowns: fi,est and θi,est . Since the signal parameters of si can be determined via
signal reconstruction, (Section 2.4.2), the center frequency of the signal can be estimated
and the true DOA can be estimated as

θi,est = arcsin
(

fc

fi,est
sinθi,MUSIC

)
. (3.5)

Attempting to accurately reconstruct the signal with an incorrect DOA may seem bound
to result in errors; however, it can easily be proved to provide an accurate result. Recall
that signal reconstruction involves an estimation of the steering vectors for each signal, and
that the steering vectors are simply the collection of phase shifts applied to each signal at
each receiver. As stated previously, the magnitude of the phase shifts are already known, at
least to the accuracy that the DOAs can be extracted from the MUSIC DOA spectrum.

It is important to note that the signal frequency can only be estimated from the recon-
structed signal due both to the nature of the DFT and the presence of noise in an actual
collection. A method for estimated the average frequency in a signal’s discrete frequency
response follows. First, normalize the magnitude of the reconstructed signal’s frequency
spectrum and filter to the desired search bandwidth. Next, reduce the impact of noise and
the signal not being centered in the search bandwidth by setting the lowest 10% of the fre-
quency spectrum values to zero. Finally, a weighted mean frequency can be determined
by taking the inner product of the vector of DFT frequency bins with the normalized and
truncated frequency spectrum and then dividing by the sum of the normalized and truncated
frequency spectrum. The reconstructed frequency spectrum for the first collection is pro-
vided in Fig. 12(a), and estimated frequencies for each of the five collections are presented
in Table 3. By comparison with the original frequencies listed in Table 2 it can be seen that
this method works quite well for these narrowband signals.

Using (3.5) with the values in Table 3, we can calculate frequency-corrected DOAs
for each collection. A map view with the original DOAs as dashed lines and the corrected
DOAs as solid lines is illustrated in Fig. 12(b). Additionally, the estimated emitter positions
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(b) Map view with frequency-corrected DOAs
and estimated emitter locations.

Figure 12. MUSIC DOA frequency correction.

Table 3. Estimated signal frequencies.

Collection f1 (MHz) f2 (MHz) f3 (MHz)
1 1000.0 1323.2 810.1
2 1000.0 1323.0 810.1
3 1000.0 1322.2 810.2
4 1000.0 1322.2 810.2
5 1000.0 1323.2 810.0

have been plotted (diamonds), and one can see that they align very well with the actual
positions (crosses).

An interesting artifact of this frequency effect is that MUSIC can easily resolve two sig-
nals which emanate from the exact same location as long as they are different enough
in frequency. The MUSIC DOA spectra for two QPSK signals at frequencies of 900
and 1100 MHz which are co-located at −10◦ from collector boresight are illustrated in
Fig. 13(a). Both signals also have a bandwidth of 20% fc and a 10 dB SNR. There are
clearly two distinct peaks in the MUSIC spectra for each collection, but from the map view
(Fig. 13(b)) it can be seen that the corrected DOAs overlap with estimated locations very
close to the correct position. It should be noted that this effect also depends on the angle
from array boresight; if the signals are at boresight, there will be zero relative phase shifts
between the elements, and the frequency difference will have no effect and there will be a
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single MUSIC peak.
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Figure 13. Two 10 dB SNR QPSK signals with center frequencies of 900 MHz and 1100 MHz
and the same source location.

This frequency/DOA dependence can also have the alternate effect of causing two sig-
nals with otherwise sufficient angular separation to overlap because of their differences in
frequency, making them unresolvable in that collection.

3.3 Bandwidth Effects
For the initial bandwidth analysis, all signals were centered at the array center frequency
of 1 GHz, and bandwidths of 50 MHz, 100 MHz, 200 MHz, 300 MHz, and 400 MHz were
tested, which are respectively 5%, 10%, 20%, 30%, and 40% of the center frequency fc.
Additionally, all signals were set at a DOA of 15◦ with no receiver noise. Only the LFM and
QPSK signal types were implemented since the bandwidth of the sinusoidal pulse is fixed at
Bp = 1/tp, where tp is the pulse duration. For this analysis, tp = 100 ns and Bp = 10 MHz,
which is approximately equal to the width of one FFT bin.

The bandwidth of an LFM signal is being defined as BLFM = fhi− flo, where fhi is the
highest instantaneous frequency transmitted and flo is the lowest instantaneous frequency
transmitted. The bandwidth of a phase coded signal such as QPSK is being defined as
BQPSK = 1/Ts, where Ts is the subcode duration [19]. Both of these are noise-equivalent
bandwidth definitions assuming an infinitely long pulse; the true bandwidths as viewed on
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a spectrum analyzer would be slightly larger due to the pulsed nature of the signals being
modeled. For a pulse duration of 100 ns, however, this additional bandwidth is a negligible
fraction of the carrier frequency as noted in the previous paragraph.

The MUSIC DOA spectra for a single LFM and QPSK signal at different bandwidths
are presented in Fig. 14. The change in MUSIC response for both signal types appears
very similar with a relatively linear reduction in peak amplitude inversely proportional to
the change in bandwidth.
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(b) QPSK signal.

Figure 14. E�ect of bandwidth on MUSIC spectrum.

This is likely because even though the bandwidths are the same, a phase coded signal
has a sinc-shaped frequency spectrum where most of the energy is concentrated near the
center frequency, whereas the energy in a LFM signal is evenly spread across the bandwidth
since the frequency spectrum is approximately rectangular.

The effect of bandwidth still appears relatively minor, however, since a peak still re-
mains at the proper DOA even if it is reduced in amplitude. Once multiple received signals
are evaluated, signal bandwidth can have more noticeable effects on the MUSIC spectrum.

One might believe that signals with overlapping bandwidth would lead to problems with
determining an accurate DOA, but that appears to not be the case in at least a basic two-
signal scenario. The MUSIC DOA spectrum and the transmitted signal frequency spectrum
for two QPSK signals at −24◦/100 MHz bandwidth and 15◦/150 MHz bandwidth, both at
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the array center frequency and with 10 dB SNR, are illustrated in Fig. 15. Despite the
complete bandwidth overlap, the signals are both easily resolvable and reconstruction is
fairly good, especially close to the signal center frequency.
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(a) MUSIC DOA spectrum.
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Figure 15. E�ect of signal overlap on MUSIC DOA resolution and signal reconstruction.

It has already been shown that the sparse array being utilized can resolve narrowband
signals with a small angular separation. If those signals are wideband, MUSIC can still
resolve them, but other issues can arise even with a large frequency separation. Two ex-
amples utilizing a 750 MHz LFM at −30◦ and a 1000 MHz QPSK signal at −24◦ with no
additive noise are provided in Fig. 16. Note that with the frequency adjustment in (3.5), the
MUSIC algorithm “sees” the LFM signal at −22◦, so this scenario has an effective signal
separation of 2◦. In Fig. 16(a) the signals have a bandwidth of 5% fc, and in Fig. 16(b)
the signal bandwidths are 10% fc. From an examination of both figures, it can be seen
that the signals have been blended in reconstruction, and the effect worsens as the relative
bandwidth increases. This blending results from the various signal frequency bins being
DOA shifted different amounts relative to the signal center frequency; since the signals are
so close in angular separation, there is a crossing of frequency bins between signals which
cannot be perfectly untangled using (2.20).

If a third signal with particular parameters is added to the previous 10% bandwidth
scenario, another distortion occurs. One might expect that adding a signal with a large
angular separation would have no impact and would be easily resolvable, but that is not the
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(a) MUSIC DOA spectrum.
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(b) Frequency spectra.

Figure 16. Transmitted and reconstructed frequency spectra of wideband signals with 2◦ angular
separation.

case if the new signal overlaps in frequency with one of the prior two. For this scenario a
1030 MHz LFM signal at 32◦ has been added, with varying bandwidth of 50 and 200 MHz
(5% and 20% fc). The results are presented in Table 4 and Fig. 17. When the bandwidth
of the third signal is increased to the point where it completely overlaps the QPSK signal,
the MUSIC response becomes distorted. The two closely spaced signals are now no longer
resolvable as separate signals. Additionally, the MUSIC response to the third signal is no
longer the sharp peak it was with the partial overlap in bandwidth. From Table 4 it can be
seen that the DOA estimations from the MUSIC spectrum in the fully overlapped case have
been shifted from their closer-to-true estimations in the partially overlapped case.

Table 4. E�ect of signal bandwidth on DOA with multiple closely spaced and frequency over-
lapped signals.

Signal 1000 MHz QPSK 750 MHz LFM 1030 MHz LFM
True DOA

(frequency adjusted) −24.0◦ −22.0◦ 33.8◦

MUSIC DOA with
partial overlap −24.5◦ −22.1◦ 33.8◦

MUSIC DOA with
full overlap −22.6◦ 32.9◦
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(a) MUSIC DOA spectra.
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(b) Frequency spectra of transmitted signals.

Figure 17. E�ect of signal bandwidth on closely spaced and frequency-overlapped signals.

3.4 DOA Effects
It has already been noted that resolution decreases with increased DOA because the phase
difference φ is a function of the sine of the DOA; as the DOA approaches 90◦ the DOA is
changing much faster than the phase. For example, a sinespace step size of 0.01 at array
broadside represents an angular step of 0.57◦, while at 90◦ off boresight that same sinespace
step represents an angular step of 8.11◦. The DOA can have other affects on the MUSIC
response as well. For this analysis, signals were generated at 1, 15, 30, 45, and 60◦ with no
noise. Signals are centered at the array center frequency, and LFM and QPSK signals have
a bandwidth of 20%. A depiction of the responses for a sinusoid is provided in Fig. 18. The
peak amplitudes vary slightly, but that is only due to the discretization of the angular step
impacting the exactness of the orthogonality response as certain steps are slightly closer to
the actual DOA than others; recall that the ideal peak amplitude is infinite.

The MUSIC response for a LFM signal is provided in Fig. 19(a). For this signal type
the response amplitude degrades fairly significantly, and the response widens as the angle
from array boresight increases. The MUSIC response for a QPSK signal is illustrated in
Fig. 19(b). Here, the QPSK MUSIC peak amplitudes degrade more slowly than those of a
LFM signal, unlike in the bandwidth analysis above. This difference is likely due to the fact
that a phase-coded signal has more energy concentrated near the array center frequency,
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Figure 18. E�ect of arrival angle on MUSIC spectrum with sinusoidal signal.

while a LFM signal has its energy spread more evenly over the entire bandwidth, so the
additional distortion that occurs with increased DOA has less effect on phase-coded signals
such as QPSK.
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(a) LFM signal.
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(b) QPSK signal.

Figure 19. E�ect of DOA on MUSIC spectrum with wideband signals.

That a degradation occurs at all is related to the frequency effects analysis of Section
3.2. As the DOA increases, the relative additional path distance δ between elements also
increases, which results in an increased phase difference φ for frequencies not at the signal’s
center frequency. It is useful to think of each FFT frequency bin as affecting the MUSIC
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response independently; bins above the signal center frequency map to higher DOAs and
bins below the signal center frequency map to lower DOAs. The response spreads out over
a larger set of DOAs and also decreases in amplitude because there is less energy in each
bin as bandwidth increases.

