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The capability of the CLEAN algorithm, which is able to develop image information corresponding to spatial
frequencies for which the imaging system’s optical transfer function (OTF) is equal to zero, is shown to be
dependent on the limited size of the object being imaged. It is found that this capability is available without
a severe signal-to-noise-ratio penalty only for the recovery of a spatial frequency that is sufficiently close to
some other spatial frequency for which the OTF is not equal to zero. As used here the term “sufficiently close”
means that the magnitude of the separation of the spatial frequencies is less than one half of the inverse of the
size of the object being imaged. This represents a limitation of CLEAN’s capability deriving from object size.
It is suggested that this capability can be thought of in terms of superresolution, with the same limitation in
regard to object size.
1. INTRODUCTION AND SUMMARY

The origin of the research reported here lies in an effort
to develop an understanding of the CLEAN algorithm1,2

(also referred to simply as CLEAN), used in the astro-
nomical community to remove the ringing from images
produced by sparse array imaging systems. In removing
the ringing, the CLEAN algorithm is apparently restor-
ing to the image information concerning spatial frequen-
cies for which the array’s optical transfer function (OTF)
is equal to zero. In the accomplishment of this there is
a suggestion of superresolution,3 and my colleagues and I
were surprised by the seeming ability of superresolution
to function as well as it appeared to in this case with-
out requiring an excessively high signal-to-noise ratio,
which we had thought was necessary in superresolution.4

The results that we have developed in carrying out this
research have provided not only an explanation of the
ability of the CLEAN algorithm to perform as it does but
also an insight into the capabilities and limitations of
superresolution.

In order to apply the results to the matter of under-
standing superresolution, we must first have an adequate
definition and understanding of exactly what should and
what should not be included in the concept of super-
resolution. Because presentation of any explanation of
superresolution entails a need to go all the way back to
a discussion of exactly what constitutes superresolution,
and because offering such an explanation would necessar-
ily distract from the presentation of the basic work con-
cerning CLEAN, all of the discussion of superresolution,
except for a few words of overview presented in this sec-
tion, has been placed in Section 5 at the end of this paper.

The CLEAN algorithm functions in accordance with the
following five steps:

1. One starts with a copy of the so-called dirty im-
age (which manifests all the ringing-related artifacts that
are associated with the severely sidelobe-contaminated
point-spread function of the sparse-array imaging sys-
tem), calling this copy the residual dirty image, and finds
the brightest pixel in this residual dirty image.

2. A blank image field, representing the clean image,
is established with all pixels set equal to zero.

3. The value of the clean-image pixel whose position
corresponds to that of the brightest pixel in the dirty
image is incremented by some fraction of the value of that
brightest pixel in the residual dirty image.

4. With the array’s point-spread function providing
the pattern, and the location and the magnitude of what
has just been added to the clean image providing the pat-
tern’s shift and scaling, appropriate values are subtracted
from the residual dirty image.

5. One then reexamines the residual dirty image to
find what is now its brightest pixel.

The process of adding to the clean image and subtract-
ing from the dirty image, defined by steps 3, 4, and 5, is
cyclically repeated, over and over, continuously building
up the clean image and reducing the residual dirty im-
age. The process is subject to the constraint that at the
start of each repetition of the cycle the sum of the square
of the pixel values in the residual dirty image is calcu-
lated, and when the value of that sum stops decreasing,
the process is stopped and the clean image is considered
to be complete (except possibly for the application of some
smoothing of the image). The process of selection of the
brightest pixel and the decision to terminate the process
are inherently nonlinear operations. It is presumably for
this reason that thus far it has not proven possible to carry
out a closed-form analysis of CLEAN nor to identify the
basis for its ability to recover missing spatial-frequency
components.

The approach taken to the problem of understanding
how and how well CLEAN works starts with considera-
tion of what a simple linear estimator would be able to do.
For this purpose I choose to work with a minimum mean-
square-discrepancy algorithm. I consider the dirty im-
age to be the product of convolving the object’s true image
with the array’s point-spread function, with some noise
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value then added to each pixel of the dirty image. This
is a linear process, and accordingly one is able to develop a
linear, closed-form solution to answer the question, What
set of pixel values, i.e., what (clean) image (intended to
serve as an estimate of the true image) when convolved
with the array’s point-spread function will result in a set
of pixel values that will be minimally discordant, in a
minimum mean-square-discrepancy sense, with the pixel
values of the dirty image? Using this solution one then
determines what is the mean-square discrepancy between
the pixel values of the true image and the pixel values of
the (clean) image generated by this least-square process.
This mean-square discrepancy (or a quantity proportional
to this discrepancy) was taken as a measure of the quality
of the image produced by the algorithm.

