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Abstract

This paper discusses the numerical solution of periodic initial value problems. Two classes of methods are discussed, super-
implicit and Obrechkoff. The advantage of Obrechkoff methods is that they are high-order one-step methods and thus will not
require additional starting values. On the other hand they will require higher derivatives of the right-hand side. In cases when the
right-hand side is very complex, we may prefer super-implicit methods. We develop a super-implicit P-stable method of order 12
and Obrechkoff method of order 18.
Published by Elsevier Ltd
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1. Introduction

In this paper we discuss the numerical solution of a special class (for which y′ is missing) of second-order initial
value problems (IVPs),

y′′(x) = f (x, y(x)), y(0) = y0, y′(0) = y′

0. (1)

There is a vast literature for the numerical solution of these problems as well as for the general second-order IVPs,

y′′(x) = f (x, y(x), y′(x)), y(0) = y0, y′(0) = y′

0. (2)

See for example the excellent book by Lambert [1]. One class of methods is due to Obrechkoff [2].1 These methods
for the solution of first-order IVPs are given by (see e.g. Lambert [1], pp. 199–204, or Lambert and Mitchell, [3])

k∑
j=0

α j yn+ j =

∑̀
i=1

hi
k∑

j=0

βi j y(i)
n+ j ,

αk = 1.

(3)

∗ Tel.: +1 831 656 2235; fax: +1 831 656 2355.
E-mail address: byneta@gmail.com.

1 The Bulgarian mathematician Academician Nikola Obrechkoff (1896–1963, born in Varna) did pioneering work in such diverse fields as
analysis, algebra, number theory, numerical analysis, summation of divergent series, probability and statistics.
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According to Lambert and Mitchell [3], the error constant decreases more rapidly with increasing ` rather than the
step k. It is difficult to satisfy the zero stability for large k. The weak stability interval appears to be small. The
advantage of Obrechkoff methods is the fact that these are one-step high-order methods and as such do not require
additional starting values. A list of Obrechkoff methods for ` = 1, 2, . . . , 5 − k, k = 1, 2, 3, 4 is given in Lambert
and Mitchell [3]. For example, for k = 1 and ` = 3 we get an implicit method of order 6 with an error constant

C7 = −
1

100 800

and the method is

yn+1 − yn =
h
2

(
y′

n+1 + y′
n
)
−

h2

10

(
y′′

n+1 − y′′
n
)
+

h3

120

(
y′′′

n+1 + y′′′
n

)
. (4)

Obrechkoff methods for the solution of second-order IVPs (1) can be found in Ananthakrishnaiah [4], and
Simos [5]. See also more recent work by Sakas and Simos [6–8], Simos [9,10] and Neta [11]. In Rai and
Ananthakrishnaiah [12], Obrechkoff methods for general second-order differential equations (2) are developed.

The other class, called super-implicit, was developed recently by Fukushima [13] for the first-order IVPs and for the
special second-order IVPs (1). The methods are called super-implicit because they require the knowledge of functions
not only at past and present but also at future time steps. Fukushima developed Cowell and Adams type super-implicit
methods of arbitrary degree and auxiliary formulas to be used in the starting and ending procedures. The resulting
methods work as a one-step method integrating a large time interval. Symmetric Cowell type methods of order up to
12 are given. The integration error grows linearly with respect to time as in symmetric multistep methods.

The general form of such methods for the second-order IVPs (1) is given by

yn+1 +

k∑
j=1

α j yn+1− j = h2
∑̀
j=0

β j fn+1+m− j , αkβ0β` 6= 0. (5)

The first step is evaluating y1 using the initial conditions and some future values

y1 = y0 + hy′

0 + h2
∑̀
j=0

b(0)
j f j . (6)

Next, obtain the additional values y2, . . . , ym−1, using

yn+1 = 2yn − yn−1 + h2
∑̀
j=0

b(n)
j f j , n = 1, . . . , m. (7)

The coefficients b(n)
j are given in Fukushima. Then the method is given by

yn+1 = 2yn − yn−1 + h2
∑̀
j=0

b(m,`)
j fn+1+m− j . (8)

For example, the 12th-order Cowell type super-implicit is given by

yn+1 = 2yn − yn−1 + h2
(

31 494 553
39 916 800

fn +
9 186 203

79 833 600
( fn−1 + fn+1)

−
222 331

19 958 400
( fn−2 + fn+2) +

40 489
22 809 600

( fn−3 + fn+3)

