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Abstract

Developing robust, quantitative methods to optimize resource allocations in response to epidemics has
the potential to save lives and minimize health care costs. In this paper, we develop and apply a
computationally efficient algorithm that enables us to calculate the complete probability distribution
for the final epidemic size in a stochastic Susceptible-Infected-Recovered (SIR) model. Based on these
results, we determine the optimal allocations of a limited quantity of vaccine between two non-interacting
populations. We compare the stochastic solution to results obtained for the traditional, deterministic SIR
model. For intermediate quantities of vaccine, the deterministic model is a poor estimate of the optimal
strategy for the more realistic, stochastic case.

Introduction

As rapid, long-range transportation becomes increasingly accessible, transmission of infectious diseases is
a growing global concern. Advances in biomedical therapies and production have enabled the development
of large quantities of pre-pandemic vaccine [1]. The United Kingdom, Japan, and the United States have
plans to stockpile 3.3 million, 10 million, and 40 million doses, respectively, of pre-pandemic H5N1
vaccine [2]. However, in the face of a spreading pandemic, even seemingly extensive resources would be
insufficient to provide global coverage, mandating the development of effective protocols for the allocation
of limited vaccine [3] [4].

A starting point for many studies of disease transmission in populations is the Susceptible-Infected-
Recovered (SIR) model introduced by Kermack and McKendrick [5]. In this model, at any given time
each individual is in one of three states. The dynamic evolution of the population is described by
two irreversible transition probabilities: one describes the rate at which a susceptible individual becomes
infected, and the other describes the rate at which an infected individual recovers (or dies). The transition
rates can be combined, and the SIR model can be parameterized by a single number, the reproductive
number, r0, which characterizes how effectively the infective agent moves through the population. On
average, r0 describes the number of susceptible individuals infected by a single infected individual in a
population of susceptible individuals. Reducing the number of susceptible individuals in a population,
via vaccination for example, decreases the effective reproductive number reff . When reff < 1, the number
of infected individuals tends to decline, whereas if reff > 1, the number tends to grow.

The concept of a reproductive number for an infectious disease can be generalized to more complex
models of epidemiology. Previous work on developing optimal vaccination strategies typically focus on
minimizing reff , either by proactive dispersal of vaccine before the infection reaches a population [6], or
reactive dispersal [7] [8], after infection has been detected in a group. This lowers the overall size of the
epidemic, measured by the total number of individuals who have been infected throughout the course of
the epidemic, by suppressing the rate of infections.

Numerous computational studies of large-scale veterinary infections, such as foot-and-mouth dis-
ease [9] [10], Johne’s Disease [11], as well as human infections like measles [12] and SARS [13], have been
performed. In models that aim to capture field observations, detailed, case-specific information such as
demographics of the population, timing and logistics for vaccine deployment, delays associated with the
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immune response, and overall vaccine efficacy are often essential to the investigation. In all cases, there
are tradeoffs between complexity and realism, and between computational viability and the generality of
the results.

In this paper, we abstract the geographic, demographic, and disease specific information, and instead
focus on the fundamental problem of stochastic SIR dynamics with prophylactic vaccination in two non-
interacting populations (e.g. two well-separated cities). Previously, Keeling and Shattock [2] considered
the deterministic SIR model in this scenario, and obtained striking results. As the total amount of avail-
able vaccine is increased, the allocation of vaccine that minimized the total number of infected individuals
can undergo discontinuous transitions. With a small amount of vaccine, the optimal strategy involves
ensuring that the smaller population was well protected foremost. However, with enough vaccine, the
optimal strategy switches abruptly to protecting the large population, leaving the smaller population
entirely unprotected. These results were well explained in terms of a phenomenon referred to as “herd
immunity,” whereby immunization of a fraction of a population protects even those who are not vacci-
nated, by reducing the effective reproductive number reff to a value below unity. Vaccination removes
susceptible individuals from the population. If there are less susceptible individuals in the population,
on average, an infected individual will infect fewer individuals. Herd immunity occurs when reff < 1, i.e.,
on average, at the start of the epidemic each infected individual transmits his disease to less than one
person. Keeling and Shattock explained the sharp transitions in the optimal strategy as arising from a
strategy that aims to induce herd immunity in the largest population possible.

While the deterministic SIR model is characterized by two coupled ordinary differential equations,
the stochastic SIR model involves a high dimensional state space with probabilistic transitions between
partitions of the overall population, characterized by the number of individuals in each state. Stochasticity
leads to noteworthy differences in the epidemic size. When reff > 1 the probability distribution for the
total epidemic size is bimodal [14], comprised of a roughly Gaussian peak centered at the deterministic
epidemic size, as well as a second peak for small, “terminal infections,” describing the likelihood the disease
will fail to propagate significantly during the initial phase of infection. The peaks of the distribution are
well separated when the population size is large, so that if the number of infected individuals exceeds a
critical size, the epidemic progresses to a large size, characterized on average by the deterministic results.
However, the non-negligible probability that the disease will fail to propagate in a given population results
in significant differences for optimal allocation of vaccine over a wide range of parameters.

The rest of this paper is organized as follows. In Methods we review the deterministic SIR model, and
its stochastic generalization. We approach the stochastic problem using a master equation for the time
evolution of the complete probability distribution for the number of individuals in each state. Building on
the computationally efficient algorithm recently developed by Jenkinson and Goustias [15], we introduce a
modification which leads to even greater computational efficiency. In Results we compute the probability
distribution for the final epidemic size for a range of parameters to identify regimes for which the stochastic
and deterministic models differ most significantly. We compute the optimal allocation of vaccine between
two non-interacting populations, and compare our results with the deterministic case. Stochastic effects
are most pronounced in situations involving an intermediate amount of resource availability. We conclude
with a discussion of our results and future directions.
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Methods

We briefly review the deterministic SIR model [5], a system of coupled differential equations for modeling
the growth of an epidemic in a well-mixed population within which all agents interact equally with all
other agents. The model describes a population of N individuals divided into three classes, susceptible
S, infected I, and recovered R:

dS(t)

dt
= −βS(t)I(t); (1)

dI(t)

dt
= βS(t)I(t)− γI(t); (2)

dR(t)

dt
= γI(t). (3)

We may omit the equation for the recovered class because we can always deduce the number of recovered
individuals from the fact that the total number individuals in the population, N , is fixed, so that R(t)=N -
S(t)-I(t).