3.5 SNR Effects
For this portion of the analysis, SNRs of 100, 10, 3, 0, −3, and −10 dB were utilized with
Monte Carlo simulations of 100 trials. Signals are centered at the array center frequency
with a DOA of 15◦. The average MUSIC response at varying SNR for a sinusoidal signal
with the six-element sparse array of (3.1) is illustrated in Fig. 20. A degradation of the peak
amplitude with increased noise can be seen, similar to the effect due to bandwidth. In this
case the likely reason is that since additive noise serves to rotate the signal eigenvectors
of the covariance matrix away from their true locations, on average the steering vectors
will be somewhat less orthogonal to the noise eigenvectors as the SNR decreases. Only the
sinusoidal signal results are presented because the degradation rate is very similar for all
signal types.
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Figure 20. E�ect of SNR on MUSIC spectrum with sinusoidal signal; average of Monte Carlo
simulation with 100 trials.
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The standard deviation σDOA and mean mDOA of the estimated MUSIC peak location
across the 100 trials are listed in Table 5; as the SNR decreases, the standard deviation
increases, which should be expected. The mean DOA estimations remain very close to
the true DOA of 15◦, however, confirming that MUSIC is indeed an unbiased estimator.
It should be noted that even the mean of the nearly noiseless case of 100 dB SNR is not
exactly at the correct DOA of 15◦; this is due to the finite sinespace step size of 0.001. In
the vicinity of the correct DOA, the two closest angular values are 14.95◦ and 15.01◦; thus,
it can been seen that the algorithm converges on the closest angular step and not necessarily
the exact DOA. This effect will add to the geolocation uncertainty but should average out
over multiple collections at different DOAs.

Table 5. DOA statistics for varying SNR.

SNR (dB) 100 10 3 0 −3 −10
σDOA 1.07×10−14 0.015 0.033 0.050 0.080 0.234
mDOA 15.01 15.01 15.00 15.01 15.01 15.02

The role of the number of array receiver elements was also investigated to see if more
receivers would result in an averaging effect which would improve the MUSIC peak am-
plitude for low power signals. A Monte Carlo simulation with 100 trials was run for a
uniformly spaced array with 2, 3, 4, 5, and 6 elements and a sinusoidal signal at −10 dB
SNR, with the averaged results presented in Fig. 21. The baseline was held constant at 2.5
wavelengths to ensure that changes in baseline did not affect the results. This does produce
ambiguities at the lower receiver numbers, but the ambiguous results are outside of the
0–0.5 sinespace range which is plotted and can be ignored for this scenario. The relatively
constant peak amplitude is somewhat surprising, as one might expect that by averaging
across more receivers the effective SNR would improve.

The standard deviations and means at each array size are listed in Table 6. The means
vary somewhat randomly, indicating that the estimated DOA accuracy is more a function of
the baseline, which is constant in this scenario. The standard deviations steadily decrease
with array size, indicating that the precision over multiple trials does improve with the
number of receivers.
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Figure 21. E�ect of the number of array elements on the MUSIC spectrum with a sinusoidal
signal at −10 dB SNR; average of Monte Carlo simulation with 100 trials.

Table 6. DOA statistics for varying array size.

Array size 2 3 4 5 6
σDOA (deg) 1.69 1.31 1.22 1.02 0.85
mDOA (deg) 15.12 15.15 15.01 14.88 15.12

While an averaging effect across multiple receivers did not affect the MUSIC peak am-
plitudes, it does impact the effective SNR of the reconstructed signals, as evidenced by
Fig. 22, where the two-element reconstruction is visibly noisier than the six-element one.

Variations in SNR with multiple signals present causes additional distortions to the
MUSIC DOA spectrum. The MUSIC spectra for two sinusoids of 1000 MHz and
1005 MHz at 15◦ and 18◦ with SNRs of 10, 3, and −10 dB are provided in Fig. 23. As
the SNR decreases, the ability to resolve the peaks disappears. Signals further separated in
frequency have the same result, so the effect is likely solely due to the SNR and not to any
signal interaction in the frequency domain.

Next, the effect of signals with different SNRs was investigated. The MUSIC spectra for
two sinusoids are presented in Fig. 24(a); the first is at 800 MHz and−5◦ and the second is
at 1200 MHz and 15◦. The SNR of the first is varied over 10, 0, and −10 dB, and the SNR
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(a) Two-element array.
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(b) Six-element array.

Figure 22. Frequency spectrum of reconstructed 1 GHz sinusoid with received SNR of −10 dB.

of the second is held constant at 10 dB. The first peak nearly disappears when that signal is
20 dB less than the second. The large separation in DOA and frequency indicates that this
is purely a SNR effect and is not caused by any frequency overlap.
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Figure 23. MUSIC spectrum e�ect of SNR on MUSIC spectrum DOA resolution with two
sinusoids: 1000 MHz at 15◦ and 1005 MHz at 18◦; average of Monte Carlo simulation with 100
trials.

42



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

20

40

 

 

10/10 dB

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

20

40

 

 

0/10 dB

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

20

40

Angle off boresight (sinespace)

 

 

−10/10 dB

O
rt

ho
go

na
lit

y 
(d

B
)

(a) Sinusoidal signals.
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(b) 10% bandwidth QPSK signals.

Figure 24. MUSIC DOA spectra for signals with di�erent SNRs.

The same trial was re-run with QPSK signals with a bandwidth of 10% fc; the results
are presented in Fig. 24(b). The peak amplitudes are reduced somewhat from the sinusoidal
signals, as is expected based on results from Sections 3.3 and 3.4. In general, the drop in
peak amplitude with increased SNR difference matches the results with sinusoidal signals.
With wideband QPSK signals, there is an additional distortion of the MUSIC response of
the high power signal. A possible reason for this distortion could be that since the array
covariance matrix has very little information in the direction of the low-power signal, the
low-power signal’s subspaces becomes indistinguishable from the noise subspace. Since
the MUSIC algorithm is being run under the assumption that two signals are present, this
distortion of the subspace results in an incorrect estimate of the noise eigenvectors and a
degraded MUSIC response.

3.6 Performance Analysis Review
An analysis of the MUSIC algorithm has been performed with particular emphasis on the
effects of signal frequency, bandwidth, DOA, and SNR. In most scenarios, MUSIC per-
forms very well even with wideband signals. The use of a receive antenna array with sparse
spacing and −6 dB sidelobes likely contributes to some of the distortions and degradations
in the MUSIC response, but the tradeoff in resolution over a uniformly spaced array may
be worth the occasional inaccuracy, especially when averaged over multiple collections.
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While this analysis was completed solely with the MUSIC algorithm, all of the sub-
space algorithms are based on leveraging the same array covariance matrix eigen-structure
and signal/noise subspace relationship. The same types of performance breakdowns as
investigated above are expected with other basic narrowband subspace methods.

In the next chapter, enhancements to the MUSIC algorithm are proposed to reduce the
time required for computing a high-resolution result and to resolve ambiguous DOAs in
excessively sparse arrays.

44



CHAPTER 4:

MUSIC Performance Enhancements and Limitations

4.1 Computational Performance
One of the major limitations of the MUSIC algorithm is that the search over the angular
visible range is computationally intensive. The angular step size utilized in that search
contributes to DOA error, so a small angular step size is desirable. A small step size means
that there will be many angular values for which to test the orthogonality via (2.21).

4.1.1 Computational Complexity
Given a collector with a p-element receiver array, the array covariance matrix will be p× p,
and the eigenvectors will be of length p. The number of noise eigenvectors (Ew) will de-
pend on the number of signals; in general there will be p− q noise eigenvectors. The
steering vectors (a(θ) will also be of length p. Neglecting any computations to derive the
steering vector components and assuming that the steering vectors are already normalized,
we only need to account for the matrix multiplications in the denominator of (2.21). Defin-
ing complexity as the number of floating point operations and assuming that both addition
and multiplication are complexity order one O(1), the complexity of a multiplication of
two matrices of sizes m× n and n× k is O(mk(2n− 1)) ≈ O(2mnk). The approximate
complexity of the MUSIC algorithm for a single DOA is then:

O(MUSIC) =O
[
aH(θ)EwEw

Ha(θ)
]

=O [(1× p)(p× (p−q))((p−q)× p)(p×1)]

=O [2p(p−q)+2p(p−q)+2(p−q)]

=O(4p2−4pq+2(p−q))

≈O(4p2−4pq) (4.1)

The number of receive elements will generally be relatively small, especially for a sparse
array designed for aerospace applications; therefore, the leading scalars and the second
order terms are retained because they will still have a large impact on the result. As an
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example, for the six-element array of (3.1) with a single signal present the complexity is
∼ O(120).

This portion of the computational complexity is determined by the MUSIC algorithm;
reducing it would require use of a different direction finding algorithm. The number of
discrete angles to search and the angular step size between them is at the discretion of the
system designer, however, and this provides an opportunity for improving computational
performance. In general, if an angular resolution of ∆ is desired, the number of discrete
angles over which to conduct a one-dimensional MUSIC search in azimuth is m = α/∆,
where α is the angular width of the visible range. In the analyses of Chapter 3, α is 180◦,
or two in sinespace. For a direct implementation of MUSIC then, the complexity order for
determining the full DOA spectrum would be O

(
m
(
4p2−4pq

))
. For practical applica-

tions, the number of discrete angles m will generally be much larger than the number of
receivers and will be the primary driver of the number of computations required, especially
when a two dimensional (azimuth and elevation) solution is desired. Therefore, reducing
the number of discrete angles can be of great advantage to improving processing speed.

4.1.2 Reducing Search Complexity
One method of reducing the number of discrete angles without also reducing the resolution
would be to run the MUSIC algorithm more than once. On the first run, a large step size
could be used which provides only a rough estimate of signal direction. Those estimates
can then be used to re-run MUSIC with a much smaller step size over only the angles
surrounding each of the signal direction estimates, with the result of obtaining a high reso-
lution DOA estimate without the large m which would normally be required. The question
arises then of how best to choose a course resolution step size.

Since the ideal MUSIC DOA peak is infinite, a logical decision is to choose a step size
which will provide a “good enough” peak height to distinguish signal DOA peaks from
anomalous peaks which arise due to array sparsity in a linear array. Examination of the
various MUSIC spectra plotted in Chapter 3, and especially that provided in Fig. 11(c)
indicate that, at least for the array layout of (3.1), the anomalous peaks generally do not
exceed a 10 dB orthogonality. While this is far from an exhaustive evaluation and is only
based on trials with three or fewer simultaneous signals, it is acceptable for the purposes of
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this discussion. An appropriately separated signal peak may then be defined as having an
orthogonality of at least 20 dB. A step size can be derived from this by measuring the width
of a signal’s high resolution MUSIC response at a 20 dB orthogonality. The width and
height of the MUSIC response of wideband signals can vary depending on the bandwidth
and DOA but will never be narrower than the response for a sinusoidal signal because the
minimum width is related to the array beamwidth, as indicated in the results Section 3.1.1.
Therefore, the width of a sinusoidal signal at 20 dB orthogonality provides an acceptable
metric for a coarse step size, ∆crs. A fine resolution DOA can then be obtained by running
(2.21) a second time with a fine step size over the range of [−∆crs/2,∆crs/2).

A portion of the MUSIC DOA spectrum in a fine and two coarse angular step size
for two sinusoidal signals at −29◦ and −12◦ is provided in Fig. 25. The fine step size
is 2× 10−4 in sinespace (∼ 0.01◦ at boresight), and the first coarse step size is 0.01 in
sinespace ( 0.6◦ at boresight), which is the width of the fine step MUSIC response at 20 dB.
The ratio of those step sizes is 50:1; while the exact advantage of using a two-step approach
will depend on α and the number of signals present, a nearly 50 times speed improvement
is highly desirable. As an example, when α = 2 in sinespace and two signals are present,
the fine step MUSIC requires 10,000 executions of (2.21), and the two step approach would
require only 300, which is 33 times faster with the same signal DOA resolution! A third
step size of 0.025 is also provided in Fig. 25 which indicates that as the step size increases,
a point is reached where the MUSIC peak locations may no longer be resolvable.

It is also worth looking at the geolocation error induced by these step sizes. For an
aircraft at 30,000 ft the horizon is ∼180 nmi away. An angular step of 2× 10−4 implies
a location uncertainty of ±110 ft at that distance, while an angular step of 0.01 implies a
location uncertainty of ±0.9 nmi. If many collections of the same signals from the same
direction were able to be completed with varying step sizes or step size offsets, this error
could be averaged out. The more realistic scenario is that only a few signal collections
may be likely from different positions as the collector moves, a situation in which use of a
coarse step size could result in a significant location bias error.