Calculation was done for a one-dimensional problem in-
volving an imaging array with holes in its OTF coverage
pattern. An array was used with an overall length L
and was considered to be operating at a wavelength l.
Figure 1 shows the kind of array used, and Fig. 2 shows
the OTF for this particular array. (Although a number
of different array layouts were used in the study, the one
shown here is indicative of all of them. Since the same
basic results were obtained with each of the arrays, in
this paper the results presented are restricted to those ob-
tained with the particular array shown in Fig. 1.) Note
from Fig. 2 that the OTF is full of small holes, as well as
one larger hole, in its coverage. Each of the small holes
has a width of the order of 1/17 of the array’s cutoff fre-
quency, i.e., 1/17Lyl. The larger hole extends from ,13/17

to , 16/17 of the array’s cutoff spatial frequency, i.e., from
13/17Lyl to 16/17Lyl, and has a width of , 3/17Lyl.

When an extensive set of results obtained with this
minimum mean-square-discrepancy algorithm was stud-
ied, it was observed that the rms error in the (clean) im-
age produced by the algorithm was modest as long as the
size of the object was small enough that its inverse was
greater than approximately the width of the larger hole
in the OTF. It was found that if the object was larger
than that, the error could still be kept small if a sharp-
cutoff low-pass filter was applied to the final image, with
the filter’s cutoff set so that all spatial frequencies larger
than 13/17Lyl were excluded from the final image; the er-
ror would be small provided that the object was not larger
than the inverse of the width of the small holes. As long
as the object size was less than approximately the inverse
of the size of the small holes, the missing components for
all the smaller holes in the OTF were satisfactorily esti-
mated. The missing components for the larger hole could
not be estimated without introduction of considerable ad-
ditional noise into the result if the object was larger than
the inverse of the size of the larger hole. If the object was
larger than the inverse of the size of the smaller holes,
then even the missing spatial-frequency components for
the small holes could not be satisfactorily estimated and
no satisfactory image could be obtained, without a severe
noise penalty.

The minimum mean-square-discrepancy algorithm’s
performance in cleaning up the image seemed to be
quite good; i.e., there was no excessive noise sensitivity,
provided that the object’s size was small enough. Sur-
prisingly, for small-enough objects the algorithm was ap-
parently developing good estimates of spatial-frequency
components for spatial frequencies for which the array’s
OTF was equal to zero.

Observation of this fact led us to consider the possibil-
ity that for small objects there is some unavoidable corre-
lation between spatial-frequency components for spatial
frequencies that are sufficiently close together, a correla-
tion that is unavoidably present simply because the ob-
ject is small. (It seemed that there was little else that
an algorithm as simple as a linear estimator, which is
what the minimum mean-square-discrepancy algorithm
is, could be using to produce, in effect, the estimates of
the missing spatial-frequency components. If this corre-
lation were present then the algorithm could be forming
an estimate of the unmeasured spatial-frequency compo-
nents from observation of the value of the measured com-
ponents.) The results of an analysis of this matter, as
presented below, show that this correlation is present and
that the correlation function, which is dependent on the
size of the object being imaged, has a range of the right
size to explain the observed algorithm performance.

These results, of course, were for the minimum-square-
discrepancy algorithm, and although they were sugges-
tive for CLEAN, they were not firmly linked to CLEAN.
To tie the results more directly to the CLEAN algorithm,
we wrote a computer program that simulated the opera-
tion of CLEAN, and, operating it in a Monte Carlo mode,
we used the program to develop mean-square image er-
ror results for targets of various sizes. In each case the
resultant image (namely, the clean image) was subject
to low-pass filtering with a sharp cutoff at 13/17Lyl. The
mean-square image error was calculated from the differ-
ence between the clean image and the image that we
obtained by similarly low-pass filtering the true image.
Applying this low-pass filter to the clean image meant
that the only missing spatial-frequency components for
which the algorithm had to develop estimates were those
whose spatial frequency fell within one of the small holes
of the array’s OTF. We found that the mean-square error
in the clean image was fairly constant, independent of the
size of the object being imaged, provided that the object
size was smaller than the inverse of the size of the smaller

Fig. 1. Array pattern for a six-element, one-dimensional, nonre-
dundant array.

Fig. 2. OTF for the six-element, one-dimensional, nonredun-
dant array shown in Fig. 1.
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holes in the array’s OTF. This was in good agreement
with what we obtained from the minimum-mean-square-
discrepancy algorithm.

