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SUMMARY 
Some issues, concerning uniform, stratified flow over a three-dimensional mountain, that have not been 

fully explored are studied using primitive-equation models. When the Froude number (Fr) is small (e.g. 
Fr < 0.5), we find that the Coriolis force cannot be neglected for flow over small-scale mountains (characteristic 
length L < 50 km) even though the Rossby number (Ro) is large. When the Coriolis force is neglected, a pair 
of symmetric vortices is induced on the lee side, irrespective of the scale of the mountain, as long as Fr lies 
roughly between 0.1 and 0.5. The major effect of the Coriolis force is to modify or diminish the lee vortices 
due to the leftward deflection on the upstream side of the mountain. The Coriolis deflection also reduces the 
upstream propagation. When Fr is 3 1, most of the flow goes over the mountain and the Coriolis effect is small 
for the same Ro.  Therefore, the importance of the Coriolis effect is determined by both Ro and Fr. 

As the scale of the mountain increases from small-scale to mesoscale (100 km < L < 300 km), the upstream 
flow is deflected more to the left by the Coriolis effect, and a trough develops on the lee side. The length-scale 
of the trough depends on the scale of the mountain in the along-flow direction. For smaller-scale mountains, 
small vortices can be generated within the lee-side trough when Fr is small. When the mountain scale is 
increased, the lee-side vortices disappear, and only a lee-side trough remains. Depending on the mean wind 
speed and the mountain scale, the lee-side trough can be advected by the anticyclonic flow over the mountain 
to the south, and remain attached to the mountain for a long time. A train of troughs is generated on the lee 
side of an elliptic mountain associated with the lee-side gravity waves. 

Simulations of flows over mountains in two-dimensional and three-dimensional models with the same 
cross-sectional profile are compared. For small-scale mountains ( L  < 100 km), the two-dimensional model 
overestimates the amount of airflow over the mountain and also the lee-side downslope wind. 

1. INTRODUCTION 

It is well known that atmospheric motions of various scales are significantly influenced 
by the presence of mountains. Due to the very broad spectrum of mountain scales, 
ranging from tens to thousands of kilometres, various theoretical and numerical studies 
are usually devoted to a mountain with a particular scale, or to a particular type of 
phenomenon that is related to the mountain. A general review on this topic is given by 
Smith (1979b). In a more recent review Smith (1989) concentrates on lee-side gravity 
waves, flow splitting, and wave breaking, while Durran (1990) focuses mainly on the 
gravity waves and the downslope wind. The purpose of this study is to address some of 
the more subtle points on flows over mountains. We hope to link together solutions 
obtained for different scales of mountains to obtain a general picture of stratified, 
barotropic flows over mountains. The major parameters determining the characteristics 
of uniform stratified flow over topography are the Rossby number (Ro = U/ fL)  and the 
Froude number (Fr = U / N h ) ,  where U is the characteristic speed, L is the horizontal 
scale of the mountain, f is the Coriolis parameter, N is the Brunt-Vaisala frequency 
related to the stratification of the fluid, and h is the maximum mountain height. One of 
our main objectives is to determine whether the flow goes around or over a mountain 
for different mountain sizes (horizontal scale), shapes, heights and mean wind speeds. 
We intend to: (i) study the effect of the Coriolis force for flows over small-scale mountains; 
(ii) study the change in character of the flow over mesoscale to synoptic-scale mountains; 
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(iii) study flows over large-scale mountains, and (iv) compare the flow over an infinite 
ridge with flow over a three-dimensional (3D) mountain with the same cross-sectional 
profile. 

In this study we employ both two-dimensional (2D) and 3D hydrostatic primitive- 
equation models. The numerical experiments are selected so that a general picture of 
the flow for various parametric values can be obtained. This study is limited to uniform, 
barotropic flow over topography in a uniformly stratified fluid. Some differences that 
may arise from non-uniform flows will be reported in a separate paper. This paper is 
organized as follows. The 2D and 3D numerical models used are described briefly in 
section 2. The effect of the Coriolis force for flow over mountains with small horizontal 
scales is examined in section 3. The general flow patterns for mountains ranging from 
mesoscale to synoptic scale are presented in section 4, and section 5 is devoted to flow 
over large-scale mountains. Comparisons between the 2D flow and 3D flow with the same 
mountain cross-sectional profile are discussed in section 6. The results are summarized in 
section 7. 

2. DESCRIPTION OF NUMERICAL MODELS AND TOPOGRAPHY 

(a)  The 2 0  numerical model 
The 2D numerical model, which uses the hydrostatic Boussinesq equations, is 

described in detail by Williams et al. (1992). There are 36 levels in the vertical, and the 
horizontal grid interval equals 5 and 40 km, respectively, for the two experiments 
discussed in section 6. Periodic boundary conditions are used in the east-west direction. 
A rigid-lid boundary is applied at the top, with increased diffusion coefficients in the 
upper one third of the domain to control reflection from the upper boundary. The main 
use of this model is to compare infinite ridge solutions with solutions for a finite mountain 
with the same cross-sectional mountain profile. 

