
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

2014-09

Study of adversarial and defensive

components in an experimental

machinery control systems laboratory environment

Javate, Mark S.

Monterey, California: Naval Postgraduate School

http://hdl.handle.net/10945/43931

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

STUDY OF ADVERSARIAL AND DEFENSIVE

COMPONENTS IN AN EXPERIMENTAL MACHINERY

CONTROL SYSTEMS LABORATORY ENVIRONMENT

by

Mark S. Javate

September 2014

Thesis Co-Advisors: Mark Gondree

 Thuy D. Nguyen

THIS PAGE INTENTIONALLY LEFT BLANK

i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to

Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA

22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

September 2014
3. REPORT TYPE AND DATES COVERED

Master’s Thesis

4. TITLE AND SUBTITLE

STUDY OF ADVERSARIAL AND DEFENSIVE COMPONENTS IN AN

EXPERIMENTAL MACHINERY CONTROL SYSTEMS LABORATORY

ENVIRONMENT

5. FUNDING NUMBERS

6. AUTHOR(S) Mark S. Javate

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION

REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N/A
10. SPONSORING/MONITORING

 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy

or position of the Department of Defense or the U.S. Government. IRB protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)

Industrial control systems (ICS) are a major part of the nation’s critical infrastructure. ICS are heavily relied upon

within the Department of Defense, including the U.S. Navy. Securing these systems is vital to our national security.

The lack of a centralized repository of tools to experiment with ICS from a cyber-security perspective makes this task

difficult.

This study examines publicly available defensive and adversarial ICS-related tools, to create a consolidated list

based on relevance in the ICS domain. A small number of tools are selected for hands-on evaluation in an

experimental Supervisory Control and Data Acquisition test environment to verify the tool’s availability, investigate

if the tool works as described, and to confirm the existence of appropriate documentation sufficient to install and use

the tool. As a result of our survey and tools evaluation, we developed and released the Moki Linux distribution, an

ICS-centric version of Kali Linux tailored with defensive and adversarial tools for security practitioners and

researchers in the ICS domain.

14. SUBJECT TERMS

Supervisory Control and Data Acquisition (SCADA), Machinery Control Systems (MCS), Industrial

Control System (ICS), Moki, penetration testing

15. NUMBER OF

PAGES
109

16. PRICE CODE

17. SECURITY

CLASSIFICATION OF

REPORT
Unclassified

18. SECURITY

CLASSIFICATION OF THIS

PAGE

Unclassified

19. SECURITY

CLASSIFICATION OF

ABSTRACT

Unclassified

20. LIMITATION OF

ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

STUDY OF ADVERSARIAL AND DEFENSIVE COMPONENTS IN AN

EXPERIMENTAL MACHINERY CONTROL SYSTEMS LABORATORY

ENVIRONMENT

Mark S. Javate

Lieutenant, United State Navy

B.S., University of Washington, 2009

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN CYBER SYSTEMS AND OPERATIONS

from the

NAVAL POSTGRADUATE SCHOOL

September 2014

Author: Mark S. Javate

Approved by: Mark Gondree

Thesis Co-Advisor

Thuy D. Nguyen

Thesis Co-Advisor

Cynthia Irvine

Chair, Cyber Academic Group

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Industrial control systems (ICS) are a major part of the nation’s critical infrastructure.

ICS are heavily relied upon within the Department of Defense, including the U.S. Navy.

Securing these systems is vital to our national security. The lack of a centralized

repository of tools to experiment with ICS from a cyber-security perspective makes this

task difficult.

This study examines publicly available defensive and adversarial ICS-related

tools, to create a consolidated list based on relevance in the ICS domain. A small number

of tools are selected for hands-on evaluation in an experimental Supervisory Control and

Data Acquisition test environment to verify the tool’s availability, investigate if the tool

works as described, and to confirm the existence of appropriate documentation sufficient

to install and use the tool. As a result of our survey and tools evaluation, we developed

and released the Moki Linux distribution, an ICS-centric version of Kali Linux tailored

with defensive and adversarial tools for security practitioners and researchers in the ICS

domain.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. RESEARCH ...2
B. DOD APPLICABILITY ..2
C. THESIS OVERVIEW ...3

II. BACKGROUND ..5
A. INDUSTRIAL CONTROL SYSTEMS OVERVIEW5

1. Programmable Logic Controller ..6
2. Human-Machine Interface ..6

B. SUPERVISORY AND CONTROL LAYER ...7

1. Corporate/Supervisory Layer ...7

2. Control Layer ...7

C. COMMON PROTOCOLS AND STANDARDS ...7
1. Modbus/TCP ..8

2. DNP3 ...10
3. Common Industrial Protocol and EtherNet/IP11

D. TOFINO SCADA SECURITY SIMULATOR ..12
1. Tofino Security Appliance ...13

a. Firewall LSM ..14

b. Modbus/TCP Enforcer LSM ..14
c. Secure Asset Management LSM...15

III. METHODOLOGY ..17
A. APPROACH ...17

B. SCOPE ..18

IV. SURVEY SUMMARY ...21

A. TOOLS DISTRIBUTION ...21
1. INL Kali Linux ...21
2. SamuraiSTFU ...21

3. Tools Distribution Comparison ..22
a. Penetration-Testing Core Tools..22

b. SCADA-specific Tools...23
c. Energy Sector Tools ..23

B. TOOLS SUMMARY ...24
1. Commercial Tools ..24

a. Nessus ..24

b. Saleae Logic Analyzer ...25
2. Tools Platform ..25

C. METASPLOIT FRAMEWORK ICS MODULES32

V. TOOLS EVALUATION ..37
A. TEST ENVIRONMENT ...37

1. Test Environment Design ..38

 viii

a. Organization ..38

b. Environment Topology ...39
2. Test Environment Implementation ..41

B. DIGITAL BOND’S QUICKDRAW SCADA SNORT RULES43
1. SCADA IDS Signatures ...43

a. Installation ..44
b. Modbus/TCP Signatures ...46
c. EtherNet/IP Signatures...46

d. DNP3 Signatures...46
e. Vulnerabilities Signatures ..46

2. Sample Packet Capture Files ..47
C. MODBUS METASPLOIT TOOLS..53

1. modbus_findunitid ...54

2. modbusclient ...55
a. Function Code 0x01 (Read Coil) ..55

b. Function Code 0x03 (Read Holding Register).......................55

c. Function Code 0x05 (Write Single Coil)55
d. Function Code 0x06 (Write Single Register)56
e. Observations ..56

3. modbusdetect ..59
4. Enabling Tofino Security Appliance ..60

D. PLCSCAN ...61
1. Modbus/TCP ..61

a. --brute-uid..62

b. --modbus-uid ...62
c. --modbus-function ...63

d. --modbus-data..63
2. Siemens S7 ..63

3. Results and Observation ...64
E. WAGO PLC EXPLOIT ..66

1. CoDeSys-Shell.py ...67

2. CoDeSys-Transfer.py...72
3. CoDeSys.nse ..74

F. MODSCAN ...75

VI. MOKI LINUX DISTRIBUTION ...81

VII. CONCLUSION ..83

A. SUMMARY ..83
B. FUTURE RESEARCH ..84

LIST OF REFERENCES ..85

INITIAL DISTRIBUTION LIST ...91

 ix

LIST OF FIGURES

Figure 1. Modbus TCP/IP Communication Stack, from [9] ...8
Figure 2. Construction of a Modbus/TCP Data Packet, from [9]......................................9
Figure 3. Modbus/TCP Application Data Unit (ADU), from [9]9
Figure 4. Modbus/TCP Function Codes, from [9] ..10
Figure 5. Modbus Data Model, from [8] ...10

Figure 6. DNP3 Protocol Stack, from [11] ..11
Figure 7. EtherNet/IP Protocol Stack, from [14] ...12
Figure 8. Tofino SCADA Security Simulator, from [16] ..13
Figure 9. Tofino Security Appliance, from [15] ...15
Figure 10. Ti Safe SCADA Security Testbed Network Diagram, from [30]38

Figure 11. Test Environment Network Diagram ...40

Figure 12. Tofino SCADA Simulator Representing Fort Sask Control Network41
Figure 13. SCADA Test Environment ..43
Figure 14. Digital Bond Snort IDS Rules wget command ..44

Figure 15. Digital Bond Snort IDS Rules unzip command ...44
Figure 16. Digital Bond Snort IDS Rules copy to Snort rules folder45

Figure 17. Digital Bond Snort IDS Rules copy to Snort rules folder (Security Onion)45
Figure 18. Digital Bond Snort IDS Rules snort.conf rules path ..45
Figure 19. Digital Bond Snort IDS Rules snort.conf variables ...46

Figure 20. Digital Bond’s Quickdraw Traffic Sample wget command47
Figure 21. Replaying Modbus/TCP traffic samples using tcpreplay in top speed48

Figure 22. Snorby User Interface ..49
Figure 23. Sample Modbus/TCP Snort rule ..49

Figure 24. Snorby Desktop Shortcut Icon ...50
Figure 25. Replaying Modbus/TCP traffic samples using tcpreplay in real-time50

Figure 26. Squert Dashboard ...51
Figure 27. Snort rule SID:1111617 ...51
Figure 28. Quickdraw Snort Preprocessor Patch command ..52
Figure 29. Quickdraw Snort Preprocessor Patch error ...52

Figure 30. Missing dnp3_cmd_fc variable in DNP3 rules ..53
Figure 31. Missing cip_service variable in EtherNet/IP rules ...53
Figure 32. modbus_findunitid Metasploit module options ...54
Figure 33. modbusclient Metasploit module options ..56
Figure 34. modbusclient sample command execution..58

Figure 35. modbusclient.rb Metasploit module code ..59

Figure 36. modbusclient switch default function code ..59

Figure 37. modbusdetect Metasploit module options ...60
Figure 38. modbusdetect Metasploit module results ...60
Figure 39. plcscan.py, modbus.py, and s7.py wget command ..61
Figure 40. PLCScan options ..62
Figure 41. PLCScan sample output for Siemens S7 protocol, from [42]64
Figure 42. PLCScan command using Function Code 6 ..65

 x

Figure 43. WireShark packet capture—PLCScan request using Function Code 4365

Figure 44. WireShark packet capture—Wago PLC “Illegal Function” exception code

response..65
Figure 45. PLCScan sample output for Modbus/TCP protocol, from [42]66

Figure 46. CoDeSys-Shell.py wget command...67
Figure 47. CoDeSys-Transfer.py and CoDeSys-Shell.py command options....................68
Figure 48. CoDeSys-Shell command-shell utility options ..69
Figure 49. CoDeSys-Shell.py getprgprop command ..70
Figure 50. CoDeSys-Shell.py pid and pinf command ...70

Figure 51. CoDeSys-Shell.py tsk command ..71
Figure 52. CoDeSys-Shell.py mem memc, and memd commands71
Figure 53. CoDeSys-Shell.py io command ...72
Figure 54. CoDeSys-Shell.py filedir command ..72

Figure 55. CoDeSys-Transfer.py wget command ...73
Figure 56. CoDeSys-Transfer.py execute command ...73

Figure 57. CoDeSys-Transfer.py command result ..74
Figure 58. nmap scan result without codesys.nse script ..75

Figure 59. nmap scan result with codesys.nse script ...75
Figure 60. modscan wget command ..76
Figure 61. modscan list of options ...76

Figure 62. modscan command using default Function Code 1777
Figure 63. modscan command using Function Code 0x01 (Read Coils)77

Figure 64. modscan command using Function Code 0x01 (Read Coils) in aggressive

mode ...78
Figure 65. modscan command using Function Codes 2, 3, 4, 15, and 2379

 xi

LIST OF TABLES

Table 1. ICS Tools Distribution Survey...23
Table 2. ICS Tools Survey. ..26
Table 3. Metasploit Framework ICS Module ..32
Table 4. Wago 750-841: Modbus addresses for Function Code 0x03, from [38]57

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

ADU application data unit

CIDR classless inter-domain routing

CIP common industrial protocol

CMP central management program

COTS commercial-off-the-shelf

DCS distribute control systems

DNP3 distributed network protocol version 3

HMI human machine interface

HTTP hypertext transfer protocol

I3P institute for information infrastructure protection

ICS industrial control systems

IDS intrusion detection system

IED intelligent electronic device

IP Internet protocol

LED light emitting diode

LSM loadable security module

MCS machinery control systems

MEI Modbus encapsulated interface

NetDDE network dynamic data exchange

NIST national institute of standards and technology

OPC object linking and embedding (OLE) for process control

PLC programmable logic controller

RTU remote terminal unit

SCADA supervisory control and data acquisition

SMTP simple mail transfer protocol

TCP transmission control protocol

UDP universal datagram protocol

VM virtual machine

VPN virtual private network

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

I owe my deepest gratitude and appreciation to my thesis advisors, Professor

Mark Gondree and Professor Thuy Nguyen, for their guidance and ideas that helped

shape and improve my thesis. This thesis would not have been possible without their

infinite wisdom, patience, and support.

I would like to thank my Cyber Systems and Operations (CSO) cohort: Ken,

Jason, Sam, Seann, Lorenza, Ryan, and Trevor for their willingness to work as a team

and motivate each other to accomplish all our endeavors during our tenure at the Naval

Postgraduate School. We are the “Tip of the Spear” in our respective communities.

Finally, I thank my family for their everlasting love and support. They are my

motivation to keep pursuing my goals and continue improving myself to be the best naval

officer that I can be. Hooyah!

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

Industrial control systems (ICS) are a major part of the nation’s critical

infrastructure. The Presidential Policy Directive (PPD-21) Critical Infrastructure

Security and Resilience identifies 16 critical infrastructure sectors, all of which utilize

ICS technologies [1]. These systems operate our country’s critical infrastructure—

electrical power grid system, power plants, gas, water system, transportation system, food

and agriculture, etc. These industrial control systems are vital to the United States:

interruption or destruction of these systems and their assets may have a crippling effect to

our national security, the safety of our citizens, and our economic security [1]. Although

ICS technologies have evolved in complexity and functionality, in parallel with other IT

technologies, the ICS protocols and platforms were not originally designed with security

in mind. As ICS technologies became networked with other systems, including the

Internet, vulnerabilities in those control systems became exposed to new and greater

threats, leading to increased concern for protecting these (previously isolated) vulnerable,

legacy systems.