While not a reduction in search complexity, it should be noted that the MUSIC algorithm
is ideal for parallelization, which can reduce computation time when multiple computa-
tional cores are available or when the process is being embedded in a field programmable
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Figure 25. MUSIC DOA spectrum with varying angular step size.

gate array (FPGA). Since the MUSIC algorithm is a search over DOAs and the results for
each discrete DOA are independent, each available core can be tasked with calculating a
portion of the visible range. There is also no particular limit to the number of cores over
which the process could be distributed aside from the number of discrete angles.

4.2 Ambiguity Resolution
In his paper on the MUSIC algorithm, Schmidt notes that there is an inability to resolve type
I ambiguities, where a(θ1) = a(θ2) and θ1 6= θ2 [2]. This is true for a stationary collector
and emitter, but ambiguity resolution can be accomplished when the collector is moving
at a known velocity and multiple collections of the same signal can be obtained. This is
because the true DOA will always point in the direction of the emitter, but any ambiguities
will tend to drift.

To illustrate this ambiguity resolution ability, the array layout of (3.1) has been doubled
so that the minimum spacing is now one wavelength:

d =
[
0 1 3 7 12 20

]
wavelengths. (4.2)

This array spacing now has a grating lobe in addition to the main beam, which is illustrated
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in the array radiation pattern plot of Fig. 26, where the main beam is at 10◦ and and the
grating lobe is at 55.7◦. This grating lobe manifests as a DOA ambiguity; there is no method
of determining from a single collection which is the correct DOA. It should be noted that
in sinespace the mainlobe/grating lobe separation will always be the same regardless of the
mainlobe’s offset angle from broadside; this is not true when plotting the radiation pattern
in degrees. For a minimum receiver spacing of one wavelength, the lobes will be separated
by one in sinespace.

−1 −0.5 0 0.5 1
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Angle from boresight (sinespace)

N
or

m
al

iz
ed

 g
ai

n 
(d

B
)

 

 

Uniform array

Figure 26. Radiation pattern for array with main beam steered to 10◦ and grating lobe at 55.7◦.

To make an estimate of emitter location, all DOA vectors collected for a particular
signal are utilized simultaneously. To determine DOA drift, however, only two need to
be examined—the current and previous. By keeping track of the intersection points of
DOA vectors from subsequent collections, it should easily be determinable that one set of
crossing points remains relatively fixed while another set drifts.

An illustration of this principle is provided in Fig. 27, with a depiction of 2–5 collections
of two 0 dB SNR sinusoidal signals near fc. Each signal is a different color, and the two
DOA vectors for each signal at each collection represent the two possible DOAs, only one
of which is actually correct. The circles represent the DOA intersections of each subsequent
collection.
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(a) Two collections.
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(b) Three collections.
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(c) Four collections.
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(d) Five collections.

Figure 27. Ambiguity resolution by tracking of DOA intersection points.

From examination of Fig. 27, it can be seen that the intersection point of one set of
DOA vectors remain fairly constant, while the intersection points of the other set drift
fairly significantly. The true DOAs are easily distinguishable by five collections, and a
reasonable guess can be made with only three collections.

The MUSIC DOA spectra for the previous example are provided in Fig. 28, and it can
be seen that the spectrum over sinespace [−1,0) is an exact replica of that over sinespace
[0,1). This is due to the one wavelength minimum receiver separation in the array and
the sinespace one separation in antenna lobes. When an ambiguity is present in the array,
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one no longer has to process the entire visible range since each signal will be repeated
more than once in the MUSIC spectrum. This does not necessarily equate to halving the
processing time; since the antenna beamwidth is now narrower, the MUSIC response is
narrower, and a smaller step size may be desired to ensure an appropriate peak amplitude
can still be determined.
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Figure 28. MUSIC DOA spectra for receiver array with single ambiguity.

A metric for comparing the motion of intersections between DOA possibilities can be
calculated by determining the vector between any two successive intersections, summing
all of these vectors for each DOA, and determining the square of their length. This is also
equivalent to just determining the magnitude of the vector from the first to the last collected
intersection points. The metric for the true DOA should be much smaller than that for any
ambiguous DOAs since the ambiguous DOA intersection points will travel further. The
metric values for the prior example are provided in Table 7. By these metrics, for Signal 1
(blue in Fig. 27) the negative DOA is correct, and for Signal 2 (red in Fig. 27) the positive
DOA is correct, which matches the graphical interpretation.

As shown in Chapter 3, high bandwidths and signals of different power can result in var-
ious sorts of DOA estimation degradations, of which the severity is dependent also on the
exact DOAs and frequencies present. These degradations lead to DOA estimation errors,
which can lead to the intersection points of subsequent signals not to drift in an orderly fash-
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Table 7. Ambiguity metric over multiple collections with sinusoidal signals.

Collection
Signal DOA 3 4 5

Signal 1
DOA 1 185 391 10
DOA 2 1408 5869 10646

Signal 2
DOA 1 1093 4244 11191
DOA 2 152 205 6

ion or to jitter around the true emitter position. A slightly more robust ambiguity metric can
be calculated using the midpoint of two subsequent intersection points vice the intersection
points themselves. One downside is that this requires at least four collections before mak-
ing a judgment on which is the correct DOA. An illustration of the map view and MUSIC
spectra for six collections with a 15 percent bandwidth LFM and QPSK signal, both at
10 dB SNR, are provided in Fig. 29(a). Circles again indicate the intersection points and
squares indicate the mid-position of subsequent intersection points. The ambiguity metrics
calculated using both the DOA intersection points and the intersection point mid-positions
are provided in Table 8, and a ratio of the metric for the true DOA divided by the metric for
the ambiguous DOA is provided for easy comparison between the two methods. In general,
the mid-position metric provides a better estimation and has less variability.
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(a) Map view.
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(b) MUSIC DOA spectra.

Figure 29. Ambiguity resolution for receiver array with single ambiguity and wideband signals.
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Table 8. Ambiguity metrics over multiple collections with wideband signals.

Collection
Signal Point type DOA 3 4 5 6

Signal 1

Intersection
DOA 1 456 6857 9708 8878
DOA 2 58 47 2334 293
Ratio 0.127 0.007 0.240 0.033

Mid-position
DOA 1 - 1714 6402 7349
DOA 2 - 12 289 146
Ratio - 0.007 0.045 0.020

Signal 2

Intersection
DOA 1 1 54 624 10
DOA 2 852 2397 1975 123985
Ratio 0.001 0.023 0.316 0.000

Mid-position
DOA 1 - 14 245 119
DOA 2 - 599 1032 33683
Ratio - 0.023 0.237 0.004

One issue that arises with arrays with ambiguities is that the true DOA of one signal
could be co-incident with an ambiguous DOA of another signal. In this case, the MUSIC
response will only have one peak in that location, which could make separating the two
signals difficult or impossible.

4.3 Limitations
While some enhancements and understanding of the MUSIC algorithm are possible, there
are some fairly significant limitations which make real-world implementation difficult be-
yond the computational complexity discussed in Section 4.1.1.

4.3.1 Steering Vector Estimation
Equation (2.8) is an analytical estimate for a steering vector based on the frequency, an-
gle, and receiver mounting locations, but for a real array the steering vectors will not be
linear functions of frequency and angle because of mutual coupling of receive antenna el-
ements and effects of the vehicle structure to which the elements are mounted. For a real
implementation, the steering vectors will generally be determined via array calibration and
stored as a lookup table [2]. It would be impractical to measure and store a lookup table
with very small steps in both frequency and angle: for an array with a 180◦ visible range,
a 1 GHz bandwidth, a frequency step of 100 Hz and an angular step of 0.1◦, a lookup table
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with 1.8×108 entries would be required—and that is only for azimuth determination!

Errors in receive element positioning and pointing are also unavoidable, and even disre-
garding mutual coupling, the radiation patterns on multiple elements will not be identical.
All of these factors combine to create errors in one’s knowledge of the steering vectors
which will result in additional DOA estimation errors.

4.3.2 Signal Number Estimation
One limitation that has been ignored in this paper is in estimating the number of signals
q present during any collection period. Knowing this is essential to determining which
of the array covariance matrix eigenvectors are signal eigenvectors and which are noise
eigenvectors, because only the noise eigenvectors are used in the MUSIC algorithm of
(2.21). This limitation is not specific to the MUSIC algorithm but exists for all subspace
algorithms.

In Section 2.4, it is noted that the p− q smallest eigenvalues should all equal σ2
w, but

in practice eigenvalues will fall along a continuum and it can be difficult to distinguish the
smallest signal eigenvalue from the largest noise eigenvalue. There are numerous items
in the literature which develop and analyze statistical likelihood ratio tests which attempt
to solve this problem. Wax and Kailath wrote one of the seminal papers on the subject
with a development and analysis of estimators based on two information theoretic criteria
termed Akaike information criterion (AIC) and minimum descriptive length (MDL) [20].
Hill and Pickholtz later provided a Monte Carlo-based calculation approach to compare the
effectiveness of a number of different estimator types [21], and more recently Nadakuditi
and Edelman developed a new method simply referred to as the “new” method [22].

These methods are all functions of the number of receivers, the number of samples, and
the eigenvalues of the array covariance matrix. Code to implement two of these methods,
Wax’s MDL and Nadakuditi and Edelman’s “new” method, is contained in Appendix B. For
the analyses in this paper, however, both estimators nearly always returned the maximum
possible number of signals (five in the case of a six-element array) and were almost never
correct. Due to time constraints further research on the reasons for this were not attempted.
For this reason the estimated number of signals was set to equal the known number of
signals for all implementation of the MUSIC algorithm employed in the examples and
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analyses of this paper.

4.3.3 Signal Matching
Localization of a particular signal over multiple collections requires that the signals col-
lected at different times can be identified as being the same signal. With MUSIC and other
subspace algorithms, if more than one signal is present at one time the incident signals can
only be estimated by reconstruction (see Section 2.4.2) using the estimated DOAs. Even
with sinusoidal signals, reconstruction is only conducted using a limited number of sam-
ples, and two collections will not match exactly. With radar pulses it may be particularly
difficult to tell the difference between two emitters operating at the same frequency with
such a limited sample set. Additionally, the blending that can occur with wideband signals
(see Section 3.3) creates a severe impediment to accurate signal matching since the effect
will be different for each combination of signals and DOAs.

4.4 Performance Enhancements and Limitations Review
In this chapter, a method of reducing the number of computations required to obtain a
high-resolution DOA estimate was proposed; this method utilizes a two-step execution of
the MUSIC algorithm to first obtain a coarse DOA spectrum over the entire visible range
and then to calculate a fine DOA spectrum over very limited portions in the vicinity of the
signal DOAs. A method of resolving ambiguities for moving receiver arrays with minimum
receiver spacing > λ/2 was also proposed, and two metrics were derived which can provide
an estimate of the true DOA within three or four collections. Finally, some of the limitations
inherent in the MUSIC algorithm and in this research were delineated.
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CHAPTER 5:

Conclusion

5.1 Results
This thesis research was conducted with three main goals: to implement the MUSIC sub-
space direction finding algorithm and geolocation in MATLAB; to conduct a high-level
performance analysis of the algorithm with particular emphasis placed on the effects of
frequency, bandwidth, DOA, and SNR and to devise some enhancements to the process, if
possible.

5.1.1 Performance Analysis
In the context of this research, performance is defined as the ability to resolve a signal’s
DOA and the accuracy of that DOA. It has been shown that signals not at the array center
frequency will have a shifted response in the MUSIC DOA spectrum, but the frequency
alone does not result in a degradation of the response. It has also been shown that the
weighted mean frequency, described in Section 3.2, provides an acceptable method of es-
timating and correcting the MUSIC DOA shift. The accuracy of the subsequent DOA
determination is then based on the accuracy of the reconstructed signal’s frequency. For
wideband signals, it was shown in Section 3.3 that signal blending can occur during re-
construction; this blending will corrupt the frequency estimation and the DOA estimation.
Over multiple collections there may be situations where a signal-of-interest is blended with
different signals on each collection; it is expected that this will result in a colored noise
effect on the signal DOA estimates and the subsequent geolocation.