(b )  The 3D numerical model 
The 3D model is a modified version of the Naval Research Laboratory limited-area 

numerical model (Madala et al. 1987) on an f-plane. This hydrostatic primitive-equation 
model uses second-order finite differences and a split-explicit time integration scheme 
for handling the gravity waves. The horizontal grid of the model is arranged on the 
Arakawa staggered C-grid. The model employs the terrain-following CJ vertical coor- 
dinate (where CJ is the ratio of the pressure to the surface pressure). For the present 
study, the parametrized physics of the model is turned off except for the dry convective 
adjustment and the horizontal diffusion. For all experiments there are 16 levels in the 
vertical, except that 36 levels are used in comparison with the 2D model. The horizontal 
grid interval ranges from 5 km to 160 km, in proportion to the horizontal mountain scale. 
In each experiment the grid size is one fifth of the mountain scale a, defined in the 
following subsection. The array size of the model is kept the same for experiments of 
the same type so that the integration domain is expanded in proportion to the grid size. 
Along the north and south sides of the domain there is no flow across the boundary. On 
the east and west sides the tendencies boundary-condition treatment by Perkey and 
Kreitzberg (1976) is used. In general, this boundary condition uses a blending method 
within five grid points from the outermost point where the tendency is specified or 
provided from a forecast of a larger-domain model. Within the blending zone, a linear 
weighting factor is applied so that the innermost grid points use the tendencies from the 
hydrostatic model. In our application of this method, the outermost tendency is zero on 
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both the east and west sides. The vertically propagating waves are partially damped by 
allowing the second-order diffusion coefficient to increase linearly from a constant value 
of 4 x 104m2s-l over the lowest 11 levels to 1.9 times that value at the top level. 

(c) Topography 
In order to compare our results with other studies, we use the mountain profile of 

Smith (1979b): 

where h is the maximum height of the mountain, and aOx and uoy are the mountain scales 
in the x and y directions respectively. This mountain profile is given in Fig. 1. Smith 
(1979b) and Smolarkiewicz and Rotunno (1989, 1990; hereafter SR89, SR90) use uox as 
the characteristic length L of the mountain. Pierrehumbert and Wyman (1985) and 
Blumen and Gross (1987) use the Gaussian distribution, and the half-mountain width is 
chosen as the characteristic length. The half width for the mountain profile described in 
(2.1) is about 0.7aox, so there is some difference in determining L when computing Ro. 
From (2. l ) ,  the horizontal mountain-aspect ratio is (uox/uo,,). 

Figure 1 .  Vertical cross-section of the mountain profile as prescribed by Eq. (2.1), following Smith (1979b). 

The basic state for all experiments consists of a prescribed uniform westerly flow in 
geostrophic balance that is embedded in a standard atmosphere. The initial conditions 
are first given in pressure coordinates with a tropopause at 100 hPa with a constant 
temperature above and a constant lapse rate below. The mountain is introduced into the 
uniform flow by interpolation from pressure to 0 surfaces of the numerical model. This 
impulsive start will gcnerate transient disturbances in some experiments. In certain cases 
the mountain height is raised gradually during the first part of the integration in order 
to represent more closely the steady-state problem. 

The purpose of each experiment and the corresponding parameters are listed in 
Table 1. 

3. EFFECTS OF THE CORIOLIS FORCE FOR FLOWS OVER SMALL-SCALE MOUNTAINS 

For flow over small-scale mountains, Ro is large, so that the Coriolis force has 
usually been neglected in previous studies. The behaviour of the flow over the mountain 
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TABLE 1. DESCRIPTION OF EXPERIMENTS AND PARAMETERS 

Rossby Froude 
Experiment U (m s- ' )  h (m) f (s-') aOx (km) aOy (km) number number Purpose 

la  
l b  
2a 
2b 
3 
4a 
4b 
5a 
Sb 
5c 
5d 
6a 
6b 
6c 
6d 
7 
8 
9 

10 
11 
12 
13 
14 

10 
10 
10 
10 
10 
10 
10 
5 
5 
5 
5 

10 
10 
10 
10 
10 
10 
5 

10 
5 
5 

10 
5 

2000 
2000 
2000 
2000 
2500 
1000 
1000 
2000 
2000 
2000 
2000 
2000 
2000 
2000 
2000 
2000 