As ICS assets and peripherals became exposed to new threats, ‘bolt on’ security

solutions—such as firewalls, encrypted access points, passwords, and anti-virus

software—have begun to be employed in the ICS domain, in the absence of ‘built-in’

security. One study has attempted to illustrate the wide spread weaknesses of how

contemporary ICS implement these solutions and how they are susceptible to

compromise via the Internet. Project Shodan Intelligence Extraction (SHINE)—led by

Bob Radvanovsky and Jake Brodsky in coordination with the Department of Homeland

Security (DHS) ICS Computer Emergency Response Team (ICS-CERT)—conducted a

study surveying vulnerable Internet-facing ICS [2]. Project SHINE used Shodan, a search

engine created by John Matherly, to locate systems accessible from the Internet by using

meta-data stored in service banners [3]. It searches the Internet for banners advertising

services such as HTTP, SMTP, Telnet, and FTP. The team found 7,200 IP addresses that

were related to control systems, out of about 500,000 suspected IP addresses [2]. The

study found over 20,000 devices with weak, default or non-existent logon credentials [2].

 2

Increased public awareness of ICS vulnerabilities has led to new research

studying ICS devices and controllers, including research in vulnerabilities affecting the

(relatively obscure, vendor-specific) protocols used in that domain. Security researchers

have developed proof-of-concept exploits and penetration-testing tools, to help system

owners understand the vulnerabilities in control systems. Other tools have been

developed to augment or extend the functionality of traditional defensive tools. There is,

however, no central location for all ICS-related tools; they are scattered across the

Internet. In this work, we survey publicly available defensive and pen-testing tools for the

ICS domain.

A. RESEARCH

We examine publicly available defensive and adversarial ICS-related tools, to

create a consolidated list based on relevance to the ICS domain. We characterize each

tool based on purpose, availability, and the ICS sector to which it appears most relevant.

We select a small number of tools in our survey to study in the context of an

experimental SCADA test environment. We describe the design and implementation of

this environment, and our experience with evaluating each tool. The hands-on evaluation

of each tool focuses on three goals: to verify the tool’s availability, to investigate if the

tool works as described, and to confirm the existence of appropriate documentation

sufficient to install and use the tool. We discuss the public release of the Moki Linux

distribution, a custom ICS tool distribution that is based on the popular Kali Linux

distribution.

B. DOD APPLICABILITY

The Department of Defense (DOD) is one of the largest owners of real estate,

buildings, and ICSs in the federal government. The DOD has more than 500 installations,

300,000 buildings, 250,000 linear structures and an estimated 2.5 million unique ICSs

[4]. ICS are heavily relied upon within the DOD, including the U.S. Navy. The seaborne

component of ICS includes both the U.S. Navy and U.S. Coast Guard shipboard

machinery control systems (MCS). The day-to-day operations of a fully functional,

uninterrupted MCS are necessary to accomplish the U.S. Navy’s primary mission of

 3

defending the nation by deterring aggression and maintaining freedom of the seas. The

security of ICS and MCS is not only critical for accomplishing the mission, but also in

ensuring the safety of the men and women of the military operating these control

systems. An attack impacting the availability or integrity of a control system may

jeopardize the life or limb of the personnel operating the equipment that a control system

controls. The preponderance of relatively obscure commercial ICS protocols makes this

domain difficult to study, without the use of authentic equipment in a laboratory

environment. Understanding the current state of ICS-related tools may greatly improve

the ability of DOD security professionals to study control systems and to improve the

security of our nation’s critical infrastructure. Information technology (IT) professionals

and software developers can utilize the Moki Linux distribution in support of the

development, operation, and defense of control systems in military installations and

vessels.

C. THESIS OVERVIEW

The thesis is organized as follows:

 Chapter I introduces the research question, motivation of our research, and

its relevance in the DOD.

 Chapter II provides an overview of industrial control systems and

introduces the Tofino SCADA Security Simulator.

 Chapter II discusses the methodology used in this study.

 Chapter IV illustrates the analysis and comparison of surveyed ICS-related

tools.

 Chapter V details the tools selected from the survey for evaluation in the

SCADA test environment.

 Chapter VI discusses the motivation to build the Moki Linux distribution.

 Chapter VII summarizes the work and provides suggestions for future

work.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. BACKGROUND

Industrial Control Systems is an umbrella term that encompasses a broad category

of control systems in industrial facilities and critical infrastructures, including the

Defense Industrial Base sector. Supervisory control and data acquisition (SCADA)

systems and Distributed Control Systems (DCS) are among the varying kinds of ICS and

ICS components as defined by the National Institute of Standards and Technology

(NIST) [5]. Conversely, SCADA have become a universal term for the definition of ICS.

This chapter aims to introduce and define terms and concepts that are used throughout

this paper.

A. INDUSTRIAL CONTROL SYSTEMS OVERVIEW

There are several applications of the various categories of ICS. SCADA systems

are typically used in highly distributed systems where assets are in geographically

separate locations [5]. Examples of these systems include, but not limited to oil and gas

pipelines, electrical power grid systems, water distribution systems, and rail

transportation systems [5]. A SCADA system enables supervisors and operators to be

centrally located at a monitoring facility where all components of a large-scale system

that is distributed throughout a large geographic area can be monitored, controlled, and

maintained. These actions are made possible by using field control devices that are

remotely controlled to monitor and manage sensors and actuators, and handle alarms

(e.g., open or close valves or breakers).

Another category of ICS is Distributed Control Systems (DCS). DCS are similar

to SCADA but on a smaller scale. They are not typically dependent upon large-scale

network infrastructure to connect to a remote site. NIST defines DCS as “a control

architecture containing a supervisory level of control overseeing multiple, integrated sub-

systems that are responsible for controlling the details of a localized process” [5].

Examples of these localized processes include automobile, computer, and food

 6

manufacturing systems, and critical infrastructure such as electric power plants, water,

and sewage treatment facilities, most of which also exist on most military bases

nationwide.

An ICS implementation that is more applicable to the United States Navy and the

United States Coast Guard is the machinery control systems, which are a shipboard

SCADA that operate in a similar function as its shore-based counterpart except in a

smaller, enclosed environment. MCS onboard naval vessels connect its propulsion,

electrical, damage control, and other various systems to a human-machine interface

(HMI) system allowing ship operators to monitor system and device status [6]. This

enables shipboard watch stander to monitor the ship’s machinery operation from a central

location, typically the Damage Control Central. Some key control components of an ICS

discussed in this project are described below.

1. Programmable Logic Controller

A programmable logic controller (PLC) is an industrial computer designed to

control machinery by controlling logic as simple as opening and closing valves on a

pipeline system to programming and controlling a series of robotic arms in an automobile

manufacturing plant. PLCs perform logic functions programmed by engineers to control

electrical hardware such as relays, switches, mechanical timers/counter, as well as

provide feedback from sensors back to the operators [5]. Modern PLC technology have

been modernized to process more complex logic processes [5].

2. Human-Machine Interface

Human-machine interface is composed of computer software and hardware,

which allows human operators to supervise and control processes of an industrial control

system. From an HMI station, operators have the ability to modify control systems

settings or manually override the automatic operation of the system in case of emergency

[5]. HMI has the capability to log events to a data logger where an operator can display

reports such as system health, historical trends, and system faults that may be reviewed

for troubleshooting or forensic analysis in case of an intrusion or anomalous behavior.

 7

B. SUPERVISORY AND CONTROL LAYER

The network architecture of an ICS can be viewed two different ways from a

logical organization standpoint. NIST describes the ICS network architecture in three

separate logical layers: control network, corporate/supervisory network, and enterprise

network [5]. The American National Standards Institute defines its SCADA reference

model with five levels (Level 0–Level 4) [7]. For the purpose of this thesis, we will use

the NIST definition of ICS network architecture. The enterprise layer is outside of the

scope of this thesis and will not be discussed in detail. The corporate/supervisory and

control layers are described below.

1. Corporate/Supervisory Layer

The corporate layer is a logical layer in an ICS whose main function includes

managing workflows to produce the desired end products. Some corporate layer activities

include: collecting data from the production plant, data logging, and hosting application

servers.

The boundary between the corporate layer and the control layer is physically

separated by a stateful firewall to provide separation between control systems traffic and

regular corporate layer traffic (i.e., HTTP, SMTP) [5].

2. Control Layer

The control layer is a logical layer in an ICS where HMIs and PLCs reside. It is

the lowest layer in an ICS as defined by the NIST SP800-82 [5]. HMIs are found in the

control layer where physical processes are monitored and controlled. Each HMI receives

process directives and instructions from to the corporate layer such as logic rules and

updates to program instructions. The types of field controllers that operate in this layer

include PLCs, DCS controllers, and remote terminal units (RTU) [5].

C. COMMON PROTOCOLS AND STANDARDS

Before industrial control systems became interconnected with other systems, ICS

device manufacturers developed their own proprietary protocols for communicating

 8

among PLCs, remote terminal unit (RTU), sensors, actuators, etc. As a result, there are a

multitude of industrial control protocols used today. The following are selected industrial

control protocols that we used and interacted with in this project: Modbus/TCP, DNP3,

and common industrial protocol (CIP) & EtherNet/IP (ENIP). Each is described below.

1. Modbus/TCP

Modbus/TCP is an application-layer messaging protocol for client-server

communications between devices connected on different types of buses or networks [8].

Modbus/TCP is an application layer protocol that operates above the lower four layers of

the TCP/IP communication stack, depicted in Figure 1.

Figure 1. Modbus TCP/IP Communication Stack, from [9]

Modbus/TCP follows a master-slave architecture where a master sends a request

to a slave and waits for a response. A Modbus/TCP data packet contains a layered set of

data. The application data unit (ADU) is embedded in the TCP data array (Figure 2).

When data is transmitted over the network, it continues down the stack and is

encapsulated by the next lower layer [9].

 9

Figure 2. Construction of a Modbus/TCP Data Packet, from [9]

Within the Modbus/TCP, an ADU (Figure 3) contains the Unit ID and Function

Code, both of which will be explored in detail throughout the project. The Unit ID field is

used to identify a remote server location on a non-TCP/IP network.

Figure 3. Modbus/TCP Application Data Unit (ADU), from [9]

Each Modbus/TCP function code defines the master’s requested action. Figure 4

lists some examples of Modbus/TCP function codes.

 10

Figure 4. Modbus/TCP Function Codes, from [9]

The Modbus protocol’s data model contains four primary data tables (see Figure

5). Discrete Input is a single-bit, read-only data type that can be provided by an I/O

system. Coils are single-bit, read and write data type that is alterable by an application

program. The Input Register is a 16-bit word, read-only data type that can be provided by

an I/O system, and the Holding Register is a 16-bit word, read and write data type that is

alterable by an application program [8].

Figure 5. Modbus Data Model, from [8]

2. DNP3

The distributed network protocol version 3 (DNP3) is a master/slave control

system protocol primarily used in utilities such as electric and water companies in

Northern America [10], [11]. DNP3 was specifically designed to facilitate

communication between SCADA control equipment. Similar to most industrial control

protocols, DNP3 started as a serial protocol and was redesigned to work over IP via TCP

or UDP encapsulation. DNP3 protocol stack is illustrated in Figure 6.

 11

Figure 6. DNP3 Protocol Stack, from [11]

DNP3 is a client/server protocol stack or outstation/master respectively, where the

latter is what is typically used in DNP3 terminology. A master is typically an HMI PLC

device. An outstation consists of PLC, RTU, or Intelligent Electronic Device (IED) that

communicates with sensors and actuators [11].

3. Common Industrial Protocol and EtherNet/IP

Common industrial protocol (CIP) provides users unified communication

architecture throughout the manufacturing enterprise. It provides the interoperability and

interchangeability that is essential to open networks and open systems [12].

EtherNet/IP (ENIP) follows the OSI model. It implements CIP at the Session

layer and above and adapts CIP to the specific EtherNet/IP technology at the Transport

layer and below (see Figure 7) [13]. It provides users with the network tools to deploy

standard Ethernet technology for manufacturing applications while enabling Internet and

enterprise connectivity [12].

Messaging over EtherNet/IP takes place within the application layer of CIP and

the data exchange between nodes is transparent to users. Commonly used for I/O

 12

messages, these make full use of the producer/consumer model and are commonly used

for scheduled communication between controllers [14]. There are four types of CIP

messaging: polled, change of state, cyclic, and strobed. In polled messaging, a master

sequentially queries all of the slave devices in the network by sending output data and

receiving input data as a response. Strobed messaging is similar to polled but sends a

single multicast request data and receives sequential response of data from slave devices

with no further acknowledgement messages required from the master. Cyclic messaging

is a message sent by a device on a pre-determined schedule basis. Change of state

messaging is similar to cyclic, but rather than a timed event, the message from the device

is sent in response to an event that caused the data to change [14].

Figure 7. EtherNet/IP Protocol Stack, from [14]

D. TOFINO SCADA SECURITY SIMULATOR

Tofino SCADA Security Simulator is a complete SCADA system in a portable

package designed by Tofino Security for security research and training. The simulator is

designed for easy presentation of SCADA control systems and security concepts by

highlighting the risks faced by SCADA and ICS from computer worms, malwares, and

 13

hackers [15]. This “SCADA in a box” system (depicted in Figure 8) includes: an industry

standard PLC (Wago 750-841), a simulated process system with a demo panel, the

Tofino Security Appliance, an HMI, and the Tofino Central Management Platform

(CMP); the latter two are pre-installed and configured on a laptop. Also included in the

laptop is a SCADA worm hidden in a PDF that when opened, runs a malicious code that

exploits the PLC and affect SCADA system operations. It demonstrates how SCADA

systems may behave when attacked, and how to utilize the Tofino Security Appliance to

inhibit such attacks [15].