−
17 453

79 833 600
( fn−4 + fn+4) +

317
22 809 600

( fn−5 + fn+5)

)
. (9)

Thus we have to solve a system of nonlinear equations. In order to make the system smaller, one can subdivide the
total interval of integration into subintervals. In any case we require special formulas to obtain the ending values.
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Before we continue, we need several definitions. For the multistep method to solve the second-order IVP

k∑
i=0

ai yn+i = h2
k∑

i=0

bi fn+i (10)

we define the characteristic polynomials

ρ(z) =

k∑
i=0

ai zi (11)

and

σ(z) =

k∑
i=0

bi zi . (12)

The order of the method is defined to be p if for an adequately smooth arbitrary test function ζ(x),

k∑
i=0

aiζ(x + ih) − h2
k∑

i=0

biζ
′′(x + ih) = C p+2h p+2ζ (p+2)(x) + O(h p+3)

where C p+2 is the error constant. The method is assumed to satisfy the following:

1. ak = 1, |a0| + |b0| 6= 0,
∑k

i=0 |bi | 6= 0,
2. ρ and σ have no common factor (irreducibility)
3. ρ(1) = ρ′(1) = 0, ρ′′(1) = 2σ(1) (consistency)
4. The method is zero-stable.

The method is called symmetric if

ai = ak−i , bi = bk−i for i = 0, 1, . . . , k.

Definition (Lambert and Watson, [14]). The method described by the characteristic polynomials ρ, σ is said to have
interval of periodicity (0, H2

0 ) if for all H2 in the interval the roots of

V (z, H2) = ρ(z) + H2σ(z) = 0, H = ωh

satisfy

z1 = eiθ(H), z2 = e−iθ(H),

|zs | ≤ 1, s = 3, 4, . . . , k,

where θ(H) is a real function.

Definition (Lambert and Watson, [14]). The method described by the characteristic polynomials ρ, σ is said to be
P-stable if its interval of periodicity is (0, ∞).

Lambert and Watson [14] proved that a method described by ρ, σ has a nonvanishing interval of periodicity only
if it is symmetric and for P-stability the order cannot exceed 2. Fukushima [15] has proved that the condition is also
sufficient. To be precise, we quote the result of Fukushima [15].

Theorem. Consider an irreducible, convergent, symmetric multistep method. Define a function

g(θ) = −
ρ(eiθ )

σ (eiθ )
.

Then the method has a nonvanishing interval of periodicity if and only if
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1. g(θ) has no nonzero double roots in the interval [0, π], or
2. g′′(θ) is positive on all the nonzero double roots of g(θ) in the interval [0, π].

However, higher-order P-stable methods were developed by introducing off-step points or higher derivatives of
f (x, y) (Obrechkoff).

2. Second-order IVPs

The numerical integration methods for (1) can be divided into two distinct classes: (a) problems for which
the solution period is known (even approximately) in advance; (b) problems for which the period is not known
(Ananthakrishnaiah, [4]). For the first class, see Gautschi [16] and Neta [17] and references therein. Here we consider
the second class only, i.e. we are not assuming any knowledge of the solution period.

In this section we take the P-stable method of order 12 given by Wang et al. [18],

yn+1 − 2yn + yn−1 = h2
(

229
7788

(
y′′

n+1 + y′′

n−1
)
− α2 y′′

n

)
− h4

(
1

2360

(
y(4)

n+1 + y(4)
n−1

)
−

711
12 980

y(4)
n

)
+ h6

(
127

39 251 520

(
y(6)

n+1 + y(6)
n−1

)
+

2923
3 925 152

y(6)
n

)
(13)

and show how to get a super-implicit P-stable method equivalent to it. This method has a truncation error

45 469
1 697 361 329 664 000

h14
(
ω12 y′′(x) − y(14)

)
where α2 is given by

α2 = −
3665
3894

+
45 469

1 697 361 329 664 000
(ωh)12

+ O
(
(ωh)14

)
. (14)

In order to get a super-implicit method we can use the idea of Neta and Fukushima [19], i.e. replace the sixth- and
fourth-order derivatives by second-order derivatives at neighboring points. Suppose we have a method

yn+1 − 2yn + yn−1 + h2 (
α1

(
y′′

n+1 + y′′

n−1
)
− α2 y′′

n
)
+ h4

(
β1

(
y(4)

n+1 + y(4)
n−1

)
+ β2 y(4)

n

)
+ h6

(
γ1

(
y(6)

n+1 + y(6)
n−1

)
+ γ2 y(6)

n

)
= O

(
h14

)
. (15)