0-2000 
2000 
2000 
2000 

c-2000 
2000 
1000 

0 

0 

0 
0 

10-4 

10-4 
10-4 
10-4 
10-4 
10-4 
10-4 
10-4 
10-4 

10-4 
10-4 
10-4 
10-4 
10-4 
10-4 
10-4 
10-4 

25 
25 
50 
50 

300 
25 
25 

100 
200 
300 
400 
100 
200 
300 
400 
300 
300 
300 
960 
960 
960 
180 
68 

25 
25 
50 
50 

300 
25 
25 

100 
200 
300 
400 
100 
200 
300 
400 
900 
900 
900 

1920 
1920 
1920 
- 
- 

- 0.5 
4 0.5 
- 0.5 

2 0.5 
- 0.4 

1 
4 1 
0.5 0.25 
0.25 0.2s 
0.167 0.25 
0.125 0.25 
1.0 0.5 
0.5 0.5 
0.334 0.5 
0.2s 0.5 
0.33 0.5 
0.33 0.5 
0.16 0.25 
0.104 0.5 
0.052 0.25 
0.052 0.25 
0.56 0.5 
0.74 0.5 

- 

Coriolis effect 
Coriolis effect 
Coriolis effect 
Coriolis effect 
Scale effect 
Coriolis effect 
Coriolis effect 
Scale effect 
Scale effect 
Scale effect 
Scale effect 
Scale effect 
Scale effect 
Scale effect 
Scale effect 
Shape effect 
Shape effect 
Shape effect 
Scale effect 
Scale effect 
Scale effect 
3-D effect 
3-D effect 

- 
See text for explanation of column headings 

is then determined solely by Fr which measures the ratio between the kinetic energy of 
the parcel upstream, and the energy required to lift the fluid over the mountain. For 
large Fr, the linear theory for 2D flow developed in the pioneering works of Lyra (1943) 
and Queney (1948) applies. In this regime most of the flows have enough energy to climb 
over the mountain, and gravity waves are generated on the lee side. The corresponding 
solutions for 3D flow are given by Smith (1980). When Fr is very small, Drazin (1961) 
shows that the flow over the mountain reduces to potential flow. Even though the Drazin 
solution is not complete, it does describe the flow in that limit. Generally, when Fr is 
small, the flow does not have enough energy to climb over the mountain and the flow is 
relatively horizontal. When the air flows around the mountain in a horizontal plane, no 
mountain waves are generated. 

SR89 and SR90 use a high-resolution nonhydrostatic numerical model to study flows 
over small-scale mountains, with moderate values of Fr to fill in the gap between linear 
theory and potential flow. Figure 3 in their study (SR89) displays the flows as a function 
of Fr, with f = 0. They show that a pair of symmetric vortices are generated on the lee 
side when Fr is smaller than 0.5. Hunt and Snyder (1980) hypothesize that the lee vortices 
are generated within the viscous boundary layer and then sheared off. Results from SR89 
indicate that, at least within a certain range of Fr, lee vortices can be generated without 
surface friction. 

To study the effect of the Coriolis force on flow over small-scale mountains, we 
compare our model simulations with and without the Coriolis force in the same parameter 
range as SR89 and SR90. In experiment 1, we choose uox = uoy = 25 km, U = 10 m SC', 

and h = 2000 m. The Brunt-Vaisala frequency, N ,  is equal to s-l for all experiments, 
which gives Fr = 0.5 for experiment 1. Note that the width of the mountain in this 
experiment is the same as the one in SR89. Fr = 0.5 is chosen for our presentation, which 
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is roughly the upper bound of Fr where lee vortices can be induced without a viscous 
boundary layer (SR89). The flow fields on our model’s lowest and second-lowest levels 
at t = 8 h are shown in Fig. 2. The left panels are solutions for f = 0 and the right panels 
are for f =  10-4s-1 (Ro = 4). Even with this large Rossby number the flows with and 
without f are not the same. Without f, Fig. 2(a) shows a stagnation point on the upwind 
side and a reversal of flow upstream. In Fig. 2(a), with Fr = 0.5, upstream-propagating 
flow meets the constant incoming flow, and a region with irregular flow occurs at the 
place when these two flows meet. This irregularity does not occur in solutions shown in 
SR89 and SR90 when Fr < 0.5. In experiment l a  withf = 0, there are a pair of symmetric 
vortices on the lee side (Figs. 2(a) and (b)), in agreement with SR89. 

With the Coriolis force included in experiment l b ,  the flow is asymmetric and is 
always deflected more to the left on the upstream side (Figs. 2(c) and (d)). The upwind 
left deflection is treated analytically by Smith (1982) based upon an expansion for large 

a 

km 125 

C 

Figure 2. Horizontal streamlines at I = 8 h for flow over a small-scale mountain; (a) and (b) without the 
Coriolis force and (c) and (d) with the Coriolis force, uox = uoy = 25 km, U = 10 m s ~ l  and h = 2000 m. Fr = 
0.5 and Ro = 4.0 for (c) and (d). (a) and (c) are at the model’s lowest level where u = 0.9975, (b) and (d) are 