Figure 8. Tofino SCADA Security Simulator, from [16]

1. Tofino Security Appliance

One of the main components of the Tofino SCADA Security Simulator is the

Tofino Security Appliance, depicted in Figure 9. It is an ICS firewall designed for use in

industrial control equipment and networks. This component is an in-line “bump in the

wire” device and is tailored for industrial systems ensuring high availability between

 14

HMIs and PLCs. The Tofino Security Appliance performs stateful packet filtering at the

ICS application level. For example, the Modbus Enforcer (described below) is configured

to allow only Modbus read commands from the HMI workstation. This ensures that

unauthorized write commands to the PLC from the HMI workstation fail [16]. Another

example of Tofino Security Appliance’s application-level stateful packet filtering is its

inspection of the Modbus protocol in search for malformed packets that may be used to

perform buffer overflow attacks on the PLC. This “bump in the wire” firewall operates

seamlessly within the network and does not impact the process when installed [16].

The Tofino Security Appliance secures industrial control networks using loadable

security modules (LSM). LSMs are firmware modules that are downloaded to the Tofino

Security Appliance with security features for each location in an ICS control network.

There are currently five LSM modules available for the Tofino Security Appliance [17].

The simulator includes three LSM licenses: firewall, Modbus/TCP enforcer, and secure

asset management. The two LSM modules available but not included in the Tofino

SCADA Security Simulator are the object linking and embedding (OLE) for process

control (OPC) enforcer and the virtual private network (VPN) module. Each LSM

licensed for the Tofino Security Appliance is described below.

a. Firewall LSM

The Firewall LSM acts as a typical firewall for industrial networks. It is preloaded

with rules, which can be modified with additional rules that specify which devices are

authorized to communicate, and with which protocols those devices are authorized to

communicate. Similar to a home or business firewall, any traffic that does not match the

specified rules are blocked, logged, and reported as a security alert [16].

b. Modbus/TCP Enforcer LSM

The Modbus/TCP Enforcer is a feature that conducts deep-packet inspection on

the Modbus/TCP protocol. Preloaded rules, which can be modified and appended with

additional rules, specify which Modbus Function Codes and register/coil addresses may

be accessed. Any traffic that does not match the specified rules are blocked, logged, and

reported as a security alert [16].

 15

c. Secure Asset Management LSM

Secure asset management is a feature that tracks all devices that communicate

through the Tofino Security Appliance. It uses Tofino’s passive asset discovery service to

locate devices in the network and does not scan or probe the network as those activities

could lead to unintentional denial of service and cause controllers to fail [16]. After

discovery, devices can be dragged into a graphical network model that creates a logical

organization of the entire network architecture in the CMP. Having a visual

representation of the network architecture in the CMP improves the quality and accuracy

when firewall rules are created.

Figure 9. Tofino Security Appliance, from [15]

 16

THIS PAGE INTENTIONALLY LEFT BLANK

 17

III. METHODOLOGY

In this chapter, we discuss our approach for characterizing the space of

adversarial and defensive tools available for the ICS domain (i.e., by conducting a survey

of all publicly available tools) and experimentally evaluating select tools identified by the

survey.

A. APPROACH

The goal of our project is to survey and assess publicly available tools applicable

to the ICS domain. Our focus is on SCADA-specific tools that may be employed to

defend or test resources specific to the ICS domain (e.g., programmable controllers and

network traffic involving industrial protocols). We attempt to characterize each tool

based on its popularity among security tool distributions developed for use by

professionals working in the ICS domain. In general, the tools included in the survey are

created by well-known ICS research and consulting firms such as Digital Bond, whose

main focus is control system security. Digital Bond develops tools that help asset owners

and vendors assess the security of their control systems and detect and stop cyber attacks

[18]. Other groups and institutions specializing in control systems security with

contributions in the creation of penetration testing tools in the ICS domain are within the

purview of this survey. Following our ICS survey, we select a small number of tools for

secondary, in-depth experimentation. The goal of this hands-on evaluation is to assess the

state of the tool. In particular, is it available (or vapor-ware)? Does it work as described?

Does it have appropriate documentation to guide installation and use? The tools are

evaluated in a small test environment built for our study, described in detail in Chapter V.

There are a number of tools that are generally useful and beneficial to securing the

ICS domain. These tools include scanners, simulators, and fingerprinting tools that

facilitate the initial stages of attack, helping security professionals and penetration testers

to identify services in an ICS environment that may be vulnerable. Other tools target

common Enterprise protocols and software, such as Telnet and Network Dynamic Data

Exchange (NetDDE). These non SCADA-specific tools can be used to establish a

 18

foothold in industrial control environments to launch exploits or to pivot to other systems

in the network. Also included are also SCADA-specific tools for defense and penetration

testing, including ICS-specific protocol scanners and vendor-specific exploits, such as

those employed by Stuxnet to target an existing DLL vulnerability for the Siemens

SIMATIC STEP 7 [19]. We discuss the scope of the tools we survey, next.

B. SCOPE

The scope of the survey is limited to tools relevant to the ICS domain. Generic

tools (Snort, Wireshark, Tenable Nessus scanner) that are useful generally and may be

employed in the ICS domain are not included in our survey; however, we do survey ICS-

specific plugins or extensions that may enhance these. We restrict ourselves to those tools

we can access (e.g., available via websites of research groups and consulting firms or via

publicly available repositories such as github.com and code.google.com). Proprietary

tools that are not available for public use are not in scope of this project. We note that

tools publicly available at the time of the survey may become unavailable; for example,

among the Institute for Information Infrastructure Protection (I3P), some participating

institutions are seeking to license their technologies to private sector companies [20]. The

platforms for these tools will not affect the scope of the survey. Most organizations

operating industrial automation and control systems have moved away from proprietary

operating systems, which use individual, isolated computers, towards employing

interconnected commercial-off-the-shelf operating systems. This reduces overall support

costs and permits remote operation and administration among other significant business

benefits [5], [7]. Additionally, our survey considers the ICS domain to which each tool

appears applicable, including, but not limited to: electricity transmission and distribution,

gas and water distribution networks, oil and gas production operations, gas and liquid

transmission pipelines as well as engineering, propulsion, and auxiliary systems on board

United States Navy and Coast Guard ships [7].

From a SCADA network organization perspective, the focus of our work is

directed towards assets in the control network or between the control and corporate

networks, as defined in NIST SP 800-82 [5] or Level 2 and below on a reference model

 19

defined by the American National Standards Institute) [7]. All assets and protocols

associated with the control network layer are pertinent to our tools survey. Tools related

to assets and protocols outside the control network (i.e., the SCADA corporate layer) are

not included in our survey.

 20

THIS PAGE INTENTIONALLY LEFT BLANK

 21

IV. SURVEY SUMMARY

In this chapter, we survey publicly available defensive and adversarial tools

available for the ICS domain. We analyze and compare two primary penetration-testing

distributions, various ICS-related Metasploit modules and ICS tools not associated with

any specific distribution.

A. TOOLS DISTRIBUTION

The two ICS-related distributions surveyed here are the Idaho National

Laboratory (INL) Kali Linux distribution and the SamuraiSTFU (Security Testing

Framework for Utility) distribution.

1. INL Kali Linux

Idaho National Laboratory participates in a national research initiative to improve

the security and resilience of our nation’s energy-sector critical infrastructure through the

National SCADA Test Bed (NSTB) program. The NSTB is a collaborative Department

of Energy (DOE) initiative for securing SCADA and energy-related control devices [21].

The test bed is designed to help partners and vendors assess system hardware and

software. In addition, it provides infrastructure for testing and validating control systems,

to support training and research for improving the national critical infrastructure [22]. For

example, the NSTB program offers an introductory SCADA security course, intermediate

SCADA security course, and advanced SCADA security red/blue team course. The INL

Kali Linux distribution was developed for use in this courseware, to support trainees by

offering hands-on experience with tools relevant to energy-sector protocols and systems

so students may observe exploits and learn mitigations.

2. SamuraiSTFU

SamuraiSTFU is a distribution created to support an ICS security-training course,

offered by the SANS Institute and available at various conventions like Black Hat and

BruCON. Similar to INL’s custom Kali distribution, SamuraiSTFU is an open-source

Ubuntu Linux distribution for penetration testing energy sector control systems and

 22

related critical infrastructure. The distribution is geared towards hands-on penetration

testing for embedded electronic field devices, network protocols, and RF communications

associated with ICS and smart grid systems [23].

3. Tools Distribution Comparison

A consolidated list of tools from each distribution is shown in Table 1. This

matrix is organized in three sections: penetration testing tools with SCADA

enhancements, SCADA-specific tools, and tools relevant to the energy sector. Metasploit

and ModScan are tools in both INL Kali Linux and SamuraiSTFU, discussed in detail in

Chapter V.

a. Penetration-Testing Core Tools

In the penetration-testing core tools section, we have highlighted those tools that

are not SCADA-specific but have SCADA-relevant enhancements or plugins. These

include both pen-testing tools (Metasploit) and defensive tools (Snort, Baryard2,

Suricata).

Metasploit is penetration-testing software designed to verify vulnerabilities and

manage security assessment by using tools and exploits in the form of modules. These

modules are the result of a collaboration of over 200,000 open source community

developers [24]. Metasploit is intended to allow security professionals to find weak

points in their systems before a malicious attacker does [24]. Metasploit currently has

over 2,600 exploits in its Metasploit Framework database. Of these, 49 ICS-specific

exploits are available via the Metasploit Framework Update.

Snort is an open source intrusion prevention system (IPS), capable of performing

real-time traffic analysis and packet logging on IP networks [25]. Snort’s features include

protocol analysis and content searching/matching. Snort can detect a variety of attacks

and network probes, such as buffer overflows, port scans and OS-fingerprinting [25].

Digital Bond has developed several Snort rules expanding the tool’s capabilities to handle

popular ICS protocols. Barnyard2 allows Snort to write efficiently to disk without

 23

interruptions from network traffic monitoring. Suricata is an open source next generation

intrusion detection and prevention system similar to Snort.

b. SCADA-specific Tools

The SCADA-specific tools are those specifically designed to exploit components

in the ICS domain, but may not be specialized to any sector of ICS usage. These tools

primarily deal with the Modbus/TCP and DNP3 protocols, which are used in several ICS

sectors. These tools include scanners, fuzzers, and simulators. ModbusPal and

OpenDNP3 are simulators for the Modbus/TCP protocol and DNP3 protocol,

respectively.

c. Energy Sector Tools

The energy sector tools are those uniquely applicable to devices and components

in the energy sector. These tools include radio frequency and logic analyzers, phasor

simulators, and fuzzing tools for electric smart meters (e.g., GNU Radio, iPDC, PMU

Simulator, Saleae Logic, and Termineter). These tools enhance the vulnerability

identification and security assessment of energy sector control systems, and may be used

in conjunction with the tools from the SCADA-specific category.

Table 1. ICS Tools Distribution Survey.

Tool/Exploit Name INL Kali SamuraiSTFU Developer System(s)

Pentest

Core

Tools

Barnyard2 x SecurixLive Cross-platform

Metasploit x x Open Source / Rapid7 Cross-platform

Snort x Sourcefire Cross-platform

Suricata x
Open Information

Security Foundation
Cross-platform

SCADA

Specific

Tools

Aegis Fuzzing

Platform
 x

Adam Crain and Chris

Sistrunk
Cross-platform

MBclient x Loic Lefebvre Cross-platform

Mbtget x Loic Lefebvre Cross-platform

ModbusPal x
Multiple Developers

(Open Source Project)
Cross-platform

Modscan x x Mark Bristow Cross-platform

 24

Tool/Exploit Name INL Kali SamuraiSTFU Developer System(s)

OpenDNP3 x Automatak Cross-platform

Energy

Sector

Tools

GNU Radio x
Eric Blossom / GNU

Project
Cross-platform

iPDC (Phasor Data

Concentrator)
 x

Nitesh Pandit & Kedar

Khandeparkar
Unix / Unix-like OS

PMU Simulator x
Nitesh Pandit & Kedar

Khandeparkar
Unix / Unix-like OS

Saleae Logic x Saleae Cross-platform

Termineter x Spencer McIntyre Cross-platform

B. TOOLS SUMMARY

We surveyed a total of 39 ICS-related, publicly available tools for defensive and

adversarial purposes (see Table 2). These tools range in functionality from scanning tools

that automate known exploits against ICS-related software. The summary includes tools

not found in any known distribution. Research groups and independent researchers

developed many of these tools to demonstrate exploits against various control systems

devices and components. These range from hardware/vendor-specific vulnerabilities to

ICS vulnerabilities relevant to multiple implementations.

1. Commercial Tools

All tools surveyed are freely available online to use with the exception of two:

Nessus and Saleae Logic Analyzer. The ICS-specific software or plugins for these tools

are free, but require either a subscription or commercial hardware to operate. We describe

these next.

a. Nessus

Nessus is a vulnerability, configuration, and compliance scanner for a wide

variety of systems. It supports ICS networks using a set of plugins developed by Digital

Bond for Nessus. Nessus offers a one-week trial period but requires an annual

subscription, ranging from $1,500–$5,000 per year [26].

 25

b. Saleae Logic Analyzer

Saleae Logic Analyzer software is used to record, view, and measure digital

signals. The software is free, but requires commercial hardware to operate. The Saleae

hardware is sold from $99–$499, depending on its features [27].

2. Tools Platform

Most tools in Table 2 are designed to operate across all platforms or have releases

for multiple platforms. The cross-platform tools are implemented in, for example, Python

Perl, Java, and the NMAP scripting language; any system that supports these would have

the ability to run those tools. Most exploits are hardware- or vendor-specific exploits,

such as s7_password_hashes_extractor.py, which is specifically developed to exploit

Siemens products running the S7 communications protocol. Conversely, there are other

tools that work across multiple hardware and vendor devices such as the codesys-shell.py,

which is an exploit for the CoDeSys software present on several PLCs and other control

devices.

 26

Table 2. ICS Tools Survey.

