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A nonorthogonal model for 2D signals with rotational components is presented, which enables estimation of phase
values from observations of its local gradients. In this research, the rotational components are caused by the pres-
ence of branch points, which indicates phase wrapping. Using the proposed model, the phase is estimated using
standard least-squares or recently proposedwavelet techniques by processing a linear combination of the wrapped
observed gradients and the curl generated by phase wrapping.
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(100.5088) Phase unwrapping; (280.6730) Synthetic aperture radar.
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1. INTRODUCTION
The problem of estimating the phase of a two- or three-
dimensional signal from local gradients is at the basis of nu-
merous applications in advanced imaging. Typical examples
are applications in adaptive optics, where the goal is to esti-
mate phase distortion due to atmosphere, and interferometric
synthetic aperture radar, where high-resolution images are
constructed from local phase differences from a coherent
source.

Although the problem in itself has an abundance of data,
since in the 2D case for every phase value to reconstruct
there are two gradient values we observe, the fact that the
phase is ambiguously measured with multiples of 2π rad
makes the problem particularly challenging, at least in certain
applications.

The phase function of a wavefront is defined in a 2D plane
that provides information on the electric field entering an op-
tical system pupil. Ideally this function would be a constant
across the aperture for all time. However, since the atmos-
phere has mixing, adaptive optics were developed to correct
for the distortion. Adaptive optics systems for science tele-
scopes are designed for light-to-moderate turbulence at
good-seeing telescope facilities. These systems rely on sen-
sors that make gradient measurements of the field and recon-
struct the wavefront to provide an appropriate control law to
command a deformable mirror. However, for systems that re-
quire long, horizontal paths through the atmosphere, the cu-
mulative turbulence can create branch points in the phase
function, which are located in areas of low amplitude intensity
of the electric field. Branch points were first observed by Nye
and Berry in 1974 [1].

Not all measured gradient fields (“slopes” in adaptive op-
tics) form continuous, smooth wavefront surfaces. Said an-
other way, not all vector fields are gradients of functions.
This is the difficulty with branch points in reconstruction:
the reconstructed surface can no longer be smooth and some

areas of the reconstructed surface will have discontinuities.
However, a least-squares reconstructor cannot produce
these discontinuities, and incorrectly estimates the phase val-
ues across the wavefront surface. Although a smooth phase
function cannot be determined, there is a family or ensemble
of phase functions that all have the same gradient measure-
ments and different algorithms may result in different phase
functions using the same measurements for this reason. Un-
wrapped phase functions are also members of the ensemble.

The original work in reconstruction when branch points
are present was done by Fried and Vaughn [2]. The paper
provided analysis that branch points appear in areas of low
intensity. The wavefront reconstruction used a branch cut
reconstructor, which places branch cuts to prevent path-
dependent phase unwrapping from traversing the cuts. The
branch cuts were placed in areas of low intensity by taking
irradiance (SNR) into account, which improves the adaptive
optics system performance.

A few years later, Fried [3] and Tyler [4] continued the
analysis work of branch points in wavefront reconstruction.
In both works, the observed gradient phase field is decom-
posed into irrotational and rotational components, associated
to a scalar (irrotational) and a vector (rotational) potentials.
Both components are orthogonal to each other and the rota-
tional component is hidden in the null space of the standard
least-squares reconstructor.

In [3], Fried uses the continuous-variable locations of
branch points to calculate the hidden component of the phase.
The principal-value gradient measurements are restricted to
�−π; π� and result in a “hidden phase” that is hidden to the
least-squares wavefront reconstruction algorithms. He locates
branch points using a derivation based on the curl of the vec-
tor potential. After determining branch point locations, the
hidden phase can be determined and summed with the output
of the least-squares solution to determine the total phase. His
follow-on work included a complex exponential reconstructor
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that solves for the phase using phasors and the Smooth Phase
algorithm to place branch cuts along low-intensity paths [5].

In [4], Tyler uses a Fourier space formulation to describe
how the two orthogonal components depend on the gradient
field. The “slope discrepancy”was determined to be the differ-
ence of the gradient field of the reconstructed surface and the
original measurements. He defines the slope discrepancy as a
matrix operator on the gradient measurements that can be
used to reconstruct the correction to the least-squares wave-
front reconstruction. The correction presented by Tyler pro-
cedurally follows the least-squares reconstructor, whereas
ours presented here is performed before the reconstructor.

After determining the phase values, the phase must still be
unwrapped. One technique to accomplish this in the presence
of branch points is a path-dependent solution using branch
cuts. These cuts are placed between branch points of opposite
sign (polarity) and prevent any unwrapping path through the
cut. This problem was also discussed in the synthetic aperture
radar interferometry community [6]. A significant issue with
this approach deals with the possibility that branch cuts
may disconnect areas of the data and may not unwrap prop-
erly. Numerous algorithms have been developed to unwrap
and mitigate this issue [2,7–10]. In the radar community,
processing speed is not as critical to system operation as in
adaptive optics. For this reason, additional techniques have
been sought to improve calculation performance. In our work
presented here, we do not perform phase unwrapping and
leave that as a follow-on procedure after a phase function
member of the ensemble is determined.

