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ABSTRACT 

This thesis is the design of a laser-induced fluorescence technique for use in the 

characterization of the fuel injection delay of various fuels, due to differences in bulk 

modulus. The technique is designed to work with an operational diesel engine having 

readily accessible glow-plug ports. The optical adapter designed for use through the 

glow-plug port is used as both the transmitting port for the excitation signal and the 

receiving port for the fluorescence signal. 

 The prototype system was installed on a Detroit Diesel 3–53 two-stroke diesel 

engine. The beginning of the injection cycle is measured by a proximity probe set to 

detect injector compression to the point where the injector chamber is sealed. The actual 

entry of fuel into the cylinder is measured using laser induced fluorescence of an organic 

laser dye seeded fuel, excited by a 532-nm laser. The time/crank angle delay from the 

start of fuel compression to fuel entry into the cylinder can then be correlated to bulk 

modulus and cetane number. The combustion event can also be detected using the same 

optics and its timing correlated with known fuel properties.  
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I. INTRODUCTION AND BACKGROUND  

A. NAVY FUEL CONSUMPTION 

The Department of Defense is the single largest energy user in the nation, 

purchasing approximately 60% percent of its FY 2012 fuel needs from outside the United 

States [1]. 

With a projected fuel consumption for FY 2013 of over 114 million barrels and 

over 75 % of Department of the Navy fuel resources going to meet operational needs; the 

navy rightly views energy as a vital strategic resource [1, 2]. The Secretary of the Navy 

has set a Department wide goal to reduce non-tactical petroleum use by 50% by 2015 and 

to source approximately 50% of Department of the Navy energy requirements from 

alternative sources by 2020 [2]. A major piece of the puzzle in meeting these goals is 

developing alternative fuels that are compatible with current naval platforms and are 

“drop-in” replacements for JP-5 and NATO F-76, the current fleet standards. However, 

the use of seawater compensated shipboard storage tanks, legacy engine technology, high 

flash point requirements of 60ºC (140ºF) minimum, and need for long term fuel storage 

pose challenges to the use of conventional methylated and ethylated vegetable oil, 

otherwise known as fatty acid methyl ester (FAME) and fatty acid ethyl ester (FAEE) 

biofuel. Throughout this paper FAME will be used to refer to all such fuels. 

B. BENEFITS AND KNOWN ISSUES OF BIOFUELS 

Currently, blends of FAME biofuel and number two diesel fuel are readily 

available to the public in concentrations of up to 80% biofuel (B80). Most automobile 

and heavy equipment manufacturers have approved blends of up to 20% biofuel (B20) 

for use in their engines without any modifications. Biodiesel and biodiesel blends have 

the following benefits over standard petroleum derived fuel: 

 Reduced wear on metallic engine components 

 Reduced emissions of particulate matter, sulfur dioxide, carbon monoxide 

and unburned hydrocarbons 
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 Reduced life cycle carbon dioxide emissions 

 Reduced cost in certain markets 

 Readily produced from widely available crop wastes or purpose grown 

crops 

Unfortunately, traditional biofuels also have several drawbacks that make them 

unsuitable for use in naval applications. Among them are: 

 Increased susceptibility to biofouling in seawater compensated tanks 

 Poor long-term storage due to product oxidation 

 Incompatibility with certain plastic and rubber engine components 

 Formation of water-fuel emulsions in fuel handling systems 

 Slightly increased nitrous oxide emissions 

 Higher specific fuel consumption 

 Highly variable product characteristics and quality dependent on feed 

stock and production methods  

Several of these issues can be addressed through the use of synthetic paraffinic 

kerosene (SPK) or hydroprocessed renewable diesel (HRD) and their blends with 

standard military fuels (F-76 and JP-5). The low aromatic and high paraffin content of 

these fuels means that they are stable in long term storage, do not readily emulsify with 

water, and resist bio-contamination. 

C. UNIQUE PROPERTIES OF HYDROPROCESSED RENEWABLE DIESEL 
AND SYNTHETIC PARAFFINIC KEROSENE  

HRD, also known as either hydroteated or hydroprocessed renewable diesel, is a 

second-generation biofuel. It can be produced from a wide range of biologically based 

oils, including animal fats, and plant-based oils and is miscible with F-76. During the 

hydrotreating process, oil fractions are reacted with hydrogen and a series of proprietary 

catalysts, removing oxygen from the long chain hydrocarbon molecules of the fuel. The 
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resulting product has none of the long-term storage and handling issues associated FAME 

based fuel, due to a very low concentration of aromatics and oxygenates [3]. 

Fuel produced this way typically has a high cetane number, leading to more rapid 

auto ignition and fewer exhaust particulates than traditional petroleum-based fuels. The 

hydrotreating process is regularly used by petroleum refineries in the production of ultra-

low sulfur diesel fuels and cold weather optimized fuel blends; as such, much of the 

costly infrastructure required to produce HRD on a large scale is already in place. 

Unfortunately, many original equipment manufacturers (OEMs) are unfamiliar with the 

performance of high cetane number fuels in their machinery and are uncomfortable 

certifying it for use. The sample used in this paper (HRD-76) was obtained from the 

Naval Air Systems Command, Fuels Division, Patuxent River, MD. It was produced from 

algae based oil and has a cetane number of 78; for comparison the average cetane number 

for F-76 is 46 [4, 5]. 

SPK, produced using the Fischer-Tropsch process, was originally derived in 

Germany in the 1920s and 1930s in response to fuel shortages. The initial step in the 

process is the gasification of a feedstock fuel to produce carbon dioxide, carbon 

monoxide and hydrogen gas. Typically, coal or natural gas is used as the carbon-

hydrogen feedstock; however, biologically based oils and methane may also be used. The 

second step involves reacting steam with carbon monoxide to produce more hydrogen gas 

and achieve the desired carbon/hydrogen ratio. Lastly, reaction with a catalyst allows the 

formation of various long chain hydrocarbons. Much like hydro-treated fuels, the fuel 

produced via the Fischer-Tropsch process lacks both aromatics and oxygenates and has 

none of the long-term storage and handling issues associated with FAME-based fuels. It 

is also free of sulfur, vanadium, and other contaminants. Various formulations of SPK 

have been successfully tested for use in aircraft as a replacement for JP-5 and its civilian 

counterpart Jet-A [6]. This fuel typically has a rather low cetane number, and as with its 

counterpart HRD-76, many OEMs are uncomfortable certifying its use in their 

equipment. The sample used in this paper is provided by Dr. (Tim) James Edwards of 

Wright Patterson Air Force Research Laboratories and has a cetane number of 24 [5,7]. 
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D. FLEET FUEL UTILIZATION 

The U.S. Naval fleet relies upon two primary fuels, F-76 and JP-5, to meet its 

needs across a wide variety of operational platforms. Both fuels have been standardized 

to perform well in military storage and handling systems, meet shipboard safety 

requirements, and tolerate seawater contamination.  

However, JP-5 and F-76 were developed to meet very different operational needs. 

JP-5, and other kerosene-based jet fuels, such as JP-8 and Jet-A, are used almost 

exclusively in gas turbine engines, where combustion is a continuous steady-state event. 

In contrast, F-76 must function well in gas turbines, steam boilers, and diesel engines. 

Specifically, the challenge is in meeting the requirements for satisfactory continual use in 

diesel engines, where combustion is a transient event that must be continually reproduced 

with precise event timing. It is the effect of various fuel properties on event timing that 

the proposed technique is intended to study. 