Equations 1-3 can be thought of as a mean field theory where the continuous variables S(t) and I(t)
are the average values (over many iterations) of two discrete integer-valued variables S and I. At any
time then, the system can be characterized as being in a state (S, I), which can undergo one of two
transitions:

(S, I)→ (S − 1, I + 1) at rate βSI;

(S, I)→ (S, I − 1) at rate γI.

The parameters β and γ can be defined in terms of physical observables, the average number of contacts
each person makes per day c, the probability of infection through contact p, and the characteristic
duration of the infection T :

β =

(
rate at which each

individual makes contacts

)
×
(

probability of infection
from contact

)
(
total population size N

) =
c× p
N

; (4)

γ =
1

characteristic duration of infection
=

1

T
. (5)

For each set of parameters β and γ, the reproductive number, r0 is defined to be:

r0 =
βS0

γ
= c× p× T × S0

N
, (6)

where S0 is the initial number of susceptible individuals, S(t = 0). Here r0 can be interpreted as the
average number of new infections a single infected individual will produce in a completely susceptible
population. Thus if r0 < 1, in the deterministic model dI/dt < 0, the number of infected individuals will
decline from the initial seed value, I(t) ≤ I0 = I(t = 0), and no epidemic will occur. In our numerical
simulations, the value of r0 is tuned by varying β.

In this paper we investigate the effects of prophylactic vaccination. Vaccinating V individuals proac-
tively corresponds to removing to V susceptible individuals before the epidemic begins, thus lowering
the effective reproductive number. This assumes that the vaccine is completely effective. Let r0 denote
the reproductive number prior to vaccination, and reff denote the effective reproductive number which is
achieved after vaccinating V individuals:

reff = c× p× T × S0 − V
N

= r0(
S0 − V

S0
). (7)
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If a sufficient number of individuals V are vaccinated, reff may be reduced to a value below unity, so that
dI/dt < 0, and, as a result, the epidemic will not grow. Thus the entire population will be safeguarded
without vaccinating the entire population. This phenomenon is known as herd immunity.

In the stochastic SIR model, the infection and recovery reactions are modeled as continuous-time
Markovian processes. Let φS,I(t) be the probability at time t of a population with S susceptible individuals
and I infected individuals with N = S0+I0 where S0 and I0 are the initial values of S and I. The evolution
of φS,I(t) in time is then governed by:

d

dt
φS,I(t) =β(S + 1)(I − 1)× φS+1,I−1(t)

+ γ(I + 1)× φS,I+1(t)

− (βSI + γI)× φS,I(t), (8)

where the first two terms on the right hand side correspond to transitions into the state (S, I) by a
susceptible individual becoming infected or an infected individual recovering, respectively, and the third
term corresponds to the probability of leaving the state (S, I) through infection or recovery. While
the deterministic model tracks the time evolution of two ensemble averaged variables S(t) and I(t), the
stochastic model has up to (S0 + I0 + 1)(S0 + 1) ∼ N2 possible states (I can take values 0 to S0 + I0 and

S can take values 0 to S0). All the probabilities φS,I(t) can be assembled into a vector ~φ and the entire
system of equations can then be written in matrix form.

We computationally integrate this system of equations using a modified version of Jenkinson and
Goutsias’s method [15] of Implicit-Euler integration. The matrix A consists of the coefficients of Equation
8, and describes the transition probabilities:

d~φ = A~φdt. (9)

The above equation is discretized by introducing a time step, which controls the accuracy of the method:

~φti+1
= ~φti + A~φti+1

(ti+1 − ti);

= (I− A∆t)−1~φti . (10)

For computational efficiency, it is essential to order the components of the vector ~φ in such a way so
that A is lower triangular. We made modifications to the way the algorithm counts states, enabling
considerably faster computational speed, especially as the population size increases. Where Jenkinson
and Goutsias take the approach of counting the so-called “degree of advancement,” a scenario in which
each state corresponds to a specific sequence of reactions, we instead take the “population process”
approach by enumerating all states of the system without tracking which reactions might have led the
system to the state in question. In both methods one begins with (S0 + I0 + 1)(S0 + 1) states. In
our method, we remove those states that have zero probability of occurring, but are naturally included
in the degree of advancement procedure. For example, many states where S + I > N are retained in
the degree of advancement procedure but are explicitly excluded in our method. The result is that we
track [(S0 + 1)(I0 + 1) + (S0 + 1)(S0)/2] states, which in the limit I0 � S0 is approximately ∼ N2/2.
As the system size N grows, the difference in the total number of states between the two methods can
significantly impact the time it takes to integrate the system of equations.
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Figure 1. Epidemic size distribution: Figure A illustrates the final epidemic size distributions
P (E) for various values of r0 in the stochastic SIR model. The corresponding result for the
deterministic SIR model (a number E) is marked in each case by a dashed line. The left vertical scale in
Figure A describes the small terminal infections (left of the first horizontal scale break), and the right
vertical scale describes large-scale infections (right of the first horizontal scale break). Figure B
illustrates the corresponding cumulative probability distribution P (E < Emax) or the probability of an
epidemic of size less than Emax. This also shows the relative weight in the terminal infection and in the
large-scale epidemic. In each case N = 500 and I0 = 1.

All numerical calculations are performed using MATLAB. The system is initialized with a population
size N , I0 infected individuals, and an initial reproductive number r0. Thus, at time t = 0 the probability
of state φN−I0,I0(0) = 1 and the probability of all other states equals zero. The collection of probabilities
~φ of all accessible states is then evolved forward in time until the distribution reaches a stationary state
where the probability of having any state (S, I) where I > 0 is vanishingly small. At that point, all
individuals in the initial population of size N , have either been infected, and are now recovered, or
remain susceptible. For the parameters considered here, we observe that an integration time of t = 200
is sufficient in all cases. Once the simulation is complete, we define the final epidemic size E as:

E = lim
t→∞

N − S(t) in the stochastic model;

E = lim
t→∞

N − S(t) in the deterministic model. (11)

Figure 1 illustrates numerical results for the epidemic size distribution P (E), describing the probability
of having a total of E individuals infected over the course of the entire simulation period. We observe that
for r0 > 1 the probability distribution consists of two parts. On the left side of Figure 1A, there is peak
describing small, “terminal infections,” which fail to propagate significantly in the population (i.e. the
infection terminates before a large number of individuals are impacted). The peak describing terminal
infections decays approximately exponentially from the peak value at P (I0). In the stochastic model,
there is always a nonzero probability the infection will end without becoming a large scale epidemic.