Wavefront sensors for adaptive optics have been studied to
determine their performance in strong scintillation, which in-
dicates branch points are present. The Shack–Hartmann sen-
sor degrades from random apodization in the subapertures as
the Rytov number increases [11], and a shearing or point dif-
fraction interferometer may be a better choice [12]. The algo-
rithm presented in this paper does not cover the effects of
scintillation on the physics of the wavefront sensor; however,
the algorithm presented here does cover the effects of branch
points on the reconstruction algorithm.

Detection of branch point locations has been accomplished
by a variety of methods. Fried and Vaughn started the contour
sum technique [2]. The branch point potential method was
first proposed by Le Bigot and Wild [13]. Murphy et al. have
been evaluating branch point sensitive reconstructors in
closed-loop experiments [14]. Zetterlind and Magee evaluated
the performance of branch point tolerant reconstructors with
time delays [15].

Research is also being conducted into the fundamental
nature of branch points. Atmospheric branch points have
been shown to create in pairs and evolve smoothly in time
[16]. The gradient measurements have been used to estimate
the turbulence layers’ altitude and strength [17–20]. Sanchez
and Oesch have proposed that branch points indicate the pres-
ence of photons with nonzero orbital angular momen-
tum [21,22].

In this paper, we derive the relationship of the phase and
vector potential to the gradient measurements using a nonor-
thogonal basis for both continuous and discrete signals. This
approach allows for solving for the atmospheric-induced
branch point locations. Using this approach, a least-squares
solution is possible which directly accounts for the hidden

phase from the branch points. The ambiguous multiples of
2π phase are solved directly. The phase still requires to be un-
wrapped. Simulations are shown to verify performance for
data with square aperture support.

This paper is organized as follows: in Section 2, we provide
the notation and preliminary mathematics used in this paper.
In Section 3, the vector field decomposition is explained.
Section 4 is the description and comparison of Fried gradients
and wrapped Fried gradients. Section 5 is the main result of
this paper and has the least-squares phase estimation from the
wrapped Fried gradients. In Section 6, we provide several ex-
amples of the algorithm. Finally, in Section 7, the conclusions
are presented.

2. NOTATION AND PRELIMINARIES
In this paper we deal with 2D signals f �x; y�, with x, y continu-
ous, real variables representing a point in the 2D plane.

We define the 2D Fourier transform as

F�κx; κy� � FTff �x; y�g

�
Z �∞

−∞

Z �∞

−∞
f �x; y�e−j2π�κxx�κyy�dxdy (1)

with κx, κy having dimensions of 1∕unit length.
When the 2D signal is sampled, we defined the 2D sampled

sequence as

f �n1; n2� � f �n1Δx; n2Δy�;

with integer indices n1, n2 and sample spacing Δx, Δy. For 2D
discrete signals, we define the z-Transform

F�z1; z2� � Zff �n1; n2�g

�
X�∞

n1�−∞

X�∞

n2�−∞
f �n1; n2�z−n1

1 z−n2
2 :

From the property (easy to show)

Zff �n1 � L1; n2 � L2�g � zL1
1 zL2

2 Zff �n1; n2�g

for any integer shift L1 and L2, we see that z1 and z2 are shift
operators in the n1 and n2 directions, respectively.

By this interpretation we will make minimal use of the
z-transform and rather use the shift operators as

f �n1 � L1; n2 � L2� � zL1
1 zL2

2 f �n1; n2�:

Extension of the Fourier transform to the 2D sampled sig-
nal yields the 2D discrete shift Fourier transform (DSFT),
defined as

F�ω� �
X�∞

n1�−∞

X�∞

n2�−∞
f �n1; n2�e−j�ω1n1�ω2n2�:

The 2D digital frequency vector ω � �ω1;ω2� has components

ω1 � 2πκxΔx; ω2 � 2πκyΔy;
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and they are dimensionless expressed in radians or radians
per sample. Also by the periodicity (2π in both dimensions) of
the DSFT, the two frequency variables are usually constrained
to the intervals

−π ≤ ωi < π

for i � 1; 2. All other values of ω are associated with aliased
frequencies from the sampling process.

Also, since in this paper we will be addressing wrapped
phase angles, call l�n1; n2� any 2D sequence that assumes only
integer values, i.e.,

l�n1; n2� ∈ Z; ∀ n1; n2;

with Z denoting the set of signed integers.