Besides the effect on signal reconstruction, it was demonstrated that the MUSIC spec-
trum peak amplitudes decrease roughly linearly with increased signal bandwidth. Because
a peak still exists even at extremely high bandwidths of 40% fc, this reduction in ampli-
tude might at first seem to be immaterial; however, when combined with an offset in DOA
from array boresight, the amplitude reductions can be significant. Additionally, if multi-
ple signals are present there will be a reduced ability to resolve two closely spaced signals
and there will be a higher likelihood of distortion due to the presence of multiple signals.
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An example of both of these effects was presented at the end of Section 3.3. While there
are an infinite number of possible signal combinations and an exhaustive analysis was not
conducted, this example indicates that 5–10 percent signal bandwidth is the effective limit
for the baseline MUSIC algorithm to maintain signal resolution and avoid DOA distortion.
The evaluation of the effect of DOA on the MUSIC spectrum in Section 3.4 also indicates
that even with a bandwidth of ≤ 10% fc, MUSIC is likely to only be truly effective out to
∼ 30◦ off boresight. This result is interesting also in that an array is likely to be comprised
of receiver elements which have some directivity and do not have a perfectly semicircular
pattern in azimuth. It may make sense to choose receive elements with beamwidths which
effectively match the DOA degradation for the expected bandwidth of received signals.
For the situation described above, receivers with an approximate gain of 9 dB and a 3 dB
beamwidth of∼ 60◦ could be utilized. If one is willing to sacrifice the ability to detect nar-
rowband signals beyond 30◦ off boresight, a computational benefit can also be realized in
reducing the MUSIC search to only ±30◦. Since 30◦ is 0.5 in sinespace, this is effectively
a halving of the number of computations required as compared to a search over ±90◦.

An analysis of the effects of signal SNR was presented in Section 3.5, and it was shown
that MUSIC is still fairly accurate even down to −10 dB SNR, though the peak amplitude
is reduced. Monte Carlo simulations indicate that the effect of noise is unbiased over
multiple collections, but that the accuracy of a particular collection DOA is degraded to
a standard deviation of approximately a quarter of a degree at −10 dB SNR. Additional
effects are discernible when multiple signals are present. First, as SNR decreases, there is a
reduction in the angular resolution between source signals. Second, an investigation of the
MUSIC response with overlapping signals of different power indicates that, especially with
wideband signals, there is an effective limit of 10 dB difference between signal powers in
order to be able to resolve the presence of the weaker signal in the MUSIC DOA spectrum.

These results will prove useful to system designers considering implementation of the
MUSIC algorithm. If the system will be used in an environment where signal overlap is ex-
pected, source signals have a 5% bandwidth or less, and signal powers do not vary greatly,
then the basic MUSIC algorithm should perform quite well. Between 5–10% bandwidth
and depending on the number of concurrently overlapping signals, the basic MUSIC al-
gorithm may not provide the desired accuracy, and as bandwidths of 20% or greater are
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approached an alternate method which can correct for the bandwidth effects is likely re-
quired.

5.1.2 Enhancements
The first performance enhancement developed in this thesis is a method of reducing com-
putational complexity through the use of a two-stage DOA determination. In the first stage
a coarse angular step size is utilized for the MUSIC search; the step size should be cho-
sen to ensure a minimum peak amplitude for signal detection. The second step runs the
exact same MUSIC calculation, but this time with a fine step size which should be chosen
based on desired geolocation precision. The second stage is only run in the vicinity of the
signal peaks which were extracted from the first stage. In this manner a high resolution
can be obtained with significantly fewer calculations than if the fine step size were to be
utilized over the entire visible range. The example developed in Section 4.1 resulted in
an approximately 30 times speed improvement. This improvement enables the real-time
implementation of the MUSIC algorithm in less powerful computing hardware than might
otherwise be required or available.

A geolocation enhancement was also introduced in Section 4.2. Generally, arrays with
ambiguities, or grating lobes, are undesirable for direction finding applications. The mo-
tion of an airborne or spaceborne array provides a method of resolving those ambiguities,
however, under the assumption that the same signal can be received and correlated over
multiple collection durations. This is possible because the true DOA will always point to-
wards the transmitter, but the false DOA (s) will drift and not all cross in the vicinity of a
single point. A DOA drift metric is also derived which enables automatic estimation of the
correct DOA with a minimum number of collections. This enhancement enables the con-
struction of arrays where receiver size or other constraints to the minimum receiver spacing
result in the presence of unavoidable grating lobes.

5.2 Future Work
There are many areas in which this thesis work could be expanded. The most immediate
research need would be in an examination of some of the more recent and more advanced
subspace methods which could reduce computational complexity and reduce the impact
of signal bandwidth on the determination of signal DOA. Friedlander and Weiss’s work in
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using virtual arrays [23] should enable a reduction in computational complexity by enabling
the use of root-MUSIC [7], but the accuracy of estimating interpolated signal phases for a
sparse array would need to be closely examined, as would the complexities arising from
the use of multiple virtual arrays over different portions of the visible range. There have
been multiple papers written since Schmidt’s seminal paper on MUSIC [2] concerning
methods to improve the subspace DOA resolution and minimize interaction effects for
wideband signals; a primary candidate for future research would be the method developed
by Friedlander and Weiss which builds on top of their prior work on virtual arrays [11].
A comparison to the methods of Doran, Doran, and Weiss [10] as well as other promising
methods would also prove fruitful.

There are also multiple possible avenues of directly expanding on the work done in
this thesis. One area would be in an evaluation of the impact of collection duration on
the MUSIC spectrum; at a minimum an improvement in DOA resolution at low SNRs is
expected, but there may be other advantages and disadvantages as well. The implementa-
tion of more realistic signals would confirm that methodology employed by this thesis of
using representative test signals was appropriate; this should include more realistic signal
durations and power levels. Examples could include phase-coded radar signals such as
maximal-length and Frank polyphase codes or communications signals such as 16-QAM
using Nyquist pulse shapes. Finally, the impact on DOA estimation and signal reconstruc-
tion should be evaluated with irregularly timed signals which break across collections.

Secondly, a deeper investigation into the methods of signal number estimation and their
limitations could resolve the reasons why this thesis research was unable to obtain correct
estimations. Being able to make an estimation with at least a reasonable expectation of
accuracy is an essential piece of realizing an operational employable subspace-based di-
rection finding system. This research should begin with the papers in [21] and [22] and
include any other relevant work in the area. At a minimum, the impact of signal type,
bandwidth, SNR, and array layout on the ability to estimate the number of signal should be
investigated.

A third research area would be in methods of improving the signal reconstruction to
avoid the blending which can occur with wideband signals, as demonstrated in Section 3.3.
An analysis of the ability to correlate separate collections as the same source signal in the
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presence of blending could also prove useful. This is of particular concern in high-density
signal environments where it can be especially difficult to separate and geolocation signals.

A final possible field of study would be in applying the model error analysis of Swindle-
hurst and Kailath [13] for non-linear arrays. Additionally, their weighting scheme for
MUSIC could be evaluated to see how it performs for the same radar-type signals utilized
in this thesis over a range of frequencies and bandwidths.

5.3 Conclusion
It is hoped that the results of this thesis, which are a first step towards deeper investigations
into the subspace direction finding algorithms, will enable an expansion of the geolocation
research which has been on-going at the Naval Postgraduate School to include more anal-
ysis beyond the more traditional two-receive element geolocation methods. The ability to
accurately utilize MUSIC in moderate to low bandwidth environments, despite it being de-
rived specifically for sinusoidal signals, was also demonstrated. Additionally, the density
of RF emitters is increasing around the world, and with that comes an increase in the like-
lihood of receiving overlapping signals. Methods of accurately resolving and geolocation
those overlapping signals are likely to be of interest to the military in the future, which
means that now is the time for research into subspace direction finding and other promising
methods of multiple signal geolocation.

61



THIS PAGE INTENTIONALLY LEFT BLANK

62



APPENDIX A:

Subspace Processing Speci�cs

A.1 Time-Domain Steering Matrix with Wideband
Signals

The time-domain solution derived in Section 2.4, and specifically the definition of the steer-
ing vectors as (2.8), is only an exact relationship for sinusoidal signals. To show the true
nature of the steering matrix, it is useful to derive an analytical solution for the representa-
tive wideband signals utilized in this thesis.

Let s1(t) be a LFM pulse at center frequency fc1, bandwidth B, and duration T , and let
s2(t) be a phase-coded signal of frequency fc2 and phase sequence ψ(t):

s1(t) = e j2π[( fc1−B
2 )t+ B

2T t2] (A.1)

s2(t) = e j(2π fc2t+ψ(t)). (A.2)

Additionally, assume that the two signals arrive at time zero at the origin of a three-element
array. There will be no phase shift at the origin, but the phase shift of signal si at a receive
element offset d j from the origin will be in accordance with (2.1). For this derivation, it
makes more sense to express the phase in terms of frequency, where c is the speed of light:

φi j = 2π fi
d j

c
sinθi. (A.3)

The DOA θi and the receiver offset from the origin d j are both straightforward, but the
frequency fi is not. The instantaneous frequency of a signal is the derivative of its phase in
cycles; for the two signals in (A.1) and (A.2) the phase in cycles is

φ1(t) =
(

fc1−
B
2

)
t +

B
2T

t2 (A.4)

φ2(t) = fc2t +
1

2π
ψ(t). (A.5)
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The instantaneous frequency of each signal is then

f1(t) =
(

f1−
B
2

)
+

B
T

t (A.6)

f2(t) = f2 +
1

2π

dψ(t)
dt

. (A.7)

It is clear that the instantaneous frequency of each signal is time-dependent, potentially
non-linear, and will change depending on the specific frequency/bandwidth/phase parame-
ters of each signal. Substituting (A.6) and (A.7) into (A.3) will result in a time-dependent
steering vector. The constant steering vector of (2.8) is then simply an approximation
which may only truly be accurate over a very short portion of the collection. It is from this
inaccuracy that most of the MUSIC degradations explored in Chapter 3 arise.

A.2 Subspace Methods in the Frequency Domain
The array matrix relationship of (2.6) can also be developed in the frequency domain; doing
this offers some computational advantages over the time domain method. At the origin, the
received signal is the sum of all q incident signals, just as in the time domain, with no phase
shifts:

X0( f ) =
q

∑
i=1

Si( f ), (A.8)

where Si( f ) is the Fourier transform of the ith signal. For any particular source signal
Si( f ), there will be a phase shift in the received signal at a receiver offset from the origin,
and that phase shift will be the same as it is in the time domain. In Section A.1, it was
shown that the frequency component of the phase shift was time dependent for wideband
signals and had to be derived separately for each signal. In the frequency domain, however,
assuming that the DFT was utilized to obtain the frequency spectrum, the frequency term of
the phase shift will simply be the vector of frequency bins from the DFT. This simpler and
always linear expression of the steering vectors for wideband signals is the first advantage
of conducting the subspace algorithms in the frequency domain. A second advantage is
that even though there are the same number of frequency bins as time domain samples, it
is relatively easy in the frequency domain to reduce the number of samples for which the
algorithm needs to be run. The most obvious way to reduce the number of samples in the
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calculation of the covariance matrix in the frequency domain is by using only the positive
frequency bins. Since the subspace algorithms are run on the analytic signal, as long as the
algorithm is executed at RF or IF the negative frequency portion of the real signal frequency
spectrum can be discarded since it is simply a duplicate of the positive frequency portion.
The number of covariance samples can be further reduced if one is only concerned about
signals over a limited frequency band. The main potential issue with reducing the number
of received signal samples in the frequency domain is that there are then fewer samples
over which to average out the noise, and the noise in any particular frequency bin can have
a larger impact on degrading the signal and noise subspace relationship.