When r0 > 1, the distribution P (E) exhibits a second peak towards the right side of Figure 1A,
describing “large-scale epidemics.” This peak is approximately centered at the epidemic size predicted
by the deterministic SIR model, illustrated for each value of r0 by the corresponding vertical dashed line
in Figure 1A. The size of the large-scale epidemic scales with the size of the population N , resulting in
a larger separation of the peaks for increasing population sizes. To quantify the likelihood of a terminal
infection versus a large-scale epidemic by the relative weight associated with each of the peaks, numerically
we define the point separating the terminal infection and the large-scale epidemic to correspond to the
local minimum in probability that exists between the two peaks. The likelihood of a terminal infection,
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represented by the total weight in the terminal infection peak, decreases with increasing values of r0

and I0. As r0 approaches unity from above, the large-scale epidemic progressively decreases in mean
size, but increases in variance. Eventually the distinction between terminal infections and large-scale
epidemics vanishes (the local minimum in P (E) ceases to exist). This is associated with a critical phase
transition [16], and occurs at a value of r0 that approaches unity as the population size N tends to
infinity. When r0 ≤ 1, the probability distribution is described only by terminal infections.

The cumulative epidemic size distribution P (E < Emax) describes the probability of having an epi-
demic of size less than Emax, and is shown in Figure 1B. The extended flat portions of the curves indicate
that a population of N = 500 individuals is well within the large population limit, defined by a large
separation between the terminal infection and large-scale epidemic, with little probability of observing
an epidemic size in between the two. Figure 1B also illustrates how the total probability is distributed
between the terminal infection and the large-scale epidemic. The smaller the value of r0, the greater the
likelihood that the initial seed population of infected individuals will fail to spread the disease.
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Results

Our aim is to highlight key differences between stochastic and deterministic approaches to developing a
framework for the optimal allocation of vaccine between two non-interacting populations. We begin by
observing how a single population reacts to different levels of vaccination in the stochastic and determin-
istic SIR models; the results provide the basis for the optimization process. Subsequently, we determine
the optimal deterministic and stochastic solutions that minimize the average epidemic size, and contrast
their properties. Finally, we consider an alternative optimization based on imposing a maximum toler-
ance for the epidemic size and show that the stochastic optimal solution better fulfills this measure than
the deterministic optimum.

Impact of Vaccination on the Epidemic Size of a Single Population

We first consider how the epidemic size within a single population decreases as a function of increasing
vaccine allocation. Vaccine allocation V removes V susceptible individuals from the initial state (S0, I0)→
(S0 − V, I0) after which the stochastic SIR model evolves according to Equation 8 (Equations 1-3 for
the deterministic SIR model). The resulting dynamics determine the size of the epidemic according to
Equation 11. Decreasing the initial number of susceptible individuals S0 by V will not in general lead to a
corresponding reduction V in the final epidemic size. An important quantity for optimizing the allocation
is the incremental reduction in the expected epidemic size per incremental increase in the allocation. We
define this below as the “gain” G.

In Figure 2 we illustrate the numerical results for a population of N = 500 individuals with dif-
ferent numbers of initial infected individuals I0 and different reproductive numbers r0. An amount of
vaccine V (0 ≤ V ≤ N − I0) is given to the population and we compute the average final epidemic
size 〈E〉=

∫
P (E)× E dE as a function of V , where P (E) is computed as in Figure 1A. We also plot

the corresponding deterministic curve in each case, where P (E) here is described by a δ-function at the
deterministic epidemic size δ(E). In the stochastic model, the quantity 〈E〉 depends on the statistics of
both the terminal infection and the large-scale epidemic; 〈E〉 may not correspond to an epidemic size that
is likely to be observed because there may be a large separation between the observed sizes of terminal
infections and large-scale epidemics, with the mean size lying somewhere in between.

Herd immunity occurs in the deterministic SIR model when the initial effective growth rate of the
number of infected individuals in the population becomes less than unity (reff < 1) [17], and is achieved
at a value of V determined by Equation 7, i.e. when V/S0 = V/(N − I0) = 1− r0

−1. In the limit of large
populations, the fraction that must be vaccinated to achieve herd immunity approaches 1− r0

−1. Thus
for a population N = 500, herd immunity occurs approximately when V = 250 for r0 = 2, V = 400 for
r0 = 5, and V = 450 for r0 = 10. Approaching this value, the incremental reduction in expected epidemic
size per increase in vaccine allocation increases monotonically. Note that the peak epidemic reduction
rate occurs for a slightly smaller V when N is finite, compared to the N →∞ limit. This is due to the
contribution of the initial seed population of infected individuals I0 in the definition of reff and on the
final size of the epidemic.

In the stochastic model, the corresponding transition is subtler. Increasing the vaccine allocation
has three effects on P (E). It decreases the mean size 〈E〉 and increases the variance of the large-scale
epidemic, and also increases the relative likelihood of terminal infections. We associate the onset of
“effective herd immunity” in the stochastic model with the value of V for which the distinction between
terminal infections and large-scale epidemics ceases to exist, as measured by the existence of a local
minimum in P (E). Because of the probability of terminal infections, this generally occurs at a value of
V which is smaller than that of the herd immunity transition in the deterministic model. Furthermore,
unlike the deterministic model, in the stochastic case approaching the onset of effective herd immunity
does not coincide with a specific value of reff and is not generally the point of maximum impact per
vaccine in the allocation (as measured by reduction in the average epidemic size).
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Figure 2. Comparison of the effects of vaccination between stochastic and deterministic
models for various values of r0 and I0: Figures A, B, and C illustrate the epidemic size as a
function of the number of individuals vaccinated V . For each value of r0, the solid lines shows the
average epidemic size 〈E〉=

∫
P (E)× E dE, and dashed lines represent the corresponding deterministic

epidemic size E. The deterministic solution does not depend significantly on I0 and is computed with
I0 = 1. Figure D shows the standard deviation in the large-scale epidemic for various values of r0 and
I0. Theses curves are identical for all values of I0 so only one such curve is shown. The value of V
defines the effective herd immunity threshold for each value of r0. The results obtained here are for a
population of N = 500.