Replacing h4
(
β1

(
y(4)

n+1 + y(4)
n−1

)
+ β2 y(4)

n

)
by

h2 (
A4 y′′

n + B4
(
y′′

n+1 + y′′

n−1
)
+ D4

(
y′′

n+2 + y′′

n−2
)

+ F4
(
y′′

n+3 + y′′

n−3
)
+ H4

(
y′′

n+4 + y′′

n−4
)

+ K4
(
y′′

n+5 + y′′

n−5
))

(16)

and using MAPLE (Redfern, [20]) we found for α1, β1, β2, γ1, γ2 given in Wang et al. [18]

A4 =
7629

47 200
B4 = −

864 739
9 345 600

D4 =
56 009

4 088 700
F4 = −

32 667
14 537 600

H4 =
6101

21 806 400
K4 = −

2339
130 838 400

.

(17)

Similarly, replacing h6
(
γ1

(
y(6)

n+1 + y(6)
n−1

)
+ γ2 y(6)

n

)
by

h2 (
A6 y′′

n + B6
(
y′′

n+1 + y′′

n−1
)
+ D6

(
y′′

n+2 + y′′

n−2
)

+ F6
(
y′′

n+3 + y′′

n−3
)
+ H6

(
y′′

n+4 + y′′

n−4
)

+ K6
(
y′′

n+5 + y′′

n−5
))

(18)
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and using MAPLE we found

A6 = −
22 243 211

2 344 091 200
B6 =

32 341 679
4 710 182 400

D6 = −
3 023 063

1 177 545 600
F6 =

4 446 259
9 420 364 800

H6 = −
288 089

4 710 182 400
K6 =

37 487
9 420 364 800

.

(19)

The method is then

yn+1 = 2yn − yn−1 + h2 (
N0 y′′

n + N1
(
y′′

n+1 + y′′

n−1
)
+ N2

(
y′′

n+2 + y′′

n−2
)

+ N3
(
y′′

n+3 + y′′

n−3
)
+ N4

(
y′′

n+4 + y′′

n−4
)
+ N5

(
y′′

n+5 + y′′

n−5
))

+ O
(

h14
)

(20)

where

N0 = −
358 413 373

2 355 091 200
+ α2 N1 =

9 186 203
79 833 600

N2 = −
222 331

19 958 400
N3 =

40 489
22 809 600

N4 = −
17 453

79 833 600
N5 =

317
22 809 600

.

(21)

Upon choosing α2 =
3665
3894 + O

(
h12), as given in Wang et al. [18], we get a 12th-order method with local truncation

error −
6 803 477

2 615 348 736 000 h14
(

y(14)
−

454 690
4 415 456 573ω12 y′′(x)

)
. This method is actually very similar to (9) with the only

exception being the coefficient of fn . The error constant is larger than that of (13). This phenomenon was discovered
by Neta and Fukushima [19].

The problem is that we are requiring five points in the future; on the other hand, we do not need a special formula
for the first derivative but do need special formulas for starting and ending points of the integration interval.

We will now try to get another method by using more points on the left. Clearly, to satisfy the first two conditions
of consistency, ρ(1) = ρ′(1) = 0, and to satisfy the zero stability, we need

ρ(ζ ) = (ζ − 1)2(ζ − a)(ζ − b) (22)

with a and b bounded by 1 but not equal to 1. Adding the condition of symmetry, we find that a = i , and b = −i , i.e.

ρ(ζ ) = ζ 4
− 2ζ 3

+ 2ζ 2
− 2ζ + 1. (23)

Consider the method (see, for example, the P-stable four-step method in Wang, [21])

yn+2 − 2yn+1 + 2yn − 2yn−1 + yn−2 = −h2 (
α1

(
y′′

n+2 + y′′

n−2
)
+ α2

(
y′′

n+1 + y′′

n−1
)
+ α3 y′′

n
)

− h4
(
β1

(
y(4)

n+2 + y(4)
n−2

)
+ β2

(
y(4)

n+1 + y(4)
n−1

)
+ β3 y(4)

n

)
− h6

(
γ1

(
y(6)

n+2 + y(6)
n−2

)
+ γ2

(
y(6)

n+1 + y(6)
n−1

)
+ γ3 y(6)

n

)
. (24)

We have more parameters, since we are allowing the use of five points. In order for the method to be P-stable, we
apply it to the test equation

y′′(x) = −ω2 y(x), (25)

to get

eiωx (A(hω) + B(hω) cos(hω) + C(hω) cos(2hω)) = 0 (26)
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where

A(hω) = 2 − h2ω2α3 + h4ω4β3 − h6ω6γ3,

B(hω) = −4 − 2h2ω2α2 + 2h4ω4β2 − 2h6ω6γ2,

C(hω) = 2 − 2h2ω2α1 + 2h4ω4β1 − 2h6ω6γ1.