In fact, since the Fourier transform is complex and can be expressed in magnitude and
phase components, only the phase portion of the frequency spectrum is necessary to com-
pute the array covariance matrix and determine signal DOAs. Since the received signal
at an element offset from the origin is simply an additional phase shift, the magnitude of
the received frequency spectrum is exactly the same at all receivers, neglecting noise and
very small differences in distance from the source and assuming that all receivers have an
identical radiation pattern.

Working in the frequency domain also means that if any signal frequency corrections
are required (see Section 3.2), all of the required information to estimate signal center
frequencies is already present and one does not have to switch back and forth between the
time and frequency domains.

A.3 Subspace Method Processing at an Intermediate
Frequency

Subspace method direction finding processing can be completed at an IF with the same
results as if the processing were completed at RF, disregarding any non-linearities resulting
from the mixing process and assuming that the received signal at all receiver elements is
mixed down to the exact same IF prior to sampling. For the purposes of this discussion, fr

is the array center frequency at RF, fm is the mixer frequency, and fi = fr− fm is the center
frequency of the IF received signal.

When using the MUSIC algorithm at IF, while the array covariance matrix (2.12) is
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computed using the IF signals, the steering vectors used in the DOA search of (2.21) must
be computed using the RF array center frequency fr. This same steering vector construction
with fr is used during signal reconstruction and frequency estimation. The resulting signal
estimated frequency in this case will be at IF, but any frequency correction (see Section
3.2) must be completed as it would be for the RF signal by including an adjustment for the
mixer frequency. Therefore (3.5) must be re-written as

θi,est = arcsin
(

fr

fi,est + fm
sinθi,MUSIC

)
. (A.9)
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APPENDIX B:

MATLAB Code

A working example of the MUSIC direction finding algorithm, along with test signal gen-
eration, estimated signal reconstruction, geolocation, and plotting of results is provided
below. The enhancements discussed in Chapter 4 are also included in the primary script.
A supplemental electronic copy of this code can be obtained by contacting the Naval Post-
graduate School’s Dudley Knox Library. The electronic version of the code also includes
a script which generates the example and visualization contained in Chapter 2 and a script
and associated signal definition files which generate the results of Chapter 3.

B.1 MUSIC Direction Finding and Geolocation Script

1 %% MUSIC direction finding algorithm and geolocation

2 %

3 % Purpose:

4 % This script generates test signals which are defined by a specified

5 % file and runs the MUSIC algorithm in the frequency domain in azimuth

6 % only based on parameters sepcified in the initilization section below.

7 % Signal reconstruction based on the derived DOAs is also conducted, and

8 % if more than three collections are commanded an estimate is made of

9 % the emitter location. Data is presented in plots for easier analysis.

10 %

11 % Custom functions called:

12 % sig_config_xxxx - not a function, but a script file which contains

13 % specifications for one or more signals as well as the array center

14 % frequency, sample frequency, and signal duration

15 % interferometry_sig_gen - function which generates phase shifted

16 % signals at specified receiver locations

17 % subspace_calc - function which generates the array covariance matrix

18 % and the eigendecomposition of said matrix. Also estimates number of

19 % signals if desired

20 % music_calc - computes MUSIC spectrum

21 % geolocate2 - 2D least squares estimate of emitter locations based on

22 % collected DOA vectors
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23 % pt_motion - metric for ambiguity resolution; measures the motion of a

24 % test point (currently intersection mid-positions) over multiple

25 % collections

26 %

27 % History:

28 % DATE (YYMMDD) AUTHOR/EDITOR EMAIL NOTE

29 % 141203 Chris Straessle gcstraes@nps.edu Original thesis code

30 %

31 % NOTE

32 % This is a full implementation of the code used for this thesis, but

33 % it does not directly generate the figures contained in Chap 3 of the

34 % thesis. Those were obtained through rearrangements and subplotting in

35 % order to highlight specific results; the script used for that is

36 % attached electronically to the NPS library's electronic version of

37 % this thesis. The code used to generate the example and visualization

38 % in Chap 2 of the thesis is also attached electronically.

39 %

40 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

41

42 %% Initalization - User options

43

44 clear all

45 close all

46 %clc

47

48 arraytype = 'sparse'; % options are 'uniform' or 'sparse'

49 num_ambig = 0; % 0 = no ambiguities, integer = # of ambiguities

50 noiseon = 0; % Turn noise on or off. 1 = on, 0 = off

51 save_figs = 0; % 1 = save figures, 0 = do not save figures

52

53 % compute signal number estimation. Options are 'none', 'NEW', or 'MDL'

54 sig_num_est = 'none';

55

56 sig_config_example; % load signal configurations from file

57 selected_sigs = [1 2]; % choose signals to model

58

59 % range of frequencies for array (Hz)

60 fmin = recParam.centerfreq - 500e6;

61 fmax = recParam.centerfreq + 500e6;
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62

63 num_collects = 5; % number of collection runs

64

65 %% Additional Setup

66

67 global c

68 c = 3e8; % speed of light (m/s)

69

70 % Angles at which MUSIC spectrum will be computed (this is main driver

71 % of processing time). Two-stage method is being utilized.

72 sine_step_crs = 0.001; % Coarse step size (sinespace)

73 sinespace = -1:sine_step_crs:1-sine_step_crs; % discrete angles

74 angles = asind(sinespace); % discrete angles (deg)

75 sine_step_fine = 2e-4; % fine step size (sinespace)

76

77 % initializations

78 shift_req = 0;

79

80 % custom color order definition

81 colors = [ 0 0 1.0000;

82 1.0000 0 0;

83 0 0.5000 0;

84 0.7500 0 0.7500;

85 0 0 0;

86 0.7500 0.7500 0;

87 0.2500 0.2500 0.2500];

88

89 %% Array Configuration

90

91 % Receive element locations; array spacing in the specified vector is in

92 % center frequency wavelengths

93 switch arraytype

94 case 'uniform' % half wavelength spacing

95 rec_el_NL_wav = ([0 1 2 3 4 5]'/2);

96 case 'sparse'

97 % sparse spacing (minimum half wavelength spacing, no

98 % ambiguities, consistent sidelobe height of ~ -6 dB). Pattern

99 % is to place additional emitters at distances which equate to

100 % an unbroken string of integer half wavelengths when all
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101 % elements are considered relative to each other. For the

102 % current 6-element array, the half wavelength separations

103 % covered are: 1-9, 11-13, 17, 19, 20. The first skipped integer

104 % is 10, so the next element should be added 10 half wavelengths

105 % after the last one. Adding a 7th element at d=30/2 would add

106 % the separations: 10, 18, 23, 29, 30. Array can continue to be

107 % expanded in this manner.

108 rec_el_NL_wav = ([0 1 3 7 12 20]'/2);

109 otherwise

110 error('Incorrect array type specified')

111 end

112

113 % adjust array spacing for desired number of ambiguities

114 num_lobes = num_ambig + 1;

115 rec_el_NL_wav = rec_el_NL_wav * num_lobes;

116

117 % Receive element locations in meters

118 rec_el_NL = rec_el_NL_wav*c/recParam.centerfreq;

119 p = length(rec_el_NL); % number of receive elements

120

121 % Steering vector definition. Defined as a function for later

122 % flexibility

123 Af = @(f,ss) exp(-1j*2*pi*f*rec_el_NL*ss/c);

124

125 % Determine number of ambiguitities at center frequency

126 phi = 2*pi*rec_el_NL_wav*sinespace; % matrix of receiver phases by angle

127 v = exp(1j*phi)/sqrt(p); % complex phases, corrected for array size

128

129 % normalized complex antenna pattern at specified angle. shift to

130 % 360*3/7 deg (increases peak finding accuracy); using a large enough

131 % prime number denominator (7) minimizes the chances of a peak wrapping

132 % around at +-90 deg (which is difficult to count properly); the

133 % numerator (3) servers to more or less recenter the main beam.

134 pattern = v(:,ceil(length(sinespace)*3/7))'*v;

135 pattern_mag = abs(pattern);

136 % ambiguity is being defined as > 90% of main beam magnitude. The MUSIC

137 % response for grating lobes below 90% is small. This step truncates

138 % the data at 0.9

139 pattern_mag(pattern_mag<=.9)=0;
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140 [pks, locs] = findpeaks(pattern_mag);

141 num_lobes = length(pks); % count number of peaks remaining

142

143 %% Collector details

144

145 coll_pos = [0; 0]; % initial collector position

146

147 coll_vel = [300; 0]; % nmi/hr

148 coll_vel = coll_vel/3600; % nmi/s

149

150 collect_interval = 120; % collection interval, in seconds

151

152 % rotation matrix to normalize relative DOAs

153 % (not currently utilized)

154 R = 1/norm(coll_vel)*[coll_vel(1),-coll_vel(2);coll_vel(2),coll_vel(1)];

155

156 %% Collection Loop

157

158 for n = 1:num_collects

159 % collection time (s); 1st collection defined as t = 0

160 t_col(n) = (n-1)*collect_interval;

161 % collector position

162 coll_pos(:,n) = coll_pos(:,1) + coll_vel*t_col(n);

163

164 % signal generation

165 [sigs, X, e_pos, sig_names, doas(:,n), N, t] =...

166 interferometry_sig_gen(sigParam, recParam, selected_sigs,...

167 coll_pos(:,n), coll_vel, rec_el_NL, noiseon);

168

169 q = length(selected_sigs); % number of source signals

170

171 Xf = fft(X,[],2); % convert to freq domain

172 df = ((0:(N-1)).*(recParam.sampfreq/N))'; % FFT frequency vector

173

174 % Subspace determination

175 [q_est, EigVec_s, EigVec_n, EigVal] = subspace_calc(Xf,...

176 sig_num_est, q, n);

177

178 %% MUSIC
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179

180 % Run MUSIC with coarse steering vectors

181 music_spectrum(n,:) =...

182 music_calc(Af(recParam.centerfreq,sinespace), EigVec_n);

183

184 % define the number of desired peaks to equal the number of

185 % estimated signals times the number of ambiguities

186 % NOTE - This assume that each true DOA has a grating lobe, which is

187 % only exactly true for integer multiples of minimum wavelength

188 % spacing

189 num_peaks = q_est*num_lobes;

190 % extract peaks from MUSIC plot in descending order

191 % NOTE - high bandwidth signals can lead to an anomolous peak being

192 % chosen over a true peak.

193 [pks, locs] = findpeaks(real(music_spectrum(n,:)),'sort','descend');

194

195 % re-sort q_est tallest peaks into DOA order (negative to positive),

196 % store as coarse angle vector

197 ambig_locs_crs_ss{n} = sinespace(sort(locs(1:num_peaks)));%sinespace

198 ambig_locs_crs_ang{n} = angles(sort(locs(1:num_peaks))); % degrees

199

200 % re-run music calculation with higher precision steering vectors

201 for m = 1:num_peaks;

202 % angle around which to conduct higher resolution search

203 peak_ang = ambig_locs_crs_ss{n}(m);

204 % define fine resolution segment of visible range

205 sine_sub_ang = (peak_ang-sine_step_crs/2):...

206 sine_step_fine:(peak_ang+sine_step_crs/2);

207 % re-run MUSIC

208 music_hires(n,:) =...

209 music_calc(Af(recParam.centerfreq,sine_sub_ang),EigVec_n);

210 % determine appropriate higher resolution DOAs and store as

211 % precise angle vector

212 % NOTE - currently written to only look for one peak

213 [~, indx] = max(real(music_hires(n,:)));

214 ambig_locs_p_ss{n}(m) = peak_ang - sine_step_crs/2 +...