Tool/Exploit Name Commercial Developer System(s) Description URL

Nessus x

Tenable Security

(plugins: Digital

Bond)

Cross-

platform

Vulnerability scanner that

offers many features to

help assess the security of

control system networks,

devices, servers and

workstations. Includes

SCADA plugins

http://www.digitalbond.com/tools/the-

rack/nessus/

Saleae Logic Analyzer x Saleae
Cross-

platform

Logic analyzer used to

record, view, and measure

digital signals.

https://www.saleae.com/Logic

Aegis Fuzzing Probe

Adam Crain
Cross-

platform

DNP3 Fuzzing tool that

tests both server slave and

client master

http://sourceforge.net/projects/opensdr/

BACnet-discover-enumerate.nse

Digital Bond
Cross-

platform

Discovers and enumerates

BACNet Devices collects

device information based

off

standard requests.

https://github.com/digitalbond/Redpoint

codesys-shell.py

Digital Bond

Cross-

platform

(Python)

Command-shell utility -

allows an unauthenticated

user the ability to perform

privileged operations

without password

https://www.digitalbond.com/wp-

content/uploads/2012/10/codesys-

shell.py_.txt

codesys-transfer.py

Digital Bond

Cross-

platform

(Python)

File Transfer Tool -

allows for reading and

writing files on

controllers with a file

system

https://www.digitalbond.com/wp-

content/uploads/2012/10/codesys-

transfer.py_.txt

 27

Tool/Exploit Name Commercial Developer System(s) Description URL

codesys.nse

Digital Bond

Cross-

platform

(NMAP)

NMAP NSE - script that

will detect if PLC or

controller is running a

vulnerable version of

CoDeSys ladder logic

runtime

http://www.digitalbond.com/wp-

content/uploads/2012/11/codesys.nse

d20cmd.py

Digital Bond

Cross-

platform

(Python)

D20 Interactive

Command Line - Python

script that provides an

interactive command-line

to the D20′s tftp backdoor

command line. Same

capability as d20tftpbd

Metasploit module

https://www.digitalbond.com/wp-

content/uploads/2012/02/d20cmd.py_.zip

d20tftpbo Digital Bond General

Electric

D20 ME

D20 TFTP Buffer

Overflow Tool - crashes

the D20 tftp service, all

processes are stopped and

the D20′s network stack

is disabled.

https://www.digitalbond.com/wp-

content/uploads/2012/02/d20tftpbo.rb_.zip

enip-enumerate.nse Digital Bond Cross-

platform

(NMAP)

Enumerates information

on EtherNet/IP devices

including Vendor ID,

Device Type, Product

name, Serial Number,

Product code, Revision

Number, as well as the

Device IP.

https://github.com/digitalbond/Redpoint

GNU Radio

Eric Blossom /

GNU Project

Cross-

platform

Development toolkit for

software defined radios

and signal processing

systems

http://sourceforge.net/projects/opensdr/

iec-60870-5-104.py

Aleksandr

Timorin

Cross-

platform

(Python)

iec-61870-5-104 (mms)

protocol tool: send/recv

identify packets and

extract vendor name,

model name, revision

https://github.com/atimorin/scada-tools

 28

Tool/Exploit Name Commercial Developer System(s) Description URL

iec-61850-8-1.py

Aleksandr

Timorin

Cross-

platform

(Python)

iec-61850-8-1 (mms)

protocol tool: send/recv

identify packets and

extract vendor name,

model name, revision

https://github.com/atimorin/scada-tools

iec-identify.nse

Aleksandr

Timorin

Cross-

platform

(NMAP)

Attempts to check

tcp/2404 port supporting

IEC 60870-5-104 ICS

protocol.

https://github.com/atimorin/scada-tools

iPDC (Phasor Data Concentrator)

Nitesh Pandit &

Kedar

Khandeparkar

Unix /

Unix-like

OS

Phasor Data Concentrator

compliant with

IEEEC37.118

synchrophasor standard

http://ipdc.codeplex.com

JtR S7 Password Cracking ScadaStrangeLove Cross-

platform

Script that would take and

crack the hashes found

within an S7 packet

capture.

http://www.digitalbond.com/tools/the-

rack/jtr-s7-password-cracking/

Kismet Mike Kershaw Cross-

platform

Open source wireless

network detector and

wireless sniffer,

http://www.digitalbond.com/tools/the-

rack/kismet/

MBclient

Loic Lefebvre Cross-

platform

(Perl)

Standard serial

communication protocol

used to interconnect

industrial PLC (and a lot

of other things). This

module gives you access

to TCP and RTU version

of this protocol, through

the MBclient object.

https://github.com/sourceperl/MBclient

mbtget

Loic Lefebvre Cross-

platform

(Perl)

Perl based Modbus

scanner that creates

Modbus transactions from

the command line

https://github.com/sourceperl/mbtget

mms-identify.nse

Aleksandr

Timorin

Cross-

platform

(NMAP)

Attempts to check

tcp/102 port supporting

iec-61850-8-1 (mms) ICS

protocol. Send identify

https://github.com/atimorin/scada-tools

 29

Tool/Exploit Name Commercial Developer System(s) Description URL

request and extract

vendor name, model

name, and revision from

response.

ModbusPal

Multiple

Developers (Open

Source Project)

Cross-

platform

(Java)

Modbus slave simulator.

Interface with the

capabilities to reproduce

complex and realistic

Modbus environments

http://modbuspal.sourceforge.net

modscan

Mark Bristow Cross-

platform

(Python)

Tool designed to map a

SCADA MODBUS TCP

based network

https://code.google.com/p/modscan/

NetDDE Share Tool Neutralbit Cross-

platform

A NetDDE client that can

compromise a system

with a poorly configured

NetDDE share.

http://digibond.wpengine.netdna-

cdn.com/wp-

content/uploads/2011/02/nbDDESetup.exe

OpenDNP3 Automatak Cross-

platform

DNP3 protocol simulator https://github.com/automatak/dnp3

PLCScan ScadaStrangeLove Cross-

platform

Python script that checks

the availability of two

ports, TCP/102 and

TCP/502, if it discovers

either of these two ports

open, it will call other

functions/scripts based on

the port.

https://code.google.com/p/plcscan/

PMU Simulator

Nitesh Pandit &

Kedar

Khandeparkar

Unix /

Unix-like

OS

Phasor Measurement Unit

Simulator compliant with

IEEEC37.118

synchrophasor standard

http://ipdc.codeplex.com

profinet_scanner.noscapy.py

Aleksandr

Timorin

Cross-

platform

(Python)

Profinet discovery tool.

Send multicast ethernet

packet and receive all

answers. Extract useful

info about devices: PLC,

HMI, Workstations. No

scapy required. Works on

https://github.com/atimorin/scada-tools

 30

Tool/Exploit Name Commercial Developer System(s) Description URL

*nix systems.

profinet_scanner.py

Aleksandr

Timorin

Cross-

platform

(Python)

Scans subnet and find

profinet-enabled devices

(PLC, HMI), PC

workstations. Extract

network info, names,

roles.

https://github.com/atimorin/scada-tools

profinet_set_fuzzer.py

Aleksandr

Timorin

Cross-

platform

(Python)

Profinet SET request

fuzzer. Tested on S7-

1200 PLC

https://github.com/atimorin/scada-tools

profinet_set_network_info.py

Aleksandr

Timorin

Cross-

platform

(Python)

Set network info: IP,

mask, gateway through

Profinet DCP request

https://github.com/atimorin/scada-tools

Quickdraw SCADA IDS Snort

Rules

Digital Bond Cross-

Platform

(Snort)

Snort rules set for the

Modbus, DNP3, and

EtherNet/IP protocols

http://www.digitalbond.com/tools/quickdraw/

s7_brute_offline.py

Aleksandr

Timorin

Cross-

platform

(Python)

S7 offline password

bruteforce based on

challenge-response data,

extracted from auth traffic

dump file

https://github.com/atimorin/scada-tools

s7_password_hashes_extractor.py

Aleksandr

Timorin

Cross-

platform

(Python)

Password hashes

extractor from Siemens

Simatic TIA Portal

project file

https://github.com/atimorin/scada-tools

s7-1500_brute_offline.py

Aleksandr

Timorin

Cross-

platform

(Python)

Offline password

bruteforce based on

challenge-response data,

extracted from auth traffic

dump file for Siemens

S7-1500 PLC’s.

https://github.com/atimorin/scada-tools

s7-enumerate.nse Digital Bond Cross-

platform

Enumerates Siemens S7

PLC Devices and collects

their device information.

https://github.com/digitalbond/Redpoint

 31

Tool/Exploit Name Commercial Developer System(s) Description URL

s7-packet-structure.py

Aleksandr

Timorin

Cross-

platform

(Python)

S7 Packet Structure -

shows packets with

required value in required

place

https://github.com/atimorin/scada-tools

s7-show-payloads.py

Aleksandr

Timorin

Cross-

platform

(Python)

S7 Show Payload - shows

packet payload

https://github.com/atimorin/scada-tools

telnet-fp.py Digital Bond Cross-

platform

Generic telnet

fingerprinting tool - may

be used against any

controller, which supports

the telnet protocol.

https://www.digitalbond.com/wp-

content/uploads/2012/02/telnet-fp.py_.zip

Termineter

Spencer McIntyre Cross-

platform

(Python)

Tool for enumerating and

fuzzing C12.18 and

C12.19 Smart Meter

interface

https://code.google.com/p/termineter/

 32

C. METASPLOIT FRAMEWORK ICS MODULES

The Metasploit Framework contains modules for scanning, enumerating, and

exploiting vulnerable ICS components and field devices. Table 3 shows ICS-related

modules available through MSFUpdate. MSFUpdate is a command that downloads

Metasploit module updates from an online repository. In particular, these tools are

downloaded in Kali Linux by updating the Metasploit Framework through the apt-get

update && apt-get dist-upgrade command. All but three modules in Table 3 are available

through MSFUpdate. These three modules were developed by Security researcher Dillon

Beresford to exploit the Siemens Simatic S7 platform [28]. The core of Table 3 was

developed from a list of SCADA-specific Metasploit modules from SCADAhacker.com

[29]. This original list was updated and expanded based on further research to form the

survey appearing here.

Table 3. Metasploit Framework ICS Module

Tool/Exploit Name
MSFUp

date

Developer/

Vendor
System(s) Metasploit Reference

codesys_web_server.r

b
x 3S CoDeSys

exploit/windows/scada/codesys_web_s

erver.rb

igss_exec_17.rb x

7-

Technologie

s

IGSS auxiliary/admin/scada/igss_exec_17.rb

igss9_igssdataserver_li

stall.rb
x

7-

Technologie

s

IGSS
exploit/windows/scada/igss9_igssdatas

erver_listall.rb

igss9_igssdataserver_r

ename.rb
x

7-

Technologie

s

IGSS
exploit/windows/scada/igss9_igssdatas

erver_rename.rb

igss9_misc.rb x

7-

Technologie

s

IGSS exploit/windows/scada/igss9_misc.rb

daq_factory_bof.rb x AzeoTech
DAQ

Factory

exploit/windows/scada/daq_factory_b

of.rb

bacnet_csv.rb x BACnet OPC Client
exploit/windows/fileformat/bacnet_csv

.rb

teechart_pro.rb x BACnet
Operator

Workstation

exploit/windows/browser/teechart_pro

.rb

beckhoff_twincat.rb x Beckhoff TwinCat
auxiliary/dos/scada/beckhoff_twincat.r

b

 33

Tool/Exploit Name
MSFUp

date

Developer/

Vendor
System(s) Metasploit Reference

digi_addp_reboot.rb x
Digi

International

Advance

Device

Discovery

Protocol

auxiliary/scanner/scada/digi_addp_reb

oot.rb

digi_addp_version.rb x
Digi

International

Advance

Device

Discovery

Protocol

auxiliary/scanner/scada/digi_addp_ver

sion.rb

digi_realport_serialpor

t_scan.rb
x

Digi

International

Advance

Device

Discovery

Protocol

auxiliary/scanner/scada/digi_realport_

serialport_scan.rb

digi_realport_version.r

b
x

Digi

International

Advance

Device

Discovery

Protocol

auxiliary/scanner/scada/digi_realport_

version.rb

koyo_login.rb x
Digital

Bond

Koyo/Direct

LOGIC

ECOM

Bruteforce

auxiliary/scanner/scada/koyo_login.rb

modicon_command.rb x
Digital

Bond

Schneider

Modicon

Quantum

Crendential

Disclosure

auxiliary/admin/scada/modicon_comm

and.rb

modicon_password_re

covery.rb
x

Digital

Bond

Schneider

Modicon

Quantum

Crendential

Disclosure

auxiliary/admin/scada/modicon_passw

ord_recovery.rb

modicon_stux_transfer

.rb
x

Digital

Bond

Schneider

Modicon

Quantum

Crendential

Disclosure

auxiliary/admin/scada/modicon_stux_t

ransfer.rb

multi_cip_command.r

b
x

Digital

Bond

Allen-

Bradley/Roc

kwell

Automation

ControlLogi

x Ethernet/IP

auxiliary/admin/scada/multi_cip_com

mand.rb

simatic_s7_1200_com

mand.rb
NO

Dillon

Beresford

Siemens

Simatic S7

module

Not Applicable

simatic_s7_300_comm

and.rb
NO

Dillon

Beresford

Siemens

Simatic S7

module

Not Applicable

simatic_s7_300_memo

ry_view.rb
NO

Dillon

Beresford

Siemens

Simatic S7

module

Not Applicable

 34

Tool/Exploit Name
MSFUp

date

Developer/

Vendor
System(s) Metasploit Reference

modbus_findunitid.rb x EsMnemon

Modbus

Client

Utility

auxiliary/scanner/scada/modbus_findu

nitid.rb

modbusdetect.rb x EsMnemon

Modbus

Client

Utility

auxiliary/scanner/scada/modbusdetect.