at the model’s second-lowest level where g =  0.9775. See text for explanation of symbols. 
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Rossby number (Fig. 2(c)). Due to the deflection of the flow by the Coriolis effect, there 
is little upstream propagation of the reversed flow except for a diffluent region. The 
vortices on the lee side in Figs. 2(c) and 2(d) do not have the symmetric structure that 
occurs for the f =  0 case in Figs. 2(a) and 2(b). Furthermore, these vortices are not 
steady, in contrast with those shown in SR89 forf = 0. Instead, they drift gradually away 
from the mountain in our experiments, in agreement with the numerical simulation by 
Crook et ul. (1990) for the Denver cyclone. In experiment 2, the mountain size measured 
by uox is doubled while keeping the other variables the same as in experiment 1. The 
flow patterns with and without the Coriolis force show more significant differences as 
expected (Fig. 3 ) .  The lee vortices are highly asymmetric and there is no reversal flow 
upstream when the Coriolis force is included. The upstream irregularity in Fig. 2 is not 
present in Fig. 3 .  Note that flows at higher levels of the model experience smaller 
influence from the Coriolis force. This may be due to the fact that the flows at higher 

Figure 3 .  Same as in Fig. 2 except a,,* = aoY = 50 km at the model's lowest level where cr = 0.9975. In this case 
Ro = 2.0 for flow in panels (b) and (d). 
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levels do not have to climb as much to go over the mountain and they feel less deflection 
by the Coriolis effect. 

A disturbance would propagate infinitely far upstream in a 2D framework without 
f (Pierrehumbert and Wyman 1985). Pierrehumbert and Wyman (1985) further hypo- 
thesize that in a 3D model the upstream influence would have a length-scale determined 
by the Rossby radius of deformation whenfis included. This is, however, not consistent 
with our results because it implies large upstream influence when f is small, which we do 
not observe. 

The horizontal length-scale of the lee vortices is proportional to the mountain 
length-scale in the cross-flow direction (a,) for non-circular mountains, as indicated by 
Fig. 11 in SR90. These lee vortices exist as long as f =  0 and Fr is roughly within the 
range of 0.1 to 0.5 irrespective of the scale of the mountain. Experiment 3 with 
uox = a = 300 km, U =  lOms-', f= 0 and h = 2500111 (Fr = 0.4) is shown in Fig. 4. 
There is little difference between this pattern and those associated with much smaller 
mountains shown in SR90 and Figs. 2 and 3 .  

I" 

0 1750 

Figure 4. Streamlines for flow over a medium-scale circular mountain with uox = uoy = 300 km, h = 2500 m, 
U = 10 m s ~ l  and f = 0. The grid size is 50 km. See text for explanation of symbols. 

The effect of the Corioiis force on flow over a small-scale mountain depends on 
whether most of the airflows are over or around the mountain. To illustrate this, the 
mountain height is decreased to 1OOOm in experiment 4 while keeping the other par- 
ameters the same as in experiment 1. This doubles Fr from 0.5 to 1.0 while keeping Ro 
the same. In this case most of the flow has the momentum to go over the mountain, and 
the difference between flows with and without the Coriolis force is small (Fig. 5 ) .  This 
indicates that, in examining the importance of the Coriolis force, it is necessary to 
consider both Fr and Ro. 

The downslope wind and gravity waves are less influenced by the Coriolis force. In 
general, the Coriolis force has less effect on lee-side phenomena that are induced by flow 
over the mountain. 
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Figure 5 .  Same as in Fig. 2 except the mountain height h = 1000 m; (a) f= 0 and (b) f= s-’. Solutions 
are at the model’s lowest level where u= 0.9975. In this case, Fr = 1.0 and Ro = 4.0 for flow in panel (b). 

4. FLOWS OVER MESOSCALE TO SYNOPTIC-SCALE MOUNTAINS 

There are only a few studies of flow over 3D mesoscale mountains in the literature. 
Smith (1982) extends his own linear solution for an isolated mountain (Smith 1980) to 
include the Coriolis effect with an expansion in the reciprocal of Ro, which is required 
to be large. In his solution a pressure increase is induced upstream and a pressure 
decrease is induced downstream of the mountain. When a parcel approaches the high 
pressure on the windward side, it decelerates and the flow is no longer in geostrophic 
balance. The slower-moving parcel feels a decreased Coriolis force and the pressure- 
gradient force sends it to the left. Meanwhile, a cyclonic circulation forms on the lee 
side. 

In this section we examine flows over or around mountains ranging from mesoscale 
to synoptic scale, to show how the flow pattern changes as the horizontal mountain scale 
increases. All experiments discussed from this point contain the Coriolis force. In 
experiments 5a-5d, the mountain shape is circular and the values of aox and aoY increase 
from 100 km to 400 km with an interval of 100 km. The uniform mean flow U = 5 m s-l, 