215 indx*sine_step_fine;

216 end

217 % convert to degrees
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218 ambig_locs_p_ang{n} = asind(ambig_locs_p_ss{n});

219

220 % fit DOA estimate into an ambiguities x signals matrix

221 doa_est_ss{n} = reshape(ambig_locs_p_ss{n},q_est,num_lobes).';

222

223 %% frequency Domain Signal Reconstruction

224

225 % use array center frequency and derived DOAs to solve for an

226 % estimate of the source signals

227 SIG_est{n} = pinv(Af(recParam.centerfreq,doa_est_ss{n}(1,:)))*Xf;

228 % convert to time domain

229 sig_est{n} = ifft(SIG_est{n},[],2);

230

231 %% Frequency Estimation

232

233 % create normalized PSD for each estimated source signal

234 SIGPWR_est_norm = (diag(1./...

235 max(abs(SIG_est{n}(:,1:ceil(N/2))),[],2))*...

236 abs(SIG_est{n}(:,1:ceil(N/2)))).^2;

237

238 % truncate lowest 10% of response (minimizes noise and effects of

239 % signals not being centered in search bandwidth)

240 SIGPWR_est_norm(SIGPWR_est_norm<.1) = 0;

241

242 % estimate signal center frequency

243 f_sig_est{n} = ((SIGPWR_est_norm*df(1:ceil(N/2)))./...

244 sum(SIGPWR_est_norm,2)).';

245

246 %% MUSIC adjustments

247

248 % fix DOAs based on incorrect frequency assumption, uses fft

249 % estimated center freq from above

250 doa_est_ss_ff(:,:,n) = recParam.centerfreq./...

251 repmat(f_sig_est{n},num_lobes,1).*doa_est_ss{n};

252

253 % Determine direction vector to emitter

254 % TBD: and correct for movement not in the +x direction

255 % w = {# coll}(sig #, ambig #, (sin(DOA)|cos(DOA))

256 % Note that (sin(DOA),cos(DOA)) is an (x,y) unit vector in the
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257 % direction of the emitter (assuming +x motion)

258 w{n}(:,:,1) = doa_est_ss_ff(:,:,n); % x components

259 w{n}(:,:,2) = sqrt(1-w{n}(:,:,1).^2); % y components

260

261 %% geolocation determination

262 % NOTE - difficult to functionalize as currently written)

263

264 if n > 1

265 % intersection point of two DOAs

266 intersect_pos{n} = intersect_pt(coll_pos,w);

267 if n > 2

268 % if no ambiguities, solve geolocation problem

269 if num_lobes == 1;

270 doa_est_ss_ff_na = reshape(doa_est_ss_ff,q_est,n).';

271 e_pos_est = geolocate2(coll_pos, doa_est_ss_ff_na);

272 else

273 % if ambiguities, attempt to determine correct DOA

274 mid_pos{n} = (intersect_pos{n} + intersect_pos{n-1})./2;

275 if n > 3

276 % note: length(sum(distance vectors) has more dynamic

277 % range than sum(length(distance vectors). Also, use of

278 % mid-position has better results than individual

279 % crossing points (though the latter can be calculated

280 % one iteration sooner)

281 sq_mid_motion{n} = pt_motion(mid_pos);

282 % min values are likely correct DOA (not ambiguity)

283 [~, indx] = min(sq_mid_motion{n},[],1);

284 for m = 1:q_est

285 if n == 4

286 % go back and remove ambiguous DOAs from

287 % first 3 collections

288 for k = 1:3

289 doa_est_ss_ff_af(k,m) =...

290 w{k}(indx(m),m,1);

291 end

292 end

293 % remove ambiguous DOA from current collection

294 doa_est_ss_ff_af(n,m) = w{n}(indx(m),m,1);

295 end
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296 % Estimate emitter position using estimated correct

297 % DOA

298 e_pos_est = geolocate2(coll_pos, doa_est_ss_ff_af);

299 end

300 end

301 end

302 end

303 end

304

305 %% plots

306

307 % determine if signals 'wrap' around +-90 deg; shift DOAs if necessary

308 % (note - cumulative if there's more than one wrap)

309 for n = 2:num_collects;

310 if ambig_locs_crs_ss{n}(1) > ambig_locs_crs_ss{n-1}(1)

311 shift_req = shift_req + 1;

312 end

313 end

314 if shift_req ~= 0;

315 ambig_locs_crs_ss{n} = circshift(ambig_locs_crs_ss{n},[0,shift_req]);

316 end

317

318 % MUSIC plot

319 fignum(1) = figure();

320 plot(sinespace,10*log10(abs(music_spectrum)))

321 grid on

322 xlabel('Angle from boresight (sinespace)','fontsize',14)

323 ylabel('Orthogonality (dB)','fontsize',14)

324 set(gca,'xtick',-1:.2:1)

325 if num_collects > 1

326 legend('c_1','c_2','c_3','c_4','c_5','c_6','c_7','c_8')

327 end

328 title('MUSIC Specta','fontsize',14)

329

330 % Signal FFT plot

331 fignum(5) = figure();

332 SIG = fft(sigs.');

333 stem(df/1e6,abs(SIG))

334 xlim([fmin fmax]/1e6);set(gca,'xtick',(fmin:1e8:fmax)/1e6);
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335 grid on

336 xlabel('frequency (MHz)','fontsize',14)

337 ylabel('Volts (V)','fontsize',14)

338 legend(sig_names)

339 title('Transmitted signals','fontsize',14)

340

341 % plot locations and estimated DOA lines

342 % signals are different colors and ambiguities are the same color

343 cnum = num_collects;

344 fignum(2) = figure();

345 plot(e_pos(1,:),e_pos(2,:),'k+','markersize',10)

346 hold on

347 plot(coll_pos(1,1:cnum),coll_pos(2,1:cnum),'ko','markersize',8)

348 xlim([-250 250])

349 ylim([-25 300])

350 x1(1,1,:) = coll_pos(1,:);

351 x1 = repmat(x1, [1 q_est 1]);

352 y1(1,1,:) = coll_pos(2,:);

353 y1 = repmat(y1, [1 q_est 1]);

354 for n = 1:cnum

355 for m = 1:num_lobes;

356 % w0 = {# coll}(# ambig, # sig, sin(DOA)|cos(DOA))

357 w0{n} = doa_est_ss{n};

358 w0{n}(:,:,2) = sqrt(1-w0{n}(:,:,1).^2);

359 endpt{n}(m,1:size(w0{n},2),:) = w0{n}(m,:,:)*300 + ...

360 repmat(reshape(coll_pos(:,n),1,1,2),[1,q_est,1]);

361 % plot initial MUSIC DOAs

362 line([repmat(coll_pos(1,n),1,q_est); endpt{n}(m,:,1)],...

363 [repmat(coll_pos(2,n),1,q_est);endpt{n}(m,:,2)],...

364 'linestyle','-')

365 if n > 1 && num_lobes ~=1;
366 plot(intersect_pos{n}(m,:,1),intersect_pos{n}(m,:,2),...

367 'o','color',colors(n-1,:));

368 if n > 2

369 plot(mid_pos{n}(m,:,1),mid_pos{n}(m,:,2), 'ks');

370 end

371 end

372 end

373 end
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374 xlabel('In-track Range (nmi)','fontsize',14)

375 ylabel('Cross-track Range (nmi)','fontsize',14)

376 title('Map View','fontsize',14)

377

378 % plot locations and estimated DOA lines for frequency fixed DOAs

379 % signals are different colors and ambiguities are the same color

380 fignum(3) = figure();

381 plot(e_pos(1,:),e_pos(2,:),'k+','markersize',10)

382 hold on

383 plot(coll_pos(1,:),coll_pos(2,:),'ko','markersize',8)

384 xlim([-250 250])

385 ylim([-25 300])

386 for n = 1:num_collects

387 for m = 1:num_lobes;

388 % plot initial MUSIC DOAs

389 line([repmat(coll_pos(1,n),1,q_est); endpt{n}(m,:,1)],...

390 [repmat(coll_pos(2,n),1,q_est);endpt{n}(m,:,2)],...

391 'linestyle','--')

392 if n > 1 && num_lobes ~=1;
393 plot(intersect_pos{n}(m,:,1),intersect_pos{n}(m,:,2),...

394 'o','color',colors(n,:));

395 if n > 2

396 plot(mid_pos{n}(m,:,1),mid_pos{n}(m,:,2), 'ks');

397 end

398 end

399 endpt_ff{n}(m,1:size(w{n},2),:) = w{n}(m,:,:)*300 + ...

400 repmat(reshape(coll_pos(:,n),1,1,2),[1,q_est,1]);

401 %plot frequency corrected DOAs

402 line([repmat(coll_pos(1,n),1,q_est); endpt_ff{n}(m,:,1)],...

403 [repmat(coll_pos(2,n),1,q_est);endpt_ff{n}(m,:,2)]);

404 end

405 end

406 if exist('e_pos_est')

407 plot(e_pos_est(1,:),e_pos_est(2,:),'kd','markersize',8)

408 end

409 xlabel('In-track Range (nmi)','fontsize',14)

410 ylabel('Cross-track Range (nmi)','fontsize',14)

411 title('Map View (frequecy fixed)','fontsize',14)

412
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413 % Transmitted signal plot

414 fignum(4) = figure();

415 colors = get(gca,'ColorOrder');

416 for n = 1:q

417 subplot(q,1,n)

418 plot(t/1e-9,real(sigs(n,:)),'color',colors(n,:))

419 if n < q

420 set(gca,'xtick',[])

421 end

422 xlim([0 40])

423 legend(sig_names{n})

424 end

425 xlabel('time (ns)','fontsize',14)

426 ax = axes('Units','Normal','Visible','off');

427 set(get(ax,'Ylabel'),'visible','on')

428 ylabel('Volts (V)','fontsize',14)

429 title('Transmitted signals','fontsize',14)

430 set(get(ax,'title'),'visible','on')

431

432 % Received signal plot

433 fignum(6) = figure();

434 for n = 1:p

435 subplot(p,1,n)

436 plot(t/1e-9,real(X(n,:)))

437 if n < p

438 set(gca,'xtick',[])

439 end

440 xlim([0 40])

441 legend(strcat('r_',num2str(n)))

442 end

443 xlabel('time (ns)','fontsize',14)

444 ax = axes('Units','Normal','Visible','off');

445 set(get(ax,'Ylabel'),'visible','on')

446 ylabel('Volts (V)','fontsize',14)

447 title('Received signals','fontsize',14)

448 set(get(ax,'title'),'visible','on')

449

450 % FFT of received signal

451 fignum(7) = figure();
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452 RSIG = fft(X(1,:));

453 stem(df/1e6,abs(RSIG))

454 xlim([fmin fmax]/1e6);set(gca,'xtick',(fmin:1e8:fmax)/1e6);

455 grid on

456 xlabel('frequency (MHz)','fontsize',14)

457 ylabel('Volts (V)','fontsize',14)

458 title('Received signal','fontsize',14)

459

460 % Reconstructed signal plot

461 fignum(8) = figure();

462 for n = 1:q_est

463 subplot(q_est,1,n)

464 plot(t/1e-9,real(sig_est{1}(n,:)),'color',colors(n,:))

465 if n < q

466 set(gca,'xtick',[])

467 end

468 xlim([0 40])

469 legend(strcat('s_',num2str(n)))

470 end

471 xlabel('time (s)','fontsize',14)

472 ax = axes('Units','Normal','Visible','off');

473 set(get(ax,'Ylabel'),'visible','on')

474 ylabel('Volts (V)','fontsize',14)

475 set(get(ax,'Ylabel'),'visible','on')

476 title('Reconstructed signals','fontsize',14)

477 set(get(ax,'title'),'visible','on')

478

479 % Reconstructed Signal FFT plot

480 fignum(9) = figure();

481 stem(df/1e6,abs(SIG_est{1}.'))