Before the population has reached the deterministic herd immunity transition, i.e. when reff > 1,
the deterministic epidemic size E (dashed lines of Figure 2A, B, C) is generally larger than the average
stochastic epidemic size 〈E〉 (solid lines). While the maximum size of the large-scale epidemic can be
greater than the deterministic epidemic E, the average epidemic size 〈E〉 is smaller due to the fact that
the stochastic model includes the possibility of a terminal infection.

When sufficient vaccine is available to establish herd immunity in the deterministic model, the situ-
ation is reversed and the deterministic size E is generally smaller than the average stochastic epidemic
size 〈E〉. When reff < 1, in the deterministic model dI/dt < 0 at t= 0, and the initial number of infected
individuals decreases. On the other hand, stochastically there is always a possibility that the initial
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number of infected individuals will grow. Hence, after the herd immunity threshold, the deterministic
epidemic E is smaller than the stochastic average epidemic 〈E〉.

The size of the average stochastic epidemic 〈E〉 also approaches the deterministic outcome E as both
I0 and r0 become large. A larger value of r0 causes each infected individual to infect more susceptible
individuals, while larger values of I0 makes it less likely for every member of the initial group of infected
individuals to recover before spreading their disease. Both of these effects decrease the probability of a
terminal infection.

The standard deviation of the large-scale epidemic, which represents the fluctuation around the de-
terministic size of the epidemic E, is shown in Figure 2D. It is independent of the initial number of
infected individuals (i.e. I0 = 1, 2, 5) because statistics for large-scale epidemics are conditioned only on
this portion of the distribution, which assumes the infection has progressed beyond a terminal infection,
rendering the size of the initial seed population I0 irrelevant, as long as it is not comparable to the size of
the large-scale epidemic. The standard deviation does, however, increase with decreasing r0, because a
smaller value of r0 implies each infected individual infects fewer susceptible individuals, and the epidemic
is more likely to end before reaching the size E predicted by the deterministic SIR equations.

This standard deviation also is a function of V , the amount of vaccine allocated to the population. It
increases when V is small, which can be attributed to the fact that having more vaccinated individuals
reduces reff . This effect is balanced by the fact that more vaccinated individuals results in fewer available
configurations (S,I) for the system to transition into. Eventually the standard deviation peaks and then
drops to zero, corresponding to the disappearance of the local minimum in P (E) separating terminal
infections from large scale epidemics, coinciding with our definition of effective herd immunity. The peak
variance observed for V slightly less than this value indicates that the largest uncertainty in the size of
the large-scale epidemic is expected for allocations just below the effective herd immunity threshold.



10

An important quantity in determining the optimal allocation of vaccine is the “gain” G, defined as
the decrease in the epidemic size per initial susceptible individual removed by vaccination:

G = −d〈E〉
dV

in the stochastic model;

G = −dE
dV

in the deterministic model. (12)

In the stochastic model, for small r0, but greater than unity (1 < r0 . 2.5, for the other, fixed parameters
considered here), the gain G declines continuously from a maximum value at V = 1. This is illustrated
explicitly for r0 = 2 in Figure 3B. This behavior implies that the larger the vaccine allocation given to
the population, the smaller the benefits of additional vaccine. For larger values of r0 (r0 & 2.5) the gain
instead initially increases (at a smaller rate than the corresponding deterministic curve), peaks, and then
declines to zero. In this case then, when deciding on vaccine allocation, there is a value of V prior to
reaching herd immunity where the gain from vaccination peaks. This is shown for r0 = 5 in Figure 3A.

Figure 3. Gain G as a function of the vaccine allocation V : For both the stochastic (solid lines)
and deterministic (dashed lines) models, Figures 3A and 3B illustrate the gain G (i.e. slopes) of the
I0 = 1 curves in Figures 2A and 2B, respectively. Figure A shows the gain G for r0 = 5 for both a
population of N1 = 500 individuals and also one of N2 = 1000 individuals. Figure B shows the
corresponding results for r0 = 2.

For all r0 > 1 in the deterministic model, the gain curve follows the same qualitative pattern as
the large r0 case in the stochastic model. Initially, the gain G increases, rising sharply prior to herd
immunity, and then falling sharply after the vaccine exceeds the herd immunity point. This means there
is a significant increase in the gain G from vaccination as the level of vaccine in the population nears the
herd immunity threshold.

What is notably different between the stochastic and deterministic models is the sharpness of the peak
and the rate of decline that follows. This is apparent when comparing the stochastic and deterministic
curves of Figure 3A. This illustrates that beyond a threshold level of vaccination (reff < 1 in the determin-
istic model) there is almost no reduction in E by further application of vaccine to the population. In the
stochastic model there is not as definitive a threshold level of vaccination. The gain G in the stochastic
model begins to decline well before effective herd immunity is reached. Thus in the stochastic model, the
point of diminishing returns from vaccination will generally take place at smaller vaccine allocations V
compared to the deterministic model.
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Optimal Vaccination Allocation for Two Populations

Next we consider the problem of vaccine allocations for two non-interacting populations (e.g., two well-
separated cities). This scenario isolates a fundamental tradeoff in resource management, whereby allo-
cating vaccine to one population occurs at the expense of the other.

Unless otherwise specified, we identify properties specific to each population with superscripts 1 and
2. We assume in this section one population is relatively small (N1 = 500 individuals), and the other is
relatively large (N2 = 1000 individuals). Both populations are initiated with a single infected individual
I1
0 = I2

0 = 1. A fixed total amount of vaccine V (0 ≤ V ≤ 1498, where the maximum value of V is
given by N1 + N2 − I1

0 − I2
0 = 1498, accounting for one seed infected individual in each population)

can be distributed between the two populations, so that the small population receives V 1, and the large
population receives V 2 = V − V 1. We define the optimal allocation to be the partition of V into
[V 1, V 2] = [V 1, V − V 1] that minimizes the average total final epidemic size 〈E〉=〈E1〉+〈E2〉, where
0 < E ≤ N1 + N2 = N = 1500. In this scenario, the cost of producing and distributing vaccine is not
taken into account, so it is always beneficial to use all of the available vaccine.