f = s-l and the mountain height h = 2000 m are kept the same. Therefore, Fr = 0.25 
for all of these cases, while Ro takes the values 0.5,0.25,0.1666, and 0.125, respectively. 
Figure 6 shows the horizontal streamlines at the model’s lowest level for t = 48 h. In 
Fig. 6(a), with a, = aoY = 100 km, the flow field is similar to the small-scale mountain 
discussed in section 3. However, on the upstream side the flow is deflected more to the 
left, and on the lee side the vortices are more asymmetric. The stronger flow around the 
north side of the mountain contributes to the stronger vortex on the north side. As the 
mountain scale is increased to 200 km (Ro = 0.25), a lee trough is developed by flow 
around the mountain (Fig. 6(b)), in agreement with the theory of Smith (1982). With 
Ro = 0.25 in this experiment, the Coriolis effect dominates and lee vortices do not 
develop even though Fr (=0.25) is within the critical range of lee-vortex development 
(SR89). Instead, only a lee-side confluent zone exists. As the mountain size is further 
increased to 300 km and Ro = 0.1666 (experiment 5c), the lee-side trough is well organ- 
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ized and attached to the southern side of the mountain (Fig. 6(c)). The flow converges 
anticyclonically over the mountain to a central point located south-east of the mountain 
crest. Experiment 5d (Fig. 6(d)) with a, = 400 km and Ro = 0.125 is similar to experiment 
5c (Fig. 6(c)). The anticyclonic circulation over the mountain is now more symmetric 
with respect to the mountain, and the flow pattern is similar to the one predicted by 
semi-geostrophic theory (Merkine and Kalnay-Rivas 1976; Blumen and Gross 1987). 

In experiments 6a-6d, the basic wind speed is increased to 10ms- '  while all 
the other parameters are the same as in experiments 5a-5d, therefore, Fr = 0.5 and 
Ro = 1.0, 0.5,0.333,0.25, respectively (Fig. 7). In this parameter range, the lee vortices 
shrink into a small confluent zone in experiments 6a-6c (Figs. 7(a)-7(c)) and they are 
embedded within the lee trough. In experiment 6d, there is no confluent zone (Fig. 7(d)). 
Two troughs are generated in experiment 6d as compared with one trough in 5d 
(Fig. 6(d)). The first trough, generated by flow over the mountain, is transient and moves 
away from the mountain. The second trough, generated by flow around the mountain, 

0 

0 

5 0 0  

b 

0 1000 

Figure 6 .  Flow patterns at t = 48 h for circular mountains with difference scales; (a) a,  = uoy = 100 km, (b) 
a,  = uov = 200 km, (c) uox = a,, = 300 km, and (d) a,, = uop = 400 km. In all cases, h = 2000 m and U = 5 m s-'. 

See text for explanation of symbols. 
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0 
0 
m 

0 
0 1500 

Figure 7 .  Same as in Fig. 6 except U = 10 m s-l. 

attaches to the mountain. Note that the upstream flows are similar for all the cases in 
Figs. 6 and 7. The vertical potential-temperature profile corresponding to Fig. 7 shows 
more gravity-wave activity since the flow speed is larger (figures not shown). 

Experiment 7 is designed for flow over a mesoscale elliptic mountain with 
a, = 300 km, uoy = 900 km, U = 10 m s-'. Figure 8 shows the time series for flow fields 
at the model's lowest level. In Fig. 8(a), the first trough is generated on the lee side at 
24 h. This trough moves downstream and a second trough develops at t = 48 h at the 
same location as the first one (Fig. 8(b)). As the second trough moves away, a third 
trough forms at t = 72 h (Fig. 8(c)). As time goes on, a series of troughs are generated 
on the lee side and propagate downstream. The wave length of the lee-trough train is 
about equal to the cross-stream mountain scale. The first trough later separates into two 
troughs. The one located to the north has a larger scale and it propagates downstream 
faster than the southern one. As in experiment 6d (Fig. 7(d)), the first trough, which 
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a 

b 

0 C 
0 

2 

0 
0 2100 

Figure 8. Streamlines at the model's lowest level for flow over a medium sized long mountain with 
U = 10 m s-' ,  h = 2000 m, aOx = 300 km and aOy = 900 km; (a) t = 24 h, (b) t = 48 h and (c) t = 72 h. See text 

for explanation of symbols. 

moves faster and is located more to the north, is the warm-core start-up vortex that 
results from displacing the air initially over the mountain into the lee, when a uniform 
flow suddenly impinges on the mountain (Huppert and Bryan 1976; Smith 1979a). In a 
supplementary experiment (experiment 8), the mountain height increased gradually from 
t = 0 to its maximum during the initial 24 hours of integration. The flow field at t = 84 h 
is shown in Fig. 9(a) and it is to be compared with the flow at 72 h in Fig. 8(c). In this 
case, the first fast-moving, deeper trough does not appear, while the trailing troughs are 
similar to the one in experiment 5 .  
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Figure 9. (a) Same as in Fig. 8 for f = 84 h except the mountain height is increased to its maximum height 
gradually in the first 24 h of integration. (b) Vertical cross-section of the potential temperature on o levels 

along the centre of the mountain. 