rb

modbusclient.rb x

EsMnemon

and Arnaud

Soullie

Modbus

Client

Utility

auxiliary/scanner/scada/modbusclient.r

b

d20_tftp_overflow.rb x
General

Electric
D20 PLC

auxiliary/dos/scada/d20_tftp_overflow

.rb

d20pass.rb x
General

Electric
D20 PLC auxiliary/gather/d20pass.rb

ge_proficy_substitute_

traversal.rb
x

General

Electric

WebView

substitute.bc

l Directory

Traversal

auxiliary/admin/scada/ge_proficy_sub

stitute_traversal.rb

iconics_genbroker.rb x Iconics Genesis32
exploit/windows/scada/iconics_genbro

ker.rb

iconics_webhmi_setac

tivexguid.rb
x Iconics Genesis32

exploit/windows/scada/iconics_webh

mi_setactivexguid.rb

indusoft_ntwebserver_

fileaccess.rb
x

Indusoft

WebStudio

NTWebServ

er Remote

File Access

auxiliary/scanner/scada/indusoft_ntwe

bserver_fileaccess.rb

codesys_web_server.r

b
x

Luigi

Auriemma

CoDeSys

CmpWebSer

ver Stack

Buffer

Overflow

exploits/windows/scada/codesys_web_

server.rb

scadapro_cmdexe.rb x Measuresoft ScadaPro
exploit/windows/scada/scadapro_cmde

xe.rb

moxa_mdmtool.rb x Moxa
Device

Manager

exploit/windows/scada/moxa_mdmtoo

l.rb

realwin_on_fc_binfile

_a.rb
x RealFlex

RealWin

SCADA

exploit/windows/scada/realwin_on_fc

_binfile_a.rb

realwin_on_fcs_login.r

b
x RealFlex

RealWin

SCADA

exploit/windows/scada/realwin_on_fcs

_login.rb

realwin_scpc_initialize

_rf.rb
x RealFlex

RealWin

SCADA

exploit/windows/scada/realwin_scpc_i

nitialize_rf.rb

realwin_scpc_initialize

.rb
x RealFlex

RealWin

SCADA

exploit/windows/scada/realwin_scpc_i

nitialize.rb

realwin_scpc_txtevent.

rb
x RealFlex

RealWin

SCADA

exploit/windows/scada/realwin_scpc_t

xtevent.rb

realwin.rb x RealFlex
RealWin

SCADA
exploit/windows/scada/realwin.rb

procyon_core_server.r

b
x ScadaTec Procyon

exploit/windows/scada/procyon_core_

server.rb

 35

Tool/Exploit Name
MSFUp

date

Developer/

Vendor
System(s) Metasploit Reference

scadaphone_zip.rb x ScadaTec

ModbusTag

Server

ScadaPhone

exploit/windows/fileformat/scadaphon

e_zip.rb

citect_scada_odbc.rb x
Schneider

Electric

CitectSCAD

A

exploit/windows/scada/citect_scada_o

dbc.rb

sielco_winlog_fileacce

ss.rb
x

Sielco

Sistemi

Winlog

Remote File

Access

auxiliary/scanner/scada/sielco_winlog

_fileaccess.rb

winlog_runtime_2.rb x
Sielco

Sistemi
Winlog

exploit/windows/scada/winlog_runtim

e_2.rb

winlog_runtime.rb x
Sielco

Sistemi
Winlog

exploit/windows/scada/winlog_runtim

e.rb

factorylink_cssservice.

rb
x

Siemens

Technomati

x

FactoryLink
exploit/windows/scada/factorylink_css

service.rb

factorylink_vrn_09.rb x

Siemens

Technomati

x

FactoryLink
exploit/windows/scada/factorylink_vrn

_09.rb

sunway_force_control

_netdbsrv.rb
x

Sunway

Forcecontrol

SNMP

NetDBServe

r.exe

Opcode

0x57

exploits/windows/scada/sunway_force

_control_netdbsrv.rb

teechart_pro.rb x Unitronics OPC Server
exploit/exploits/windows/browser/teec

hart_pro.rb

Next, we describe our test environment and our experience with running some of

these tools.

 36

THIS PAGE INTENTIONALLY LEFT BLANK

 37

V. TOOLS EVALUATION

In this chapter, we explore the ICS tools selected from the survey, experimenting

with each tool using a small test environment built for our study. Some of the aspects we

explore include: the availability of the tool, its installation process, and its conformity to

the developer’s description.

A. TEST ENVIRONMENT

A small-scale SCADA test environment was built for our study. The environment

simulates a small distributed SCADA system, following guidance from NIST SP800-82,

Guide to Industrial Control Systems (ICS) Security and ANSI/ISA-99.00.01-2007,

Security for Industrial Automation and Control Systems Part 1: Terminology, Concepts,

and Models [5], [7]. These two documents define terminology and provide an

architectural model for a typical ICS environment. The test environment adopts the NIST

SP800-82 organization and terminology—dividing the environment between the Control

Network, Corporate/Supervisory Network, and Enterprise/Outside World Network [5], as

opposed to the five-layer model of ANSI/ISA-99 [7]. Our test environment utilizes real

and virtual components to simulate an entire enterprise network. The physical

components of the test environment leverage two Tofino SCADA Security Simulators.

Each kit consists of a Wago PLC controlling a simulated compressor system, a demo

sensor panel, an HMI that interfaces with the PLC, and Tofino Security Appliance

product. The default configuration of the Tofino Security Appliance product is passive

mode during the testing and evaluating the tools selected below. Operating the Tofino

Security Appliance in passive mode allows the tools to run in the network without

interference from the firewall. Connecting the two Tofino kits creates a realistic,

distributed Enterprise-scale ICS network, where each kit acts as a remote site within a

small-scale Enterprise Network.

Another experimental SCADA security test environment—built by Ti Safe, a

supplier of products and quality services for information and automation security based

out of Rio de Janeiro—follows a similar approach to ours. Their environment leverages

 38

the Tofino kit for their project’s test network design architecture (Figure 10). They

provide specific solutions for automation network security based on the ANSI/ISA-99

standard with the main objective of security and protection of Critical Infrastructure [30],

[31]. Our SCADA test environment follows the architecture from Ti Safe’s SCADA

Security Testbed.

Figure 10. Ti Safe SCADA Security Testbed Network Diagram, from [30]

1. Test Environment Design

We designed our SCADA test environment following the organization of different

ICS layers defined in NIST SP800-82 and the physical design concept of Ti Safe’s test

bed (see Figure 10) [5].

a. Organization

Our project’s SCADA test environment is organized into three main parts. In

accordance with NIST SP800-82, a typical ICS network organization is comprised of a

control network at its lowest level, a corporate or supervisory network at the middle level

that directly interfaces with the Control Network, and an Enterprise Network [5]. At the

Enterprise layer, multiple Corporate and Control Networks may exist, depending on the

size and physical location of the entire ICS network. Our test environment is too small to

warrant the complexity of the five levels described in the ANSI/ISA-99 SCADA

reference model (i.e., they are unnecessary to describe the components and objectives

that this project attempts to achieve).

 39

b. Environment Topology

Our test network (Figure 11) consists of two Tofino demonstration kits, to

simulate two of the three networks that make up the fictional “Fort Sask” Enterprise

Network—a fictional pipeline system defined in the Tofino Security Appliance Central

Management Program (CMP) demo configuration. The network topology diagram

distinguishes between two types of components. Green network lines and peripherals

represent real network connections and devices that physically exist in the test

environment. Blue network lines and peripherals represent fictional network connections

and devices, which are notionally part of the network architecture and more accurately

represent a real, distributed industrial control network.

 40

Figure 11. Test Environment Network Diagram

The Fort Sask Control Network is located at the fictional Fort Sask Main

Headquarters. This consists of a Wago PLC that controls pumps and actuators of a

compressor system in a gas pipeline system, simulated by LED lights on a circuit board

depicted (see Figure 12). The Tofino Security Appliance (an ICS firewall) is connected as

a “bump-in-the-wire” between the Wago PLC and a network hub. The HMI, CMP,

Security Onion, and Kali Linux machines are all connected to the hub. The Security

Onion and Kali Linux machines are platforms for troubleshooting, monitoring, and

launching defensive and adversarial tools in our test network.

The Sumas Pump Station Network is a remote site, fictionally connected via

microwave radio tower or cellular tower. This setup reflects a typical remote site for an

Industrial Control Enterprise Network depicted in NIST SP800-82 [5]. The Control

Security Onion
(Defensive)

Hub

Hub

Hub

Hub

Hub

ActuatorPump

Fort Sask Control Network Jasper Pipeline Network Sumas Pump Station Network

SCADA Test Network Diagram

ActuatorPump ActuatorPump ActuatorPump

HMI

Data
Server

Data
Historian

Data
Server

Data
Historian

ActuatorPump

HMI

Legend

Fictional Network

Real Network

CMP CMP

Workstations Workstations

Corporate Network

Control Network

192.168.1.15 192.168.1.20

192.168.1.1

192.168.1.15192.168.1.20

192.168.1.1

Promiscuous

Security Onion
(Defensive)

Promiscuous

Kali Linux
(Adeversarial)

10.13.37.0/25 10.13.37.128/26 10.13.37.192/26

10.13.37.65 10.13.37.66 10.13.37.67 10.13.37.129 10.13.37.130 10.13.37.131

10.13.37.132 10.13.37.133

10.13.37.0/24

192.168.1.5

Example (NIST SP800-82):
Field Site. Connected via
Radio Microwave or
Cellular

Modem Modem

Example (NIST SP800-82):
Field Site. Connected via
Fiber Optic Cable

Kali Linux
(Adeversarial)

10.13.37.19310.13.37.1

Fort Sask Enterprise Network

10.13.37.134

192.168.1.5

 41

Network portion of the Sumas Pump Station is implemented using the second Tofino kit.

It contains the same setup as the Fort Sask Control Network, described above.

The Jasper Pipeline Network is a notional third network segment, consisting

entirely of fictional components. It is located at a separate remote site and contains a

Corporate/Supervisory Network connected to the Enterprise Network via fiber optic cable

line. This configuration follows an example in NIST SP800-82 on how typical Industrial

Control Systems Enterprise Network are connected [5].

Figure 12. Tofino SCADA Simulator Representing Fort Sask Control Network

2. Test Environment Implementation

The implementation of the test environment is relatively straightforward, with

minor, manageable complications stemming from hard-coded settings associated with the

 42

PLC and HMI in the Tofino kits, and license restrictions limiting our ability to fully

customize the network setup of the two Tofino kits. Figure 13 represents the final setup

of the fully functional SCADA test environment.

For each Tofino demonstration kit setup, we created a Virtual Machine (VM)

copy of the laptop accompanying the kits. We needed to create two different copies of the

provided operating system and configure them to have distinct IP addresses (.15 and .20

respectively, as depicted in Figure 11, above) in order for the HMI and CMP to

successfully communicate with the PLC.

The installation of Kali Linux and Security Onion was straightforward, requiring

minimal setup and updates. The Security Onion distribution of Linux is configured in

promiscuous mode, for testing defensive tools such as Snort and for monitoring and

troubleshooting, throughout the network setup process. Kali Linux is setup for use as an

attack launch point for adversarial tools, simulating an attacker who has already gained a

foothold inside the Enterprise Network.

Due to hard-coded IP address ranges used in the HMI and CMP (192.168.1.0/24),

we were unable to change the address space for either Tofino demonstration kits. We use

two Vyatta routers, one on each Control Network in front of the hub, and employ

Network Address Translation (NAT) to provide each remote site—the Fort Sask and

Sumas Pump Station—with private, distinct address spaces. The two routers are

connected together using a switch that simulates a WAN connection. Two hubs

connected to the switch provide visibility to packets traversing through the Enterprise

Network, allowing us to accurately observe the tools we run from the perspective of both

networks and to monitor network activity in all segments of the network.

 43

Figure 13. SCADA Test Environment

B. DIGITAL BOND’S QUICKDRAW SCADA SNORT RULES

Digital Bond developed SCADA Intrusion Detection System (IDS) signatures for

various industrial control protocols including Modbus/TCP, DNP3, and EtherNet/IP.

These rules are written in Snort syntax and are designed to identify signatures of

unauthorized requests, malformed protocol requests and responses, dangerous

commands, and network behavior that may indicate possible attacks [32]. Digital Bond’s

IDS Snort signatures were developed under contract from the Department of Homeland

Security (DHS) Homeland Security Advanced Research Projects Agency (HSARPA).

HSRPA is a branch of DHS’ Science and Technology (S&T) Directorate [32].

1. SCADA IDS Signatures

Digital Bond’s Quickdraw SCADA IDS is released as a compressed zip file

available on its website, including all available Snort signatures and accompanying

preprocessors. Next, we describe installing these rules under the Security Onion

distribution of Linux. Security Onion already provides network security monitoring tools

such as Snort and Snorby, a utility that enhances the usability and presentation of

information under Snort. Digital Bond’s Quickdraw preprocessors and plugins for Snort

were designed for Snort versions 2.8.5.2 and 2.8.5.3. The version of Snort provided by

Security Onion is newer (version 2.9.5.6). One advantage of using Security Onion for

installing the Quickdraw rules is that the ICS protocol variables that Digital Bond

 44

declared in its custom Snort rules are already included in the Snort configuration file. A

user need only define the variable and the link to the rules file in order to use Snort with

the Quickdraw rules.

a. Installation

The download and configuration process for Digital Bond’s Quickdraw SCADA

IDS rules is a simple, straightforward process. All rules are available for download as a

zip file from Digital Bond’s website. The following are the download and configuration

procedures for the Digital Bond’s Quickdraw SCADA IDS rules:

(1) Download the zip file from the digital bond website (see Figure 14). The --

no-check-certificate option ignores the default check of server’s certificate

against available certificate authorities, to avoid interoperability issues

with the SSL verification between various sites and user machines.

Figure 14. Digital Bond Snort IDS Rules wget command

(2) Unzip the downloaded file (see Figure 15).

Figure 15. Digital Bond Snort IDS Rules unzip command

(3) Copy each individual rules file into the snort rules folder. For a typical

Snort installation in a Linux system, the Snort rules folder is located at

/etc/snort/rules (see Figure 16). For the Security Onion Linux distribution,

the Snort rules folder is located at /etc/nsm/rules (see Figure 17).

 45

Figure 16. Digital Bond Snort IDS Rules copy to Snort rules folder

Figure 17. Digital Bond Snort IDS Rules copy to Snort rules folder (Security

Onion)

(4) Add the path of the Digital Bond Snort IDS Rules files to the snort.conf

file (see Figure 18).

Figure 18. Digital Bond Snort IDS Rules snort.conf rules path

(5) Add required variables from the Modbus/TCP, EtherNet/IP, DNP3, and

vulnerabilities signatures (see Figure 19). The default IP address is the

$HOME_NET where Security Onion is configured to monitor.