3. VECTOR FIELD DECOMPOSITION
The Helmholtz decomposition states that a vector field in the
3D space is represented by a gradient component and a rota-
tional component as

ψ � ∇ϕ�∇ × v; (2)

where ∇ � �∇x;∇y;∇z�T represents the gradient operator,
ϕ�x; y; z� ∈ R is the scalar potential, and v�x; y; z� ∈ R3 is
the vector potential, with the outer product ∇× defining
the curl of the vector. In particular, in the case of a 2D vector
field in the x, y plane,

ψ�x; y� �
�
ψx�x; y�
ψy�x; y�

�
; (3)

where we assume the component along the z axis to be
identically zero, the scalar potential is ϕ�x; y�, and the vector
potential is along the z axis as �0; 0; v�x; y��T . This leads
to a simple expression of the decomposition Eq. (3) in matrix
form as

�
ψx�x; y�
ψy�x; y�

�
�

�
∇x ∇y

∇y −∇x

��
ϕ�x; y�
v�x; y�

�
: (4)

In the Fourier domain, Eq. (4) relates complex vectors as

�
Ψx�κ�
Ψy�κ�

�
�

�
j2πκx j2πκy
j2πκy −j2πκx

��
Φ�κ�
V�κ�

�
; (5)

with Φ�κ� and V�κ� the 2D Fourier transforms of ϕ�x; y� and
v�x; y�, respectively, and κ � �κx; κy�. This corresponds to the
decomposition of the complex vector Ψ�κ� in terms of the
orthogonal reference frame defined by the two columns of
the matrix in Eq. (5) above. Simple matrix inversion yields
the two potentials (scalar and vector) computed as

�� j2πκx�2 � �j2πκy�2�
�
Φ�κ�
V�κ�

�
�

�
j2πκx j2πκy
j2πκy −j2πκx

��
Ψx�κ�
Ψy�κ�

�
:

(6)

The problem of phase reconstruction is to recover the overall
phase we call ϕ0�x; y� from observed gradients ψ�x; y�. This is
typical in adaptive optics [23] or interferometric synthetic

aperture radars [24], where local phase differences are ob-
served directly. When the vector field is irrotational, i.e.,
the curl component v�x; y� is absent, the overall phase
ϕ0�x; y� is the same as the scalar gradient ϕ�x; y� since by
definition,

ψ�x; y� � ∇ϕ�x; y�:

Algorithms designed for this reconstruction are based on a
matrix representation of phase differences [25–27] as

vec�ψ �∶; ∶�� � Γ vec�ϕ�∶; ∶��; (7)

with vec�·� representing matrix-to-vector reshaping of
sampled gradients ψ and potential ϕ, and Γ a matrix of appro-
priate dimensions with approximately twice the number of
rows than columns. This yields an overdetermined set of
equations solved by least squares as

vec�ϕ̂�∶; ∶�� � �ΓTΓ�−1ΓT vec�ψ �∶; ∶��: (8)

Although in the applications of interest, the observation vec-
tor ψ�x; y� is made of phase gradients, the presence of singu-
larities and the fact that all phase values are wrapped within
the interval �−π; π�, makes the vector potential v�x; y� to be
nonzero. As a consequence, the phase ϕ̂�x; y� to be estimated
is not the same as the scalar potential ϕ�x; y�. The substitution
of Eq. (2) into Eq. (8) shows that the vector potential informa-
tion is lost in the orthogonal frame. Therefore, the computa-
tion in Eq. (8) yields a least-squares approximation for the
scalar potential and cannot account for the orthogonal com-
ponent (the “hidden phase” in multiple references such as [3]
and [4]) associated with the null space of the matrix Γ
in Eq. (7).

A solution to this problem, proposed in this paper, is to use
a different, nonorthogonal reference frame which will be
shown in the next section to be well suited to the computation
of phase data in the presence of phase wrapping and singular-
ities such as branch points. In order to see this, we replace
the representation in Eq. (4) with a nonorthogonal frame as
follows:

�
ψx�x; y�
ψy�x; y�

�
�

�
∇x 0
∇y −∇y

��
ϕ0�x; y�
c̄�x; y�

�
; (9)

or, equivalently,

�
ψx�x; y�
ψy�x; y�

�
�

�
∇x ∇x

∇y 0

��
ϕ1�x; y�
c̄�x; y�

�
: (10)

In this nonorthogonal frame, where the two basis vectors in
the frequency domain are given by

e1 �
�
j2πκx
j2πκy

�
; e2 �

�
0

−j2πκy

�
or e2 �

�
j2πκx
0

�
;

the two components ϕ0�x; y� or ϕ1�x; y� and c̄�x; y� are given
by the following:

Lemma. Let c�x; y� be the curl of the vector field ψ�x; y�,
i.e.,
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c�x; y� � ∇yψx�x; y� − ∇xψy�x; y�; (11)

and let ϕ�x; y�, v�x; y� be the scalar and vector potentials as
in Eq. (4).

Also, define c̄�x; y� and v̄�x; y� in differential equation form
such that

c�x; y�≡∇x∇yc̄�x; y�;
v�x; y�≡∇x∇yv̄�x; y� (12)

with the boundary condition w�x; y�. The integral form of
Eq. (12) is

c̄�x; y�≡
Z

y

0

Z
x

0
c�λ1; λ2�dλ1dλ2 �w�x; y�: (13)

Then the vector field ψ�x; y� can be expressed as in Eqs. (9) or
(10) with

ϕ0�x; y� � ϕ�x; y� �∇2
yv̄�x; y� �wy�y�;

ϕ1�x; y� � ϕ�x; y� − ∇2
xv̄�x; y� �wx�x� (14)

with wx�x� and wy�y� depending on boundary conditions.
Proof. From the bottom equation in Eq. (6) and the defini-

tion of the curl c�x; y� above, we obtain

�∇2
x �∇2

y�v�x; y� � c�x; y�:

Substitution of v�x; y�, c�x; y�with v̄�x; y�, c̄�x; y� as in Eq. (12)
yields

�∇2
x �∇2

y�v̄�x; y� � c̄�x; y� �w�x; y�; (15)

with w�x; y� such that

∇x∇yw�x; y� � 0:

As shown in Appendix A, this implies that we can writew�x; y�
in the form

w�x; y� � wx�x� −wy�y�:

Substituting v�x; y� in Eq. (4) with ∇x∇yv̄�x; y�, we obtain

�
ψx

ψy

�
�

�
∇x

∇y

�
ϕ�

�
∇x∇

2
yv̄

∇y∇
2
x�−v̄�

�
: (16)

Combine Eq. (16) with Eq. (15) and we can rewrite it as

�
ψx

ψy

�
�

�
∇x

∇y

�
�ϕ�∇2

yv̄�wy� −
�

0
∇y

�
c̄: (17)

Call ϕ0�x; y� � ϕ�x; y� �∇2
yv̄�x; y� �wy�y� and the fact is

proven. This relationship shows that ϕ0�x; y� contains infor-
mation from the scalar and vector potentials. The model in
Eq. (10) follows immediately by adding the column vector
�∇x;∇y�T c̄�x; y� to both sides of Eq. (9), which yields

ϕ1�x; y� � ϕ0�x; y� − c̄�x; y�:

QED

The significance of this result is that, in certain cases, as
addressed in the next section, the term ϕ0�x; y� is the total
phase and it can be computed from Eq. (9) as

�
ψx�x; y�
ψy�x; y�

�
�

�
0

∇yc̄�x; y�
�
�

�
∇x

∇y

�
ϕ0�x; y� (18)

using standard techniques. From this result, a rotational field
in ψ�x; y� can be made irrotational by combining it with its
own curl. In this case, ϕ0�x; y�, ϕ1�x; y� or any combination
thereof, becomes a possible scalar potential function. In the
example below, where phase wrapping causes the phase gra-
dient to become rotational, it is shown that the scalar potential
ϕ0�x; y� coincides with the actual phase θ�x; y�, which is
sensed by the wrapped gradients.

Based on the fact that any signal is equivalent to its own
convolution with the impulse, as c�x;y�� c�x;y���δ�x�δ�y�,
we can write

c̄�x; y� � c�x; y� � �u�x�u�y�;
∇xc̄�x; y� � c�x; y� � u�y�;
∇yc̄�x; y� � c�x; y� � u�x�; (19)

with u�·� the unit step function and the “star” operations in-
dicating 2D convolution with u�x�u�y� and 1D convolutions
with u�x� and u�y�, respectively. For clarity, we note that
the first line of Eq. (19) is equivalent to Eq. (13).

The following example illustrates the results in the Lemma
presented above.

Example. Consider the phase

θ�x; y� � phase�x� jy�

with the phase wrapped to the interval �0; 2π�. Simple differ-
entiation yields the wrapped gradient of θ and its Fourier
transform, as computed in [4]:

ψx�x; y� � −
y

x2 � y2
⇔Ψx�κx; κy� � j

κy
κ2x � κ2y

;

ψy�x; y� �
x

x2 � y2
⇔Ψy�κx; κy� � −j

κx
κ2x � κ2y

: (20)

The actual unwrapped gradient of θ�x; y� has to take the
discontinuity at y � 0, x > 0 into account as

�
∇x

∇y

�
θ�x; y� �

�
ψx�x; y�
ψy�x; y�

�
�

�
0

2πδ�y�u�x�
�
: (21)

From substituting Eq. (20) into Eq. (6), we can easily solve for
the scalar potential Φ�κ�, vector potential V�κ�, and the curl
C�κ� from Eq. (17) as

Φ�κ� � 0;

V�κ� � 1
2π�κ2x � κ2y�

;

C�κ� � −2π:

Now we can verify that Eq. (9) holds. We can substitute from
Eq. (12) to solve
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∇x∇
2
yv̄�x; y� � ∇yv�x; y� � IFT

�
jκy

κ2x � κ2y

�
:

From Eq. (20), the right-hand side of the above equation is
∇xθ�x; y�, and therefore

∇2
yv̄�x; y� � θ�x; y� �wy�y�

with wy�y� accounting for boundary conditions. Substitution
into Eq. (14) and using the fact that the scalar potential ϕ�x; y�
is zero, we obtain

ϕ0�x; y� � θ�x; y� �wy�y�: (22)

This is the total phase we want to reconstruct, on the right-
hand side of Eq. (18). Substituting for c̄ on the left-hand side of
Eq. (18), we obtain

�
ψx�x; y�
ψy�x; y�

�
�

�
0

2πu�x�δ�y�
�
�

�
∇x

∇y

�
ϕ0�x; y�:

The left-hand side is ∇θ�x; y� from Eq. (21). This implies

θ�x; y� � ϕ0�x; y� � C;

where C is a constant. This is consistent with Eq. (22)
and wy�y� � C.