Our objective is to determine the optimal solution as a function of V for the stochastic SIR model.
We compare our results to the corresponding optimal solution for the deterministic SIR model, which
we also compute. This scenario was considered previously for the deterministic case in the limit of large
population sizes (N1 = 100, 000 and N2 = 200, 000, using our notation) by Keeling and Shattock [2], who
found that for a wide range of values of the reproductive number r0, the optimal solution as a function of
increasing V was governed by the ability to induce herd immunity in the smaller population (small V ),
then in the larger population (intermediate V ), and finally in both (large V ).

Figure 4. Optimal Solution in the Stochastic Model: The black lines of Figures A and B
illustrate the optimal allocation of an amount of vaccine V that minimizes 〈E〉 for, respectively, r0 = 5
and r0 = 2. The y-axis here shows the amount of vaccine allocated to the smaller population V 1. The
color scale indicates the average epidemic size 〈E〉 corresponding to a particular allocation of vaccine.
Figure C shows how the optimal solution varies as r0 changes from 2 to 5. Switching behavior vanishes
when r0 ≈ 2.9 (not shown). Results are obtained for two populations of sizes N1 = 500 and N2 = 1000.
Both populations are initiated with a single infected individual I1

0 = I2
0 = 1.

The colormap of Figures 4A and 4B illustrates the average epidemic size 〈E〉 corresponding to a
particular allocation of vaccine, quantified in the figure by the amount of vaccine in the smaller population
V 1. The optimal vaccine allocation is illustrated by the black line, along which 〈E〉 is minimized. The
range in V 1 is limited by the constraints V1 ≤ V − I1

0 = V − 1, and V1 ≥ V − 999, i.e. neither population
receives more vaccine than the number of initial susceptible individuals in that population. This results
in the limiting diagonals in the colormap of Figures 4A and 4B.
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Switching: In the deterministic model, Keeling and Shattock [2] found that the optimal solution ex-
hibited “switching” behavior, in which the optimal vaccine allocation makes a significant, discontinuous,
change when the total amount of vaccine V exceeds a threshold size. When the amount of vaccine V is
below this threshold size, the majority of the vaccine is optimally allocated to the smaller population.
When the amount of vaccine V is above this size, all of it is optimally allocated to the larger population.
This behavior persists for a wide range of reproductive numbers r0 > 1 in the deterministic SIR model.

The stochastic optimal solution exhibits switching behavior only for larger values of r0 (r0 & 2.9, for
the other, fixed parameters considered here). This is demonstrated for r0 = 5 in Figure 4A. Switching
occurs first at V = 474 and then again at V = 780. The first switching point, above which all vaccine is
optimally allocated to the larger population, is present in both the stochastic and deterministic models,
although the switching point of the stochastic model occurs at a smaller amount of vaccine V . The second
switching point is absent in the deterministic model. The presence of the second switch in the stochastic
model is explained in terms of the relative heights of the peaks of the gain curves in the next subsection.

For smaller r0 (1 < r0 . 2.9) in the stochastic model, there is no switching behavior, which is in
contrast to the results of the deterministic model. It is instead optimal to distribute any given total
amount of vaccine V approximately in proportion to the sizes of the populations themselves. This is
shown for r0 = 2 in Figure 4B. The continuous transition between large r0 values where switching does
take place and small r0 values where it does not is illustrated in Figure 4C. As r0 is decreased, the region
between the two instances of switching behavior, where all vaccine is taken out of the smaller population
and V 1=0, becomes narrower and disappears completely between r0 = 2 and r0 = 3 (at r0 ≈ 2.9). The
difference between the r0 dependence of switching in the stochastic and deterministic models is related
to the presence of peaks (r0 & 2.5) in the gain curves. This will be discussed in the following subsection.

The conclusion for the stochastic optimal solution is that for small values of r0 (1 < r0 . 2.9), the
optimal solution is to approximately distribute vaccine in proportion to population size. For large r0

(r0 & 2.9), two switches take place. In the deterministic optimal solution, a single switch takes place for
all values of r0 > 1.

Understanding the Optimal Stochastic Solution: Next we examine the optimal stochastic solutions
of Figure 4A and 4B in closer detail. Figures 5A and 5B show the optimal stochastic solution as a solid
line and the optimal deterministic solution as a dashed line, with both solutions represented by the
fraction of the amount of vaccine V 1/V given to the smaller population. We seek to characterize the
different strategies employed by the optimal solution in the different resource regimes, and also to quantify
why the allocation transitions abruptly from one population to another. More broadly, we explain why
the optimal stochastic solution, which minimizes the average epidemic size 〈E〉, differs from the optimal
deterministic solution, which minimizes the characteristic epidemic size E.

Much of our insight comes from analysis of the gain curves, which are shown in Figure 3A and 3B for
r0 = 5 and r0 = 2. By Equation 6, the area under each gain curve G(V ) up to a particular value of V is
the decrease in the epidemic size due to that amount of vaccine V . We begin with the case when r0 = 5,
which is representative of the large r0 regime (r0 & 2.9) where switching does take place.

Figure 5A shows that with small amounts of vaccine V , all of the vaccine is optimally allocated to
the smaller population. In the deterministic case, this strategy persists for larger amounts of vaccine V ,
unless there is enough vaccine for the small population to achieve herd immunity, at V = 400. For a
range of V greater than V = 400, herd immunity is preserved in the small population, and the remaining
vaccine is optimally allocated to the large population. For the stochastic case, vaccine allocation to the
larger population begins for a smaller V , V = 324, above which the optimal solution is to maintain
V 1 = 324 and devote the remainder of the vaccine to V 2.

This difference in strategy can be attributed to the fact that in the stochastic model, the gain G
begins to decline well before the onset of effective herd immunity. This is evident in both the N1 and
N2 solid curves of Figure 3A. In contrast, the gain in the deterministic model peaks very close to herd
immunity at V = 400, as the dashed curves of Figure 3A show. Compared to the deterministic model,
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Figure 5. Optimal Protocols Represented as a Fraction of Total Vaccine: The solid blue line
shows the optimal fraction of the available vaccine allocated to the smaller population V 1/V in order to
minimize the average stochastic epidemic size 〈E〉. The dashed blue line shows a different optimal
allocation that minimizes the deterministic epidemic size E. The right vertical scale applies to these two
measurements. The difference in the resultant average epidemic size 〈E〉 between the two protocols
when applied to the stochastic model is plotted in gold (measured by the left vertical scale). The results
are obtained for r0 = 5 in Figure A, and r0 = 2 in Figure B, and populations of sizes N1 = 500
individuals and N2 = 1000 individuals, both initiated with a single infected individual I1

0 = I2
0 = 1.

one can attribute this earlier decline in the average epidemic size 〈E〉 as being due to the probability
of a terminal infection, which significantly lowers the average 〈E〉. More quantitatively, in Figure 3A,
V = 324 is the point at which the stochastic curve for N1 crosses the initial value of curve N2.