E. BULK MODULUS 

Bulk Modulus is a measure of a substance’s resistance to uniform compression 

and is defined as
dP

K V
dV

  , the ratio of pressure to volumetric strain. Equivalently it 

can be defined as 
dP

K
d




  where   is the density and 
dP

d
 is the derivative of pressure 

with respect to density. For a fluid, the bulk modulus, K, and the density   define the 

speed of sound, c, and other mechanical waves, including pressure, where 
2c

K


  [8]. 

Bulk modulus is of particular concern in engine timing. A higher bulk modulus of 

compressibility results in a higher speed of sound in the fuel blend, and thus the pressure 

wave generated when the rocker arm impacts the injector. This leads to an earlier entry of 

fuel into the combustion cylinder by as much 1.0 crank angle (CA degrees) when using 

B100 (a 100% methyl soyate, FAME-type fuel) [9]. The advanced injection timing 

results in the 2–4% increase in NOx emissions often seen when using FAME biofuel 

blends. Conversely, a low bulk modulus has the opposite effect, retarding injection 
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timing by as much as 0.5 CA degrees, as seen when using NorPar-13, a paraffinic 

hydrocarbon with a particularly low bulk modulus of approximately 1,200 MPa (174 ksi) 

at 3.45 Mpa (500 psi) [7]. The retarded injection timing reduces NOx formation, but can 

lead to poor combustion and greater soot formation [10, 11].  

Table 1, shows the bulk moduli of SPK, HRD, F-76 and 50/50 blends of F-76 

which each of the alternative fuels. As a reference, the bulk modulus for water is 

approximately 2150 MPa (311.8 ksi) and the bulk modulus of mercury is approximately 

28,500 MPa (4133.6 ksi) [12]. 

Table 1.  Bulk Modulus of SPK, HRD, F-76, and 50/50 Blends of F-76 with 
HRD and SPK.  

Fuel 

Bulk 
Modulus 
(MPa) 
 

SPK 
50%SPK/ 
50% F-76 HRD 

50%HRD/ 
50% F-76 F-76 

1258
1

 1343
2

 1400
3

 1414
3

 1428
3

 
Note 1: Found in literature [13]. Awaiting specific sample test results from SWRI. Note 2: Estimated using 
a linear model. Note 3: As measured by SWRI at 23.5ºC (74.3ºF) and 3.45 MPa (500 psi), [14]. 
 

The range in bulk moduli shown in Table 1, (1258 MPa to 1428 MPa), while not 

terribly large, is great enough to impact fuel behavior within and engine’s injection 

system. 

F. CETANE NUMBER 

Cetane number is a measure of how readily a fuel auto ignites. This is of 

particular concern for fuel combustion timing, with a high cetane number indicating a 

shorter ignition delay. High cetane number fuels have been correlated with a slower rate 

of pressure rise and a lower peak pressure during combustion [5]. This results in less 

overall stress on engine components. Table 2 lists the cetane numbers for SPK, F-76, 

HRD, and 50/50 blends of F-76 with both alternative fuels. 
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Table 2.  Cetane Number of SPK, HRD, F-76, and 50/50 blends of F-76 
with HRD and SPK, from [15]. 

Fuel 

Cetane 
Number 
 

SPK 
50%SPK/ 
50% F-76 F-76 

50%HRD/ 50% 
F-76 HRD 

24 35 46 66 78 

 

Low cetane number fuels can problematic for diesel engines, resulting in a 

significant combustion delay followed by a swift, sharp rise in pressure that results in a 

higher stress on engine components [5]. Low cetane fuels have also been linked to high 

levels of NOx and particulate matter in exhaust [10]. A previous study reported that the 

Detroit Diesel 3–53 in the Naval Postgraduate Schools’ Marine Propulsion Laboratory 

(MPL) would not operate on blends containing greater than 50 % SPK [16]. 

Cetane number and bulk modulus can have competing effects; research conducted 

at the University of Pennsylvania Energy Institute shows that a Fischer-Tropsch fuel with 

high cetane number and low bulk modulus produces retarded injection timing, followed 

by a minimal injection delay, resulting in low NOx formation, low particulate matter 

emissions, and gradual cylinder pressure rise [11].  

G. OTHER FUEL PROPERTIES 

Another relevant fuel property when examining injection timing and the operation 

of fuel injectors and fuel pumps is lubricity. Lubricity is a measure of a lubricant’s 

performance in a system and is not a material property; it is usually specified in terms of 

the degree of wear scarring that occurs between two fuel-coated metal parts as the come 

in contact. The lubricating properties of a fuel are particularly important for the operation 

of fuel pumps and injectors where the fuel itself, not the engine oil, serves to lubricate the 

moving parts as it moves through the system. Low lubricity fuel has been shown to cause 

high wear and scarring [17]. Hydrotreatment of conventional diesel fuels to reduce sulfur 

content and improve stability has had the unintended consequence of also removing the 

olefins and aromatics that contribute to lubricity [17]. It can be expected that both HRD, 

which under goes a similar hydrotreatment process and SPK which is purposefully 
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formulated for a low aromatic and olefin content will exhibit low lubricity and impact 

injection system behavior. Table 3 breaks down the three fuels of interest by percent 

paraffin, olefin and aromatic content. 

Table 3.  A breakdown of fuel type showing composition by percent 
paraffin, olefin, and aromatics from [5]. 

Fuel Composition 

Fuel Type F-76 HRD SPK 

% paraffin 70.7 98.5 94.3 

% olefin 2.3 0.9 4.7 

% aromatics 27 0.6 1.0 

 

H.  OBJECTIVES 

This thesis had four primary objectives. The first was to develop an optical 

method for determining the start of fuel injection into the combustion cylinder of an 

operational diesel engine. The second goal was to further refine the optical 

instrumentation and measurement techniques to allow the measurement of the initiation 

of combustion. The third objective was to design, manufacture, and install the mechanical 

components necessary to mate the optical equipment with the Detroit Diesel 3–53 in the 

Naval Postgraduate School’s Marine Propulsion Laboratory. Finally, this project aimed to 

modify the subject engine to allow the timing of the initiation of injection, the entry of 

fuel into the combustion cylinder, and the initiation of combustion in crank angle 

degrees. 
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II. LITERATURE REVIEW 

A. HYDROPROCESSED RENEWABLE DIESEL EFFECTS ON ENGINE 
PERFORMANCE 

Previous experimental work with hydroprocessed diesel fuels in direct injection 

diesel engines has generally shown satisfactory performance.  

Peterson et al. [5] tested HRD-76 in a two-stroke, direct injection, naturally 

aspirated marine diesel engine with mechanical unit injectors and showed satisfactory 

results with blends ranging from 25% HRD/75% F-76 to 100% HRD. An increased 

proportion of HRD resulted in an increased cetane number, a decreased ignition delay 

(IGD) and lower peak pressure and rate of pressure rise. The summary effect was that the 

high cetane number fuel blends resulted in reduced structural fatigue, vibration, and 

noise. 

Sugiyama et al. [18] tested a hydrotreated vegetable oil (HVO) in a direct 

injection, turbocharged, automotive diesel and found both decreased smoke and 

particulate matter emissions as well as reduced fuel consumption (up to 5%) as compared 

with conventional diesel fuel. Sugiyama’s study found improved combustion and 

concluded that HVO can be adopted for use in direct injection diesel engines over a wide 

range of blend ratios. 