 46

Figure 19. Digital Bond Snort IDS Rules snort.conf variables

b. Modbus/TCP Signatures

The Modbus/TCP rules file contains 14 Snort IDS rules configured to detect

anomalous behavior between the Modbus client and the Modbus server.

c. EtherNet/IP Signatures

The EtherNet/IP rules file contains 16 Snort IDS rules configured to detect

anomalous behavior between the EtherNet/IP client and the EtherNet/IP server. Unlike

the Modbus/TCP rules, the EtherNet/IP rules require preprocessors. Preprocessors are

required for the EtherNet/IP protocol to ensure reliable rules and avoid false positives and

false negatives.

d. DNP3 Signatures

The DNP3 rules file contains 13 Snort IDS rules configured to detect anomalous

behavior among the DNP3 client, DNP3 server, and any IP address communicating or

attempting to communicate with the DNP3 client and server. The original 13 Snort IDS

rules are susceptible to intentional fragmentation and long message fragmentation that

circumvents the Snort IDS rules. With the addition of a DNP3 preprocessor, the non-

preprocessor rules were modified for the preprocessors as well as three additional rules.

e. Vulnerabilities Signatures

The Vulnerabilities Rules file contains rules that are vendor-specific, as opposed

to the protocol-specific Snort signatures described earlier. The Vulnerabilities Rules file

includes 17 rules from vendors such as CitectSCADA, WonderWare, RealWin,

VxWorks, and BroadWin. There are also several rules that are donated to/and in

 47

collaboration with Digital Bond. This set of rules include: 61 rules donated by Emerging

Threats Pro with assistance from Nitro Security, five rules developed by Nitro Security in

partnership with Rockwell Automation in response to ICSA-11-273-03 Rockwell

RSLogix Overflow Vulnerability [33], and six rules donated by Rockwell Automation in

response to vulnerabilities identified by Project Basecamp.

2. Sample Packet Capture Files

Digital Bond provides traffic samples for testing and evaluation. This sample

includes: 16 individual EtherNet/IP protocol traffic samples (with description of what

each sample tests), two Modbus/TCP and two DNP3 protocols traffic samples. Figure 20

illustrates the command to download the traffic samples from Digital Bond’s website

[32].

Figure 20. Digital Bond’s Quickdraw Traffic Sample wget command

The samples designed to test the Modbus/TCP rules ran successfully on the

Security Onion. Figure 21 illustrates the tcpreplay command used to replay one of the

Modbus traffic samples provided by Digital Bond. The -t option performs the replay of

traffic at top speed and the -i eth0 option identifies the interface where the traffic sample

is run, in this case it is replayed on the eth0 interface.

 48

Figure 21. Replaying Modbus/TCP traffic samples using tcpreplay in top speed

The Snorby program packaged in the Security Onion distribution, depicted in

Figure 22, shows alerts triggered by the rules as the traffic samples were run on the

network using tcpreplay. The Snorby dashboard organizes the alerts by severity level:

high, medium, and low severities based on priority levels defined in the Snort rules (see

Figure 23), with priority 1 being highest severity and priority 3 being lowest severity.

 49

Figure 22. Snorby User Interface

Figure 23. Sample Modbus/TCP Snort rule

The Snorby program is accessible via the localhost webserver on port 444. A

shortcut icon is also available on Security Onion by default (see Figure 24).

 50

Figure 24. Snorby Desktop Shortcut Icon

We ran the traffic samples in real-time mode and top speed mode. Figure 25

illustrates one of the traffic samples run at real-time speed, where 118 packets are sent

through the wire in 1541 seconds. The Snort identification results are the same when

running the traffic samples at top speed. We observed that, although the samples

triggered some Modbus/TCP rules, they did not trigger all the rules. These traffic samples

may be designed to test some, but not all of the rules. Digital Bond does not specify what

the Modbus/TCP traffic samples are designed to test and trigger.

Figure 25. Replaying Modbus/TCP traffic samples using tcpreplay in real-time

The Squert Dashboard (see Figure 26), a tool similar to Snorby packaged within

Security Onion for visualizing Snort alerts, shows the Modbus/TCP Snort rules that were

 51

triggered after running the Modbus/TCP traffic samples provided by Digital Bond. Most

(10 of the 14) Modbus/TCP rules and one rule from the Vulnerabilities signatures were

triggered (see Figure 26). The triggered rule from the Vulnerabilities signatures is SID:

1111617 (see Figure 27), which is a heap-based buffer overflow in Automated Solutions

Modbus/TCP master OPC Server that allows remote attackers to cause a denial of service

and possibly execute arbitrary code [34].

Figure 26. Squert Dashboard

Figure 27. Snort rule SID:1111617

We ran all traffic samples provided by Digital Bond: 16 EtherNet/IP protocol

traffic samples, two DNP3 protocols traffic samples and the two Modbus/TCP protocol

traffic samples. No EtherNet/IP or DNP3 related Snort rules were triggered during the

tests.

 52

EtherNet/IP and DNP3 rules require preprocessors based on our analysis and

testing of the rules set. The patch provided by Digital Bond failed to install correctly and

none of the rules became active. Therefore, all rules for EtherNet/IP and DNP3 are

currently broken for Snort version 2.8.5.3 and older. The configuration of Snort under

Security Onion is different from a typical Snort installation: the configuration files are

reorganized into a Network Security Monitoring folder. The preprocessor and plugin

patch created by Digital Bond is designed for Snort versions 2.8.5.2 and 2.8.5.3. The

patch contains multiple hard-coded addresses that do not carry over to the later version of

Snort. Figure 28 illustrates the command for executing the Snort preprocessor patch.

Figure 28. Quickdraw Snort Preprocessor Patch command

As depicted in Figure 29, the Snort preprocessor patch looks for a missing file

whose path is hard-coded, but is either not present or has changed locations in newer

versions of Snort.

Figure 29. Quickdraw Snort Preprocessor Patch error

Snort fails to compile when executed without a successful installation of the

Digital Bond’s preprocessors and with the EtherNet/IP and DNP3 rules configured in the

snort.conf file. The DNP3 rules file contains a variable, dnp3_cmd_fc that is used by the

preprocessor and not defined in the snort.conf file (see Figure 30).

 53

Figure 30. Missing dnp3_cmd_fc variable in DNP3 rules

Similarly, one of the variables of the EtherNet/IP rules file used by the

preprocessor and not defined in the snort.conf file is cip_service (see Figure 31).

Figure 31. Missing cip_service variable in EtherNet/IP rules

Due to differences in configuration and version, the installation of the Quickdraw

processors and plugins were unsuccessful. We were unable to find resources discussing

the installation of Digital Bond’s Quickdraw SCADA preprocessors on later versions of

Snort. Likely, the preprocessors need to be updated to accommodate newer Snort

versions. We commented out the rules in the DNP3 rules file that required preprocessors

in order for Snort to successfully load the rules file and start networks scans.

C. MODBUS METASPLOIT TOOLS

Metasploit is a console of modules for developing and executing adversarial tools

such as scanning and exploit tools. The Metasploit Framework contains several modules

for exploiting ICS applications and hardware components. There are three auxiliary

modules designed for scanning and enumerating the Modbus/TCP protocol, independent

of the brand of PLC. All three Modbus/TCP Metasploit modules were tested and

evaluated in our test environment using a Wago PLC running the Modbus/TCP protocol.

Next, we describe the behavior of each of these modules under the following test

condition: the HMI is active, monitoring PLC activity and generating traffic; the Tofino

Security Appliance is set to its default passive mode; the Kali Linux node is running

Metasploit; and the Security Onion node is running the tcpdump utility to capture packets

between the Kali node and the PLC, (i.e., to verify that the right function codes are sent

to the PLC and to analyze the PLC’s response to the Metasploit module scans).

 54

1. modbus_findunitid

The modbus_findunit Metasploit module is a scanner that enumerates Modbus

Unit ID and Station ID. This module sends a command with Function Code 0x04 (Read

Input Register) to the Modbus endpoint. If the Modbus endpoint contains the correct

Modbus Unit ID, it returns a packet with the same Function ID. If not, it would add 0x80

to the Function Code to yield 0x84. This is interpreted as the Exception Code

“incorrect/none data from stationID,” because it did not respond correctly to the Read

Input Register Function Code [35]. The code 0x80 indicates a Modbus exception

response. In a normal response, the Modbus server returns the function code of the

request; in an exception response, the function code’s most-significant bit (MSB) is set

from 0 to 1. This adds an additional 0x80 to the original function code, which has a value

of lower than 0x80. The additional 0x80 in the function code alerts the client to recognize

the exception response and examine the data field for the specific exception code [8].

From the Kali Linux station of the Test Environment, we ran the Metasploit

Console and loaded the modbus_findunitid module. The target address was set to the

Wago PLC’s IP address, 192.168.1.1. Other options for the module, depicted in Figure

32, include: target port (default Modbus port 502), timeout for the network probe, range

of Modbus Unit ID to scan (default is aggressive mode scan from 1 to 254).

Figure 32. modbus_findunitid Metasploit module options

We started the scan and the PLC returned unit IDs from 1 to 254. The Wago PLC

returned all 254 unit IDs as valid. Upon further investigation, we discovered that the use

of unit IDs is a legacy feature of the Modbus protocol. The Modbus unit IDs became

outdated when Modbus was encapsulated in the TCP protocol. The unit ID is ignored and

 55

Modbus slave units are now identified by their IP address [36]. This makes searching for

a specific unit ID ineffective. Any live Modbus slave units will respond to any requested

Modbus unit ID.

2. modbusclient

The modbusclient Metasploit module allows reading and writing data to a PLC

using the Modbus/TCP protocol. The original modbusclient module created by

EsMnemon was a write-only module utilizing the protocol’s Function Code 0x06 (Write

Single Register). Arnaud Soullie modified the code to include the following Function

Codes: 0x01 (Read Coil), 0x03 (Read Holding Register), and 0x05 (Write Single Coil)

[37].

a. Function Code 0x01 (Read Coil)

A successful execution of modbusclient using Function Code 0x01 allows the

users to read the status from 1–2000 contiguous coils in a remote PLC device. The

DATA_ADDRESS field, depicted in Figure 33 specifies a 2-byte starting address for the

returned coil status (0x0000 to 0xFFFF). The response from the Modbus server is the coil

status, one bit per coil represented in the data field [8].

b. Function Code 0x03 (Read Holding Register)

A successful execution of modbusclient using Function Code 0x03 allows the

users to read the status from 1–2000 contiguous discrete inputs in a remote PLC device.

The DATA_ADDRESS field, depicted in Figure 33, specifies a 2-byte starting address

for the returned register status (0x0000 to 0xFFFF). The response from the Modbus

server is the register value in the response message, two bytes per register [8].

c. Function Code 0x05 (Write Single Coil)

A successful execution of modbusclient using Function Code 0x05 allows users to

write a single output (either ON or OFF) to the coil of a remote PLC device. The input

data value defined using the DATA field, depicted in Figure 33, accepts the value

0xFF00 for the output to be ON and the value 0x0000 for the output to be OFF. All other

 56

input values are invalid and will not affect the output. The DATA_ADDRESS field

identifies the address of the coil to be forced [8].

d. Function Code 0x06 (Write Single Register)

A successful execution of modbusclient using Function Code 0x06 allows users to

write to a single holding register in a remote PLC device. The DATA_ADDRESS field,

depicted in Figure 25, identifies the register address to be written (0x0000 to 0xFFFF). A

successful execution of this request echoes the value of the defined DATA field [8].

e. Observations

We ran the Metasploit module, with the target address set to the PLC’s IP address,

192.168.1.1. Other options for the module, depicted in Figure 33, include: target port

(default Modbus port: 502), Modbus Unit ID (default: 1), Modbus data address, and data

(applicable only to Function Codes 0x05 and 0x06 for writing data to the PLC).

Figure 33. modbusclient Metasploit module options

The options menu provides no documented option for changing the Function

Codes. We ran the scan setting RHOST to the Wago PLC’s IP address (192.168.1.1),

DATA_ADDRESS to 0x00, and used the default for other parameters. The default

Function Code is 0x03 (Read Holding Register). We referred to the Modbus

Communication Between Wago Ethernet Couplers and Controllers manual to select the

data address values used in the test [38]. Table 4 describes the different Modbus memory

areas that are read by Function Code 0x03.

 57

Table 4. Wago 750-841: Modbus addresses for Function Code 0x03,

from [38]

We sampled memory addresses from the physical output area, configuration

register, and retain memory area. Figure 34 illustrates sample command execution of the

modbusclient module. By changing the DATA_ADDRESS field to a corresponding data

address in the table, we were able to successfully read data stored in the PLCs memory.

Data address 512 returned a value for the physical output area, data address 12288

returned a value for the retain memory area, and data address 4096 returned a value 100

the configuration register. Configuration registers allow properties of Wago 750-841 to

be read and, in some cases, modified. The configuration register at data address 4096

corresponds to the Modbus Watchdog Time (multiple of 100ms). Watchdog is a

heartbeat-like sensor that monitors the execution time of tasks [39]. This indicates that

the Modbus Watchdog Timer is set at 10-second interval.

 58

Figure 34. modbusclient sample command execution

After further experimentation with changing various values to the modbusclient

module options, we found that the Function Code cannot be changed to the other three

options as illustrated in the modbusclient code (see Figure 35) without additional

instructions.

 59

Figure 35. modbusclient.rb Metasploit module code

After further analysis of the source code, we discovered the procedures for

changing the default function code. Switching the default function code to the other three

options was accomplished by setting Boolean values to their variables (see Figure 36).

The author of modbusclient did not provide adequate direction in regards to switching

Function Codes to fully use the tool’s advertised functionality. There are several

applications for this tool, if it worked as advertised. In addition to its capability to read

coil and register information, it also has the capability to modify data on the PLC by

writing on the coil and register. This module has sizeable potential to damage and/or

control what PLCs running the Modbus/TCP can execute.

Figure 36. modbusclient switch default function code

3. modbusdetect

The modbusdetect Metasploit module detects Modbus service in a specified IP

address range, for scanning and identifying targets running the Modbus/TCP protocol.

The module discovers the Modbus service by sending Modbus request packets to targets

 60

on port 502 and waiting for a response that includes the same Transaction ID and

Protocol ID. The module returns the Modbus/TCP header and the Unit ID of the PLC

[40].