It was concluded from this that the operation of CLEAN
is based on the same consideration as is the operation of
the minimum-mean-square-discrepancy algorithm, that
both exploit the correlation that necessarily exists for
small objects: the correlation between any two spatial-
frequency components when the spatial frequencies are
sufficiently close to each other. For both algorithms
the value of the missing spatial-frequency component
apparently is in effect being estimated on the basis of its
correlation with the value of some other, directly mea-
surable, spatial-frequency component. We believe that
for both algorithms the key feature is the finite size of
the object, which is responsible for the existence of the
correlation. We consider that exploitation of the size of
the object is (essentially without our noticing it) built into
the algorithm in the algorithm’s initial formulation; as
the algorithms are formulated, the measured dirty im-
age is to be explained in terms of a finite-size array of
object pixels. The minimum-mean-square-discrepancy
approach formulates a set of simultaneous equations to
obtain a clean image for which the discrepancy with re-
spect to the dirty image is minimum (and then solves
this set of simultaneous equations directly, potentially
with matrix inversion methods). Because the problem
was formulated with a finite number of pixels and a
minimum-mean-square-discrepancy solution was sought,
the finite size of the object and the exploitation of the
consequent correlation were incorporated automatically.

It is my opinion that in effect the CLEAN algorithm
approaches the problem with the same tools. The finite
size of the object is definitely built into CLEAN. I view
the steps of the CLEAN algorithm as representing an
indirect approach to the solution of the same minimum-
mean-square-discrepancy problem, a solution by a
numerical relaxation method rather than by the more
direct approach of matrix inversion and matrix multi-
plication. Apparently CLEAN was formulated with the
attitude that for real images the number of simultaneous
equations that would have to be solved for the discrepancy
to be minimized is prohibitively large, and, accordingly,
CLEAN attempts to minimize the discrepancy by what is
in effect a numerical relaxation method.

As remarked above, the development of an estimate
of the value of spatial-frequency components of the ob-
ject’s image, components for which the imaging system’s
OTF is equal to zero, is seen as a manifestation of su-
perresolution. Admittedly, all the spatial frequencies in-
volved in the above discussion of results are lower than
the upper-limit cutoff frequency of the arrays, and it may
accordingly be argued that these results ought not to be
taken as having to do with superresolution. However I
believe that these results should be considered to be an ex-
ample of superresolution—that developing information
for spatial frequencies for which the imaging system’s
OTF is equal to zero is superresolution no matter whether
the spatial frequencies are above or below the system’s
diffraction-limited cutoff frequency—and in Section 5 be-
low I present thoughts as to just what constitutes super-
resolution and why these results should be considered
to be a manifestation of it. Moreover, we have found
evidence in our numerical results for CLEAN that im-
age processing is able to recover spatial-frequency com-
ponents for frequencies that are a bit above the imaging
system’s upper-limit cutoff, without much of a signal-to-
noise-ratio penalty. Just how far above the cutoff com-
ponents can be recovered depends on the object size;
apparently how far corresponds to a distance, in frequency
space, equal to approximately one half of the inverse of
the object size. The analytic and the numerical results
to be presented provide some direct support for the conclu-
sion that spatial-frequency components can be recovered
for spatial frequencies that are greater than the imaging
system’s cutoff frequency—greater by an amount (i.e., a
frequency increment) equal to approximately one half of
the inverse of the size of the object being imaged.

On the basis of the above, I conjecture that for a filled
circular aperture of diameter D imaging at a wavelength
l, for which the (diffraction-limited) spatial-frequency
cutoff is Dyl (cyclesyradfov) if we are to be able to develop
a superresolution estimate of the value of the image com-
ponents for a spatial frequency of the order of 1.5Dyl, i.e.,
for just one and one half times the diffraction-limited cut-
off (without requiring an excessive signal-to-noise ratio),
then the object can be no longer than lyD radfov if sub-
stantial noise penalties are to be avoided. [The notation
radfov is used to make clear that it is radians of field of
view (fov) and not radians in a cycle.]

Section 2 presents the analysis leading to the conclu-
sion that there is a correlation among different spatial-
frequency components of a small object. Section 3 is
a discussion of the numerical results obtained from
the closed-form analytic results for the minimum-mean-
square-discrepancy linear algorithm. Section 4 presents
the results obtained with the CLEAN simulation run in
the Monte Carlo mode, along with conclusions. Section 5
is a discussion of superresolution; an attempt is made
there to establish a link between the CLEAN-related
results and superresolution.