Kuronen et al. [19] compared HVO to a European specification sulfur-free 

conventional diesel (EN 590) in two heavy-duty engines and two city buses. The effect 

on emissions of the HVO was a 14% percent reduction in NOx, a 46 % reduction in 

particulate matter, and 78% reduction in carbon monoxide (CO). However, due to the 

lower density of HVO, volumetric fuel consumption was 5–6% higher than with 

conventional fuel [19].  

Murtonen et al. [20] conducted a similar study in 2010, examining EN590, HVO, 

FAME and a high cetane number gas-to-liquid (GTL) or Fischer-Tropsch process fuel. 

This study found that, with the exception of NOx emissions from FAME, all emissions 
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considered harmful to human health were significantly reduced when using alternative 

fuels [20]. 

Happonen et al. [21] took the investigation into the performance of hydrotreated 

fuel one step further by adjusting various engine parameters to optimize emissions 

performance. By testing different combinations of advanced intake valve closing (IVC), 

exhaust gas recirculation (EGR) percentage, injection pressure (Pinj), and start-of-

injection timing (SOI) at 50%, 75%, and 100% loads, Happonen was able to conclude 

that is it possible to achieve a low particulate matter/low NOx emissions condition. This 

was achieved with advanced IVC, a small percentage of EGR and by increasing injection 

pressure 30−70 % depending on load. The result was that NOx emission was decreased 

30−50%, depending on load, and particulate matter by 25−33% E [21]. 

These studies establish the potential for one formulation of hydrotreated fuel to 

perform acceptably well in terms of engine emissions, fuel consumption, and structural 

fatigue. 

B. FISCHER-TROPSCH DIESEL AND SYNTHETIC PARAFFINIC 
KEROSENE EFFECTS ON ENGINE PERFORMANCE 

Although Fischer-Tropsch fuels in general have undergone extensive testing in 

gas turbine and diesel engines, previous experimental work with low cetane, SPK like 

fuels in direct injection diesel engines is somewhat limited. What work has been 

conducted, shows a positive effect on engine emissions largely due to the low aromatic 

and sulfur content of the fuel. Studies using high cetane number formulations generally 

show satisfactory performance, while those using low cetane number formulations 

demonstrate the high IGD and rough performance found with other types of low cetane 

fuel.  

Petersen et al. [5] tested an SPK with a cetane number of 24 in the Detroit Diesel 

3–53 marine diesel engine located at the Naval Postgraduate School. The SPK was 

blended with F-76 in ratios from 25% SPK/75% F-76 to 100% SPK. An increase in the 

proportion of SPK resulted in a lower cetane number and an increased IGD, with a peak 

IGD of 0.50–0.75 ms with 100% SPK versus F-76. Similarly, an increased proportion of 
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SPK also showed a higher peak cylinder pressure and rate of pressure rise. The summary 

effect was that the low cetane number fuel blends resulted in a longer IGD with a more 

rapid combustion and higher peak pressure, leading to greater structural stress on the 

engine and rough performance [5]. 

Abu-Jrai et al. [22] studied blends of ultra-low sulfur diesel (ULSD) with GTL in 

up to a 50/50 blend by volume. The study was carried out using a Lister Petter TR1, 

single cylinder experimental engine and showed that GTL or the 50/50 blend did not 

impact the start of combustion compared to the conventional diesel fuel. It did, however, 

report a significantly reduced proportion of fuel burned in the pre-mixed combustion 

phase, especially during high-load operations. This resulted in lower peak cylinder 

pressures and combustion temperatures. A second similar study by Abu-Jrai et al. [23] 

showed a slight injection delay for GTL when using a common rail injection system. This 

was attributed to the lower density and higher bulk modulus of GTL when compared to 

diesel fuel. The injection delay in conjunction with the reduced pre-mixed combustion 

phase resulted in a lower peak cylinder pressure, a lower maximum rate of pressure rise, 

and a lower maximum rate of heat release, but contradictorily no increased soot 

formation. It was concluded that the reduction in ignition delay from the higher cetane 

number and retarded SOI shift the combustion balance, resulting in less pronounced pre-

mixed combustion phase but without shifting the start of combustion [23]. 

Lin et al. [24] performed a combustion analysis of a synthetic, Fischer-Tropsch-

derived jet fuel (S-8) very similar to SPK. They concluded that the S-8 had very similar 

two-stage ignition characteristics to its military fuel equivalent JP-8, but a shorter ignition 

delay. Further, the study concluded that while the synthetic jet fuel had very similar spray 

and atomization characteristics to conventional jet fuel, the potential lubrication and 

sealing problems fostered by the absence of aromatics need to be weighed against any 

benefit from reduction in soot formation. This observation is in line with Navy 

experience in using military jet fuels (JP-5 and JP-8), both with a moderate aromatic 

content, in diesel engines [25]. 

Moses [26] reported extensively on the comparative properties of several semi-

synthetic jet fuels, which are blends of SPK and conventional jet fuel. All five SPK fuels 
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studied, produced very similar semi-synthetic jet fuels when blended 50/50 with 

conventional jet fuel. The five test fuels were chosen specifically to cover a large range of 

SPK compositions likely to result from the Fischer-Tropsch process. Moses [26] 

concludes that with the exception of lubricity and elastomer compatibility, all the 

property variations among semi-synthetic jet fuels were within the world-wide range for 

conventional jet fuel [26]. While not directly related to SPK performance in diesel 

engines, it can be inferred from this work that blends of SPK-type fuels should perform 

similarly to other low cetane, kerosene type fuels. Further, much like JP-8 and JP-5, SPK 

fuels likely require lubricity enchantment in order to reduce engine wear and tear. 

These studies establish that high cetane Fischer-Tropsch fuels can be expected to 

show a positive effect on engine emissions largely due to the low aromatic and sulfur 

content of the fuel. Further, some formulations that combine a high cetane number with 

low bulk modulus have shown a retarded injection and shift in the combustion balance, 

without affecting the actual combustion timing. This resulted in favorable low soot and 

low NOx emissions. Low cetane number formulations originally developed as synthetic 

jet fuel, likely require lubricity enchantment but otherwise should be expected to perform 

similarly to the jet fuels they are intended to replace. 

C. VARIABILITY OF BULK MODULUS AND OTHER PHYSICAL 
PROPERTIES WITH FUEL FEED STOCK SOURCE AND ITS EFFECT 
ON ENGINE PERFORMANCE 

A great deal of research has been conducted on the impacts of the properties of 

various FAME type fuels on engine performance, and general consensus exists on the 

impact of cetane number on fuel combustion. Less understood is the interaction between 

bulk modulus, viscosity, and density of a given fuel formulation with a specific type of 

fuel injection system. 

Boehman et al. [9] investigated the interaction between the bulk modulus and fuel 

injection timing using samples that included unrefined soybean oil, soy-oil based 

biodiesel, a paraffinic distillate (Norpar-13), ultra-low sulfur diesel fuel, and 

conventional diesel fuel. A positive correlation was found between the higher bulk 

modulus of vegetable oils and the biodiesel derived from them, and an advance in 



 13

injection timing. A 1.0 CA degree advance was noted when using B100 versus 

conventional diesel. The opposite trend was noted when using low bulk modulus 

paraffinic fuels, with a retardation of 0.5 CA degrees for Norpar-13. Further, it was 

concluded that the advance in injection timing seem with FAME-type biofuels causes the 

increase in NOx emissions also seen with such fuels. This study also presented data 

showing the dependence of FAME fuel bulk modulus based on the feedstock. Values 

ranged from a high of 1688 MPa (measured at 40ºC and 6.89 MPa) for methyl linolenate 

to 1489 MPa (measured at 40ºC and 6.89 MPa) for methyl laurate [9]. 