482 xlim([fmin fmax]/1e6);set(gca,'xtick',(fmin:1e8:fmax)/1e6);

483 grid on

484 xlabel('frequency (MHz)','fontsize',14)

485 legend('s_1','s_2','s_3','s_4')

486 ylabel('Volts (V)','fontsize',14)

487 title('Reconstructed signals','fontsize',14)

488

489 % Array beamshape plot at desired angle (0 for boresight)

490 [~, indx] = min(abs(angles-0));
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491 C0 = v(:,indx)'*v;

492 figure()

493 plot(sinespace,20*log10(abs(C0)))

494 ylim([-20 0])

495 title('Array Pattern','fontsize',14)

496 xlabel('sinespace')

497 ylabel('Normalized gain (dB)')

B.2 Signal Configuration Example Script

1 %% Signal Config Example

2 %

3 % This script defines receiver and signal parameters for use with the

4 % main MUSIC direction finding and geolocation script and provides

5 % example definitions.

6 %

7 % Receiver parameters (recParam.xxx):

8 % - centerfreq - array center frequency in Hz

9 % - sampfreq - sampling frequency in Hz (keep in mind top end of

10 % desired frequency range)

11 % - dur - signal duration (receiver duration will be slightly larger

12 % and will depend on array baseline)

13 %

14 % Signal parameters (sigParam{n}.xxx):

15 % - All signals require:

16 % - f - signal center frequency

17 % - type - options are 'sin', 'QPSK', 'LFM'

18 % - pos - location in the coordinate system. Should be positive y

19 % - snr - signal power (in dB); noise power is set to 0 dB if

20 % noise is enabled, so this effectively also sets the SNR

21 % - name - for plot labeling

22 % - LFM also requires:

23 % - B - signal bandwidth in Hz

24 % - QPSK also requires:

25 % - B - OPTIONAL, use if defining code as random sequence in order

26 % to obtain appropriate length

27 % - code - integer (0-3) based coding vector for QPSK phases.

28 % Bandwidth is based on code length: sigParam.B = K/recParam.dur,
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29 % where K is the number of subcodes in the vector.

30 %

31 % History:

32 % DATE (YYMMDD) AUTHOR/EDITOR EMAIL NOTE

33 % 141203 Chris Straessle gcstraes@nps.edu Original thesis code

34 %

35 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

36

37 % version name useful for specifying particular plots

38 sigversion = 'sig_version';

39

40 % receiver parameters

41 recParam.centerfreq = 1e9; % Hz

42 recParam.sampfreq = 4e9; % Hz

43 recParam.dur = 100e-9; % s

44

45 % signal definitions

46 sigParam{1}.f = 1000e6;

47 sigParam{1}.B = 50e6;

48 sigParam{1}.type = 'QPSK';

49 sigParam{1}.code = randi([0 3],floor(sigParam{1}.B*recParam.dur),1);

50 sigParam{1}.pos = [sind(15); cosd(15)]*110;

51 sigParam{1}.snr = 10;

52 sigParam{1}.name = strcat(num2str(sigParam{1}.f/1e6),' MHz QPSK');

53

54 sigParam{2}.f = 1105e6;

55 sigParam{2}.type = 'sin';

56 sigParam{2}.pos = [90; 120];

57 sigParam{2}.snr = 10;

58 sigParam{2}.name = strcat(num2str(sigParam{2}.f/1e6),' MHz sine');

59

60 sigParam{3}.f = 1050e6;

61 sigParam{3}.B = 100e6;

62 sigParam{3}.type = 'LFM';

63 sigParam{3}.pos = [sind(-32); cosd(-32)]*150;

64 sigParam{3}.snr = 10;

65 sigParam{3}.name = strcat(num2str((sigParam{3}.f-sigParam{3}.B/2)/1e6)...

66 ,'-', num2str((sigParam{3}.f+sigParam{3}.B/2)/1e6), ' MHz LFM');
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B.3 Interferometric Signal Generation Function

1 function [sigs, X, e_pos, sig_names, doas, N, t] =...

2 interferometry_sig_gen(sigParam, recParam, selected_sigs,...

3 coll_pos, coll_vel, rec_array, noiseon)

4 %

5 % Purpose:

6 % Generate signals at receiver based on pre-defined signal parameters,

7 % receiver array layout, collector position, and emitter position.

8 % Useful for subspace-based direction finding algorithms.

9 %

10 % Inputs:

11 % - sigParam - structure of signal parameters (see example file)

12 % - recParam - structure of receiver parameters (see example file)

13 % - selected_sigs - vector where a specific subset of signals from

14 % sigParam can be specified. e.g. [1 3]

15 % - coll_pos - collector position matrix in [x;y], subsequent

16 % positions in subsequent columns

17 % - coll_vel - collector velocity in [x;y]. Assumed constant for all

18 % collections.

19 % - rec_array - linear receiver element location definition; should

20 % specify receiver locations as distance along a line from the origin

21 % - noiseon - equals 0 if additive noise is disabled and 1 if AWGN is

22 % enabled

23 %

24 % Outputs:

25 % - sigs - q x N vector of source signals (q is number of signals, N

26 % is the number of samples

27 % - X - p x N vector of received signals (p is number of receivers)

28 % - e_pos - emitter positions in [x;y], subsequent emitter positions

29 % in subsequent columns

30 % - sig_names - cell array of signal names

31 % - doas - signal DOAs in degrees. c x q matrix (c is the number

32 % of collections)

33 % - N - number of samples in collection

34 % - t - time vector for collection (assumed to start at time zero)

35 %

36 % Custom functions called:
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37 % - gen_sin - generate phase shifted sinusoidal signal at receivers

38 % - gen_qpsk - generate phase shifted QPSK signal at receivers

39 % - gen_chirp - generate phase shifted LFM signal at receivers

40 %

41 % History:

42 % DATE (YYMMDD) AUTHOR/EDITOR EMAIL NOTE

43 % 141203 Chris Straessle gcstraes@nps.edu Original thesis code

44 %

45 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

46

47 global c

48 p = length(rec_array); % number of receivers

49 q = length(selected_sigs); % number of signals

50

51 %% Individula signal generation

52

53 b = 0;

54 for m = selected_sigs; % cycle through desired signals

55 b = b + 1; % counter

56 switch sigParam{m}.type

57 case 'sin'

58 [sig{b}, ~, doas(b), ~] = gen_sin(sigParam{m},...

59 recParam, coll_pos, coll_vel, rec_array);

60 case 'QPSK'

61 [sig{b}, ~, doas(b), ~] = gen_qpsk(sigParam{m},...

62 recParam, coll_pos, coll_vel, rec_array);

63 case 'LFM'

64 [sig{b}, ~, doas(b), ~] = gen_chirp(sigParam{m},...

65 recParam, coll_pos, coll_vel, rec_array);

66 end

67 e_pos(:,b) = sigParam{m}.pos; % emitter positions

68 sig_names{b} = sigParam{m}.name; % signal names

69

70 % adjust signal power

71 sig{b} = sig{b}*sqrt(10^(sigParam{m}.snr/10));

72 end

73

74 % number of samples; created to capture full signal length regardless of

75 % DOA (includes additional time for 90 deg signal to traverse the array)
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76 N = ceil((recParam.dur+(max(rec_array)*sind(90)./c))*recParam.sampfreq);

77 t = (0:N-1)/recParam.sampfreq; % time vector

78

79 %% Signal combination at array

80

81 % initializations

82 sigs = zeros(q,N);

83 Xo = zeros(p,N);

84

85 % create transmitted signal matrix and received signal matrix

86 for m = 1:q

87 sigs(m,1:size(sig{m},2)) = sig{m}(1,:);

88 Xo(:,1:size(sig{m},2)) = Xo(:,1:size(sig{m},2)) + sig{m};

89 end

90 Xa = Xo; % for future use (attenuation)

91

92 %% Additive Noise

93

94 % receiver noise variance (assume same for all elements)

95 noise_var = 1; % normalized noise

96

97 if noiseon;

98 rec_noise = sqrt(noise_var/2)*(randn(p,N) + 1j*randn(p,N)); % AWGN

99 else

100 rec_noise = 0; % no noise case

101 end

102 X = Xa + rec_noise; % received signal matrix with receiver noise

B.4 DOA and Time Delay Calculation Function

1 function [doa, t_d] = doa_calc(sigParam, c_pos, c_vel, rec_array)

2 %

3 % Purpose:

4 % Determine emitter DOA and delay vector which defines when the signal

5 % (assumed plane wave) arrives at a receiver

6 %

7 % History:

8 % DATE (YYMMDD) AUTHOR/EDITOR EMAIL NOTE
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9 % 141203 Chris Straessle gcstraes@nps.edu Original thesis code

10 %

11 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

12

13 global c

14

15 % if no velocity, assume platform facing +x

16 if norm(c_vel) == 0;

17 c_vel = [1;0];

18 end

19

20 e_pos = sigParam.pos; % emitter positions

21 e_dist = norm(e_pos-c_pos); % distance to emitter

22

23 % emitter DOA relative to array broadside

24 doa = 90 - acosd((c_vel'*(e_pos-c_pos))./(e_dist*norm(c_vel)));

25

26 % delay vector (column)

27 t_d = rec_array*sind(doa)/c;

B.5 Sinusoid Generation Function

1 function [s, t_rec, doa, t_d] =...

2 gen_sin(sigParam, recParam, c_pos, c_vel, rec_array)

3 %

4 % Purpose:

5 % Generate sinusoidal pulse at receivers.

6 %

7 % Custom functions called:

8 % - doa_calc - calculates signal DOA and delay vector

9 %

10 % History:

11 % DATE (YYMMDD) AUTHOR/EDITOR EMAIL NOTE

12 % 141203 Chris Straessle gcstraes@nps.edu Original thesis code

13 %

14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

15

16 f = sigParam.f; % center frequency
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17 ts = 1/recParam.sampfreq; % sample duration

18 T = recParam.dur; % signal duration

19

20 % calculate DOA and delay vector (column)

21 [doa, t_d] = doa_calc(sigParam, c_pos, c_vel, rec_array);

22

23 % collection time matrix, begins at time the first receiver receives

24 % beginning of signal until the last receivers receives end of signal.

25 % Signal at origin is time zero

26 t_coll = repmat((ceil(min(t_d)/ts)*ts:ts:T-ts+max(t_d)),...

27 [length(t_d),1]);

28

29 % function to calculate delay at each each receiver

30 t_ref = @(t)t - repmat(t_d,[1,length(t_coll)]);

31 % matrix of shifted signal arrival times per receiver

32 t_rec = t_ref(t_coll);

33

34 % generate complex analytic sine signal

35 s = exp(1j*(2*pi*f*t_rec-pi/2));

36 % set portions outside of pulse to zero

37 s(t_rec < 0) = 0;

38 s(t_rec > T-ts) = 0;

B.6 QPSK Generation Function

1 function [s, t_rec, doa, t_d] =...

2 gen_qpsk(sigParam, recParam, c_pos, c_vel, rec_array)

3 %

4 % Purpose:

5 % Generate QPSK pulse at receivers.

6 %

7 % Custom functions called:

8 % - doa_calc - calculates signal DOA and delay vector

9 %

10 % History:

11 % DATE (YYMMDD) AUTHOR/EDITOR EMAIL NOTE

12 % 141203 Chris Straessle gcstraes@nps.edu Original thesis code

13 %
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14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

15

16 f = sigParam.f; % center frequency

17 ts = 1/recParam.sampfreq; % sample duration

18 T = recParam.dur; % signal duration

19 z = sigParam.code; % code

20 N = round(T/ts); % number of samples

21

22 % determine appropriate subcode value for each sample

23 z_long = repmat(z,[1 ceil(T/(length(z)*ts))])';

24 z_long = z_long(:);

25 z_long = z_long(1:N);

26

27 % calculate DOA and delay vector (column)

28 [doa, t_d] = doa_calc(sigParam, c_pos, c_vel, rec_array);

29

30 % force signal to exist in positive time

31 if min(t_d) < 0

32 t_d = t_d - min(t_d);

33 end

34

35 % convert code integers to phase

36 phi_opt = [pi/4, 3*pi/4, 5*pi/4, 7*pi/4];

37 phi = phi_opt(z_long+1);

38

39 % collection time matrix, begins at time the first receiver receives

40 % beginning of signal until the last receivers receives end of signal.

