

Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications

Faculty and Researcher Publications

2012-08-02

Approaches to Event Prediction in Complex Environments

Tan, Terence

Monterey, California: Naval Postgraduate School.

http://hdl.handle.net/10945/44407

Calhoun is a project of the Dudley Knox Library at NPS, furthering the precepts and goals of open government and government transparency. All information contained herein has been approved for release by the NPS Public Affairs Officer.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

Approaches to Event Prediction in Complex Environments

Terence Tan (PhD Candidate)

Advisors: Prof Christian Darken, PhD Prof Neil Rowe , PhD Prof Arnold Buss , PhD Prof Ralucca Gera , PhD Prof John Hiles

> 831-656-7582 http://movesinstitute.org

Scope of Presentation

- What is Relational Time Series?
- Previous Approaches
- New Learning and Prediction Approaches
- Conclusions

- 1	THE
z	\leq
s	
-	\bigcirc
-	
-	
C	
26.8	507

12/02/11-17:32:21.984133	2924	NETBIOS SMB-DS repeated logon failure	ТСР	78.45.215.210	63.205.26.80	

What is Relational Time Series?

12/02/11-17:32:21.984133	2924	NETBIOS SMB-DS repeated logon failure	ТСР	78.45.215.210	63.205.26.80
12/02/11-17:32:24.712867	2924	NETBIOS SMB-DS repeated logon failure	ТСР	78.45.215.210	63.205.26.80

What is Relational Time Series?

12/02/11-17:32:21.984133	2924	NETBIOS SMB-DS repeated logon failure	ТСР	78.45.215.210	63.205.26.80
12/02/11-17:32:24.712867	2924	NETBIOS SMB-DS repeated logon failure	ТСР	78.45.215.210	63.205.26.80
12/02/11-18:50:13.575037	648	SHELLCODE x86 NOOP	ТСР	84.0.158.110	63.205.26.70

What is Relational Time Series?

12/02/11-17:32:21.984133	2924	NETBIOS SMB-DS repeated logon failure	ТСР	78.45.215.210	63.205.26
12/02/11-17:32:24.712867	2924	NETBIOS SMB-DS repeated logon failure	ТСР	78.45.215.210	63.205.26.80
12/02/11-18:50:13.575037	648	SHELLCODE x86 NOOP	ТСР	84.0.158.110	63.205.26.70
12/02/11-18:50:13.575356	648	SHELLCODE x86 NOOP	ТСР	84.0.158.110	63.205.26.70

What is Relational Time Series?