We ran the Metasploit module, with a target address range that includes the PLC’s

IP address, i.e., 192.168.1.0/24. Other options for the module, depicted in Figure 37,

include: target port (default Modbus port: 502), the number of concurrent threads,

timeout for the network probe, and the Modbus Unit ID.

Figure 37. modbusdetect Metasploit module options

The scan successfully detected the PLC at 192.168.1.1. The response indicated it

received a correct Modbus/TCP header (Unit ID: 1), illustrated in Figure 38. From our

tests with the modbus_findunitid module, the PLC responds to queries for Unit IDs 1 to

246. As the modbusdetect module is designed to only probe using one Unit ID, the

discovery of the PLC is unsurprising. The module does not have the option to probe an

address range in aggressive mode using alternative Unit IDs.

Figure 38. modbusdetect Metasploit module results

4. Enabling Tofino Security Appliance

We reconfigured the Tofino Security Appliance to operational mode and

observed how the tools behaved with the firewall in place. We repeated the test on

 61

modbus_findunitid, modbusclient, and modbusdetect and observed the interaction

between the Kali Linux and the PLC with the Tofino Security Appliance in operational

mode. The firewall blocked the packets to the PLC until the tool timed out. Tofino

Security Appliance’s default firewall rules did not allow Modbus/TCP packets not

originating from the HMI or the CMP’s IP address to communicate with the PLC.

D. PLCSCAN

PLCScan is another scanning tool we evaluated in our test environment. PLCScan

is a Python tool designed to scan and enumerate PLC devices operating on Modbus/TCP

protocol and the Siemens Simatic S7 communication protocol. Dmitry Efanov, a member

of the SCADA STRANGE LOVE GROUP, developed PLCScan. The tool package

contains the plcscan.py and support files modbus.py and s7.py; the tool’s source code is

available from its Google Code repository [41]. The command in Figure 39 can be used

to download each of these files.

Figure 39. plcscan.py, modbus.py, and s7.py wget command

1. Modbus/TCP

PLCScan is comprised of several scanning and enumerating features for PLCs

supporting Modbus/TCP. For a positive scan, the tool outputs the device’s IP address and

port number, Unit ID, device name, and (if available) hardware and firmware data. It

requires an IP range input for the target PLC device(s). Notable options include the

following: brute-uid, modbus-uid, modbus-function, and modbus-data (see Figure 40)

Each of these explained next.

 62

Figure 40. PLCScan options

a. --brute-uid

The brute-uid options provides the functionality to continue iterating through Unit

ID 1 to 255 after initial discovery of the PLC in a specific IP address. This feature is

beneficial when scanning and enumerating networks that contain PLCs connected to

gateways. Brute forcing a gateway IP address will return all PLC Unit ID’s connected to

that gateway. If the brute-uid option is not selected, the tool will return only the first

discovered Unit ID from a specific IP address.

b. --modbus-uid

The modbus-uid option provides the user the option to select a specific Unit ID to

use during the scan. This option is useful in instances where a user is searching for a

specific PLC in a network that contains numerous PLCs. The scan result will be limited

at the Unit ID and reduces clutter from other PLCs on the list.

 63

c. --modbus-function

The modbus-function option provides users the option to select a specific

Function Code to use during the scan. This function is beneficial when scanning targets

with unknown PLC hardware. Some PLC manufacturers only support a limited number

of Function Codes. In the case of the Wago PLC 750-841, its Function Codes are limited

to the following: 1, 2, 3, 4, 5, 6, 11, 15, 16, 22, and 23. PLCs that are discoverable using

one type of Function Code may not be discoverable when using another type of Function

Code. Manually iterating through a variety of Function Codes may increase the number

of devices discovered in a network with different types of PLCs.

d. --modbus-data

The modbus-data option provides users the option to send custom data to the

PLC. This is useful in conjunction with the modbus-function option. Various Function

Codes require specific types of data as an input to the PLC for the command to work

successfully. The flexibility of the user to add custom data to the command allows for

fine-tuned targeting of specific PLCs.

2. Siemens S7

The Siemens S7 Communications Protocol is a protocol that PLCScan supports in

addition to the Modbus/TCP protocol. We did not test and evaluate this feature of

PLCScan since the Wago PLCs in our test environment only support the Modbus/TCP

protocol. Similar to scanning Modbus/TCP, the Siemens S7 scanner outputs the IP

address and port number (102) for any PLC detected to support this protocol. As

illustrated in Figure 41, other information that may be enumerated from a PLC device

includes: module name, hardware and firmware versions, PLC name, plant identification,

and module serial number.

 64

Figure 41. PLCScan sample output for Siemens S7 protocol, from [42]

3. Results and Observation

We executed the PLCScan tool to scan and enumerate the Wago PLC on the test

network using a variety of different options. The default Function Code of the PLCScan

is Function Code 43 (Encapsulated Interface Transport). It sends out Function Code 43

(Encapsulated Interface Transport) with the following request code: \x0E\x01\00 (see

Figure 43). The first byte in the request, 0x0E, indicates the Modbus Encapsulated

Interface (MEI) used by MEI Transport implementations to dispatch a method invocation

to the indicated interface [8]. The second byte in the request (0x01–0x04) indicates the

Read Device ID code; 0x01 is the code to get basic device identification [8]. The last byte

in the request (0x00–0xFF) indicates the Object ID, or the type of object to which the

MEI request pertains; object 0x00 is the Vendor Name [8].

Unfortunately, the Wago PLC does not support function code 43 (Encapsulated

Interface Transport) [39]. Plcscan.py does not explicitly indicate that it uses function

code 43 in addition to any function code specified by the user. As evident in Figures 42

and 43, the “Device Info” section of the output indicates “Device info error: Illegal

Function” when plcscan.py is executed using function code 6.

 65

Figure 42. PLCScan command using Function Code 6

Figure 43 shows the PLCScan request containing Function Code 43. Figure 44

shows the response from the Wago PLC returning an “Illegal Function” exception code.

Figure 43. WireShark packet capture—PLCScan request using Function Code 43

Figure 44. WireShark packet capture—Wago PLC “Illegal Function” exception

code response

Although the Wago PLC does not support Function Code 43, the user-defined --

modbus-function option allows users to use other Function Codes in conjunction with the

hard-coded, mandatory Function Code 43 tool feature. With knowledge of various

Function Code request and response structure and functionality, users can elicit a correct

response from a PLC device. By executing the command depicted in Figure 42 above,

 66

inputting “2020” data using Function Code 0x06 (Write Single Register) returns a

positive response from the PLC device. The --modbus-function option is independent of

the hard-coded Function Code 43.

A positive response from a PLC that supports the device information request via

Function Code 43 is depicted in Figure 45, taken from a screen capture from a YouTube

presentation by the PLCScan developers.

Figure 45. PLCScan sample output for Modbus/TCP protocol, from [42]

E. WAGO PLC EXPLOIT

Digital Bond’s Project Basecamp produced three tools that exploit CoDeSys

vulnerabilities. CoDeSys is a development system, produced by 3S Software Gmbh, to

program and execute logic on PLCs, motorized drive controllers, and other industrial

controllers. CoDeSys supports ladder logic and other programming languages defined by

the international industrial standard IEC 61131-3. Over 500 unique devices by over 163

device manufacturers use CoDeSys worldwide [43], [44]. The 3S CoDeSys Runtime

application is used by vendors to run ladder logic on their PLCs. Reid Wightman of

Digital Bond have identified an improper access control and directory traversal

vulnerability in the 3S CoDeSys Runtime application [43], [45]. These vulnerabilities

allow for unauthorized access to the system and file system [45]. This allows users to

connect to the CLI and execute commands including start and stop ladder logic, erase

 67

PLC memory, list files and directories. Users also have the ability to transfer files to and

from the PLC running the 3S CoDeSys Runtime application with the possibility of

directory traversal where users can send and receive files outside of the 3S CoDeSys file

system and into the critical system configuration such as /etc/shadow and /etc/passwd on

Linux and Windows Registry on Windows CE [43].

The following are details about the three tools Digital Bond created to exploit and

interact with PLCs running the CoDeSys runtime:

1. CoDeSys-Shell.py

This tool is a command-shell utility in the form of Python script. The script allows

unauthenticated users to access the system and perform privileged operations without

providing credentials. The tool bypasses vendor checks normally performed by the 3S

CoDeSys software.

The command depicted in Figure 46 downloads the CoDeSys-Shell.py code from

Digital Bond’s website. The --no-check-certificate option is required to bypass the SSL

authentication.

Figure 46. CoDeSys-Shell.py wget command

The CoDeSys-Shell.py command requires a host IP address and TCP port as an

input, depicted in Figure 47. A common CoDeSys service port is TCP/1200; some ports

observed on other controller types are TCP/1201 and TCP/2455 [43]. The Wago PLC in

our test environment runs CoDeSys services on TCP/2455.

 68

Figure 47. CoDeSys-Transfer.py and CoDeSys-Shell.py command options

By entering a target PLC’s IP address and TCP port, the tool obtains

unauthenticated access to the CoDeSys Runtime application in a form of a command-

shell utility. Entering “?” lists all available commands that can be executed in the

command shell (Figure 48). The list of available commands varies by PLC hardware

[43]. Some of the exploitable commands in the Wago 750-841 PLC used in our tests

include memory dumps, getting table, ID, and task list information. Some of the more

dangerous commands that a user with this privileged access can execute include stopping

and resetting PLC program, deleting and extracting files, deleting passwords, and listing

directories for directory traversal that may lead to more adverse actions against the PLC.

We did not exercise these dangerous commands.

 69

Figure 48. CoDeSys-Shell command-shell utility options

The getprgprop command (see Figure 49) returns the PLC’s program name, title,

version number, author, and the date it was last updated. This information can be useful

in an adversary’s initial scanning and enumeration of the network infrastructure.

 70

Figure 49. CoDeSys-Shell.py getprgprop command

Similar to getprgprop command, the pinf and pid commands (see Figure 50)

return the PLC’s project identification and similar information that is returned by

getprgprop in addition to the project description.

Figure 50. CoDeSys-Shell.py pid and pinf command

The tsk command (see Figure 51) returns crucial information about the task(s) that

the PLC is running. This information includes the International Electrotechnical

Commission (IEC) 60870 task list and task information.

 71

Figure 51. CoDeSys-Shell.py tsk command

The mem, memc, and memd commands (see Figure 52) return memory dump

information and memory dump information relative to code start address and data start

address.

Figure 52. CoDeSys-Shell.py mem memc, and memd commands

The io command (see Figure 53) returns critical information that can be accessed

by having privileged access to the 3S CoDeSys Runtime application. It lists all

information about the plugged terminals.

 72

Figure 53. CoDeSys-Shell.py io command

A potentially dangerous command that the 3S CoDeSys Runtime application has

privileged access to is the filedir command (see Figure 54). It is used to list directories in

the file system. When used with the filecopy, filerename, and filedelete commands, a user

has the capability to move, copy, and delete files in the file system, causing potentially

grave damage not only to the PLC and the system it is controlling but possibly second

and third order reactions to the entire control system network. Another feature that is

available in some devices is the possibility of directory traversal outside of the 3S

CoDeSys Runtime application by executing the “../../” command in conjunction with the

filedir command.

Figure 54. CoDeSys-Shell.py filedir command

2. CoDeSys-Transfer.py

The second tool that Digital Bond produced to exploit this 3S CoDeSys Runtime

application software vulnerability is the CoDeSys-Transfer.py Python script. It is a file

transfer tool that allows reading and writing files on controllers with a file system [43].

Similar to the CoDeSys-Shell.py Python script, it also bypasses vendor-specific

 73

authentication checks allowing users to connect to the PLC without credentials. It

exploits the same vulnerability as the CoDeSys-Shell.py script.

The command depicted in Figure 55 downloads the CoDeSys-Transfer.py code

from Digital Bond’s website. The --no-check-certificate option is required to bypass the

SSL authentication.

Figure 55. CoDeSys-Transfer.py wget command

The CoDeSys-Transfer.py command requires a host IP address, TCP port, local

filename, and remote filename as an input, depicted in Figure 47 and Figure 56. Again,

the Wago PLC in our test environment runs its services on TCP/2455.

Figure 56. CoDeSys-Transfer.py execute command

Figure 57 illustrates an example of running the CoDeSys-Transferl.py command

transferring the DEFAULT.PRG file from the PLC file system to a file called

DEFAULT.PRG on the user’s machine. This command can also be reversed to write or

overwrite commands into the PLC file system. This vulnerability makes complete

reprogramming of PLC possible, which may gravely damage an entire industrial control

network operations.

 74

Figure 57. CoDeSys-Transfer.py command result

3. CoDeSys.nse

The third tool that Digital Bond produced to exploit the 3S CoDeSys software is

the CoDeSys.nse. This tool is an nmap script used to enhance the scanning tool by

detecting whether a PLC or a controller is running a vulnerable version of the 3S

CoDeSys software [43]. Below is a comparison between running the nmap scanning tool

with and without the CoDeSys.nse script. Figure 58 illustrates the nmap executed without

the CoDeSys.nse script and Figure 59 illustrates the nmap executed with the CoDeSys.nse

script as an option. Running the CoDeSys.nse options provides additional information

about the vulnerable version of the 3S CoDeSys software; “220 Nucleus FTP Server

(Version 1.7) ready” indicates that at IP address 192.168.1.1 there is a vulnerable version

of the 3S CoDeSys software through the FTP server TCP/21.

 75

Figure 58. nmap scan result without codesys.nse script

Figure 59. nmap scan result with codesys.nse script

F. MODSCAN

ModScan is a scanning tool developed by Mark Bristow that specifically looks for

ICS-related control devices running the Modbus/TCP protocol. Given a specified IP

address range, the tool seeks PLCs running the ModBus/TCP protocol by searching for

ModBus device Unit ID. ModScan finds PLC device Unit IDs by sending out a Modbus

packet in TCP/502 using various Function Codes. Mark Bristow presented this tool at

DEF CON 16 in August 2008 and the presentation is available on YouTube [46]. The

tool operates in several steps: first, it searches the IP address range provided for an open

Modbus/TCP port (TCP/502). When an open port is found, it searches for the PLC Unit

ID via brute force. As a default, the program terminates after the first discovered Unit ID

is found [47].