As V increases further in Figure 5A, there is a sharp transition, indicating that if more vaccine exists
than V = 474 in the stochastic model or V = 657 in the deterministic model, all vaccine should optimally
be allocated to the large population. This is the first switch noted earlier that occurs in both models. As
with the earlier transition, the first switch takes place at a smaller amount of vaccine V in the stochastic
model than in the deterministic model. This sacrifices herd immunity that could have been achieved
in the small population, in favor of relatively larger gains in protection that can be achieved with this
level of vaccine in the large population. Quantitatively it is clear from Figure 3A that beyond a certain
amount of vaccine, the stochastic gain curve G(V ) begins to decline for N2 while the stochastic curve for
N1 is still relatively large and constant. Thus around this level of vaccine, all the available vaccine should
optimally be switched into the larger population. This same behavior is observed for the deterministic
gain curves G(V ) for correspondingly larger values of V .

Complete resource allocation to the large population continues until the large population achieves
herd immunity, at which point a fraction of the vaccine is allocated to the smaller population. For the
deterministic case, the optimal solution retains herd immunity for the large population, and increasingly
allocates resources to the small population, until both populations achieve herd immunity. After that
point, the optimal solution plateaus. For the deterministic model, the epidemic never progresses (I(t) ≤
I0). Because there is no cost for vaccination, remaining resources are allocated based solely on the relative
population sizes (i.e. 1/3 for the small population and 2/3 for the large population). For the deterministic
model, this corresponds to a situation with excess vaccine, since both populations are fully protected once
each has sufficient resources to insure herd immunity.

For the stochastic model, once there is sufficient vaccine to induce effective herd immunity in the
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large population, at around V = 660, vaccine is once again allocated to the small population. However,
unlike the deterministic case, for the stochastic model, there is a second abrupt shift in resources around
V = 780, resulting in a cusp in the optimal V 1/V , with the optimal solution approaching the final
population based plateau value V 1/V = 1/3 from above.

This is due to the fact that in the stochastic model, for large r0, the smaller population N1 has
a greater peak in gain. Thus if there is enough vaccine available, there is a benefit to removing some
vaccine from the large population in order to take advantage of the higher gain in the smaller population.
This second switch does not occur in the deterministic model because the opposite is true, the peak of
deterministic curve N2 for the larger population is always higher than the peak of deterministic curve
N1 for the smaller population in Figure 3A.

For the stochastic model, the gain curves of Figure 3B can also be used to explain the absence of
switching behavior for r0 = 2, which is generally observed for lower values of r0 (1 < r0 . 2.9). A
significant difference in this case is that the gain decreases continuously. Due to the absence of peaks in
the gain curve, the second switch observed for the large r0 stochastic model, does not occur for small
values of r0. The absence of the first switch is more subtle and depends on more than just the presence
of a peak which exists when r0 & 2.5 as discussed previously. For the first switch to occur, the peak of
the curve G(V ) must be large enough to offset the declines in the gain that first population N1 exhibits.
Hence the first switch takes place for a more restrictive set of r0, and only when the peak in the gain is
sufficiently large (r0 & 2.9).

In summary, the switching behavior of the optimal vaccination allocation are due, firstly, to the
presence of peaks in the gain curves, and secondly, due to the relative heights of these peaks. This explains
why in the stochastic model, switching occurs only for large values of r0, while in the deterministic model,
it occurs for all values of r0 > 1. Fundamentally, this difference arises from the bimodal nature of the
epidemic size distribution P (E).

The Range of Outcomes: The differences in the optimal vaccination protocols between the stochastic
and deterministic models can lead to substantial differences in the observed outcomes. The optimal
protocols for the stochastic and deterministic models coincide for small quantities of vaccine, where in
both cases it is optimal to allocate all vaccines to the smaller population. The optimal solutions also
coincide in the limit of large quantities of vaccine, where it is optimal to allocate vaccines in proportion
to the population size. The range of possible outcomes for different vaccination strategies indicates
that optimization is most important when intermediate amounts of vaccine are available. One way of
understanding the potential impact associated with the optimal stochastic and deterministic protocols
is by comparing their projected outcomes when applied to the presumably more realistic stochastic SIR
model. In this scenario, there is considerable difference between the best and worst possible outcomes
and a significant but smaller difference between the stochastic and deterministic optimal solutions.

The dashed gold lines of Figures 5A and 5B illustrate the difference in the resultant average epidemic
size 〈E〉 between the stochastic and deterministic optimal protocols. Both protocols are the same in
resource rich and resource poor regimes, and hence yield identical results. Figures 6A and 6B illustrate
〈E〉 for both the stochastic and deterministic optimal protocols as well as the worst case allocation.

We define the “worst case” protocol as that which maximizes 〈E〉 within the range of allowed alloca-
tions illustrated in Figure 4A and 4B. Together the stochastic optimal solution and worst case allocation
define the possible range of 〈E〉 at a given value of V . Figure 6 shows that the difference between the
outcome of the worst case protocol, and either the optimal stochastic and deterministic protocols, is sub-
stantially larger than the difference between the stochastic and deterministic cases. This is particularly
pronounced for smaller values of r0, i.e. r0 = 2. The worst case protocol would involve continuing to
place vaccine in a population even after it is near or has reached herd immunity. This is represented
by the plateaus where the average epidemic size 〈E〉 is not significantly lowered by further vaccinating
members of the population. Deterministically, this is evident from the fact that dI/dt < 0 as soon as
the herd immunity threshold has been reached. The deterministic herd immunity threshold, serves as an
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Figure 6. Comparison of Average Epidemic Size for Optimal, Deterministic Optimal, and
Worst Case solutions: These figures illustrate the average epidemic size 〈E〉 for three different
protocols: the stochastic optimum (minimizes 〈E〉), the deterministic optimum, and the worst case
scenario (maximizes 〈E〉). The three different colors correspond to different number of initial infected
individuals I0. Results are obtained for two populations with size N1 = 500 individuals and N2 = 1000
individuals. Results are shown for r0 = 5 in Figure A, and r0 = 2 in Figure B. Other than the value of
r0, the color and line style legends in B apply to both graphs.