Time Series of Network Intrusion Detection Alerts

-	THE
z	\leq
s	
-	\bigcirc
-	
-	
C	a-area

12/02/11 17 22 21 001122	2024			70 45 345 340	
12/02/11-17:32:21.984133	2924	NETBIOS SMB-DS repeated logon failure	ТСР	/8.45.215.210	63.205.26.80
12/02/11-17:32:24.712867	2924	NETBIOS SMB-DS repeated logon failure	ТСР	78.45.215.210	63.205.26.80
12/02/11-18:50:13.575037	648	SHELLCODE x86 NOOP	ТСР	84.0.158.110	63.205.26.70
12/02/11-18:50:13.575356	648	SHELLCODE x86 NOOP	ТСР	84.0.158.110	63.205.26.70
12/02/11-18:50:13.575356	3397	NETBIOS DCERPC NCACN-IP-TCP	ТСР	84.0.158.110	63.205.26.70
12/02/11-18:50:15.443929	648	SHELLCODE x86 NOOP	ТСР	84.0.158.110	63.205.26.73
12/02/11-18:50:15.444255	648	SHELLCODE x86 NOOP	ТСР	84.0.158.110	63.205.26.73
12/02/11-18:50:15.444255	3397	NETBIOS DCERPC NCACN-IP-TCP	ТСР	84.0.158.110	63.205.26.73
12/02/11-18:50:19.048303	648	SHELLCODE x86 NOOP	ТСР	84.0.158.110	63.205.26.77
12/02/11-18:50:19.048624	648	SHELLCODE x86 NOOP	ТСР	84.0.158.110	63.205.26.77
12/02/11-18:50:19.048624	3397	NETBIOS DCERPC NCACN-IP-TCP	ТСР	84.0.158.110	63.205.26.77
12/02/11-18:50:20.346232	648	SHELLCODE x86 NOOP	ТСР	84.0.158.110	63.205.26.74
12/02/11-18:50:22.656974	648	SHELLCODE x86 NOOP	ТСР	84.0.158.110	63.205.26.79
12/02/11-18:50:22.657291	648	SHELLCODE x86 NOOP	ТСР	84.0.158.110	63.205.26.79
12/02/11-18:50:22.657291	3397	NETBIOS DCERPC NCACN-IP-TCP	ТСР	84.0.158.110	63.205.26.79
12/02/11-19:12:38.913940	384	ICMP PING	ICMP	66.235.66.233	63.205.26.80
12/02/11-19:12:38.914642	408	ICMP Echo Reply	ICMP	63.205.26.80	66.235.66.233
12/02/11-19:12:38.959461	384	ICMP PING	ICMP	66.235.66.233	63.205.26.80
12/02/11-19:12:38.959672	408	ICMP Echo Reply	ICMP	63.205.26.80	66.235.66.233

What is Relational Time Series?

Relational Time Series: Time Series of Relational

- 0.0, lookA(spock84)
- 0.0, place+(Paperville3)
- 0.0, location+(pitchfork74, Paperville3)
- 0.0, pitchfork+(pitchfork74)
- 0.0, location+(spock84, Paperville3)
- 0.0, spock+(spock84)
- 2.75, getA(pitchfork74, spock84)
- 2.75, getE(spock84, pitchfork74)
- 2.75, location-(pitchfork74, Paperville3)
- 2.75, location+(pitchfork74, spock84)
- 5.5, wA(spock84)
- 5.5, goE(spock84, west)
- 5.5, location-(spock84, Paperville3)
- 5.5, spock-(spock84)
- 5.5, place-(Paperville3)

What is Relational Time Series?

Previous Approaches New Learning and Prediction Approaches Conclusions $P = (t, r(c_1, c_2, \dots c_n))$ where P: perceptt: timer: relation $c_x: constant$

Characteristics

- No Background knowledge
 - Eg. In a unknown domain, we do not know the behaviors of any entity
- Relational Atoms
 - Multi-dimension proposition
- High variability in predicates & constants
 - Too many to predefine
- Moving Context
 - Needs online Learning

What is Relational Time Series?

Possible Approaches

- Approaches
 - Production Rules
 - Finite State Machines
 - Bayesian Network
 - Markov Chain
 - Statistical Relational Learning
- Recent Interest in IDS Alerts Predictions
 - 2011 Nexat a history-based approach to predict attacker actions
 - 2011 A Novel Probabilistic Matching Algorithm for Multi-Stage Attack Forecast
 - 2010 Multi stage attack Detection system for Network Administrators using Data Mining (UTN, Oak Ridge NL)
 - 2008 Alert Fusion Based on Cluster and Correlation
 - 2007 Using Network Attack Graph to Predict the Future Attacks
 - 2007 Discovering Novel Multistage Attack Strategies

Situation Learning

- Situation Learning (Darken, 2005)
 - A sliding time window identifies "Situations"
 - Forms a simple lookup table
 - Able to model trending and high variability