2. CORRELATION OF
SPATIAL-FREQUENCY COMPONENTS
As stated above, we believe that the fundamental fact ex-
plaining why either of these two algorithms works is that
for a finite-sized object (on a dark background) the spatial-
frequency components are necessarily correlated if they
are close together; they are strongly correlated if the mag-
nitude of the difference of the two spatial frequencies is
less than approximately one half of the inverse of the ob-
ject size. This correlation is an unavoidable consequence
of the finite size of the object.

To see that this is the case, consider an infinite-extent
random pattern f srd, with different spatial-frequency
components f̃ skkkd being completely uncorrelated, where

f̃ skkkd 
Z

dr exps22pikkk ??? rdf srd (1)

and kkk denotes a spatial-frequency vector. We cut a
finite-sized circular pattern of diameter D from this infi-
nite pattern by multiplying by W srd, where

W srd 

(
1 if r # 1/2D
0 otherwise

, (2)
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to obtain

fW srd  f srdW srd . (3)

We are interested in the correlation between two spatial-
frequency components, k f̃W skkkdf̃W

pskkk0 dl, where the angle
brackets denote an ensemble average and

f̃W skkkd 
Z

dr exps22pikkk ??? rdfW srd , (4)

is the component for spatial frequency kkk. With some
rather straightforward manipulation of multiple integrals
we can show that

k f̃W skkkdf̃W
pskkk0 dl 

Z
dxFf1/2skkk 1 kkk0 d 1 xg

3 fW fx 2 1/2skkk 2 kkk0 dg

3 fW fx 1 1/2skkk 2 kkk0 dg , (5)

where fW skkkd 
Z

dr exps22pikkk ??? rdW srd

 s1/4pD2d
2J1spkDd

pkD
(6)

and Fskkkd is the power spectral density associated with
the infinite extent pattern f srd and is defined by the
expression

Fskkk0 d 
Z

dr exps22pikkk ??? rdkf sr0 1 1/2rdf sr0 2 1/2rdl .

(7)

Equation (5) is the basic result, indicating the correla-
tion’s value. From consideration of the width (full width
at half-maximum) of the main lobe of fW skkkd—a width ap-
proximately equal to D21 —along with consideration of
Eq. (5), we can see that there will be a significant corre-
lation between f̃W skkkd and f̃W skkk0 d provided that

jkkk 2 kkk0j , 1/2D21 , (8)

this being the condition for there to be a significant cor-
relation of components.

We attribute to this correlation the ability of CLEAN
and of the minimum-mean-square-discrepancy algorithm
to develop useful estimates of missing or unmeasured
spatial-frequency components of an image. We consider
the ability of these algorithms to form an estimate of the
amplitude of some spatial-frequency component for which
the OTF is equal to zero to be based (in an indirect and
therefore not immediately noticeable way) on the fact that
the unmeasured amplitude, as Eq. (5) demonstrates, may
be strongly correlated with an amplitude that is mea-
sured, i.e., for which the OTF is not equal to zero, if the
object size is small enough. I introduce the existence of
this correlation into the formulation of each of the algo-
rithms, without any notice being called to it, by restricting
the solution space to a finite number of pixels and thereby
imposing the assumption of a finite object size. There-
after the algorithm proceeds to find an object pixel pattern
(the clean image) that can be reconciled with the array’s
transfer function and with the original measurement val-
ues (the dirty image), and in doing so it takes account (es-
sentially without noting it) of the fact that the object has
some particular finite size and thus of the above-noted
correlation.
3. ANALYSIS AND RESULTS FOR THE
MINIMUM-MEAN-SQUARE-DISCREPANCY
ALGORITHM
The minimum-mean-square-discrepancy estimation algo-
rithm has been formulated here in a manner that takes
account of the point-spread function of the imaging system
and finds the finite-sized object pattern that best explains
the measured image pattern. For analytic and compu-
tational convenience the problem was formulated in a
spatially quantized, i.e., a pixel-type, form. The analysis
was carried out with matrix notation. Written with this
notation, this process of developing the algorithm can be
expressed as follows.

Letting m represent a column vector of measured pixel
values, o a column vector of object pixel values, and n a
column vector of noise values (associated with the mea-
surement values in m and with statistical independence
among the elements of the noise column vector), we have

m  So 1 n , (9)

where S is a matrix representing the imaging array’s
point-spread function. The minimum-mean-square-dis-
crepancy solution for o given m is known to be given by
the equation

ô  Am , (10)

where

A  sST Sd21ST . (11)

Strictly speaking, that is all there is to the formulation
of the algorithm; but we want to be able to evaluate the
mean-square error in the results when various forms of
filtering are applied to the image. For this we introduce
the Fourier-transform and inverse Fourier-transform
operators.