approximate guide for when to stop vaccinating even in the stochastic case.
The differences between the stochastic and deterministic protocols have a complex r0 and I0 de-

pendence. The effect on the difference in 〈E〉 between the stochastic and deterministic models that is
caused by increasing I0 is different for small compared to large reproductive numbers r0. With a small
reproductive number, e.g., r0 = 2, the difference in the average epidemic size between the stochastic
and deterministic optimal protocols is largest at an intermediate value of I0, I1

0 = I2
0 = 2 for the case

illustrated in Figure 6B. In contrast for large reproductive number, e.g. r0 = 5, Figure 6A illustrates that
the difference in the average epidemic size between the stochastic and deterministic optimal protocols is
maximized for I1

0 = I2
0 = 1 and decreases steadily as I0 is increased.
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Alternate Cost Functions

So far, we have defined the optimal allocation as that which minimizes the average epidemic size 〈E〉, a
quantity that contains contributions from both terminal infections and large-scale epidemics, but is not
necessarily representative of any specific epidemic size that is likely to be observed because of the gap in
the size distribution P (E) (Figure 1A). Choosing to minimize the deterministic result, which is the same
as the average large-scale epidemic size E, might potentially be viewed as a conservative approach that
safeguards against the case in which both populations will experience large-scale epidemics.

Other criteria for optimization may be considered within this framework. For example, minimizing
the maximum size rather than the average size could be the target for optimization. To address this,
in the same scenario of two non-interacting populations (e.g. two well-separated cities) with N1 = 500
individuals and N2 = 1000 individuals and both populations initiated with a single initial infected
I1
0 = I2

0 = 1, here we alternatively consider the probability that the epidemic is below some particular
threshold tolerance size Emax.

A policy maker may be interested in how much vaccine V would be necessary and how it must be
allocated between two populations in order to keep the total epidemic below some size Emax. We compute
the best achievable probability of having an epidemic below a given size Emax given a total amount of
vaccine V . The results are shown in Figure 7A.

The sharp color contrast of the diagonal bands in Figure 7A are associated with step-like changes in
probability, arising from the bimodal nature of the epidemic size distributions P (E). Because there is
very little probability for an event in the size range between the large-scale epidemic and the terminal
infection peaks, when the threshold Emax passes through the large-scale epidemic size (which depends
on the vaccine allocation) in the small population, the large population, or the sum of the two, nearly
discrete steps in probability are observed.

The allocation that maximizes this probability is shown in Figure 7B, and is a function of both the
amount of vaccine V and also Emax. Unlike our previous optimization based on expected size (where the
corresponding plot depends only on V ), here the solution is extremely complex, switching discontinuously
and frequently depending on both V and Emax, as indicated by sharp grey scale contrasts reflecting
boundaries between high and low allocations to the small population. In the resource poor regime (small
V , corresponding to the lower horizontal boundary of the color plot) the solution switches from full
allocation to the small population, to full allocation to the large population, back to full allocation to
the small population. The lower left white triangle in Figure 7B corresponds to the situation with few
resources, and minimal tolerance for the epidemic size. As in the previous stochastic and deterministic
solutions aimed at minimizing the average epidemic size, here the optimal solution allocates all resources
to the smaller population. In the Emax dependent resource rich regime, corresponding to points above
the highest diagonal, the maximum achievable probability in Figure 7A is near unity, and the optimal
allocation simplifies to depend only on V (corresponding to horizontal bands in Figure 7B). However, in
intermediate cases, where tradeoffs are most critical, the structure of the resulting solution is much too
subtle to be realistically implemented for real populations given a limited amount of vaccine V .

For comparison, we evaluate the corresponding probabilities based on our previous stochastic and
deterministic optimal protocols. While both solutions are suboptimal for this alternative criterion, the
stochastic solution comes close to the optimal case. Figure 7C shows this result for the stochastic optimal
solution, which replicates much of the green and blue high probability regions above the intermediate
reference line. It does a suboptimal job for relatively smaller epidemics in the regions where the amount
of vaccine ranges from V = 400 to V = 1000.

Figure 7D illustrates the corresponding results when the optimal deterministic protocol is applied. In
maximizing P (E < Emax), the deterministic protocol underperforms compared to the protocols of both
Figure 7A and 7C. Comparatively, the deterministic protocol minimizes the area of the high probability
(blue) regions. It does slightly better than the stochastic optimum in roughly the same regions where
the stochastic optimum fails compared to the best possible result, from about V = 400 to V = 750.
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Figure 7. Optimizing the probability of having an epidemic less than a given size: Figure A
shows in color, the optimal (largest) probability of having an epidemic less than some given size
(x-axis), given some amount of vaccine (y-axis). Figure 7B shows the fraction of vaccine V 1/V in the
smaller population that corresponds to optimal probability shown in Figure A. Figures C and D show
the same probabilities for, respectively, the deterministic and the stochastic solutions. The dashed black
lines can be used as reference points for comparing different figures. Results are obtained for two
populations with size N1 = 500 individuals and N2 = 1000 individuals, and both populations are
initiated with a single infected individual I1

0 = I2
0 = 1.

This shows that the situation does indeed become more complicated when one looks beyond optimizing
the average epidemic size 〈E〉. If the goal is to keep the epidemic below some size, given some amount
of vaccine, there are indeed regions where the deterministically optimal solution will yield slightly better
results. Most of the time however, optimizing the average stochastic epidemic size gives a result closer
to the best possible one of Figure 7A. These figures thus indicate that the average epidemic size is a
potentially useful metric for gauging the effects of stochasticity and will most of the time yield a solution
that is preferable to the deterministic optimum.
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Discussion

This paper illustrates the viability and power of developing the exact numerical solution of the master
equations, done here for the stochastic SIR model. We generalized the method developed by Jenkinson
and Goutsias [15] to obtain even greater numerical efficiency. Instead of computing the probability of
the system making a certain number and type of transitions between states, we directly compute the
probability of the system residing in each state. The advantage of this latter method is that it makes it
easy to identify and eliminate excess states which are included by construction in the original method.
Even more significantly, our work and that of Jenkinson and Goutsias [15] provide proof of concept for
obtaining accurate, exact solutions for SIR-type models, rather than relying on sampling methods [18]
or approximations to the master equation [19] [20].

