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Acoustic Einstein-Hopf Drag on a Bubble
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Theoretical results show that the drag on a bubble can be modified by the presence of isotropic,
homogeneous, broadband acoustic noise, when the band overlaps the bubble’s resonance width. While
these results constitute an acoustic analog to the Einstein-Hopf drag on an oscillating dipole in the
presence of electromagnetic fluctuations, an important difference is that band-limited acoustic noise can
reduce the drag when the lower frequency of the spectrum coincides with the resonant frequency of the
bubble. Applications to bubble migration, heat transfer, and acoustophoresis are suggested.

PACS numbers: 43.25.+y, 05.40.–a, 05.60.–k
The notion that acoustic noise can test, by analogy,
predictions due to stochastic electrodynamics and to elec-
tromagnetic zero-point-field (ZPF) effects has been estab-
lished recently by measurements of the force law between
two rigid, parallel plates due to the radiation pressure of
broadband acoustic noise [1]. This measurement consti-
tutes an acoustic analog to the Casimir effect [2], which is
the force between two closely spaced uncharged parallel
conducting plates due to the radiation pressure of the ZPF.
In this Letter, we report on theory that shows that the drag
on a bubble can be modified by the presence of isotropic,
homogeneous, broadband acoustic noise, when the band
overlaps the bubble’s resonance width. This acoustic-
induced drag is the acoustic analog to the Einstein-Hopf
drag [3].

Einstein and Hopf studied a simple model for the ther-
mal equilibrium between oscillating dipoles and isotropic,
homogeneous, electromagnetic thermal fluctuations. Be-
cause of recoil associated with emission and absorption
of fluctuating electromagnetic radiation, a particle experi-
ences a random walk in phase space, leading to an average
growth in its kinetic energy. However, this accelerating ef-
fect is balanced by a dissipative, velocity dependent drag
force, because of Doppler shifts. Einstein and Hopf ap-
preciated the energy balancing action of the two oppos-
ing effects, which we understand today as a manifestation
of the fluctuation-dissipation theorem. They showed that
this energy balance, and the application of the equiparti-
tion theorem for energy solely to the translational motion
of the oscillator, leads to the Rayleigh radiation law.

In the model considered by Einstein and Hopf, a dipole
is composed of a mass m and charge e bounded by an elas-
tic restoring force to a mass M ¿ m of opposite charge.
Einstein and Hopf restricted the oscillations of the dipole
to one direction, for which the equation of motion is

d2p
dt2 2 G

d3p
dt3 1 v2

0p �
3
2Gc3Ez , (1)

where p is the oscillator dipole moment, G � 2e2�3mc3

is the radiation damping constant, c is the speed of light,
and v0 is the characteristic frequency of the oscillator. In
Eq. (1) we have assumed a dipole oriented along the z
0031-9007�00�84(11)�2378(3)$15.00
direction, with Ez the z component of the electric field of
the random radiation.

When viewed from a moving particle, the fields experi-
enced by the particle are Lorentz transformed to a frame
moving with the particle. In this frame, the spectrum
of radiation loses its isotropy, giving rise to a velocity-
dependent force. If we assume translational motion along
the x axis, the force on the particle due to the interaction
of the dipole with the electromagnetic fluctuations is

F0
x �

≠E0
x

≠z0
p0 2 B0

y
dp0

dt0
, (2)

where primed quantities are evaluated in the particle’s
frame. Evaluation Eq. (2) for an electromagnetic ther-
mal spectrum ´�v, T � leads to the velocity dependent drag
force [3,4]

F0
x � 2

6
5p2Gc

µ
´�v0, T � 2

1
3v0

≠´�v0, T �
≠v0

∂
y , (3)

where y is the velocity of the particle, and the spectrum is
evaluated at the characteristic frequency of the dipole. In
thermodynamic equilibrium the expression in brackets is
non-negative and vanishes for the special case of a spec-
trum proportional to the cube of the frequency. This corre-
sponds to the zero-temperature limit value of ´�v, T � 0�,
or zero-point field spectrum, which has the form ´0�v� �
h̄v3�2p2c3, where h̄ is the reduced Planck’s constant.

In the acoustic analog, electromagnetic thermal fluctua-
tions are replaced by an externally imposed isotropic and
homogeneous acoustic noise. In a fluid of density r and
speed of sound cs, the fluctuating acoustic pressure field
can be written as traveling waves of the form

pa�x, t� � rcs

Z
d3k f�v� cos�vt 2 k ? x 2 uk� ,

(4)

where v � csk. Here the random phase uk has been intro-
duced to indicate the fluctuating character of the acoustic
noise. For isotropic noise, the function f�v� can depend
only on v, and it is connected to the spectral energy den-
sity ´�v� by
© 2000 The American Physical Society
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´�v� �
2pr

c3
s

v2f2�v� . (5)

In a frame moving with velocity v , the acoustic noise
spectrum is no longer isotropic, and in this frame, the
pressure can be written as

p0
a�x0, t� � rcs

Z
d3k f�v0� cos�v0t 2 k ? x0 2 uk� ,

(6)

where v0 � v 1 v ? k and k0 � k.
Consider now the volume oscillations of a bubble in-

duced by the acoustic field. For small volume oscillations,
the equation of motion for the volume V 0 in the instanta-
neous frame of the bubble is

V̈ 0 1 R �V 0 1 v2
B�V 0 2 V0� �

S2
0

m
�p0 2 p0

e� , (7)

where p0 is the hydrostatic pressure at which the bubble
has the mean volume V0, S0 is the equilibrium surface
area of the bubble, p0

e � p0 1 p0
a is the instantaneous

external pressure that would exist in the liquid at the bubble
location in the absence of the bubble, R is a measure of
the damping effects (thermal, radiation, and viscous), vB

is the characteristic frequency of oscillations of the bubble,
and m � 3rV0 is the entrained mass of the fluid, which is
about 3 times the mass of the fluid displaced. Equation (7)
applies for wavelengths of sound much larger than the
bubble radius. From Eqs. (6) and (7) we can solve for
the volume oscillations dV 0 � V 0 2 V0:

dV 0 � 2
rcsS

2
0

mR

Z
d3k

f�v0�
v0

sina�v0�

3 cos�v0t 2 a 2 uk� , (8)

where cota�v0� � �v2
B 2 v02��Rv0. Because the origin

of the moving frame coincides instantaneously with the
bubble at time t, the phase term 2k ? x0 is absent from
the argument of the cosine.