In the next section, where we addressed the sampled
data implementation, we actually prove analytically that
ϕ0�n1; n2� and the phase sensed by the wrapped gradients
differ by integer multiples of 2π, thus yielding the same
wrapped values. In other words the “hidden phase” is included
in ϕ0, and therefore no “slope discrepancy” is in the gradients
of ϕ0.

4. FRIED GRADIENTS AND WRAPPED
FRIED GRADIENTS
In the sampled data case, we extend the concepts introduced
in the previous sections by defining the gradient operators on
the basis of the Fried geometry [25].

To this extent, given the sampled phase ϕ0�n1; n2� �
ϕ0�n1Δx; n2Δy�, we define the gradients in the two
directions as

ψ1�n1; n2� �
1
2
�ϕ0�n1 � 1; n2 � 1� � ϕ0�n1; n2 � 1��

−
1
2
�ϕ0�n1 � 1; n2� � ϕ0�n1; n2��;

ψ2�n1; n2� �
1
2
�ϕ0�n1 � 1; n2 � 1� � ϕ0�n1 � 1; n2��

−
1
2
�ϕ0�n1; n2 � 1� � ϕ0�n1; n2��:

Using the shift operators z1, z2, these can be written in a more
compact form:

ψ1�n1; n2� �
1
2
�z1 � 1��z2 − 1�ϕ0�n1; n2�;

ψ2�n1; n2� �
1
2
�z1 − 1��z2 � 1�ϕ0�n1; n2�

from which we define the discrete gradient operators as

∇1�z1; z2�≡
1
2
�z1 � 1��z2 − 1�;

∇2�z1; z2�≡
1
2
�z1 − 1��z2 � 1�: (23)

Substituting z1 � ejω1 and z2 � ejω2 into Eq. (23), we obtain
the discrete frequency response of the operators as

∇1�ω� � 2e−j
ω1�ω2

2 cos
�
ω1

2

�
sin

�
ω2

2

�
;

∇2�ω� � 2e−j
ω1�ω2

2 sin
�
ω1

2

�
cos

�
ω2

2

�
:

It is easy to see that both ∇1�ω� and ∇2�ω� are zero when
ω � �0; 0� (“piston” mode) and ω � �π; π� (“waffle” mode).
As a consequence,

∇x�n� � 0 ⇒ x�n� � C0 � C1�−1�n1�n2

for some constants C0, C1 that depend on the boundary
conditions with n � �n1; n2�.

It is well known that Fried derivatives are good models for
Shack–Hartmann sensors, which measure local phase gra-
dients. However, Barchers demonstrated that the Fried geom-
etry performance degrades in high scintillation when
compared to Hudgin geometry [11]. When branch points caus-
ing phase wrapping are present, it is imperative to properly
embed the wrapping operation within the Fried gradients
computations. The development of the wrapped Fried gra-
dient presented here is sufficient for reconstructing the high
turbulence wavefront properly.

Figure 1 shows the block diagram approach of the Fried
geometry. In (a), on the left, the standard Fried gradients
are shown in terms of transfer functions in z1 and z2. The first
blocks (z1 − 1) and (z2 − 1) provide for phase differences in
the vertical and horizontal directions, while the second blocks
�z2 � 1�∕2 and �z1 � 1�∕2 provide simple averaging (half the
sum) in the opposite directions (horizontal and vertical).

When phase wrapping is present, the first block, which
models phase difference measurements, has to be augmented
with the phase wrapping operation W, defined as

θ�n� � W�α�n��≡ α�n� � 2πl�n�

with l�n� an appropriate integer sequence so that −π ≤ θ�n� <
π for all n. This guarantees that phase differences multiples of
2π are not sensed.

Call ∇W the wrapped Fried derivative gradient in Fig. 1(b)
and ψ �n�, the sensed wrapped gradients, as

Fig. 1. Block diagram form (a) the traditional Fried gradient and
(b) the wrapped Fried gradient.
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ψ �n1; n2� �
�
∇W1

∇W2

�
ϕ0�n1; n2�:

From the definition of the wrapping operatorW and the factor
1∕2 in the averaging second block we can relate∇ and∇W as

∇Wϕ0�n� � ∇ϕ0�n� � πl�n� (24)

with l�n� assuming integer values only.
This will be the basis of the phase estimation presented in

the next section.

5. LEAST-SQUARES PHASE ESTIMATION
FROM WRAPPED FRIED GRADIENTS
Along the same lines as in the previous section, the vector
field ψ can be represented in terms of scalar and potential
functions ϕ and v as

�
ψ1�n1; n2�
ψ2�n1; n2�

�
�

�
∇1 ∇2

∇2 −∇1

��
ϕ�n1; n2�
v�n1; n2�

�
:

Same as for the continuous case in the previous section, in
the frequency domain this just becomes a matrix–vector
operation:

�
Ψ1�ω�
Ψ2�ω�

�
� e−j

ω1�ω2
2

�
c1s2 s1c2
s1c2 −c1s2

��
Φ�ω�
V�ω�

�

with ci � cos�ωi∕2� and si � sin�ωi∕2� for i � 1, 2. We can
easily verify that the two columns of the matrix represent
two orthogonal vectors.