Tat and Van Gerpen [27] measured the density and speed of sound, calculating 

the bulk modulus for 21 esters and ester blends. Showing that the injection pressure pulse 

for biodiesel was 1.5–2.0 CA degrees advanced from that of conventional diesel fuel for a 

fixed injection pump system, they attributed 0.45 to 0.68 CA degrees of the timing 

advance to the 169 MPa difference in the bulk modulus. Figure 1 shows the injection line 

pressure versus CA degrees for two particular soy-based bio diesels and their blends with 

conventional diesel fuel. 

 

Figure 1. Injection line pressure for two soy based biodiesels, HPVB and 
LPVB, their 20% blends with conventional fuel and conventional diesel fuel versus 

crank angle degrees. Data taken from a John Deere 4276T equipped with a 
distributer-type injection pump, from [27]. 
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Tat and Van Gerpen [27], further showed density, speed of sound, and therefore 

bulk modulus increase as the degree of unsaturation of the fuel components increases, 

although the increase is uniform with each additional double bond added. Examining 

several variations on fuel injector technology, they further concluded that the mechanical 

unit injectors found throughout the naval fleet and on the Detroit Diesel 3–53 in the 

Naval Postgraduate School Marine Propulsion Lab are likely to be less sensitive to 

variations in bulk modulus than new pump-in-line systems or those using state-of-the-art 

electronic unit injectors. 

In a second study, Boehman et al. [28] used a single cylinder engine to examine 

the impacts on injection timing in a pump-line-nozzle system of blending Fischer-

Tropsch derived diesel fuel with low sulfur, ultra-low sulfur and biodiesel fuels. The 

study contradicted Tat and Van Gerpen’s conclusions that a mechanical fuel injection 

system is less sensitive to variations in fuel bulk modulus than an electronically 

controlled system [27, 28]. Examining data from a Cummins ISB 5.9L turbodiesel with a 

Bosch electronically controlled fuel system they saw only a 0.2 CA degree advance in 

injection timing for a 50/50 blend of low sulfur diesel fuel and B20. This is in contrast to 

the 0.5 CA degree advance seen with a purely mechanical system. It was concluded that 

the engine controller may shift injection timing due to differences in position required to 

meet the load conditions while accounting for differences in heating value and cetane 

number among the test fuels [28]. Using a Yanmar L70EE DI diesel engine, the same 

group examined the impact of a high cetane Fischer-Tropsch fuel on NOx and CO 

emissions, brake specific fuel consumption (BSFC) and injector needle lift signal. It was 

shown that the addition of a high cetane, low bulk modulus fuel retarded injection timing 

and advanced combustion timing relative to the base fuels. Further, the “late” injection 

timing blends showed lower peak pressure, lower CO emissions, and lower BSFC with 

only a modest increase in NOx [28]. 

Tat, Wang, and Van Gerpen [29] investigated the lower heating value, volatility, 

density, speed of sound, bulk modulus, and cetane number of various biodiesel 

formulations. The concluded that approximately half the start of combustion (SOC) 

advance associated with both soybean oil methyl ester and yellow grease methyl ester 
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biodiesel originated with a SOI advance. This was due both to the distributer type fuel 

injecting more fuel to compensate for the 12 % lower heating value of biodiesel and the 

effect of the fuels’ bulk modulus, viscosity, and density. When controlling for 

temperature, it was found that the delivery of bio-diesel was still higher than conventional 

fuel due to increased viscosity. When controlling for viscosity, the opposite proved to be 

true, with the delivery of conventional diesel fuel being greater than that of biodiesel. 

This was caused by the metering orifices in the fuel injection pumps restricting the fuel 

flow for more dense fuels. The remainder of SOC advance was due to the higher cetane 

number of the biodiesel [29]. Figure 2 is a concept map showing the interplay between 

cetane number, combustion timing, injection timing, fuel physical properties, and the 

production of NO. It is a visual summary of the tug-of war between competing effects 

driving combustion and ultimately engine performance. 

 

Figure 2. Concept Map of NO emissions and combustion characteristics from 
[29]  
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These studies show that although the effect of cetane number on SOC is well 

understood, the interplay of bulk modulus, viscosity, density, and injection system type 

with a fuel’s auto-ignition potential needs to be better characterized and more 

specifically, is not known for HRD. 

D. UNCERTAINTY IN LITERATURE 

Although the general effects of bulk modulus and cetane number on injection 

timing and combustion timing are understood, there interaction with, and overall impact 

on the performance of a two-stroke marine diesel is not. Such research is generally 

conducted using a single cylinder engine. Further, the behavior of a fully mechanical 

two-stroke engine such as those commonly found aboard U.S. naval vessels, running on 

either a hydroprocessed renewable fuel or a synthetic fuel is not well characterized as 

most research is focused on newer engine technologies.  
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III. EXPERIMENTAL DESIGN 

A. GENERAL OVERVIEW 

The purpose of the laser-based fluorescence technique proposed in this study is to 

determine the start of injection of fuel into the combustion cylinder. In conjunction with a 

proximity probe set to indicate to indicate when the injector plunger has sealed the 

injector chamber and a positive force is being applied to the fuel charge, the two events 

bracket the injection process and allow for a means to measure the plunger engagement, 

injection period, and start of injection into the cylinder with respect to crank-angle-

rotation via an optical encoder. Bench-top measurements found that the chamber sealed 

when approximately .3620 cm (0.1425 in.) of plunger depression occurs for the N50 

injectors currently installed on the MPL Detroit Diesel 3–53. Timing delay/advance 

would then be characterized by comparing the injection timing parameters associated 

with biofuels with that of standard diesel legacy fuels. In addition the laser optical system 

would be configured to detect combustion, allowing for the ability to measure ignition 

delay. Figure 3 is a graphical representation of this, depicting a sample cylinder pressure 

versus crank angle curve along with specific events characterizing the injection process. 
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Figure 3. Sample cylinder pressure vs. CAD curve with an overlay of the 
injection and combustion delays. 

B. LASER FLUORESCENCE 

The measurement technique presented in this study relies on the use of laser 

induced fluorescence (LIF) to detect the presence of a dye-seeded fuel spray. LIF is often 

used to detect the fluorescent signal generated by an organic dye for the purpose of flow 

visualization and other measurements. Typically, an excitation wavelength is selected to 

be sufficiently separated from the fluorescence wavelength of the species of interest. The 

incoming laser excites the electrons of the target species to a higher energy level. After a 

period of time known as the fluorescence lifetime, the electrons de-excite and emit light 

at a longer wave length than the original excitation wavelength [30]. Figure 4 is a 

graphical representation of this process. Further details are available in [30]. 
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Figure 4. A graphical representation of laser induced fluorescence, showing an 
excitation wave length in green and the fluorescent response  

at a lower, orange, wave length, after [31]. 

A diode pumped, 100 mW, solid state, 532 nm, laser powered by an in house built 

power supply is used to excite pyrromethene 597 (Exciton Corporation of Dayton, Ohio) 

dissolved in the diesel fuel and its blends with HRD and SPK. Figure 5 is a sample 

absorption and emissions spectra provided by Exciton, for pyrromethene dissolved in 

gasoline. The manufacturer currently does not have specific spectra for diesel fuel, or F-

76 available, but states that a similar single modal response can be expected with a 

similar peak absorption wavelength ( λA max ) and peak fluorescence wavelengths ( λF max). 

