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Time Series of Network Intrusion Detection 
Alerts 

12/02/11-17:32:21.984133  2924 NETBIOS SMB-DS repeated logon failure TCP 78.45.215.210 63.205.26.80 
12/02/11-17:32:24.712867  2924 NETBIOS SMB-DS repeated logon failure TCP 78.45.215.210 63.205.26.80 
12/02/11-18:50:13.575037  648 SHELLCODE x86 NOOP TCP 84.0.158.110 63.205.26.70 
12/02/11-18:50:13.575356  648 SHELLCODE x86 NOOP TCP 84.0.158.110 63.205.26.70 
12/02/11-18:50:13.575356  3397 NETBIOS DCERPC NCACN-IP-TCP TCP 84.0.158.110 63.205.26.70 
12/02/11-18:50:15.443929  648 SHELLCODE x86 NOOP TCP 84.0.158.110 63.205.26.73 
12/02/11-18:50:15.444255  648 SHELLCODE x86 NOOP TCP 84.0.158.110 63.205.26.73 
12/02/11-18:50:15.444255  3397 NETBIOS DCERPC NCACN-IP-TCP TCP 84.0.158.110 63.205.26.73 
12/02/11-18:50:19.048303  648 SHELLCODE x86 NOOP TCP 84.0.158.110 63.205.26.77 
12/02/11-18:50:19.048624  648 SHELLCODE x86 NOOP TCP 84.0.158.110 63.205.26.77 
12/02/11-18:50:19.048624  3397 NETBIOS DCERPC NCACN-IP-TCP TCP 84.0.158.110 63.205.26.77 
12/02/11-18:50:20.346232  648 SHELLCODE x86 NOOP TCP 84.0.158.110 63.205.26.74 
12/02/11-18:50:22.656974  648 SHELLCODE x86 NOOP TCP 84.0.158.110 63.205.26.79 
12/02/11-18:50:22.657291  648 SHELLCODE x86 NOOP TCP 84.0.158.110 63.205.26.79 
12/02/11-18:50:22.657291  3397 NETBIOS DCERPC NCACN-IP-TCP TCP 84.0.158.110 63.205.26.79 
12/02/11-19:12:38.913940  384 ICMP PING ICMP 66.235.66.233 63.205.26.80 
12/02/11-19:12:38.914642  408 ICMP Echo Reply ICMP 63.205.26.80 66.235.66.233 
12/02/11-19:12:38.959461  384 ICMP PING ICMP 66.235.66.233 63.205.26.80 
12/02/11-19:12:38.959672  408 ICMP Echo Reply ICMP 63.205.26.80 66.235.66.233 
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Relational Time Series: Time Series of Relational 
Atoms 

• 0.0, lookA(spock84) 
• 0.0, place+(Paperville3) 
• 0.0, location+(pitchfork74, Paperville3) 
• 0.0, pitchfork+(pitchfork74) 
• 0.0, location+(spock84, Paperville3) 
• 0.0, spock+(spock84) 
• 2.75, getA(pitchfork74, spock84) 
• 2.75, getE(spock84, pitchfork74) 
• 2.75, location-(pitchfork74, Paperville3) 
• 2.75, location+(pitchfork74, spock84) 
• 5.5, wA(spock84) 
• 5.5, goE(spock84, west) 
• 5.5, location-(spock84, Paperville3) 
• 5.5, spock-(spock84) 
• 5.5, place-(Paperville3) 

 

P = (t, r(c1, c2, … cn)) 
where  

P: percept 
t: time 
r: relation 
cx: constant 
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Characteristics 
• No Background knowledge 

– Eg. In a unknown domain, we do not know the 
behaviors of any entity 

• Relational Atoms 
– Multi-dimension proposition 

• High variability in predicates & constants 
– Too many to predefine 

• Moving Context 
– Needs online Learning 
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Possible Approaches 
• Approaches 

– Production Rules 
– Finite State Machines 
– Bayesian Network 
– Markov Chain 
– Statistical Relational Learning 

• Recent Interest in IDS Alerts Predictions 
– 2011 Nexat a history-based approach to predict attacker actions  
– 2011 A Novel Probabilistic Matching Algorithm for Multi-Stage Attack Forecast 
– 2010 Multi stage attack Detection system for Network Administrators using 

Data Mining (UTN, Oak Ridge NL) 
– 2008 Alert Fusion Based on Cluster and Correlation 
– 2007 Using Network Attack Graph to Predict the Future Attacks 
– 2007 Discovering Novel Multistage Attack Strategies 

 