The Fourier transform process can be represented as
a multiplication by a matrix, as can its inverse; the two
matrices are denoted F and Finv. We use the notation
Cskd to represent a low-pass filter. The matrix acts on
the Fourier transform to set all components for spatial
frequencies above k to zero. Thus the recovered image,
processed to suppress all frequencies above k, would be
evaluated with the expression FinvCskdF A m. Of par-
ticular interest to us is the column vector eskd, represent-
ing the error in the resultant image. Its value is given
by the equation

eskd  Finv CskdF A m 2 Finv Cskd F o . (12)

Noting, from consideration of Eq. (11), that A S  I,
where I denotes the identity matrix, and making use of
Eq. (9) we see that Eq. (12) can be rewritten as

eskd  Finv Cskd F A n . (13)

Using the fact that the inner product is equal to the trace
of the outer product, we can show that the mean-square
error,

E skd  kfeskdgT eskdl , (14)
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can be shown to have a value given by the equation

E skd  trhfFinvCskdF AgfFinv CskdF AgT js2 , (15)

where s2 is the mean-square raw measurement noise for
each element of the measurement array m. The notation
tr h. . .j is used to denote the trace operation.

Correspondingly, for the mean-square error associated
with the estimated value of the Fourier-transform compo-
nent for spatial frequency k, we can write that

Eeskd  trhfDskdF AgfDskdF AgT js2 , (16)

where matrix Dskd is a diagonal matrix with all of its
diagonal elements equal to zero except for one that is
equal to unity. The matrix serves to select the single
element in the Fourier transform corresponding to the
spatial frequency k, setting all the other components to
zero.

With the use of Eqs. (15) and (16), it has been possible
to evaluate the errors associated with cases covering a
wide range of problem parameters. The computations
proceeded sufficiently rapidly that we were able to explore
problem parameter space quite extensively. (In fact it
was in this exploration that we first became aware of the
significance of the size of the object.) A small sample
of the extensive results obtained are presented in Figs. 3
and 4.

All the results that are presented here were devel-
oped for a one-dimensional object, image, and imaging
system array, with a pixel size of 1/4lyL. As already
noted, all the results presented here were developed for
the imaging array defined by Figs. 1 and 2. Using the
point-spread function calculated for this array, we for-
mulated the S matrix and thereupon were able to pro-
ceed directly with the calculation of A from Eq. (11) and
from that were able to proceed with the calculation of
E skd and Eeskd, using Eqs. (15) and (16), respectively.
In Fig. 3 is shown Eeskd normalized by being divided
by Exskd, where Exskd denotes the mean-square value
of the spatial-frequency components of the object being
viewed, i.e., the true value (free of noise or imaging ef-
fects). [Results are presented with Exskd treated as a
constant.] Results are shown in Fig. 3 for object size
equal to 3lyL, 6lyL, 9lyL, . . . , 21lyL. (Recall that L de-
notes the overall length of the array and l denotes the
wavelength at which the array is operating.) It is obvi-
ous that for object sizes as high as 15lyL (but not 18lyL
or 21lyL) there is no problem in filling in the missing
spatial-frequency content up to a spatial frequency of
,13/17lyL. I interpret the occurrence of this transition
for an object size between 15lyL and 18lyL as being re-
lated to the fact that the width of the smaller holes in
the array’s OTF pattern (see Fig. 2) is equal to 1/17Lyl,
with the inverse, 17lyL, being just at the transition.
In considering Fig. 3 further (in preparation for the dis-
cussion of superresolution in Section 5), also note that
for the smallest object, with a size 3lyL, the values of
spatial-frequency components are being estimated with
tolerable precision for spatial frequencies definitely be-
yond the array’s (diffraction-limited) cutoff frequency of
Lyl, out to frequencies ,1.15Lyl. Note that this incre-
ment of spatial-frequency coverage, an increment equal to
0.15Lyl, is nearly equal to one half of the inverse of the
object’s size, which is 1/2s3lyLd21 ø 0.1667Lyl.

The mean-square error in the estimated pixel value
of the object was also calculated when the estimated
image was filtered so as to exclude spatial-frequency
components for spatial frequencies above a cutoff fre-
quency of k0. [In accordance with Eq. (12) the error in
the filtered image was taken to correspond to the de-
viation from the correspondingly filtered version of the
original object.] Figure 4 shows this error in normalized
form, i.e., an E sk0d divided by the mean-square vari-
ability (i.e., the mean-square variations from realization
to realization) of the true pixel values in the spatially
filtered object. For obvious reasons this normalized

Fig. 3. Spatial-frequency-component estimation error.