The mechanics associated with the wave train of troughs is different from the trough 
generated by an impulsive start. Examination of the vertical cross-section of potential 
temperature across the centre of the mountain indicates that these low-level troughs are 
associated with the lee-side gravity waves (Fig. 9(b)). When the upstream mean flow is 
reduced from 10 m s-* in experiment 7 to 5 m s-l in experiment 9, the lee-side gravity 
waves and low-level wave train propagate more toward the south (Fig. 10). The vertical 
velocities at the model’s second-lowest level, corresponding to Fig. 8(c) and Fig. 10, are 
given in Fig. 11, which shows more clearly the orientation and propagation of the 
travelling troughs relative to the mountain. When a flow crosses a 2D mountain, the lee- 
side gravity wave induced by flow over the mountain always propagates in the same 
direction as the upstream impinging flow. Over the 3D mountain, the propagation 
direction of a lee-side gravity wave is not necessarily the same as the upstream flow. 
Instead, depending on the mountain scale and mean flow speed, it propagates more 
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0 2 7 0 0  

Figure 10. Same as in Fig. 8(c) for t = 72 h except U = 5 m s-'. 

0 a 

0 

Figure 11. Vertical velocity for (a) Fig. 8(c) and (b) Fig. 10. 

toward the south. This indicates that more flow is blocked or deflected to the north 
before it goes over the mountain. 

In summary, the model results suggest that as the horizontal scale of the mountain 
increases, lee vortices shrink and eventually disappear and, in the meantime, the lee 
trough starts to appear. The length-scale of the lee trough is proportional to the mountain 
scale in the along-flow direction (a,). Note that this scale dependence is different from 
that of the lee vortices in which the scale depends on the mountain scale in the cross- 
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flow direction (a,,). The difference arises because the lee vortices and the lee troughs are 
caused by different mechanisms. The length-scale for the train of troughs is determined, 
however, by the mountain scale in the cross-flow direction (aox), as can be expected by 
the trough-generation mechanism. On the upstream side, as the mountain scale increases, 
flow splitting decreases and the flow is deflected to the left. It is not surprising that flows 
in the transitional range seem to have the dual character of flows over small- and larger- 
scale mountains. 

5 .  FLOWS OVER LARGE-SCALE MOUNTAINS 

In this section we will examine flow over large-scale ( L  - 1000 km) mountains with 
different initial conditions. A brief review of previous analytic theories is given here to 
provide background. When Ro is small, the mountain circulation can be obtained from 
quasi-geostrophic theory. Smith (1979a) shows that in a vertically unbounded domain, 
conservation of quasi-geostrophic potential vorticity requires anticyclonic circulation 
over the mountain with decreasing strength with height. Merkine (1975) treats 2D flow 
over an infinite ridge with an upper lid using a semi-geostrophic model which includes 
the ageostrophic acceleration in the along-mountain direction. The solution shows that 
the flow is permanently deflected to the right on the lee side of the mountain ridge. The 
deflection is accompanied by a low-pressure region. This deflection is due to the upper 
rigid lid and the conservation of potential vorticity. Pierrehumbert (1985) solved the 
semi-geostrophic equations for flow over an infinite ridge with no upper boundary, and 
found no permanent turning on the lee side. 

The semi-geostrophic theory for flow over a 3D mountain is developed by Merkine 
and Kalnay-Rivas (1976) and by Blumen and Gross (1987). In their solutions an anti- 
cyclonic, bounded vortex occurs over an isolated circular mountain. When the strength 
of the vortex is sufficiently large, a closed vortex exists for a total field. In comparison 
with quasi-geostrophic flow , a rotational gradient-wind correction that is independent of 
the basic current is introduced. This enhances the maximum velocity over the ridge. The 
transformation of the semi-geostrophic solution from the geostrophic coordinate space 
to the physical space displaces the circulation feature on level surfaces radially outward 
from the vertical axis, and the displacement is proportional to the mountain height. 
Blumen and Gross (1987) show by a scale analysis that the semi-geostrophic approxi- 
mation is good for Ro < 0.3 and h / D  < 0.5, where h is the mountain height and D is the 
deformation depth ( D  = f L / N ) .  

Experiment 10 is designed for flow over a large-scale elliptic mountain with 
aOx = 960 km, a = 1920 km, U = 10m s-l, h = 2000m. Ro in this case is 0.1 and "y. h / D  = 0.23. In Figure 12 the lee-side trough is initiated as a warm-core start-up vortex 
from the impulsive initial flow and then it drifts away from the mountain. By 144 h, the 
flow pattern in the mountain area is nearly symmetric and it resembles the steady-state 
semi-geostrophic solution. The vertical-velocity pattern throughout this experiment is 
the same as the one shown in Fig. 12(d) for 144 h, indicating there is no flow around the 
mountain. 