The result of the previous section can then be extended
to the sampled data case by defining the curl of the vector
field as

c�n1; n2�≡∇2ψ1�n1; n2� − ∇1ψ2�n1; n2�;

with ∇1, ∇2 the standard unwrapped Fried derivatives. Then
the vector field ψ can be expressed as

�
ψ1�n1; n2�
ψ2�n1; n2�

�
�

�
∇1 0
∇2 −∇2

��
ϕ0�n1; n2�
c̄�n1; n2�

�

with c̄ defined as

c�n1; n2�≡∇1∇2c̄�n1; n2�: (25)

In order to obtain an expression for c̄, first notice that any sig-
nal can be represented in convolution (double convolution in
the 2D case) form

c�n1; n2� � c�n1; n2� � �δ�n1�δ�n2�

with δ�n� the discrete impulse, being δ�0� � 1 and δ�n� � 0 for
all n ≠ 0. In Eq. (25), the product of the two operators can be
expressed as

∇1�z�∇2�z� �
1
4
�z1 − 1��z1 � 1��z2 − 1��z2 � 1�

� 1
4
�z21 − 1��z22 − 1�:

Now if we define the sequence

ū�n�≡ �1� �−1�n�u�n − 2�;

plotted in Fig. 2, we can verify that ū�n� 2� − ū�n� � 2δ�n�,
and therefore

δ�n1�δ�n2� � ∇1�z�∇2�z�ū�n1�ū�n2�;

so that c̄ can be written as

c̄�n1; n2� � c�n1; n2� � �ū�n1�ū�n2�:

With these premises we can state the main result of this
research.

Main Result. Let ψ �n1; n2� be the vector field of the
wrapped Fried gradient of the phase ϕ0�n1; n2�, defined as

�
ψ1�n�
ψ2�n�

�
�

�
∇W1

∇W2

�
ϕ0�n�:

Also let its curl, c�n�, be such that

c�n� � πl�n�;

i.e., it assumes values only integer multiples of π.
Let be ϕ̂�n� such that

�
ψ1�n�
ψ2�n�

�
�

�
0

c�n� � �q�n�
�
�

�
∇1

∇2

�
ϕ̂�n�; (26)

with �� denoting 2D convolution, and q�n� defined as

q�n1; n2�≡
1
2
�z1 − 1��z2 � 1�ū�n1; n2�:

Then there exist constants C0, C1 for which

ϕ0�n� � ϕ̂�n� � C0 � C1�−1�n1�n2 � 2πl�n�; (27)

with the rightmost term a sequence assuming only integer
multiples of 2π.

Proof. By exactly the same arguments as in the previous
section, Eq. (26) holds for some ϕ̂�n�. What we need to show
is that the estimated phase ϕ̂�n� and the original phase ϕ0�n�
are the same apart from integer multiples of 2π, a piston mode
C0 and a “waffle” mode C1�−1�n1�n2 .

The argument is based on the fact that the curl sequence
c�n1; n2� assumes values that are all integer multiples of π.
Also it is a simple exercise to verify that the sequence
q�n� � 0;�2 for all n. As a consequence, for all n,

c�n� � �q�n� � 2πl�n�;

Fig. 2. Function ū�n� is used to create c̄�n� from c�n�.
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where, again l�n� denotes a sequence of integer values. Recall
that the relation between Fried and wrapped Fried gradients
in Eq. (24) and the observed wrapped phase gradient ψ �n�.
Then by substituting into Eq. (26) we obtain that the sequence

�
∇1

∇2

�
�ϕ0�n� − ϕ̂�n�� � π

�
l1�n�
l2�n�

�
; (28)

i.e., it assumes values that are integer multiples of π for all n.
Since for any sequence

l�n� � l�n� � �δ�n1�δ�n2�

and

δ�n1�δ�n2� � ∇1�2�−1�n1−1u�n1 − 1�u�n2 − 1��
� ∇2�2�−1�n2−1u�n1 − 1�u�n2 − 1��;

we have that

l�n� � 2∇1l�n�l�n� � 2∇2l�n�: (29)

In other words, a sequence of integers is the Fried derivative
of a sequence of even integers. Finally, combine Eqs. (28) and
(29) to obtain

∇�ϕ0�n� − ϕ̂�n� � 2πl�n�� � 0;

which proves the result. QED
Estimation of ϕ0�n� based on sensed Fried gradients ψ �n� is

then carried out by computing ϕ̂�n� from Eq. (26), using either
standard least squares or (as is shown in the next section) the
multiresolution algorithm presented by the authors in [28].

Then, from the result in Eq. (27),

ϕ0�n� � W�ϕ̂�n� � C0� (30)

with C0 a constant determined by a reference value. The
“waffle” term is usually neglected since the data is assumed
not to contain this term.