10 

What is Relational Time Series? 
Previous Approaches 
New Learning and Prediction Approaches 
Conclusions 
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• 0.0, location+(pitchfork74, Paperville3) 
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Situation Learning 

• Situation Learning (Darken, 
2005)  
– A sliding time window identifies 

“Situations” 
– Forms a simple lookup table 
– Able to model trending and high 

variability 
 
 

 

11 

Predictive atom 
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Situation Learning (SL) + Current Approaches 

12 

What is Relational Time Series? 
Previous Approaches 
New Learning and Prediction Approaches 
Conclusions 



Conceptual Blending 

Outer Space  
Mappings 

Projection 
Emergent  
Frame 

(From Fauconnier & Turner, 2002) 

Constitution Principles 
Vital Relation Mapping 

Construct Generic Space 
Composition 
Completion 
Elaboration 

Back Projection 

Optimality Principles 
Compression 

Topology 
Pattern Completion 

Integration 
Promoting Vital Relation 

Web 
Unpacking 
relevance 

Vital Relation 
Change, Cause-Effect, Time, 

Space, Identity, Change, 
Uniqueness, Part-Whole, 

Representation, Role, Analogy, 
Disanalogy, Property, 

Similarity, Category, and 
Intentionality 

Data, information, organizer 

Previous  
Domains 

Current 
Domain 

Back projection 

θ={?c/?d}  

Subst(θ,α)  

φ={?a/?b}  

Subst(φ,α)  
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Single Scope Blending (SSB) 
• Dragon-1 in Location-1 
• Agent-1 enter Location-1 
• Dragon-1 Kill Agent-1 
• … 
• … 
• Goblin-2 in location-2 
• Dragon-2 in location-2 
• Agent-2 enter location-2 
• ? 

Dragon-1 Agent-1 

Location-1 

kill 

in Enter 

Dragon-2 Agent-2 

Location-2 

in Enter 

Previous Situation 

Current Situation 

in 

Goblin-2 

One Possible Substitution: 
 Dragon-1 to Goblin-2 
 Agent-1 to Agent-2 
 
Prediction: Goblin-2 Kill Agent-2 

Analogy 
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Prediction Accuracies from a Agent Simulator 
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Network Intrusion Alerts Predictions 
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Why is SSB Better? 
• Dataset 

– 6482 alerts  
– 1590 unique alerts 

• Detection Rate 
 
 

• Effect of Frequency on Detection Rate 
 Frequency Number of Alerts SSB Detects MSB detects VOMM detects 

1 643 163 0 0 
2 751 621 230 242 
3 52 34 27 14 
4 88 80 77 74 
5 5 0 0 0 
6 11 10 8 8 
7 3 3 1 1 
8 2 2 2 2 
9 4 4 3 3 

10 3 3 3 3 

SSB MSB VOMM 
Unique Alert Detected 947 379 375 
% 59.56% 23.84% 23.58% 
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Complexity Reduction:  
From Exponential to near Linear 

• Default Method: Backtracking 
– Subgraph Isomorphism 
– NP-Complete 

• Improvements 
– Greedy ASTAR 
– Attention Based Search 

• Results 
– Accuracy: No Change 
– Complexity: Reduced 
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Attention Based Search 

Dragon-1 Agent-1 

Location-1 

in Enter 

Dragon-2 Agent-2 

Location-2 

in Enter 

Previous Situation Current Situation 

node1 node2 Difference 

Dragon - 1 Dragon - 2 [1, 0, 1, 1, 0] 

Agent - 2 [0, 0, 1, 1, 0] 

Location - 2 [0, 0, 0, 0, -3] 

Agent - 1 Dragon - 2 [0, 0, 1, 1, 0] 

Agent - 2 [1, 0, 1, 1, 0] 

Location - 2 [0, 0, 0, 0, -3] 

Location - 1 Dragon - 2 [0, 0, 0, 0, -3] 

Agent - 2 [0, 0, 0, 0, -3] 

Location - 2 [1, 0, 1, 1, 0] 

nodes In  
Degree 

Out  
Degree 

Type 

Dragon – 1 0 1 D 

Agent – 1 0 1 A 

Location – 1 2 0 L 

Dragon – 2 0 1 D 

Agent – 2 0 1 A 

Location – 2 2 0 L 

score = [Type, ExactNameMatch, BothExactDegreeMatch, AtLeastOneDegreeMatch, DegreeDiff] 
19 
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Scalability Test 
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Conclusions 

• Single Scope Blending Prediction Approach predicts better 
• Reduces NP-Complete complexity to Linear through Greedy 

ASTAR and Attention based search 
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Thank you 
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