Fig. 4. Enhanced and filtered image signal-to-noise ratio as a
function of spatial-frequency cutoff.
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form of E sk0d is referred to as the signal-to-noise ratio,
SNREST. Results are shown for SNREST as a function
of the filter cutoff frequency, k0, for object sizes of
1lyL, 2lyL, 3lyL, . . . , 32lyL. The break in SNREST val-
ues just past k0  13/17lyL (for all except perhaps the six
smallest objects, for which the sizes are 1lyL to 6lyL)
is apparent. The relationship between the size of these
objects and the value of the inverse of the larger hole in
the OTF, a hole size of ,3/17Lyl  s5.667lyLd21, is clear.

We also note from Fig. 4 that for the 16 largest targets,
the sizes between 17lyL and 32lyL, there is a noisiness
problem for all filter cutoff frequencies. This noisiness
can be associated with the fact that the size of the smaller
holes in the OTF is 1/17Lyl. Here again we see the close
tie between the inverse of the size of the object being
imaged and the width of the holes in the OTF shown in
Fig. 2.

In all cases we run into an algorithm performance prob-
lem when the object size is greater than the inverse of the
size of the hole in the OTF—or, put somewhat differently,
when one half of the inverse of the size of the object is less
than the distance (in frequency space) from the frequency
at the center of the hole to the frequency at the edge of
the hole. The transition from no problem to problem is
apparently soft, but there definitely is a transition.

4. CLEAN SIMULATION RESULTS
Once we recognized the significance of the object size and
had results showing what performance could be obtained
with a simple minimum-mean-square-discrepancy algo-
rithm, we undertook the development of results, using
a CLEAN-type algorithm to see if the same sort of size
dependence was present. Writing a computer program
to simulate CLEAN was quite straightforward. The pro-
gram steps are as follows:

1. The CLEAN simulation program starts with a zero
value for each pixel or element of the object estimate, ô.

2. The initial value of mres is taken as m.
3. Using one half of half the value of the current

brightest pixel in mres, the program adds that amount
to the corresponding pixel of ô.

4. The CLEAN simulation program then reduces the
value of every pixel in mres by an amount calculated to
be equal to the increment that was applied to ô times
the appropriate values from the instrument’s point-spread
function, S, but it never reduces the value of any pixel in
mres to less than zero.

The program repeats this process over and over, each
time checking to ensure that the sum of the squares of
the residual values in mres is less than that for the pre-
vious iteration. When the reduction stops, the iterations
are terminated and the value of ô is taken as CLEAN’s
estimate of the object.

Because this algorithm is iterative and because it had
to run many times with the same set of problem pa-
rameter values to yield statistically reliable Monte Carlo
results, the range of problem parameters that could
be studied was limited. Accordingly, the minimum-
mean-square-discrepancy algorithm was used for general
exploration and then, having found a particularly inter-
esting and explanation-ladened case, we used the CLEAN
simulation to develop results for comparison. Figure 5
shows SNREST results for the case in which the low-pass
filter was set to have a cutoff at a spatial frequency of
k0  s13y17dlyL. The results are shown as a function of
object size. Note that with this filter cutoff setting the
only relevant holes in the OTF (see Fig. 2) are the smaller
holes, for which the width is 1/17Lyl. It is clear that as
long as the object size is less than the inverse of the size
of the relevant holes in the OTF, i.e., the object’s size
is no larger than s1/17Lyld21  17lyL, we have no prob-
lem in filling in the missing spatial frequencies. For
larger-sized objects there is a significant noise penalty.

It is also of great significance that the results shown
in Fig. 5 are in good quantitative agreement with
corresponding results obtained with the minimum-
mean-square-discrepancy, linear algorithm developed in
Section 3. This, along with the other aspects of Fig. 5
noted above, confirms the supposition that, in view of
the intention to apply it to large-sized image fields, the
CLEAN algorithm may be considered to be a practical but
also a somewhat covert implementation of the minimum-
mean-square-discrepancy approach to the problem, or at
least a near approximation to that approach. Its perfor-
mance appears to depend on object size in the same way.
It seems that the ability of CLEAN to develop estimates
for missing spatial-frequency components is dependent
on the correlation between components whose spatial
frequencies are close together.

To the extent that the ability to develop an estimate of
the component’s value when the imaging system’s OTF is
equal to zero for the component’s spatial frequency can
be considered to be a manifestation of superresolution,
it would appear that superresolution is critically depen-
dent on object size. This matter is discussed further in
Section 5.