The algorithm for Fried geometry can be summarized as a
procedural list:

1. Collect the sensor measurements ψ1�n1; n2� and
ψ2�n1; n2�.

2. Compute the curl

c�n1; n2� � ∇2ψ1�n1; n2� − ∇1ψ2�n1; n2�:

3. Compute the quantity

∇2c̄�n1; n2� � c�n1; n2� � �q�n1; n2�:

4. Modify the measurement

ψ2;new�n1; n2� � ψ2�n1; n2� �∇2c̄�n1; n2�:

5. Use ψ1�n1; n2� and ψ2;new�n1; n2� in the standard least-
squares reconstructor to solve for ϕ̂�n1; n2�:�

ψ1�n1; n2�
ψ2;new�n1; n2�

�
�

�
∇1

∇2

�
ϕ̂�n1; n2�:

The comparison of this algorithm with the traditional ap-
proach is given in Fig. 3.

6. APPLICATION TO PHASE ESTIMATION
The algorithm presented in Section 5 has been applied to a
number of phase signals both geometric and simulated wave-
front phase functions.

In the following examples when noise is present, the Gaus-
sian white noise is added to the phase difference measure-
ment quantities as

�
ψx;noisy�n1; n2�
ψy;noisy�n1; n2�

�
�

�
ψx�n1; n2�
ψy�n1; n2�

�
�

�
αnx�n1; n2�
αny�n1; n2�

�
;

where α is chosen to ensure the desired SNR for simulation.
Unless stated otherwise, amplitude is not used in the
reconstruction and no noise added to the amplitude.

In addition, we provide a comparison with the proprietary
SPhase algorithm in AOTools/WaveProp, developed by the
Optical Sciences Company [29,30]. SPhase uses amplitude
and phase information for wavefront reconstruction and its
goal is to place the branch cuts in areas of low intensity
for a continuous deformable mirror. SPhase also performs
phase unwrapping. Thus, the goals of SPhase are different
than the algorithm presented here.

A. Example 1: Geometric Signal
Let s � x� jy and define ϕ0�n� as samples of the phase

ϕ�x; y� � phase�s�

with sampling intervals δx � δy � 0.01, the number of data
points N � 256 × 256, and a shift by δx∕2 and δy∕2 so that
the singular point x � y � 0 is not in the sampling grid.

Figure 4 shows the 3D plot of the wrapped phase Wϕ0�n�
and Fig. 5 shows the wrapped estimated phase Wϕ̂�n� and
demonstrates perfect reconstruction. The significance of this
is observable from Figs. 6 and 7, where the large discontinuity
is not apparent. This is the importance of the wrapped Fried
gradient model, otherwise the ridge would be in the gradient
data that is the input to the algorithm.

In this particular example, because the discontinuity is
along the same dimension as our nonorthogonal correction,
the result is exactly the same as the input. If the input had
a discontinuity at a different angle relative to the origin (which
would still result in the same wrapped measurements), the

Fig. 3. Block diagram comparison of the traditional least-squares ap-
proach to the new form that is capable of handling branch points.
When the curl is equal to zero, the output is exactly the same for both
forms.
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resulting output would still be the same as the one shown
in Fig. 5.

B. Example 2: Geometric Signal
Similarly, Fig. 8 shows the samples of the phase for the
function

ϕ�x; y� � phase
��s − b1��s − b2�

�s − a�
�

(31)

with b1 � 0.5150 − j0.26, b2 � 0.0050� j0.26, and a � 0.005�
j0.005. Two estimates are shown: without noise in Fig. 9 and
with noise added to the observations (with 40 dB SNR)
in Fig. 10.

Fig. 4. Original ϕ�n� phase data for example 1.

Fig. 5. Reconstructed Wϕ̂�n� phase data for example 1.
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Fig. 6. Wrapped gradient ψ1�n� data for example 1. The large discon-
tinuity seen in Fig. 4 is not apparent in the wrapped measured gradient.
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Fig. 7. Wrapped gradient ψ2�n� data for example 1. The large discon-
tinuity seen in Fig. 4 is not apparent in the wrapped measured gra-
dient. The correction term proposed in this paper will be added to
ψ2�n� to create the large discontinuity.
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Fig. 8. Original ϕ�n� plotted for example 2.
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Comparison of Figs. 8 and 9 along the top center shows two
different boundaries of maximum (red) and minimum phase
(blue). In this example, we show that C0 from Eq. (30) is set to
a constant that causes a slightly different wrapping than Fig. 8.
The gradient measurements are the same and we show that
the discontinuity can be positioned.

With this example, we are able to know the amplitude and
phase. If we run SPhase with the phase, but set the uniform
amplitude to be unity, SPhase chooses a simple branch cut
scheme of connecting the two closest branch points to one
another, and the third (closer to the bottom) branch point
straight to the bottom edge. Our algorithm connects the lower
branch point to the right edge (due to the nonorthogonal ba-
sis). Wrapping the phase for either result has the same output.

Using both the amplitude and phase information from
Eq. (31), SPhase creates a slightly more complicated branch
cut between the upper two branch points that takes advantage
of the lower intensity path between these singularities.