41 % Signal at origin is time zero

42 t_coll = repmat((ceil(min(t_d)/ts)*ts:ts:T-ts+max(t_d)),...

43 [length(t_d),1]);

44

45 % function to calculate delay at each each receiver

46 t_ref = @(t)t - repmat(t_d,[1,length(t_coll)]);

47 % matrix of shifted signal arrival times per receiver

48 t_rec = t_ref(t_coll);

49

50 % generate complex analytic signal

51 s = exp(1j*(2*pi*f*t_rec));

52 % set portions outside of pulse to zero
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53 s(t_rec < 0) = 0;

54 s(t_rec > T-ts) = 0;

55

56 % apply phase shifts to signal

57 for m = 1:length(t_d)

58 phaseshift = [zeros(1,abs(ceil(min(t_d)/ts)-ceil(t_d(m)/ts)))...

59 exp(-1j*phi)...

60 zeros(1,ceil(max(t_d)/ts)-ceil(t_d(m)/ts))];

61 s(m,:) = s(m,:).*phaseshift(1:length(s));

62 end

B.7 LFM Generation Function

1 function [s, t_rec, doa, t_d] =...

2 gen_chirp(sigParam, recParam, c_pos, c_vel, rec_array)

3 %

4 % Purpose:

5 % Generate LFM pulse at receivers.

6 %

7 % Custom functions called:

8 % - doa_calc - calculates signal DOA and delay vector

9 %

10 % History:

11 % DATE (YYMMDD) AUTHOR/EDITOR EMAIL NOTE

12 % 141203 Chris Straessle gcstraes@nps.edu Original thesis code

13 %

14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

15

16 f = sigParam.f; % center frequency

17 ts = 1/recParam.sampfreq; % sample duration

18 T = recParam.dur; % signal duration

19 B = sigParam.B; % signal bandwidth

20

21 % calculate DOA and delay vector (column)

22 [doa, t_d] = doa_calc(sigParam, c_pos, c_vel, rec_array);

23

24 % collection time matrix, begins at time the first receiver receives

25 % beginning of signal until the last receivers receives end of signal.
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26 % Signal at origin is time zero

27 t_coll = repmat((ceil(min(t_d)/ts)*ts:ts:T-ts+max(t_d)),...

28 [length(t_d),1]);

29

30 % function to calculate delay at each each receiver

31 t_ref = @(t)t - repmat(t_d,[1,length(t_coll)]);

32 % matrix of shifted signal arrival times per receiver

33 t_rec = t_ref(t_coll);

34

35 % generate chirp phases

36 phase = (f - B/2).*(t_rec) + B/(2*T).*(t_rec).^2;

37

38 % generate signal

39 s = exp(1j*2*pi.*phase);

40 % set portions outside of pulse to zero

41 s(t_rec < 0) = 0;

42 s(t_rec > T-ts) = 0;

B.8 Subspace Calculation Function

1 function [q_est, EigVec_s, EigVec_n, EigVal] = subspace_calc(Xf,...

2 sig_num_est, q, n)

3 %

4 % Purpose:

5 % Calculate array covariance matrix (in frequency domain) and conduct

6 % eigenvector decomposition of said matrix. Contains option to estimate

7 % number of signals via Wax's MDL or Nadakuti and Edelman's NEW method,

8 % or to force known number of signals

9 %

10 % Inputs:

11 % - Xf - frequency domain version of received signal matrix

12 % - sig_num_est - user parameter which defines how to estimate signal.

13 % Options are 'none', 'MDL', or 'NEW'

14 % - q - number of generated source signals

15 % - n - collection number (used in alert message)

16 %

17 % Outputs:

18 % - q_est - estimated number of source signals
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19 % - EigVec_s - signal eigenvectors

20 % - EigVec_n - noise eigenvectors

21 % - EigVal - eigenvalues

22 %

23 % Custom functions called:

24 % - num_sig_est_MDL - Wax's MDL estimator (1985)

25 % - num_sig_est_NEW - Nadakuti and Edelman's estimator (2008)

26 %

27 % History:

28 % DATE (YYMMDD) AUTHOR/EDITOR EMAIL NOTE

29 % 141203 Chris Straessle gcstraes@nps.edu Original thesis code

30 %

31 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

32

33 %% Subspace determination

34

35 [p,N] = size(Xf);

36

37 Rxx = Xf*Xf'/N; % Array covariance matrix

38 [EigVec ,EigVal] = eig(Rxx); % eigendecomposition

39

40 % Sort eigenvalues, then rearrange eigenvectors to match

41 [EigVal,indx] = sort(diag(EigVal), 1, 'descend');

42 EigVec = EigVec (:,indx);

43

44 %% Signal Number Estimation

45

46 switch sig_num_est

47 case 'none'

48 q_est = q;

49 case 'MDL'

50 % use Wax's MDL method

51 q_est = num_sig_est_MDL(p, N, EigVal);

52 case 'NEW'

53 % use Nadakuti and Edelman's method

54 q_est = num_sig_est_NEW(p, N, EigVal);

55 otherwise

56 error('Incorrect signal number estimator specified!')

57 end
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58

59 if q_est ~= q

60 fprintf(['Incorrect signal number estimate (%1d vice %1d)' ...

61 ' at collection number %1d.\n\n'], q_est, q, n);

62 input('Reset to known number of signals (y/n)?',reset_ans);

63

64 switch reset_ans

65 case {'y','Y','yes','Yes','YES'}

66 fprintf('Resetting to known value\n\n')

67 q_est = q;

68 otherwise

69 fprintf('Continuing without reset\n\n')

70 end

71

72 end

73

74 %% Subspace determination cont.

75

76 EigVec_s = EigVec(:,1:q_est); % signal eigenvectors

77 EigVec_n = EigVec(:,q_est+1:p); % noise eigenvectors

B.9 MUSIC Calculation Function

1 function music_spec = music_calc(A,E_n)

2 %

3 % Purpose:

4 % Calculate the MUSIC (Schmidt, 1986) spectrum, given a steering

5 % matrix A and the noise eigenvectors E_n of the received signal

6 % covariance matrix. The function searches through provided steering

7 % matrix to find steering vectors (i.e. angles) which are perpendicular

8 % to the noise eigenvectors. These locations indicate signal directions

9 % of arrival.

10 %

11 % Inputs:

12 % - A - steering matrix (n x m), where n is the number of receivers

13 % and m is the number of discrete angles for which the spectrum is

14 % being calculated.

15 % - E_n - noise eigenvectors. (k x k), where 0 < k < n.
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16 %

17 % Outputs:

18 % - music_spec - MUSIC spectrum

19 %

20 % History:

21 % DATE (YYMMDD) AUTHOR/EDITOR EMAIL NOTE

22 % 141203 Chris Straessle gcstraes@nps.edu Original thesis code

23 %

24 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

25

26 % execute MUSIC search

27 for a = 1:size(A,2)

28 music_spec(1,a)=(A(:,a)'*A(:,a))/(A(:,a)'*(E_n*E_n')*A(:,a));

29 end

B.10 2D Interferometric Geolocation Function

1 function e_pos_est = geolocate2(coll_pos, doa_est_ss)

2 %

3 % Purpose:

4 % least squares solution to location based on closest point to multiple

5 % DOA vectors.

6 %

7 % reference:

8 % - http://mathworld.wolfram.com/Point-LineDistance3-Dimensional.html

9 % NOTE: refer to thesis text for the 2D matrix version of formula in

10 % MathWorld reference

11 %

12 % History:

13 % DATE (YYMMDD) AUTHOR/EDITOR EMAIL NOTE

14 % 141203 Chris Straessle gcstraes@nps.edu Original thesis code

15 %

16 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

17

18 [~,c] = size(coll_pos); % number of collections

19 [~,q] = size(doa_est_ss); % number of emitters

20

21 a = coll_pos; % collector position
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22

23 % unit vector along DOA

24 d = [permute(doa_est_ss,[3 1 2]);

25 sqrt(1-(permute(doa_est_ss,[3 1 2])).^2)];

26

27 % create matrix problem for each signal (refer to thesis)

28 for m = 1:q

29 e = (d(:,:,m).^2);

30 f = d(1,:,m).*d(2,:,m);

31 A = [sum(e(2,:)), -1*sum(f);

32 -1*sum(f), sum(e(1,:))];

33

34 a_long = reshape(a,[1,2*c]);

35 b1 = reshape([e(2,:); -1*f], [1,2*c]);

36 b2 = reshape([-1*f; e(1,:)], [1,2*c]);

37

38 B = [sum(a_long.*b1); sum(a_long.*b2)];

39

40 % solve matrix problem for estimated emitter location

41 e_pos_est(:,m) = A\B;

42 end

B.11 Point Motion Metric Function

1 function motion = pt_motion(positions)

2 %

3 % Purpose:

4 % Metric for estimating which DOA is true DOA and which is ambiguity.

5 %

6 % Inputs:

7 % - positions - matrix of points (either DOA intersections or

8 % DOA mid-positions. Format is: {coll #}( x|y|(z), sig #, lobe #)

9 %

10 % History:

11 % DATE (YYMMDD) AUTHOR/EDITOR EMAIL NOTE

12 % 141203 Chris Straessle gcstraes@nps.edu Original thesis code

13 %

14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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15

16 % this allows metric to be used for either DOA intersections or

17 % intersection mid-positions

18 if isempty(positions{2})

19 first_pt = 3; % mid-positions will start at collection 3

20 else

21 first_pt = 2; % intersections will start at collection 2

22 end

23

24 % Change in x value from first to most recent positions

25 x_diff = positions{end}(:,:,1) - positions{first_pt}(:,:,1);

26 % Change in y value from first to most recent positions

27 y_diff = positions{end}(:,:,2) - positions{first_pt}(:,:,2);

28 % Magnitude (squared) of movement between first and last positions

29 motion = x_diff.^2 + y_diff.^2;

B.12 Wax’s MDL Estimator Function

1 function q_est = num_sig_est_MDL(p,N,EigVal)

2 % Number of Signals Estimation (Wax 1985), MDL estimator

3 %

4 % p is the number of receivers

5 % N is the number of samples

6 % EigVal is the list of eigenvalues of the received signal covariance

7 % matrix, sorted from largest to smallest.

8 %

9 % History:

10 % DATE (YYMMDD) AUTHOR/EDITOR EMAIL NOTE

11 % 141203 Chris Straessle gcstraes@nps.edu Original thesis code

12 %

13 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

14

15 for k = 0:p-1;

16 g0 = prod(EigVal(k+1:p).^(1/(p-k)));

17 a0 = (1/(p-k)*sum(EigVal(k+1:p)));

18 free_adj_param = .5*k*(2*p-k)*log(N);

19 MDL(k+1) = -((p-k)*N)*log(g0/a0) + free_adj_param;

20 end
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21

22 [~, q_est] = min(MDL);

23 q_est = q_est-1; % correct for MATLAB 1 vice 0 index

24

25 end

B.13 Nadakuti and Edelman’s Estimator Function

1 function q_est = num_sig_est_NEW(p,N,EigVal)

2 % Number of Signals Estimation (Nadakuditi and Edelman 2008), 'new'

3 % estimator

4 %

5 % p is the number of receivers

6 % N is the number of samples

7 % EigVal is the list of eigenvalues of the received signal covariance

8 % matrix, sorted from largest to smallest.

9 %

10 % History:

11 % DATE (YYMMDD) AUTHOR/EDITOR EMAIL NOTE

12 % 141203 Chris Straessle gcstraes@nps.edu Original thesis code

13 %

14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

15

16 for k = 0:p-1;

17 part1 = (p-k)*sum(EigVal(k+1:p).^2)/sum(EigVal(k+1:p)).^2;

18 t_k = (part1 - (1+p/N))*p;

19 NEW(k+1) = .5*(N*t_k/p)^2 + 2*(k+1);

20 end

21 [~, q_est] = min(NEW);

22 q_est = q_est-1; % correct for MATLAB 1 vice 0 index

23

24 end
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