(27)

Following Wang et al. [18], we solve (26) for α3 to get

α3 =
2

h2ω2 + h2ω2β3 − h4ω4γ3 +

(
−4

h2ω2 − 2α2 + 2h2ω2β2 − 2h4ω4γ2

)
cos(hω)

+

(
2

h2ω2 − 2α1 + 2h2ω2β1 − 2h4ω4γ1

)
cos(2hω). (28)

Now substitute (28), after expanding the cosine into Taylor series, into (24) and expand into Taylor series to get a
system of equations for the coefficients of h2m, m = 2, 3, . . . , 9:

7 + 24α1 + 6α2 + 12β1 + 12β2 + 6β3 = 0 (29)
31 + 240α1 + 15α2 + 720β1 + 180β2 + 360γ1 + 360γ2 + 180γ3 = 0 (30)
127 + 1792α1 + 28α2 + 13 440β1 + 840β2 + 40 320γ1 + 10 080γ2 = 0 (31)

73 +
11 520

7
α1 +

45
7

α2 + 23 040β1 + 360β2 + 172 800γ1 + 10 800γ2 = 0 (32)

2047 + 67 584α1 + 66α2 + 1 520 640β1 + 5940β2 + 21 288 960γ1 + 332 640γ2 = 0 (33)
8191 + 372 736α1 + 91α2 + 12 300 288β1 + 12 012β2 + 276 756 480γ1 + 1 081 080γ2 = 0 (34)

4681 +
1 966 080

7
α1 +

120
7

α2 + 12 779 520β1 + 3120β2 + 421 724 160γ1 + 411 840γ2 = 0 (35)

13 1071 + 10 027 008α1 + 153α2 + 601 620 480β1 + 36 720β2 + 27 373 731 840γ1 + 6 683 040γ2 = 0 (36)

Solving for the coefficients using MAPLE, we have

α1 = −
55 321 909 809 919

2 132 415 136 051 200
α2 = −

518 228 348 369
520 609 164 075

β1 =
43 680 311 221

142 161 009 070 080
β2 = −

92 737 040 519
1 665 949 325 040

β3 =
9 222 970 982 471

213 241 513 605 120
γ1 = −

384 479 909 371
223 903 589 285 376 000

γ2 = −
1 724 668 910 507

1 749 246 791 292 000
γ3 =

194 077 077 322 127
111 951 794 642 688 000

.

(37)

The local truncation error is

−
14 729 175 706 111

1 299 067 775 131 517 297 786 880 000
h20

(
y(20)(x) + ω18 y′′(x)

)
. (38)

Thus this Obrechkoff method is P-stable of order 18 if we choose α3 =
15 190 029 559 381
355 402 522 675 200 + O

(
h18). We now obtain

a super-implicit method equivalent to it. Following the same steps as earlier, we replace the fourth- and sixth-order
derivatives by a combination of second-order derivatives at neighboring points. The work was done with MAPLE, and
we get

yn+2 − 2yn+1 + 2yn − 2yn−1 + yn−2 = −h2 (
N0 y′′

n + N1
(
y′′

n+1 + y′′

n−1
)
+ N2

(
y′′

n+2 + y′′

n−2
)

+ N3
(
y′′

n+3 + y′′

n−3
)
+ N4

(
y′′

n+4 + y′′

n−4
))

(39)
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Fig. 1. Exact solution (43) over one period.

where

N0 = α3 −
2 369 868 964 432 087
9 595 868 112 230 400

N1 = −
362 771
453 600

N2 = −
47 057

453 600
N3 =

2707
453 600

N4 = −
641

1 814 400
.

(40)

Unfortunately this is only of order 10 with an error constant of −4139
79 833 600 . In order to increase its order, one must use

five points in the future. Thus taking the two additional values on the left did not alleviate this problem.