Figure 6 is a similar curve from a 2004 study by Prieto et al. [32] showing the behavior of 

pyrromethene 597 in isooctane and 2,2,2-triflouroethanol. 
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Figure 5. Absorption and emissions spectra for pyrromethene 597 dissolved in 
gasoline, after [33]. 

 

Figure 6. Absorption (bold lines) and fluorescence (thin lines) spectra of 
pyrromethene 597 at 2x10–6 M in isooctane (a) and 2,2,2-trifloroethanol (b). 

Intensity is normalized to the fluorescence quantum yield, from [32]. 
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Prieto et al. [32] studied the response of pyrromethene 597 dissolved in 22 

different solvents to excitation at 495 nm. They reported λA max of 520.8 to 529.0 nm and 

λF max ranging from 560.6 to 571.2 nm. The fluorescence lifetime varies from 3.91 to 4.69 

ns. In correlating this data to that provided by Exciton [33,34], the only common solvent 

is ethanol, for which both sources report the same λA max, but the λF max reported by the 

manufacturer is 6 nm less than that reported by Prieto [32]. This may be due to 

differences in concentrations tested as Prieto reports that high dye concentrations shift the 

fluorescence band to lower energies [32]. The data all show a similar single modal 

response with an expected stokes shift from 37.7–41.9 nm. Since the fuels being excited 

in this study are a blend of multiple components rather than pure solvents, a wider 

variance in the fluorescence curve than is shown in Figures 5 and 6 is expected. Figure 7 

is a photograph taken during bench-top testing, and shows both the laser excitation and 

the responding fluorescence. 

 

Figure 7. The 532 nm laser exciting a response from F-76 seeded  
with pyrromethene 597. 
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C. EXPERIMENTAL SETUP 

A schematic view of the relative positioning of the fuel injector, displacement 

sensor, and laser sapphire rod is shown in Figure 8. A single sapphire rod, mounted in the 

glow plug port of the MPL’s Detroit Diesel 3–53 serves as both the transmitting and 

receiving path for the laser signal [35]. The 532 nm excitation wavelength generates a 

fluorescence response from the pyrromethene seeded fuel spray, which is recorded by the 

data acquisition system. The time differential between the displacement sensor signal 

indicating sealing of the injector chamber, and the laser fluorescence signal indicating a 

fuel spray in the cylinder, can be correlated to CA degrees and will serve to bracket the 

injection event. Figure 9 is a schematic of the complete experimental set-up, showing the 

relationship of the engine mounted sensors to the free-standing optics assembly, 

excitation laser, and signal processing oscilloscope and computer [35]. 

 

Figure 8.  Schematic view of the displacement sensor, laser sapphire rod, and 
dyed fuel spray. after [35].  



 23

 

Figure 9. Schematic of the complete experimental set-up, showing the 
relationship of the engine mounted sensors to the  

free-standing optics assembly, signal generating laser, and  
signal processing oscilloscope and computer, after [35]. 

1. Engine 

The engine used is a Detroit Diesel 3–53 currently located in the Marine 

Propulsion Laboratory at the Naval Postgraduate School. It is an in-line, direct injected, 

two-stroke engine that was used to power an Army semi-amphibious vehicle, the Gamma 

Goat. This particular variant of the 3–53 has glow plug ports, which were the key 

consideration in designing the configuration of the optical system. Table 4 lists key 

specifications for this engine. 

 

 

 

 

 



 24

Table 4.  Specifications for Detroit Diesel 3–53 from [36]. 

Detroit Diesel 3–53 Specifications 
Model Number 5033–5001 N 

Number of Cylinders 3 

Bore and Stroke 9.84 x 11.43 cm 
(3.875 x 4.5 in.) 

Engine Displacement 2605.5 cm3  
(159 in.3) 

Compression ratio 21:1 

Maximum Power Output 101 hp at 2,800 rpm 

Maximum Torque 278 N-m (205 ft-lbs )  
at 1,560 RPM 

Brake mean Effective Pressure 669 kPa (97 lb/in.2) 

 

2. Displacement Sensor 

The proximity probe used to detect the displacement of the top of the injector is 

model E2E-CR8C2, produced by Omron Corp. of Kyoto, Japan. It is a cylindrical, 4 mm 

diameter, pre-wired, oil resistant probe with a sensing distance of 0.8 mm. The sensor is 

designed to detect ferrous metal of a minimum size 5 mm x 5 mm x 1 mm, and has a 

response frequency of 3 kHz. Figure 10 and Figure 11 show sensing distance curves for 

this family of sensors. The complete data sheet can be found in Appendix A. 
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Figure 10. Side length sensing distance of E2E-CR8 family of sensors for 
various metals from [37] 

 

Figure 11. Off center displacement versus sensing distance for  
E2E-CR8 family of sensors from [37] 

Figure 12 is a 3-D rendering, produced in Solidworks, of the bracket designed to 

hold the proximity probe in place. The bracket is designed to install on one of the rocker 

arm bracket bolts. A sensor holder, then positions the proximity probe .3620 cm (0.1425 
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in.) below the top of the injector. Figure 13 is a photograph of the installed bracket and 

mounted sensor. Detailed drawings are available in Appendix B. 

 

Figure 12. 3-D rendering, produced using Solidworks, of the complete 
mounting bracket for the proximity probe, courtesy of D. Seivwright. 

 

Figure 13. E2E-CR8C2 probe and mounting bracket installed on the head of the 
MPL’s Detroit Diesel 3–53. 

3. Sapphire Rod Assembly 

The sapphire rod assembly consists of an external instrument bracket, an 

assembly tube, upper and lower rod housings, and the sapphire transmission rod.  
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a. Sapphire Rod  

The sapphire rod was manufactured of HEM stock material by INASCO 

Corporation of Quakertown, PA. Dimensions and specifications of the sapphire 

transmission rod are shown in Table 5. A detailed drawing is available in Appendix C. 

Table 5.  Laser Transmission Rod Specifications from [37] 

Laser Transmission Rod Specifications 
Length  10.16 cm (4 in.) 
Diameter  0.20765 cm (0.1875 in.) 
Hardness 9 Mohs 
End Shape 45 deg. bevel 
Transmissibility 85–87% (500–1000 nm) 
Surface quality 60–40 scratch and dig 
Smoothness <20 Angstroms 
Flatness 0.25 wave/inch 
Crustal Orientation 0 degrees 

 

b. Upper and Lower Rod Housings 

The design of the upper and lower rod housings is loosely based on a similar 

fitting produced by Swagelok of Solon, OH. Figure 14 is a photograph of the upper and 

lower rod housings, polytetrafluoroethylene (PTFE) ferrules, and one collimator lens.  

 

 

Figure 14. Sapphire rod, upper and lower rod housings with PTFE ferrules, and 
collimator lens. 