To explore further the lee-side low and trough, the mean flow speed is reduced from 
10 m s-' to 5 m sC1 in experiment 11, with the other parameters the same as in experiment 
10. The streamlines and the vertical velocity at the model's lowest level are shown in 
Fig. 13. At 24 h (Figs. 13(a) and 13(d)), most of the flow goes over the mountain (as can 
be seen from the vertical-velocity pattern) and a trough starts to develop on the lee side. 
By 72 h (Figs. 13(b) and 13(e)), the vertical-velocity pattern has a quadruple form, 
indicating that the flow goes over as well as around the mountain. There is an anticyclonic 
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Figure 12. Flow over a large elliptic mountain with U = 10 m s-', h = 2000 m, uor = 960 km and a ,  = 1920 km: 
(a)-(c) are the streamline patterns for t = 48 h, 96 h and 144 h ,  respectively; (d) is the vertical velocity 
corresponding to f = 144 h with dashed lines indicating upward motion. See text for explanation of symbols. 
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Figure 13. Same as in Fig. 12 except U = 5 m s-’. The left panels (a)-(c) are the streamlines and the right 
panels (d)-(f) are the vertical velocity with dashed lines indicating upward motion and solid lines indicating 

downward motion. Top panels: t = 24 h, middle panels: t = 72 h and lower panels: t = 144 h. 
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vortex located slightly upwind of the mountain peak and a cut-off low within the lee-side 
trough. By 144 h (Figs. 13(c) and 13(f)), the streamline pattern shows a nearly symmetric 
anticyclonic vortex over the mountain. However, the southern and eastern parts of the 
flow pattern are still asymmetric. The lee-side low centre moves slightly downstream 
from the mountain, but the tip of the trough remains attached to the southern tip of the 
mountain. 

The general behaviour that is seen in experiments 10 and 11 can be explained in 
terms of vorticity advection. In each case the warm-core start-up vortex is advected to 
the east by the mean flow, so that it separates from the topographically forced anticyclone 
over the mountain. In experiment 11 where the mean flow is weak, the cyclone (or 
trough) is advected first by the topographically forced anticyclonic flow to the south 
where the mean flow after passing the mountain is very weak (Fig. 13(b)). Thus, the 
cyclone remains attached to the south-east side of the mountain for a long time 
(Fig. 13(c)). When the mean wind is stronger (experiment lo), this southward advection 
by the anticyclonic flow is small compared with the westerly mean flow, so that the trough 
is advected away from the mountain (Fig. 12). The relative importance of these effects 
is measured by Fr because the north-south advection by the topographic anticyclone is 
proportional to the mountain height. 

One of the hypotheses of lee cyclogenesis postulates that when the flow impinges 
on the mountain impulsively, the initial potential-temperature field over the mountain 
will be transported downstream and replaced by upstream air (Smith 1979a). The 
isentropic surfaces that initially intersect the terrain surface will introduce a warm-core 
cyclone on the lee side that moves downstream from the mountain. To substantiate this, 
in experiment 12, we repeat experiment 9 except that we increase the mountain height 
gradually from zero to its maximum of 2000 m in 24 hours. In this case the flow always 
follows the contour of the mountain and no quasi-geostrophic transients are excited. The 
flow at 72 h (Fig. 14(a)) shows a symmetric pattern with respect to the centre of the 
mountain and no lee trough is generated. A comparison of the vertical-velocity patterns 
in Figs. 13fe) and 14(b) indicates that, when the mountain is 'grown' gradually, all the 
flow goes over the mountain and there is no blocking effect. This is consistent with the 
analytic solution for a 2D mountain given by Bannon (1991). 

0 4 0 0 0  

Figure 14. The same as in Fig. 13 for f = 72 h except the mountain height is increased gradually from zero to 
its maximum in 24 hour. The left panel (a) contains the streamlines and the right panel (b) the vertical velocity. 
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In 2D models all flows are forced to go over the mountain. If the initial wind field 
impinges on the mountain impulsively, the warm-core trough on the lee side will always 
propagate away from the mountain. Only if there is some flow around a 3D mountain 
that contributes to the formation of a lee trough will the trough remain attached to the 
mountain. This could provide a favourable environment for lee cyclogenesis, especially 
if the basic current is baroclinic. 

6. COMPARISON OF 2D AND 3D MOUNTAIN FLOWS 

The major difference between flows over 2D and 3D mountains is tha: in a 2D 
model all the flow is either forced to go over the mountain or it is totally blocked because 
no flow can go around the mountain. In a 3D model the flow can go around as well as 
over the mountain. Our objective here is to explore the range of horizontal mountain- 
aspect ratio (AR) in which the 3D solution approaches the 2D solution. For this purpose 
a 3D mountain profile with the same cross-section as the 2D mountain is used. 

Experiment 13 has a mountain with a cosine-squared profile in both the x and y 
directions. This profile is chosen because it is used by Williams et al. (1992) in the 2D 
model in which strong downslope winds are generated on the lee side. The half width of 
the mountain is L = 180 km, h = 2000 m, and U = 10 m s-' .  Both the 2D and 3D models 
have the same horizontal grid size of 40 km and 36 levels in the vertical. For comparison, 
the cross-mountain surface wind speeds for the 2D mountain and for the 3D mountain 
(along its central latitude) are plotted in Fig. 15 for different AR. All three curves in 
Fig. 15 have a similar pattern of strong downslope winds and a small region of reversed 
flow further east. The maximum wind speed of 37 m spl is reached both over the infinite 
ridge (2D) and over the long mountain range with AR = 18/125. On the other hand, a 
maximum of only 30 m s-l is reached for the shorter mountain (AR = 18/60). The 
reversed flows at the base on the lee side of the two 3D mountains are both stronger 
than for the infinite ridge. This is because the 3D flow around the mountain can contribute 
to the reversed flow on the lee side. 