For wavelengths of sound much greater than the size of
the bubble, the translational force exerted on the bubble
by the sound field is equal to the bubble volume times the
negative gradient of the acoustic pressure at the bubble’s
location. The average acoustic force is then given by the
ensemble average over random phases

F � 2�dV 0=p0
a� �

r2c2
sS2

0

2mR

Z
d3k

f2�v0�
v0

sin2a�v0�k .

(9)

For velocities y ø cs, and small damping, R ø vB,
Eq. (9) leads to the velocity-dependent drag force

F � 2p2a

µ
´�vB� 2

1
3vB

≠´�vB�
≠vB

∂
v , (10)

where a is the bubble radius at the equilibrium volume V0.
In the acoustic analog to the Casimir effect [1], band-
limited acoustic noise yields an effect not considered in the
electromagnetic counterpart, namely, it can cause the force
to be attractive or repulsive as a function of separation
between the plates. In the present analog, band-limited
acoustic noise also causes effects not considered in the
electromagnetic Einstein-Hopf drag. For some spectral
shapes, if the lower frequency of the spectrum coincides
with the resonant frequency of the bubble, the force (10)
can act in the direction of motion. That is, the noise exerts
a negative drag on the bubble in this case. Thus, besides
providing the acoustic analog to the Einstein-Hopf drag,
our investigations can lead to analogs to mechanisms for
stochastic acceleration of charged particles that are used to
explain cosmic rays.

The drag force (10) is in addition to the hydrodynamic
drag force on a bubble. For millimeter-size air bubbles in
water, the typical Reynolds number is about 60, and we
may use the analytical expression derived by Moore [5] to
determine the hydrodynamic drag. Moore’s expression for
the drag coefficient allows for interfacial slippage and it is
given by

CD �
48
Re

µ
1 2

2.2

R
1�2
e

∂
, (11)

where Re � 2ay�n is the Reynolds number for a bubble
of radius a moving with velocity y in a fluid with kine-
matic viscosity n.

The resonance frequency of volume oscillations of air
bubbles is determined by the compressibility of the internal
gas and the entrained inertia of the liquid. For bubbles
that are greater than 10 mm in diameter, the resonance
frequency (in Hz) of a bubble in water at atmospheric
pressure can be determined by dividing 3.28 by the bubble
radius in meters. Bubbles with resonance frequencies of
about 10 kHz (�0.3 mm) have typical Q values of about
15, corresponding to a bandwidth of about 0.7 kHz.

To determine the order of magnitude effect of the
acoustic-induced drag (10), consider a flat noise spectral
distribution ´�v� with a roll-off of 114 dB�octave [6]
and with an rms acoustic pressure of 40 kPa in a band
of frequencies between 8 and 10 kHz (Fig. 1). Figure 2
shows a plot of the terminal velocity as a function of
bubble resonance frequency when the buoyant force of
an ascending bubble, the hydrodynamic drag force, and
the acoustic-induced drag force balance each other. The
terminal velocity is normalized to its value in the absence
of acoustic noise. When the bubble’s resonance width
does not overlap with the band of frequencies of the noise,
the drag on the bubble is not modified by the presence
of the acoustic noise. However, if the resonant frequency
of the bubble coincides with the upper frequency of the
spectrum in Fig. 1, the terminal velocity is reduced by
20% of its sound field-free value, and it is reduced by 2%
if the bubble’s resonance width overlaps with the band of
frequencies of the noise. When the resonant frequency
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FIG. 1. Acoustic noise spectrum in a band of frequencies
between 8 and 10 kHz, with an rms pressure of 40 kPa. The
spectrum corresponds to the transfer function of a 19-pole
(114 dB�octave roll-off) Tchebyshev bandpass filter.

of the bubble coincides with the lower frequency of the
spectrum in Fig. 1, the noise exerts a negative drag on the
bubble, and the terminal velocity is bigger than its sound
field-free value by 30%. In an experiment in progress, we
are seeking to measure the large effects predicted to occur
for bubbles with resonant frequencies equal or near the
edges of a spectrum like the one in Fig. 1.

The modifications of the drag experienced by a bubble
in the presence of acoustic noise suggest possible appli-
cations to bubble migration and to heat transfer in a two-
phase fluid, and also present the attractive possibility of
controlling the reaction rates in chemical engineering
processes carried out in reaction beds in a largely bubbly
environment.

The acoustic drag experienced by particles undergoing
volume oscillations also suggests possible applications to
acoustophoresis, separation of particles using high inten-
sity sound waves. Solid particles similar in size, charge,
and density cannot be separated by filtration, electrophore-
sis, or centrifugation. However, if the particles have
different elastic properties, their resonant frequencies are
different. As shown in Fig. 2, a high intensity band-
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FIG. 2. Terminal velocity as a function of bubble resonance
frequency. The velocity is normalized to its value in the absence
of acoustic noise.

limited noise spectrum with a sharp roll-off acts as a
discrete separator of these particles while they are carried
by an external flow.
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