Fig. 5. Enhanced image signal-to-noise ratio as a function of
object size.
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5. SUPERRESOLUTION AND
THE RAYLEIGH LIMIT

I believe that the results that we have obtained in try-
ing to understand how the CLEAN algorithm can achieve
the performance that it does, in particular the observation
that it (and also the minimum-mean-square-discrepancy
algorithm) can develop an estimate of the value of a
spatial-frequency component for a frequency for which the
imaging system’s OTF is equal to zero without introduc-
ing any significant signal-to-noise-ratio requirement, are
relevant to the development of an understanding of the
subject of superresolution. In fact, I would argue that
what the CLEAN algorithm does is an example of su-
perresolution. I believe that what has been found con-
cerning the importance of the size of the object being
imaged and the correlation between spatial-frequency
components of the object not only helps in understand-
ing why CLEAN is able to perform as well as it does and
what the algorithm’s limitations are but also sheds com-
parable light on the subject of superresolution: why su-
perresolution is possible and what its limitations are. In
the following discussion my intention is to apply the re-
sults developed above to the matter of superresolution.
The first matter to be considered is the relationship of su-
perresolution and the Rayleigh limit to the definition of
superresolution.

The concept of superresolution has an allure that con-
tinues to attract researchers with its promise of achieving
better resolution than the limit that is nominally associ-
ated with an instrument,5–14 i.e., better than that given by
the Rayleigh criterion (or Rayleigh limit). This limit is
conventionally expressed by the statement that for imag-
ing at a wavelength l with an aperture whose maximum
dimension is D, two point sources cannot be resolved if
their apparent angular separation is less than lyD. [In
some instances,14 for microscopy in particular, the instru-
ment’s limit is expressed more directly as a distance l (or
ly2) on the plane of the object being viewed.] It takes
only a small amount of experience in image processing to
develop a sense that this is not a firm limit, and it is quite
likely because of this that the concept of superresolution
seems so promising and plausible to many scientists.

In part, the apparent possibility of achieving resolution
better than that which the Rayleigh limit seems to allow
may be attributed to the fact that the Rayleigh limit is
not fully defined; we do not have a firm criterion defin-
ing what it means to resolve two points—a criterion pro-
viding a basis for saying in any particular instance that
the two points are or are not being resolved. For some
researchers9 the limit is softly enough defined that it is
considered to be breached simply by achievement of point-
source position measurement precision significantly finer
than lyD. The vagueness as to what constitutes super-
resolution is characteristic when the matter of resolution
in the spatial domain is being considered.

Generally, however, the concept of resolution in imag-
ing is taken to refer to the quality, the sharpness, the
definition, or simply the resolution (in the spatial-
frequency-content sense) of the final image, and we ought
to consider the subject of superresolution in a manner re-
lated to the spatial-frequency-content sense of the concept
of resolution. In the spatial-frequency domain there is
an absolute cutoff in response. It is possible to formu-
late an unambiguous and unyielding definition of what
constitutes superresolution based on the cutoff, a defi-
nition with an obvious (though soft) relationship to the
Rayleigh limit.

I argue that we should consider the matter in the
spatial-frequency domain, that we should define super-
resolution as the ability to form an image with meaning-
ful content at spatial frequencies for which the imaging
system has an OTF equal to zero. (The term meaning-
ful is used here to imply that for the spatial frequency in
question there is a positive correlation between the com-
plex amplitude of that component of the image and the
complex amplitude of the corresponding component of the
object.) The fact that the OTF of any imaging system
does not just become very small but rather goes fully to
zero means that simple high-pass image filtering cannot
constitute superresolution. This means that one would
expect superresolution to be difficult to achieve. It is not
just a matter of relying on a high signal-to-noise ratio
to allow a source’s position to be determined precisely
or a matter of simple filtering to enhance components
that the imaging process have attenuated. Superreso-
lution calls for the recovery of spatial-frequency compo-
nents that have been completely eliminated by the image
formation process. But it is also reasonable to ask that
this definition of superresolution have a relationship to
the Rayleigh limit.