Our analysis focuses on the fundamental tradeoff involves allocation of vaccine between two non-
interacting communities of different size. Our procedure involved three steps. First, for each population
we separately calculate the probability distribution of epidemic sizes for a given amount of vaccine.
Second, we evaluate the expected epidemic size as a function of the amount of vaccine in each population.
Third, we impose a constraint on the total amount of vaccine to distribute between the two populations,
and determine the optimal allocation which minimizes the expected combined epidemic size of the two
populations.

We obtain several results that serve to elaborate and refine principles first identified by Keeling and
Shattock [2], who considered the corresponding tradeoff in the context of the deterministic SIR model.
Where the deterministic SIR model predicts a definite epidemic size for any given set of parameters, the
stochastic SIR model produces a distribution, the characteristics of which significantly impact protocols
for optimal allocation of vaccine. Under conditions that promote spread of the epidemic (i.e., the re-
productive number r0 > 1), the distribution of epidemic sizes obtained from the stochastic SIR model
is bimodal [14] in the limit of large population sizes, consisting of a peak describing terminal infections,
that fail to propagate significantly in the population, and a peak describing large-scale epidemics, which
have a mean size well approximated by the deterministic size. For finite population sizes, the distinction
between terminal infections and large-scale epidemics vanishes at a value of r0 that approaches unity as
N →∞.

Both the possibility of a terminal infection and the width of the distribution of the large-scale epidemic
sizes contribute significantly to differences in the optimal allocation of vaccine for the stochastic model
compared to the deterministic case. The differences are most significant for intermediate ranges of vaccine.
In contrast, for both the stochastic and deterministic cases, when vaccine is severely limited or abundant,
there is little or no difference in the optimal allocation of vaccine between the two models.

Differences in optimal allocations are amplified for intermediate amounts of vaccine because of the
strong switching behavior of the optimal strategy. This switching can arise in both the stochastic and
deterministic models, but at different points quantitatively, and is not always observed in the stochastic
case. If the deterministic protocol is applied to the more realistic stochastic description of the epidemic
evolution in the two populations, the performance is suboptimal, leading to a greater average epidemic
size than would occur using the stochastic protocol. The difference is most significant for smaller values
of r0 where there is the most significant probability of a terminal infection. The dependence on I0, the
number of infected individual, is more complex and depends on r0, but in the limit where both r0 and I0
are large, the results converge to those of the deterministic SIR model. In the absence of vaccine, these
quantities both increase the relative weight in the peak describing terminal infections.

Keeling and Shattock [2] attribute the switching behavior to the property of herd immunity, which
occurs when the amount of vaccine is sufficient to prevent the epidemic from spreading significantly in the
population. Herd immunity occurs in the deterministic SIR model when the initial effective growth rate
of the number of infected individuals in the population becomes less than unity [17]. While the optimal
deterministic solution approximately distributes vaccine in a manner that achieves herd immunity in the
largest possible population, this is not exactly the case. More precisely, the sharp transitions in both the
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deterministic and stochastic models arise from optimizing the overall impact of the vaccine in reducing
the joint epidemic size, which we attribute to maximizing the overall gain. In the deterministic model,
the impact of vaccine on epidemic size reduction is maximized as herd immunity is approached. For
the stochastic model, the maximal impact typically occurs earlier, and in some cases, there is no sharp,
intermediate transition.

Policies involving strong switching may be difficult to implement publically, as one community could
be reluctant to voluntarily sacrifice their entire vaccine allocation to another community in favor of a
reduction in the overall epidemic size. In contrast, allocations in proportion to population size are likely
to be less controversial to implement. Our observation that the stochastic model exhibits less dramatic
switching for smaller values of r0 suggests that such a policy could be justified as optimal in some cases.
Furthermore, the reduction in magnitude of the gain peaks for the stochastic model in Figure 3, compared
to the deterministic case, indicate that the overall magnitude of the benefit (as measured by reduction
of the epidemic size), is less sensitive to the precise details of the allocation in the stochastic model than
it is in the corresponding deterministic case.

Interestingly, our analysis reveals that compared to the deterministic protocol, the stochastic protocol
that minimizes the expected epidemic size, also overall better approximates an alternative target based
on specifying a maximum tolerance (or threshold) for the overall epidemic size. This result is somewhat
surprising. One might have expected the deterministic model to be more accurate in this case, because
it predicts a large-scale epidemic whenever r0 > 1, and as such might have captured a threshold criterion
more accurately. The fact that the stochastic protocol continues to outperform the deterministic coun-
terpart provides additional impetus to include the more complete and accurate stochastic dynamics of
epidemic evolution in further studies.

This paper isolates the tradeoff in vaccination allocation between two non-interacting populations,
prior to the onset of widespread disease, in order to illustrate the significance of the full stochastic
solution compared to deterministic case. Our analysis relies on some strong assumptions, particularly
the assumption of non-interacting populations. The extreme switching behavior in the deterministic case
results from this non-interaction. It is less clear what the optimal policy will be for the case of weakly
interacting populations. One might speculate that the presence of even a modest amount of interaction
yields dynamics of a single population, particularly in the deterministic case.

Our conceptual framework and methods can potentially be generalized to include increasingly realistic
situations, including interacting populations and real time allocation of vaccine as the epidemic evolves.
In these scenarios, we anticipate detailed monitoring of stochastic effects, as well as incorporation of de-
lays associated with transportation and the onset of immunity, will play a critical role in determining the
optimal dynamic protocol, and we expect that the critical differences between the stochastic and deter-
ministic SIR models illustrated here will have an increasingly significant impact in identifying protocols
that aid in minimizing the overall epidemic size.

The hope is that the systematic study of such tradeoffs will shed light on the development of effective
policies. For example, in the case of epidemic outbreak in a localized geographic region, government
officials might have to decide whether to allocate scare vaccination doses exclusively to that region or to
allocate the vaccine proportionately for population as a whole. In situations where vaccine doses have
been prepositioned geographically, the question of “giving away” vaccines from one region to another will
be of intense debate. Thus, issues of fairness will complicate decisions even more. Identifying policies
that are close-to-optimal and can actually be implemented is an important topic for future research.
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