 



 28

The lower housing is 5.08 cm (2.0 in.) long with a 0.476 cm (3/16 in.) bore. The 

lower set of threads (M10 x 1.0 RH) mates to the engine glow plug port. The upper set of 

threads (3/8 x 24 UNF RH) mates to the upper rod housing. Between the two sets of 

threads is a 1.111 cm (7/16 in.) hex fitting, to allow the assembly to be firmly screwed 

into the glow plug port. Between the upper and lower housings is a set of 0.476 cm (3/16 

in.) PTFE ferrules (Swagelok part number T-303–1 and T-304–1). The ferrules serve to 

make a firm pressure tight seal around the sapphire rod to prevent combustion gases from 

escaping. PTFE was used in place of steel for flexibility to account for the different 

coefficients of expansion of the rod and housing while providing for a proper seal 

throughout the operating temperature range of the engine. The upper housing has a  

1.429 cm (9/16 in.) hex fitting to allow it to be tightened onto the lower housing. The top 

of the upper housing is bored out to a width of 1.050 cm (0.4133 in.) and a depth of 0.399 

cm (0.157 in.), and threaded (M11 x 0.5) allow the attachment of a collimator lens. The 

fitting has a straight through bore of 0.389 cm (0.153 in.) to allow the passage of light 

from the collimator lens to the sapphire rod. Detailed drawings are available in 

Appendices D and E. 

c. Assembly Sleeve 

The assembly sleeve is 9.784 cm (3.852 in.) long with a 1.895 cm (0.746 in.) 

outer diameter. It is bored to an internal diameter of 1.50 cm (0.59 in.) for 5.641 cm 

(2.221 in.) and an internal diameter of 0.652 in for a length of 1.631 in. At the wider end 

there is a 0.089 cm (0.035 in.) chamfer that matches the interior of the glow plug port. 

Figure 15 shows the complete sapphire rod assembly, with the sleeve sitting over the 

upper housing.  
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Figure 15. Complete sapphire rod assembly, sapphire rod and lower housing 
protruding from the sleeve. 

The purpose of the sleeve is to both prevent abrasion between the fiber optic cable 

and the rough cast interior of the glow plug port and to transmit a positive force to the top 

to the upper rod housing, preventing the sapphire rod and rod housing from shifting due 

to changing pressures in the cylinder. Figure 16 is a 3-D section view, produced in 

Solidworks, of the complete sapphire rod assembly. Detailed drawings are available in 

Appendix F. 

 

Figure 16. Section view of the complete sapphire rod assembly showing the 
rod, upper and lower housings and the sleeve. 

4. External Instrument Bracket 

The external instrument bracket is designed to mount to the exhaust manifold of 

the Detroit Diesel 3–53 engine and secure the sapphire rod assembly. The bracket bolts to 
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the exhaust manifold through two purpose added bosses, and clamps around the top of 

the sapphire rod assembly tube. The bracket, as shown in Figure 17, is designed to fit 

over a previously existing boss that had been used to mount an exhaust temperature 

sensor.  

 

Figure 17. External instrument bracket shown mounted to a Detroit Diesel 3–53 
exhaust manifold. 

The top of the bracket is angled 47º from the horizontal to match the incline of the 

glow plug port. The 1.91 cm (0.75 in.) clamp is secured with #8–32 size screw. The 

clamping force is sufficient to prevent any motion of the tube and therefore the entire 

sapphire rod assembly. Figure 18 shows the instrument bracket mounted on the engine in 

addition to a section view of the complete assembly as seen from the left side of the 

engine. Also of note in the section view is the location of the engine seal, the threads on 

the lower housing of the sapphire rod assembly mate to threads within the glow plug port. 

Detailed drawings are available in Appendix G. 
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Figure 18. Photos of the instrument bracket mounted to the Detroit Diesel 3–53 
and section view, produced in Solidworks, from the left side showing the complete 

sapphire rod assembly mounted in the engine. 

5. Laser 

The excitation laser used in this set-up is 532 nm, diode pumped, 100 mW, solid 

state laser with an in house built power supply. The laser was manufactured by Elforlight 

Ltd. of Daventry, UK. Specifications are shown in Table 5. 

Table 6.  Specifications for Laser from [35] 

Model Elforlight G4+100 
Wavelength 532 +/- nm 
Energy 100 mW 
Polarization Vertical (s) 
Noise < 0.5% RMS (typ 0.2%) 
Divergence <1mRad 

 

6. Lens-Sensor Assembly 

The parts of the lens-sensor assembly are all mounted a CM1 series cage-cube, 

produced by Thorlabs Inc. of Newton, New Jersey. The cage-cube contains an integrated 

filter mount capable of holding a rectangular lens 25 mm x 36 mm and up to 3 mm thick, 
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at a 45º angle to an incoming light beam. It also allows for the attachment of up to four 

external components. Figure 19 is a catalog image of a cage-cube and integrated filter 

mount. The left image in Figure 20 is a photo of the complete lens sensor assembly with 

green arrows indicating the path of the 532 nm excitation signal and orange arrows 

indicating the path of the response. The right image is a section view of the same 

assembly produced in Solidworks, illustrating the internal light path. 

 

Figure 19. Catalog image of a CM1 series cage-cube from [36]. 

 

Figure 20. External photo of the complete lens-sensor assembly, green arrows 
indicate excitation signal, orange arrows indicate the response signal,  

and a section view of the same assembly produced in Solidworks,  
illustrating the internal light path.  
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a. Dichroic Mirror 

The dichroic mirror is model DMLP567R, manufactured Thorlabs Inc. of 

Newton, New Jersey. It has cutoff wavelength of 567 nm, and a reflection band of 380–

550 nm. For p-polarized light at 532 nm there is an expected transmission rate of up to 

5.91 %, for the same wavelength polarized in the s plane the transmission is up to 0.15% 

[41]. Figure 21 shows the transmission and reflectance curves in response to s-polarized 

light. 

 

 
 

Figure 21. Transmission and reflectance for DMLP567 series dichroic filter in 
response to s-polarized light, after [41]. 

b. Sensor 

The sensor used for this project is the PDA36A switchable gain photodetector 

produced by ThorLabs Inc. of Newton, New Jersey. It has a sensitivity range of 350–

1100 nm and a 3.6 mm x 3.6 mm sensor. The responsivity curve is shown in Figure 22. 

The gain is adjustable in 8, 10 dB steps [42]. 
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Figure 22. Response curve for PDA36A Switchable Gain Detector from [42]. 

c. Filter 

The filter used between the dichroic mirror and the sensor, to filter out any 523 

nm leakage, is part number FB590–10, obtained from Thorlabs Inc. of Newton, NJ. The 

transmission spectrum for this filter is shown, in Figure 23. The center frequency for this 

filter is 590 +/- 2 nm, and peak transmission is 56.58 %.  

 

Figure 23. Transmission spectrum for FB590–10 dielectric filter from [43]. 

This lens was chosen based on data provided by Excition Corp. on the behavior of 

pyrromethene 597–8C9 in diesel fuel, which indicated a peak fluorescence at 590 nm. 
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The manufacturer indicated that pyrromethene 597, the dye used in this study, exhibits 

similar behavior, despite no data being available [33]. 

d. Fiber Optic Cables 

Two types of fiber optic cable were used in this project, both procured from 

Thorlabs Inc. of Newton, New Jersey. To make the connection from the laser to the lens-

sensor assembly, item number FT800UMT, a 0.39 numerical aperture (NA), 800 nm 

core, high-OH, multimode optical fiber with a wavelength range of 300–1,200 nm is used 

[44]. The attenuation curve for this fiber is show in blue in Figure 24. 

 

Figure 24. Attenuation curves for 0.39 NA, 800nm fiber optics from [44]. 