This definition of superresolution does incorporate the
basic sense of the Rayleigh criterion of resolving two point
sources. To see that this is true it is sufficient that one
consider the case of an object (to be imaged) that consists
of two points that are closer together than lyD. The
spatial-frequency components of the pattern defined by
this two-point object, which are the basic carriers of the
information that there are two distinct points and not just
a single elongated element making up the object, are com-
ponents whose spatial frequencies are greater than Dyl.
But we know that such frequency components are missing
entirely from any image produced by an imaging system
with aperture size D operating at wavelength l. The na-
ture of diffraction-limited imaging is such that the com-
ponents that one presumably needs to be able to tell that
the object consists of two points—the term “tell” convey-
ing, in the Rayleigh sense, the concept of resolving the two
points—are missing from the image. If we can tell that
there are two points (i.e., if we can estimate the two points’
parameters), we may consider that we have measured the
missing spatial-frequency components, and, conversely,
if we can estimate the missing spatial-frequency compo-
nents, we may consider that we can tell that there are
two points there and that we have measured their param-
eters. It is in this sense that we take the concept of su-
perresolution in the Rayleigh-limit sense as implying that
it allows such missing spatial-frequency components to be
meaningfully estimated; if we say that we can resolve the
two points, we are in effect saying that we can estimate
the value of spatial-frequency components for which the
imaging system’s OTF is equal to zero. We generalize
from the two-point problem to consideration of an arbi-
trary object, requiring of superresolution that it recover in
the final image information about spatial-frequency com-
ponents for which the instrument’s OTF is equal to zero.
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The definition of superresolution as the recovery
of missing spatial-frequency components has the dual
virtues of subsuming what we may think of as the con-
cept of the Rayleigh-resolution criterion and also of being
quantitatively testable and evaluatable. It transforms
the loosely defined concept of being able (or not being
able) to resolve into the absolute criterion that for certain
(higher) spatial frequencies, the instrument’s OTF being
equal to zero, the amplitude of that spatial-frequency
component can (or cannot) be usefully estimated. It
casts superresolution as the task of getting around that
limitation and recovering information about the ampli-
tude of spatial frequencies for which the instrument’s
OTF is equal to zero—without any a priori information
about the object being imaged other than its size. This
certainly seems to be a formidable task (or would seem to
be so except in light of what we have learned in studying
the CLEAN algorithm).

Note that this definition of superresolution brings with
it coverage of a case that might not ordinarily be thought
of as being related to superresolution. For an imaging
array there can be spatial frequencies whose magnitude
is smaller than the size of the array, L, divided by the
wavelength, l, for which spatial frequencies the array’s
OTF is equal to zero. Should processing the image so as
to recover those missing spatial frequencies be considered
as constituting superresolution, as the definition of super-
resolution given above indicates? I argue that it should
be so considered, that developing information about
spatial-frequency components regarding which the im-
age system reports nothing is an equally remarkable task
whether the spatial frequency is greater than or less
than Lyl. Moreover, the results that have been devel-
oped (see the discussion associated with Fig. 3) indicate
that the same achievability criterion applies to our abil-
ity to fill in missing spatial-frequency content whether
the frequency is above or below the Lyl cutoff frequency.
Since in both cases the accomplishment of the task is
equally remarkable, and since the same achievability cri-
terion appears to apply in both cases, I see no reason
that the term superresolution should not be considered to
apply equally well whether the spatial frequency for the
component whose missing amplitude is being estimated
lies above or below the array’s cutoff frequency, Lyl.

The findings presented here indicate that the criterion
for achievability of superresolution performance in any
situation appears to be that the missing spatial-frequency
component that is being estimated should be a distance
(in the spatial-frequency domain) no greater than one half
of the inverse of the size of the object from a component
that is measured (i.e., from a component for which the
imaging system’s OTF is not equal to zero; otherwise, at
the input to the algorithm a considerably higher signal-
to-noise ratio will be required. This condition applies
whether we consider filling in holes in the OTF or pushing
beyond the outer bounds of the OTF.

An interesting point regarding the problem of pushing
beyond the outer bounds of the OTF has to do with
the product of object size and the expanded spatial-
frequency bandwidth, which product is denoted by B ,
for space–bandwidth product. This product is equal to
the number of cycles of effective image bandwidth across
the diameter of the object. Of interest is what could be
achieved if we were to utilize the superresolution algo-
rithm but were subject to the limitation that no excess
signal-to-noise ratio is available. If the object’s size is
N slyDd, then according to the findings presented here
the spatial-frequency range could be extended by use of
superresolution (from Dyl) to s1 1 1/2Nd sDyld, and ac-
cordingly the product’s value would be extended (from
B  N) to B  N 1 1/2. Considering that B repre-
sents the space–bandwidth product of the final image (in
essence one half of the number of useful pixels across the
image of the object), it would seem that little increase
in image enhancement or resolution would be available
through the use of superresolution without production of
some excess signal-to-noise ratio that we can afford to
let the superresolution process use up. This suggests
that an appropriate step in the development of superres-
olution would be to extend the computational approach
of Section 3 to form an estimate of how achievable reso-
lution enhancement depends on the available signal-to-
noise ratio that we can afford to have used up by the
superresolution algorithm.
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