3. Numerical experiments

In our first experiment, we have used the 12th-order P-stable method due to Wang et al. [18] and our 18th-order
P-stable method given by (24) and (37) to solve the following initial value problem:

y′′(x) + ω2 y(x) = 8
(

cos(x) +
2
3

cos(3x)

)
(41)

subject to

y(0) = 1, y′(0) = 0 (42)

where ω = 5. The exact solution is

y(x) =
1
3

(cos(x) + cos(3x) + cos(5x)) (43)

whose complex oscillatory pattern can be seen in Fig. 1. Both methods showed great results using h = π/8 and
integrating up to x = 10π . See the plot of the numerical solutions and the exact solution in Fig. 2.

In our second example, we solved the almost periodic problem studied by Stiefel and Bettis [22],

z′′
+ z = 0.001eix

z(0) = 1
z′(0) = 0.9995i

(44)
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Fig. 2. Exact solution (43) and numerical solution over five periods.

Table 1
Comparing the P-stable 10th-order due to Simos with the 12th-order due to Wang and with our 18th-order for the almost periodic problem

Step size Simos Wang Neta

π/4 −6.788 (−12) 4.071 (−14) −3.891 (−18)
π/5 −4.385 (−13) 2.677 (−15) −6.339 (−20)
π/6 −4.707 (−14) 2.931 (−16) −2.199 (−21)
π/9 −3.418 (−16) 1.800 (−18) −1.324 (−24)
π/12 −9.100 (−18) 6.709 (−20) −7.138 (−27)

whose theoretical solution is

z(x) = u(x) + iv(x)

u(x) = cos x + 0.0005x sin x

v(x) = sin x − 0.0005x cos x .

(45)

The point z(x) spirals slowly outwards, so that at time x its distance from the origin is

d(x) =

√
1 + (0.0005x)2. (46)

We have solved the problem for 0 ≤ x ≤ 40π using h = π/4, π/5, π/6, π/9, π/12. In Table 1 we present the
results showing the error in the distance from the origin using our 18th-order method along with the result of Simos’
10th-order [5] and Wang’s 12th-order [21].

In our next example, we solve the nonlinear Duffing equation

y′′(x) + y(x) + y3(x) = B cos(Ωx) (47)

where Ω = 1.01 and B = .002. We use the following as the exact solution:

y(x) = 0.20017947753661852 cos(Ωx) + 0.246946143255583824 × 10−3 cos(3Ωx)

+ 0.304014985249 × 10−6 cos(5Ωx) + 0.374349084378 × 10−9 cos(7Ωx)

+ 0.460964452 × 10−12 cos(9Ωx) + 0.5676 × 10−15 cos(11Ωx). (48)

We have summarized the results at the end of several periods (up to 50) using a step-size h = π/8 in Table 2.
Notice that our method yields smaller absolute errors.

In our last example, we ran our 18th-order method using h = π/12 and compared the results to the 12th-order
super-implicit method in Neta and Fukushima [19] for solving the nonlinear Duffing equation. We list the absolute
errors in Table 3.
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Table 2
Comparing the P-stable 12th-order due to Wang with our 18th-order for the nonlinear Duffing equation using h = π/8

Time Wang Neta

2π 1.34 (−13) 2.82 (−15)
4π 2.81 (−13) 2.31 (−15)
6π 4.06 (−13) 1.77 (−15)
8π 5.04 (−13) 1.25 (−15)
10π 5.68 (−13) 8.27 (−16)
20π 9.76 (−16)
40π 7.09 (−17)
60π 3.83 (−16)
80π 1.05 (−15)
100π 1.43 (−15)

Table 3
Comparing our 18th-order with our previous super-implicit 12th-order (Neta and Fukushima, [19]) for the nonlinear Duffing equation using
h = π/12

Time Neta Super-implicit

2π 8.33 (−17) 2.53 (−07)
4π 1.94 (−16) 1.01 (−06)
8π 2.08 (−15) 3.95 (−06)
10π 5.16 (−15) 6.05 (−06)

4. Conclusions

In this paper we developed P-stable super-implicit and Obrechkoff methods. The advantage of Obrechkoff methods
is that they are high-order one-step methods and thus will not require additional starting values. On the other hand,
they will require higher derivatives of the right-hand side. In cases when the right-hand side is very complex, we may
prefer super-implicit methods. We developed a super-implicit P-stable method of order 12 and an Obrechkoff method
of order 18.
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