To connect the lens-sensor assembly to the sapphire rod assembly, item number 

M40L02, a 400 nm, 0.48 NA, low-OH fiber rated for 400–2200 nm is used [45]. The 

attenuation curve for this fiber is show in Figure 25. 
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Figure 25. Attenuation curves for 0.48 NA, 400nm fiber optics from [45].  

e. Collimation Lenses 

Collimator lenses are used to narrow a beam or make the direction of motion 

more parallel. There are three collimators used in the set-up. The first is located at the 

junction where the laser light first enters the cage-cube. This collimator, part number 

F240SMA-A, procured from Thorlabs Inc. of Newton, New Jersey, has an 7.86 mm focal 

length and a numerical aperture of 0.5. It ensures that the laser beam hitting the dichroic 

mirror has relatively small cross section and remains focused. Prior to exiting the cage-

cube the light passes through a second collimator, part number F280SMA-A, also 

procured from Thorlabs Inc. This lens has a much smaller numerical aperture of 0.15 and 

a 18.07 mm focal length. It serves to focus the light into the fiber optic cable leading to 

the sapphire rod assembly. At the junction of the second fiber optic cable and the 

sapphire rod assembly is a third collimator lens. This lens, part number F230SMA-A, 

also from Thorlabs Inc., has a numerical aperture of 0.57 and 4.34 mm focal length. This 

lens ensures that the laser beam is focused on the sapphire rod rather than the internal 

surfaces of the upper rod assembly. The catalog page with complete lens specifications 

can be found in Appendix H. 
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7. Oscilloscope 

The oscilloscope used in designing and testing the set-up is a Hewlet-Packard 

5460 B, manufactured by Hewlett-Packard of Palo Alto, CA. Signal sensitivity was set to 

the order of 5 mV. 
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IV. DESIGN SPECIFICATIONS AND CHALLENGES 

A. DESIGN CONSTRAINTS 

The instrumentation designed for this project had to meet the following 

specifications: 

 
 Mount on MPL’s Detroit Diesel 3–53 without any significant permanent 

modifications to the engine. 

 Operate in an environment that includes the high temperatures and 
vibrations seen on an operating two-stroke diesel engine. 

 Allow the unimpeded operation of the engine 

B. INITIAL DESIGN AND CHALLENGES 

An operating diesel engine, with its high temperatures and vibrations, is a 

challenging environment for alignment sensitive optical equipment. The original design 

for this project, shown as a 3-D Solidworks model in Figure 26, included mounting the 

optical instrumentation on the instrument bracket. This posed concerns with vibrations 

and transmission of heat from the exhaust manifold to the lens-sensor assembly. An 

attempt was made to mitigate the amount of heat transferred to the optics assembly from 

the exhaust manifold and instrument bracket by using 0.63 (0.25 in.) thick PTFE spacer 

between the metal surface of the instrument bracket and the cage-cube of the optics 

assembly.  
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Figure 26. Solidworks model of original design showing optics mounted on the 
instrument bracket. 

Other issues included the need to ensure clearance between the piston at top-dead-

center (TDC) and the sapphire rod while providing sufficient line-of-sight of the injector 

nozzle, and to provide a pressure tight seal in the glow plug port. The seal must also 

constrain any movement of the brittle sapphire rod, which could shatter from an impact 

induced by the pressure changes within the cylinder. Figure 27 is a section view of the 

cylinder head, rendered in Solidworks, showing the location of the sealing point between 

the sapphire rod assembly and the engine. It also illustrates the sapphire rod protruding 

from the cylinder head, and thus and the need to ensure sufficient clearance when the 

piston is at TDC.  
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Figure 27. Section view of the cylinder head with the location of the engine seal 
and the need to ensure adequate clearance between the piston  

and the sapphire rod at TDC highlighted. 

A further difficulty was encountered in designing the instrument bracket. The 

need to mount it securely to the engine, in combination with the need to hold the 

assembly tube tightly against the variations in cylinder pressure and the small clearance 

between the existing boss on the exhaust manifold and the cylinder head all drove the 

final design toward the shape shown. An initial version of the part was proposed as being 

made of two separate pieces that were to be welded together, and then welded to the 

assembly tube, however the distortion caused by the heat from welding made this an 

impractical fabrication method. The final result, with a clamping mechanism holding the 

assembly tube in place, was inspired by a bicycle seat clamp, but still resulted in some 

fabrication difficulties. The undercut highlighted in Figure 28 was at the limit of the 

Mechanical and Aerospace Engineering Department’s CNC machine. A second set of 

issues, also highlighted in Figure 28, only became apparent upon receipt of the original 

sapphire rod and assembly of the system. The original design included transmission of 

both the excitation and fluorescence signals through an air gap of approximately 10.4 cm 

(4.1 in.) This resulted in the excitation signal becoming too diffuse to effectively transmit 

down the sapphire rod. 
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Figure 28. The original design iteration included a large air gap, welded 
fabrication of the instrument bracket,  

and a sapphire rod of low quality material. 

In resolving the issue of the decollimated signal, by using fiber optic cable and a 

pair of collimating lenses to couple the cage-cube with the sapphire rod, the problem of 

mitigating the heat and vibration of a running engine was also resolved. This design 

change allowed the lens-sensor assembly to be removed from the instrument bracket and 

instead mounted on a stable room-temperature surface, such as work bench. Also 

included as a design consideration, is the transmissibility and end finish on the sapphire 

rod. The original sapphire rods procured for this project had several different end 

finishes, but were of poor quality material and did not transmit the excitation and 

fluorescence signals well enough to generate a data response. Due to various time and 

budget constraints, a single replacement was ordered, in a much higher quality material 

and with a 45° angled end. This results in the signals transmitting and receiving through 

the curved sides of the rod, with the end face acting as a mirror. A more optimal 

configuration would be a rounded end, which would allow the use of all exposed surface 

area as a transmitting and receiving medium.  
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IV. RESULTS AND DISCUSSION 

During initial bench-top testing, the system produced a response of 3 mV on the 

oscilloscope. This response is produced by holding a jar of dyed fuel adjacent to the 

sapphire rod. A response of approximately 5 mV was seen when holding a fuel soaked 

strip of office paper directly against the sapphire rod. Figure 29 contains photographs of 

the back of the lens-sensor assembly with the sensor removed; the image on the left 

shows signal return with a jar of dyed fuel being held against the sapphire rod, the image 

on the right shows the filtered signal without any fluorescence present. 

 

Figure 29. The left image show the fluorescence response from a jar of fuel 
reaching the sensor, the right image shows no response  

reaching the sensor when the fuel is moved away. 

Unfortunately, the signal reaching the sensor also contained a significant amount 

of 532 nm light, making the sensor readings noisy and the fluorescence response difficult 

to detect, and requiring the use of a filter. Figure 30 is a photograph of the unfiltered 

signal reaching the sensor through the dichroic mirror. The visible green light is 532 nm 

leakage through the dichroic mirror. The center area that is slightly blue is a mixing of 

yellow fluorescence response and the 532 nm excitation wavelength. It is suspected that 

due to the s-polarization of the laser, the dichroic mirror is leaking up to 6 % of the  

532 nm signal, however there are also several other possible causes for the light leakage. 
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Figure 30. Unfiltered signal reaching the sensor though the dichroic mirror, a 
large amount of green 532 nm leakage is shown, with the bluish center portion 

being the mingling of the yellow fluorescence signal and the leakage.  

The halo surrounding the signal is indicative of a numerical aperture mismatch 

somewhere in the system. Figure 31 is a sketch, produced using TurboCAD and 

Microsoft Paint, illustrating what happens when there is a numerical aperture mismatch 

in an optical junction. If the numerical aperture on the transmitting side is greater than 

that on the receiving side, the beam of light has divergence greater than the receiving 

optic it is being aimed at can accept. Not only will some of the signal not travel down the 

fiber, but it may also reflect back through the system. 

  

Figure 31. Numerical aperture loss, if the aperture on the sending side is  
greater than the aperture on the receiving side, some signal may reflect  

back through the system. 