Predictive atom

Z S T VES

- 0.0, lookA(spock84)
- 0.0, place+(Paperville3)
- 0.0, location+(pitchfork74, Paperville3)
- 0.0, pitchfork+(pitchfork74)
- 0.0, location+(spock84, Paperville3)
- 0.0, spock+(spock84)
- 2.75, getA(pitchfork74, spock84)
- 2.75, getE(spock84, pitchfork74)
- 2.75, location-(pitchfork74, Paperville3)
- 2.75, location+(pitchfork74, spock84)
- 5.5, wA(spock84)
- 5.5, goE(spock84, west)
- 5.5, location-(spock84, Paperville3)
- 5.5, spock-(spock84)
- 5.5, place-(Paperville3)

Conceptual Blending

Constitution Principles Vital Relation Mapping Construct Generic Space Composition Completion Elaboration Back Projection

Optimality Principles Compression Topology Pattern Completion Integration Promoting Vital Relation Web Unpacking relevance

Vital Relation Change, Cause-Effect, Time, Space, Identity, Change, Uniqueness, Part-Whole, Representation, Role, Analogy, Disanalogy, Property, Similarity, Category, and Intentionality

Conclusions

Prediction Accuracies from a Agent Simulator

Previous Approaches

New Learning and Prediction Approaches

Conclusions

Conclusions

16

Why is SSB Better?

- Dataset
 - 6482 alerts
 - 1590 unique alerts
- Detection Rate

	SSB	MSB	VOMM
Unique Alert Detected	947	379	375
%	59.56%	23.84%	23.58%

• Effect of Frequency on Detection Rate

Frequency	Number of Alerts	SSB Detects	MSB detects	VOMM detects
1	643	163	0	0
2	751	621	230	242
3	52	34	27	14
4	88	80	77	74
5	5	0	0	0
6	11	10	8	8
7	3	3	1	1
8	2	2	2	2
9	4	4	3	3
10	3	3	3	3

Complexity Reduction: From Exponential to near Linear

x1:x5

x3: x4

S=0

+0

x2: x4

S=1

+1

- Default Method: Backtracking
 - Subgraph Isomorphism
 - NP-Complete
- Improvements
 - Greedy ASTAR
 - Attention Based Search
- Results
 - Accuracy: No Change

x1: x4

x3: x5

8=3

+2

x2: x5

S=1

+0

– Complexity: Reduced

x2: x4

x3: x5

S=2

+1

x1: x5

S=1

+0

x2: x5

x1: x4

S=1

+1

+0

x3: x4

S=0

+0

What is Relational Time Series? Previous Approaches New Learning and Prediction Approaches Conclusions x3: x4

x1: x5

S=0

 ± 0

+0

x2: x5

+

S=0

Attention Based Search

nodes	In Degree	Out Degree	Туре
Dragon – 1	0	1	D
Agent – 1	0	1	А
Location – 1	2	0	L
Dragon – 2	0	1	D
Agent – 2	0	1	А
Location – 2	2	0	L

node1	node2	Difference
Dragon - 1	Dragon - 2	[1, 0, 1, 1, 0]
	Agent - 2	[0, 0, 1, 1, 0]
	Location - 2	[0, 0, 0, 0, -3]
Agent - 1	Dragon - 2	[0, 0, 1, 1, 0]
	Agent - 2	[1, 0, 1, 1, 0]
	Location - 2	[0, 0, 0, 0, -3]
Location - 1	Dragon - 2	[0, 0, 0, 0, -3]
	Agent - 2	[0, 0, 0, 0, -3]
	Location - 2	[1, 0, 1, 1, 0]

What is Relational Time Series? Previous Approaches New Learning and Prediction Approaches Conclusions SCORE = TVDE.

score = [Type, ExactNameMatch, BothExactDegreeMatch, AtLeastOneDegreeMatch, DegreeDiff]¹⁹

Scalability Test

8

7

6

9

10

Attention

What is Relational Time Series? **Previous Approaches** New Learning and Prediction Approaches Conclusions

0.4 0.2

0

1

7

20

THE

Conclusions

- Single Scope Blending Prediction Approach predicts better
- Reduces NP-Complete complexity to Linear through Greedy ASTAR and Attention based search

Thank you