C. Example 3: High Turbulence Phase Signal
WaveProp was used to generate the algorithm input data for
this example. We tried the algorithm under a variety of oper-
ation conditions, but only present the highest turbulence re-
sults here as other cases also were successful. WaveProp
simulated a 1.0 m diameter circular aperture in a 2048 ×
2048 E-field grid. The simulation used λ � 1 μm through a
4 km horizontal path. The atmospheric effects were assumed
to be a constant turbulence through five phase screens. The
C2

n value is 7 × 10−15 with a calculated Rytov number of 0.3051.
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Fig. 10. Estimated phase Wϕ̂�n� with 40 dB SNR for example 2.
Pixels with values close to −π or π may wrap due to the noise.
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Fig. 9. Estimated phase Wϕ̂�n� plotted for example 2.
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Fig. 11. High turbulence wavefront phase ϕ�n� created using Wave-
Prop for example 3.
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Fig. 12. Estimated wavefront Wϕ̂�n� reconstructed for example 3.
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The phase signal is shown in Fig. 11, with estimates in
Fig. 12 (no noise) and Fig. 13 (noise with 40 dB SNR). For
the noiseless case, Fig. 14 shows the location of the detected
branch points, while Fig. 15 shows the branch points of the
original phase as determined by WaveProp.

SPhase only works on this example when the correct (origi-
nal) amplitude is also supplied to its input. Setting a constant
amplitude results in a signal of little interest (even the
wrapped output did not match the original data). The wrapped
output of SPhase (using the WaveProp amplitude) is identical
to the output of our algorithm. Thus, we can say that the am-
plitude information is important in the SPhase algorithm,

whereas the amplitude is not used by our algorithm proposed
here.

D. Example 4: Double Spiral
Our last example is the double-spiral shear from [7]. Although
this dataset, shown in Fig. 16, is used to test unwrapping, we
decided to include it here. Ghiglia states that this example has
failed in unwrapping when there is noise on the measure-
ments for all unwrapping algorithms covered by their book.
The actual spiral data has one arm ascending (with a positive
n1 gradient) and the other spiral arm descending with a
negative n1 gradient of the same magnitude.
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Fig. 13. Estimated wavefront Wϕ̂�n� reconstructed with 40 dB SNR.
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Fig. 14. Detected branch points for example 3 with no noise. Positive
branch points are indicated with a red plus while negative branch
points are indicated with a blue dot. Because the Fried geometry aver-
ages neighboring values, the locations on this plot are quadrupled
compared to Fig. 15.
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Fig. 15. Known branch points for example 3 with no noise. Locations
were determined by WaveProp. Positive branch points are indicated
with a red plus while negative branch points are indicated with a
blue dot.
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Fig. 16. Spiral dataset ϕ�n� from [7]. This dataset is known to be dif-
ficult to process correctly.
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Our algorithm results in Fig. 17 for no noise, and in Fig. 18
for 40 dB SNR. In the case of noise, the noise can potentially
cause the phase value to wrap and the horizontal bar pattern
can form. However, in the no noise case, the reconstruction
is exact. The determined branch point locations match
Figure 3.10 in [7].

Since SPhase also includes unwrapping, it has difficulty on
this dataset. While its output does show the double-spiral pat-
tern, the spiral arms are flat areas. The boundary pixels be-
tween the spiral arms often do not fully resolve correctly
and have discontinuities. The wrapped output of SPhase is
not a good match to the original surface. One spiral arm takes
on zero value for all pixels, and the other spiral arm has areas
that are close to �π. The boundary pixels of the spirals in the
wrapped output also have discontinuities.

7. CONCLUSION
In this research, we addressed the problem of estimating a
phase signal based on observation of wrapped local varia-
tions. This approach is based on a particular representation
of the vector field in terms of a nonorthogonal basis, which
seems to be better suited than the standard orthogonal basis
associated with scalar and potential field.

It is shown that, correcting the observed gradient with a
filtered curl, the overall phase (including what has been called
the “hidden phase”) is estimated by standard least-squares
solver. A number of computer simulations support what
has been stated based on mathematical analysis. A compari-
son with SPhase shows that our algorithm results in the same
wrapped phase measurements, which is expected since the
algorithms output different phase functions of the ensemble
of wavefront surfaces that have the same gradient measure-
ments. The examples show that the wrapped ϕ0 is equal to
the wrapped total phase.

This approach is able to efficiently determine a wavefront
surface that is a member of the ensemble of wavefronts that
all have the same gradient measurements. The approach is as
computationally efficient as the least-squares or equivalent re-
constructor chosen. The approach does not unwrap the
phase, as we leave that as a follow-on step to the output of
our algorithm presented here.

APPENDIX A:
Let w�x; y�

∇x∇yw�x; y� � 0

for all x, y real. Then w�x; y� can be written as

w�x; y� � a�x� � b�y�:

To show this, define

g�x; y� � ∇xw�x; y�: (A1)

Then ∇yg�x; y� � 0 and therefore,

g�x; y� � g�x; 0�;

i.e., independent of y. Substitute in Eq. (A1) to obtain

w�x; y� � w�0; y� �
Z

x

0
g�λ; 0�dλ;

which shows the result.
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Fig. 17. Estimated phase Wϕ̂�n� reconstructed for the spiral dataset.
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Fig. 18. Estimated phaseWϕ̂�n� reconstructed for spiral dataset with
40 dB SNR.
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