A numerical aperture mismatch is possible even between two identical pieces of 

fiber optic cable. In this case, it is suspected that the problem is at the junction between 



 45

the cage-cube and the fiber optic cable leading to the sapphire rod assembly. This same 

junction had been the source of some broadband light leakage that was corrected through 

the use of electrical tape.  

A preliminary attempt was made to refine this setup and improve the clarity of the 

fluorescence signal by using a spectrometer, which became available toward the end of 

this project, to analyze both the excitation wavelength and the response. The HR 2000 

spectrometer, manufactured by Ocean Optics Inc. of Dunedin, FL, uses a Sony ILX511B 

linear silicon CCD array and has a detector range of 200–1100 nm. A complete list of 

specifications can be found in Appendix I and Appendix J.  

The output spectrum of the Elforlight G4+100 laser is shown in Figure 32. The 

laser output was measured without the use of a neutral density filter to modulate 

intensity. Instead, the beam was angled away from the spectrometer sensor slightly, until 

the spectrometer was no longer overloaded. The output ranges between 527.7–533.19 nm 

and peaks at 529.55 nm. This range of approximately 5.5 nm is not unusual for a diode 

pumped laser, and may be a contributing factor in the large amount of light leaking 

through the dichroic mirror. Any filter chosen to block the excitation wavelengths from 

the sensor must either be a notch filter with a large enough bandwidth to cover the full 

excitation spectrum or a bandpass filter does not impede the collection of any of the 

fluorescence signal. 
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Figure 32. The unfiltered laser spectrum as measured by HR 2000 spectrometer 
under ambient laboratory lighting conditions. 

The fluorescence spectrum for pyrromethene 597 dissolved in F-76 was captured 

by holding a fiber optic cable from the laser directly over a jar of dyed fuel and holding 

the spectrometer sensor cable at a slight angle to the surface of the fuel as it fluoresced. 

This was done to avoid any diffraction caused by the glass jar, and to avoid detecting the 

excitation wavelengths in addition to the fluorescence. The resulting spectrum is shown 

in Figure 33. The fluorescence response of pyrromethene 597 dissolved in F-76 has a 

range of 537.29–638.52 nm with a peak response at 568.16 nm. This peak response is in 

line with the data reported by Prieto et al. [32] for various pure solvents. 
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Figure 33. Spectrum of Pyrromethene 597 dissolved in F-76 as measured HR 
2000 spectrometer under ambient laboratory lighting conditions. The red shaded 

area indicates the portion of spectrum visible to the sensor in the current set-up; the 
green line indicates the new cutoff resulting from the suggested refinements. 

Both the dichroic mirror and the bandpass filter currently used in this 

experimental design block a significant portion of the response spectrum. The dichroic 

has a center wavelength at 567 nm, and the bandpass filter has a narrow band of 580–600 

nm. The red shaded area overlaid on Figure 33 shows the portion of the fluorescence 

spectrum currently visible to the sensor. Using Simpson’s Rule to integrate the raw data, 

this amounts to approximately 12.3% of the total response spectrum. A significant 

improvement in fluorescence signal strength is likely to be seen by using a dichroic 

mirror with a center wavelength at 550 nm and either a notch filter centered at 533 nm or 

an edgepass filter with a cutoff in the vicinity of 550 nm. Dielectric filters specifically 

designed for fluorescence imaging should also be considered, if one with the appropriate 

transmission range is available, since they often have a much higher transmissibility in 

their specified range than other filter types. The green line overlaid on Figure 33 shows 

the anticipated cut-off for the detectable spectrum. With the new suggested configuration, 
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approximately 76% of the fluorescence spectrum will be visible to the sensor. The 

increase in total fluorescence response reaching the sensor should compensate for the 

leakage of the excitation wavelengths and provide a useable data signal. 

Despite the narrow band of fluorescence reaching the sensor in the current set-up, 

a detectable change in the oscilloscope readings in response the presence of dyed fuel can 

be seen. Further, this demonstrates that using a single transmitting and receiving port is a 

viable means to detect the presence of dyed fuel. With refinement in the choice of optical 

filters, a more robust and defined signal is anticipated, moving this technique beyond the 

bench-top testing phase. 

 

 

 

 

 

 

 

 

 

 

 

 



 49

V. CONCLUSIONS AND OBSERVATIONS 

This project demonstrated that using a single receiving/transmitting port to detect 

an optical signal is a viable method for determining the timing of fuel entry into the 

combustion cylinder of an operational diesel engine. The technique presented is geared 

for engines with a readily accessible glow plug port and requires no modification of the 

engine block or cylinder head. 

Although the prototype system has not been extensively tested for detecting 

combustion, the system readily propagates a significant broadband light signal to the 

sensor as demonstrated by using both a small incandescent flashlight and a handheld 

lighter. With the refinements suggested in the previous section, specifically targeting the 

532 nm excitation frequency for filtration and allowing a significant portion of the visible 

spectrum to reach the sensor, it is anticipated that the system will be able to detect the 

combustion event within the engine cylinder. The actual initiation of combustion is 

typically measured by the 431.5 nm chemiluminescence of the carbon-hydrogen radical 

(CH*). In this case, it is the visible and infrared portion of the signal that will be detected, 

allowing for a comparison of combustion timing between different fuels, but not the true 

start of combustion. To detect the 431.5 nm signal using this type of apparatus, 

significant re-design work is required. 

This project has successfully designed, manufactured, and installed, a laser-based 

diagnostic assembly and instrument bracket, for detecting the presence of a dye seeded 

fuel spray in the combustion cylinder, on the Marine Propulsions Lab’s Detroit Diesel 3–

53. All custom-designed parts were produced to within tolerance and fit on the engine.  

This project has also successfully modified the Marine Propulsion Lab’s Detroit 

Diesel 3–53 for timing the start of injection using a proximity probe and the location of 

the injector head. The signal from the proximity probe has been correlated with the signal 

from the optical encoder, recording CA degrees, and the timing has been shown to be 

within expected tolerance. This data single coupled with the fluorescence and combustion 



 50

signals allows the timing of the initiation of injection, the entry of fuel into the 

combustion cylinder, and the initiation of combustion in crank angle degrees. 

 

 

 

 

 

 

 

 

 

 



 51

VI. FUTURE WORK 

The instrumentation can be further refined to receive a more robust signal. This 

may include refining the choice of dichroic mirror and filter lens to better match the 

fluorescence spectrum, as well as investigating the use of a beam splitter to create a 

reference signal to subtract from the return. Also, various signal analysis methods will be 

investigated, including the use of a signal averaging program. 

Once the optical instrumentation is refined to the point where a robust data signal 

is received, experiments can be run to characterize the time delay between start of 

injection, combustion, and fuel entry to the cylinder for F-76, HRD, SPK and their 

various blends. The data collected can then be used to determine if, and how, different 

fuel blends impact injection and combustion timing.  
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APPENDIX A. E2E-CR8C2 DISPLACEMENT SENSOR 
SPECIFICATION 
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APPENDIX B. DISPLACEMENT SENSOR BRACKET DRAWINGS 
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APPENDIX C. SAPPHIRE ROD DRAWING 
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APPENDIX D. UPPER ROD HOUSING DRAWINGS 
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APPENDIX E. LOWER ROD HOUSING DRAWINGS 
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APPENDIX F. SLEEVE DRAWINGS 
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APPENDIX G. INSTRUMENT BRACKET DRAWINGS 
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APPENDIX H. COLLIMATION LENSES 
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APPENDIX I. HR 2000 SPECTROMETER SPECIFICATIONS 
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APPENDIX J. SONY CCD LINEAR IMAGE SENSOR DATA SHEET 
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