In experiment 14 the mountain size is reduced to a half-width of L = 68 km with 
U = 5 m s-l and h = 1000 m. The horizontal grid size is 5 km in this case. The three cross- 
mountain wind-speed curves shown in Fig. 16 are still similar to each other, but the 
differences between them are larger than those in experiment 13. The maximum wind 
speed across the mountain for the 2D mountain reaches 19.5 m s-l (solid line). The flow 
over the 3D shorter mountain with AR = 18/60 (dotted line) has a maximum wind speed 
of 11.5 m s-', which is 42% less than that of the infinite ridge. Over a longer mountain 
with AR = 18/125 (dashed line), the maximum wind speed reaches 16.8 m s-l ,  14% less 
than that of the infinite ridge. 

The Froude numbers for flows in experiments 13 and 14 are the same (Fr = 0.5). 
However, the mountain half-width in the former one is roughly three times that of the 
latter. As discussed in the previous section, the smaller the horizontal mountain scale, 
the easier it is for the flow to go around the mountain. Therefore, using a 2D model for 
the study of flow over a finite small-scale mountain range may overestimate lee-side 
phenomena such as the downslope wind. 

7. SUMMARY 

In this paper we have explored some problems in flows over mountains that pre- 
viously have not been studied in detail. The first problem concerns the Coriolis effect 
for flows over small-scale mountains. Other studies on this scale neglect the Coriolis 
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Figure 16. Same as in Fig. 15 but after 24 h and for a smaller mountain with L = 68 km and U = 5 m s-’, 
h = 1000 m. 

force since the Rossby number is large as determined by the small length-scale of the 
mountain. When f =  0, a pair of symmetric lee-side vortices form when Fr is less than 
0.5 (SR89). With the Coriolis force, the lee-side vortices are deformed, the upstream 
propagation is significantly reduced, and the upstream flow is deflected to the left side 
(Smith 1982). Also the vortices drift away from the mountain when f is present. When 
Fr is large and most of the flow goes over the mountain instead of around the mountain, 
the effect of the Coriolis force is small. Therefore, it is necessary to consider both Fr and 
Ro in determining the importance of Coriolis effects. 

The flow pattern changes gradually as the horizontal scale of the mountain increases. 
Lee-side vortices are generated by flows around the mountain when both the mountain 
scale and Fr are small. The northern lee vortex is enhanced by the Coriolis force while 
the southern vortex shrinks. As the mountain width increases, the scale of the lee-side 
vortices decreases, and a lee-side trough, which contains the vortices, develops. As the 
mountain scale is further increased, an anticyclonic vortex develops over the mountain 
top when the mean wind speed is small. The lee-side trough originates as the warm-core 
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cyclone from the impulsive start-up initial condition. When the mean flow speed is small, 
the low centre is advected southward by the anticyclonic flow around the mountain to a 
position where the westerly flow is even weaker. In this case, the low centre or trough 
remains attached to the southern side of the mountain for a long time. When the mean 
flow is larger, the lee trough is advected downstream away from the mountain. 

An elliptical shaped mesoscale mountain generates a train of lee troughs that are 
associated with the mountain-induced gravity waves. For a 3D mountain, the mountain- 
induced gravity waves do not necessarily propagate in the direction of the upstream flow 
as in a 2D model. Instead, depending on the speed of the upstream mean flow, the 
gravity waves propagate more to the south. 

Numerical simulations with 2D and 3D models with the same mountain cross-section 
were performed. The results suggest that for mountains with the same horizontal aspect 
ratio, the infinite-ridge approximation is better when the horizontal scale is larger. As 
an example, mesoscale mountains with horizontal aspect ratio smaller than 1/4 can be 
approximated by an infinite ridge with less than 20% difference in the cross-mountain 
flow. For smaller-scale mountains ( L  < 100 km), more flow goes around the mountain, 
and accuracy of the infinite-ridge approximation decreases substantially. Therefore, the 
use of an infinite ridge overestimates the downslope wind when the mountain scale is 
small. 

An impulsive flow with a moderate wind speed over a large-scale mountain generates 
a warm-core lee-side trough that will be advected downstream away from the mountain. 
On the other hand, a weaker mean flow can be partially blocked, and the anticyclonic 
flow around the mountain can advect the warm-core cyclone southward so that it remains 
attached to the southern tip of the mountain for a long time. This more stationary lee 
trough may be a prerequisite for lee cyclogenesis. 
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