 76

The ModScan source code is available in the Google Code repository [48]. The

command depicted in Figure 60 downloads the modscan.py code from its website.

Figure 60. modscan wget command

The ModScan tool contains a wide array of options for tailoring each scan to

specific IP address range, port, and Function Codes (see Figure 61). The IP address range

input can be configured using the standard IP address CIDR notation. The default port

address is TCP/502. The default Function Code is 17 (0x11), which is Report Slave ID

[8].

Figure 61. modscan list of options

We ran the ModScan tool using the Wago PLCs IP address as the target IP and

left all default options listed in Figure 61 unchanged. Figure 62 below illustrates what the

tool returned after executing the command. The tool did not return any positive scan

result from the PLC on the 192.68.1.1 IP address. Upon further investigation, we

discovered the Wago 750-841 PLC does not support Function Code 0x11 (Report Slave

ID) [39]. Individual packet analysis of the response from the Modbus server (PLC)

 77

indicates that the server responds with an “Illegal Function Code” Error Code,

confirming that the Wago 750-841 PLC does not support Function Code 0x11, which is

the default Function Code for the ModScan tool.

Figure 62. modscan command using default Function Code 17

We used the “-f’” option of ModScan to change the Function Code. Changing the

Function Code requires modifying the data field by using the “--data” option on most

Function Codes because the hard-coded data field in the ModScan tool is tailored for

Function Code 0x11. Using Function Code 0x01 (Read Coils), we modified the data field

with “\x00\x00\00\x08” (see Figure 63). We used the data from Mark Bristow’s DEF

CON 16 talk as a guide to building a data input that returns a scan on the PLC [46]. The

output format is “IP address : Port number \ Unit ID.”

Figure 63. modscan command using Function Code 0x01 (Read Coils)

Another useful option ModScan has is the “--aggressive” option. Similar to

PLCScan’s “--brute-uid” option, the aggressive option continues to scan a target IP

address, iterating through all possible Unit IDs, after it finds an initial Unit ID. This

feature is especially beneficial when targeting the IP addresses of gateways that are

connected to multiple PLCs. When the ModScan tool is executed with the “--aggressive”

option, the Wago 750-841 PLC returns Unit IDs 1 through 246 (see Figure 64). It is not

specified in the Wago 750-841 manual whether this is the default setting [39]. It is

uncertain whether this is set as part of Tofino SCADA Simulator default parameters.

 78

Figure 64. modscan command using Function Code 0x01 (Read Coils) in

aggressive mode

Figure 65 lists some of the Function Codes that are supported by the Wago 750-

841 PLC as specified in the manual [39]. Function Codes 1, 2, 3, 4, 5, 6, 11, 15, 16, 22,

and 23 are supported [39]. We tested all supported Function Codes and were successful

in receiving positive scan results for all supported Function Codes. Each Function Code

requires varying data inputs for the ModScan tool to do a successful scan. Using the

ModScan tool requires a basic understanding of what each Function Code does and the

types of information in each Function Codes data field.

 79

Figure 65. modscan command using Function Codes 2, 3, 4, 15, and 23

 80

THIS PAGE INTENTIONALLY LEFT BLANK

 81

VI. MOKI LINUX DISTRIBUTION

In this chapter, we motivate the construction of a new, custom Linux distribution

tailored for ICS penetration testing and defense, called Moki Linux. As our survey has

shown, there is no tools distribution subsuming all existing ICS-related tools. Rather,

existing distributions are maintained for special-purpose training and only carry a subset

of the available tools. Further, lack of documentation and lack of support motivates

developing some distribution with a demonstrably correct configuration for these tools,

giving confidence to users that they are working as expected.

In our survey, we observed that many tools are available from code repositories

scattered across the Internet, such as various GitHub and Google Code repositories.

Despite the wealth of tools available aggregated by Digital Bond, there is no single

distribution, website or repository through which all of these resources are available.

Further, we discovered many tools are poorly documented, are non-trivial to install or

configure, and lack basic methods to demonstrate their correct functionality. It may

appear to users that tools are not behaving properly, due to simple misconfiguration or a

broken install process. Conversely, it may appear to users that tools are functioning

correctly, when in fact the error messages are misleading and non-trivial test cases to

demonstrate the actual logic are inaccessible. For example, in the case of the Modbus

Metasploit module, modbusclient, there was no documentation describing how to change

the default Modbus function code. As another example, the PLCScan tool uses function

code 43 to request the PLC output device information by default. For PLCs that do not

support this feature—like the Wago 750-841 PLC used in our test environment—the

output message (“Device info error: ILLEGAL FUNCTION”) appears to users like an

error.

In this work, we have begun the task of developing a customized Kali distribution

designed for research in ICS security, to include all available ICS tools. The Moki Linux

distribution builds on the Kali Linux distribution. We selected Kali due to its popularity

as a platform for penetration testing. A future goal is for Moki to be used either as an

enhancement to Kali (for penetration testing tools for ICS) or to Security Onion (with

 82

defensive tools tailored for the ICS domain), depending on the needs of the end-user.

Currently, Moki distribution install scripts are available from GitHub [49]. The Moki

scripts support installing all the tools evaluated in this thesis (i.e., Quickdraw, PLCScan,

CoDeSys runtime shell exploit, ModScan). Options are available to install Snort with

Digital Bond’s Quickdraw IDS rules, with logic to amend the existing Snort

configuration and test the installation with sample traffic. The goal of the Moki

distribution is to help new users overcome many of the difficulties we encountered in

evaluating these tools. We are optimistic that others working in this domain may see

value in simplifying the installation of ICS tools, and may fork or contribute to the Moki

distribution.

 83

VII. CONCLUSION

The growing importance of Industrial Control Systems in today’s increasingly

interconnected systems warrants their study. Securing these systems is vital to our

national security, in light of the grave consequences where our nation’s critical

infrastructure is disrupted or otherwise impacted by cyber attack. The lack of a

centralized repository of tools to experiment with ICS systems from a cyber-security

perspective makes this task difficult.

A. SUMMARY

In this work, we have surveyed publicly available defensive and adversarial ICS-

related tools. We found two primary penetration testing tools distributions (INL’s Kali

Linux and SamuraiSTFU) developed primarily for ICS-related training courses. We

highlighted many tools—found in neither distribution—that are publically available from

repositories and research firms, such as Digital Bond. We conducted hands-on evaluation

of select tools to verify their availability and to understand their operating state, including

whether each works as described and has appropriate documentation to guide installation

and use. We discovered that many tools are poorly documented, with features and

functionality inaccessible without prior technical knowledge of various protocols and in-

depth analysis of the source code.

The result of our survey and evaluation culminates in a proposed distribution for

these tools. Moki Linux is an ICS-centric version of Kali Linux tailored with defensive

and adversarial tools for security researchers in the ICS domain. Our first release of Moki

Linux establishes a foundation on which other developers can build, to demonstrate how

to install and configure their tools. Moki Linux is released as an open source custom

Linux distribution, via GitHub, with the intention that it may evolve and incorporate new

tools, as they are developed.

 84

B. FUTURE RESEARCH

Future research topics related to our study include the continued hands-on

evaluation of defensive and adversarial ICS tools, the documentation of ICS-related tools,

and the expansion of the Moki Linux distribution.

Our survey was limited to ICS-related tools available as of September 2014.

Technology advances and new research continuously change the state of ICS

vulnerabilities known today, and thus inspire new tools and techniques to exploit and

defend against them. Our survey of defensive and adversarial ICS-related tools may need

to be expanded and re-evaluated as the state of research progresses. Furthermore, in this

work, we evaluated only a small number of the available tools for this domain. Hands-on

experimentation with existing tools may help the ICS community understand which tools

need better documentation, which tools cease to be demonstrably useful and which tools

require updates. Finally, tools that no longer work “as advertised” may warrant being

improved or fixed.

We intend that developers expand the Moki Linux distribution to support all tools

that may be useful for security research in the ICS domain. As such, expansion of Moki is

crucial to keep pace with development of new tools and exploits. Demonstrating how to

install and use tools by incorporating them into the Moki distribution will be beneficial to

the ICS community and is worthy of future research, broadening the set of resources

available to ICS security professionals.

85

LIST OF REFERENCES

[1] White House. (2013, Feb.). Presidential Policy Directive-Critical Infrastructure

Security and Resilience. [Online]. Available: http://www.whitehouse.gov/the-

press-office/2013/02/12/presidential-policy-directive-critical-infrastructure-

security-and-resil

[2] J. N. Hoover. (2013, Jan. 11). Thousands of industrial control systems at risk:

DHS study. [Online]. Available: http://www.darkreading.com/risk-

management/thousands-of-industrial-control-systems--at-risk-dhs-study/d/d-

id/1108149?

[3] J. Matherly. (2010, Nov. 9). Exposing SCADA systems with Shodan. [Online].

Available: http://threatpost.com/exposing-scada-systems-shodan-110910/74644

[4] M. Chipley et al., “Cybersecuring Industrial Control Systems,” The Military

Engineer, vol. 105, no. 685, Sep. 2013,

http://themilitaryengineer.com/index.php/tme-articles/tme-magazine-

online/item/261-cybersecuring-industrial-control-systems

[5] K. Strouffer et al., Guide to industrial control systems (ICS) security, NIST

special publication SP 800-82 Rev. 1. [Online]. Available:

http://csrc.nist.gov/publications/PubsSPs.html Accessed Sep. 6, 2014.

[6] D. Reed et al., (2013, May 22). The Coast Guard machinery control system

(CGMCS) commonality come true. [Online]. Available:

https://www.navalengineers.org/ProceedingsDocs/IntelligentShips/ISSX/B3_Wal

ker_Paper.pdf

[7] Security for Industrial Automation and Control Systems Part 1: Terminology,

Concepts, and Models, ANSI Standard 99.00.01–2007, 2007.

[8] Modbus. (2006, Dec.). Modbus application protocol V1.1b. [Online]. Available:

http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b.pdf

[9] Acromag. (2005, Jan.). Introduction to Modbus TCP/IP. [Online]. Available:

http://www.prosoft-technology.com/kb/assets/intro_modbustcp.pdf

[10] ABB. (2011, Feb.). 650 series DNP3 communications protocol manual. [Online].

Available:

http://www05.abb.com/global/scot/scot354.nsf/veritydisplay/5b0552a1511e3d9ac

125783a004549d7/$file/1mrk511241-uen_-

_en_communication_protocol_manual__dnp___650_series__iec.pdf

86

[11] Digital Bond. (2014, Jul.). DNP3. [Online]. Available:

http://www.digitalbond.com/scadapedia/protocols/dnp3/

[12] ODVA. (2006). Common industrial protocol (CIP). [Online]. Available:

http://www.odva.org/Portals/0/Library/Publications_Numbered/PUB00122R0_CI

P_Brochure_ENGLISH.pdf Accessed Sep. 6, 2014.

[13] ODVA. (2014). EtherNet/IP technology overview. [Online]. Available:

http://www.odva.org/Home/ODVATECHNOLOGIES/EtherNetIP/EtherNetIPTec

hnologyOverview.aspx Accessed Sep. 6, 2014.

[14] P. Brooks. (2001, Oct.). EtherNet/IP: industrial protocol white paper. [Online].

Available:

http://literature.rockwellautomation.com/idc/groups/literature/documents/wp/enet-

wp001_-en-p.pdf

[15] Tofino Security. Tofino SCADA security simulator. [Online]. Available:

https://www.tofinosecurity.com/products/tofino-scada-security-simulator

Accessed Sep. 6, 2014.

[16] Tofino Security, “Tofino SCADA Security Simulator User’s Guide,” Byres

Security Inc. Lantzville, BC, Jan. 2013.

[17] MTL. Tofino LSM—loadable security modules. [Online]. Available:

http://www.mtl-inst.com/product/tofino_lsm_loadable_security_modules/

Accessed Sep. 6, 2014.

[18] Digital Bond. About us. [Online]. Available: http://www.digitalbond.com/about-

us/ Accessed Sep. 6, 2014.

[19] ICS-CERT. (2013, Jul.). Siemens SIMATIC STEP 7 DLL vulnerability. [Online].

Available: http://ics-cert.us-cert.gov/advisories/ICSA-12-205-02

[20] Digital Bond. I3P. [Online]. Available:

https://www.digitalbond.com/scadapedia/security-controls/i3p/ Accessed Sep. 6,

2014.

[21] Idaho National Laboratory. (2014, Aug.). National supervisory control and data

acquisition test bed. [Online]. Available: http://www.inl.gov/research/national-

supervisory-control-and-data-acquisition-test-bed/d/national-supervisory-control-

and-data-acquisition-test-bed.pdf

[22] U.S. Department of Energy. (2008, Jan.). National SCADA test bed program.

[Online]. Available:

http://energy.gov/sites/prod/files/oeprod/DocumentsandMedia/DOE_OE_NSTB_

Multi-Year_Plan.pdf

 87

[23] SamuraiSTFU. Training syllabus. [Online]. Available:

http://www.samuraistfu.org/training-syllabus Accessed Sep. 6, 2014.

[24] Rapid 7. Metasploit: the attacker’s playbook. [Online]. Available:

http://www.rapid7.com/products/metasploit/ Accessed Sep. 6, 2014.

[25] Snort. (2013, Jun. 6). What is Snort. [Online]. Available:

https://github.com/vrtadmin/snort-faq/blob/master/FAQ/What-is-Snort.md

[26] Tenable Network Security. Nessus. [Online]. Available:

http://www.tenable.com/products/nessus Accessed Sep. 6, 2014.

[27] Saleae. (2014, Sep.). About. [Online]. Available: https://www.saleae.com/about

[28] D. Beresford. (2012, Jul. 13). S7 Metasploit modules. [Online]. Available:

https://github.com/moki-ics/s7-metasploit-modules

[29] SCADAhacker. (2012, Sep. 10). Metasploit modules for SCADA-related

vulnerabilities. [Online]. Available: http://scadahacker.com/resources/msf-

scada.html

[30] Ti Safe. About TI Safe. [Online]. Available:

http://www.tisafe.com/en/empresa/sobre/ Accessed Sep. 6, 2014.

[31] J. Seidl and M. A. Branquinho, “Detecting problems in industrial networks

through continuous monitoring,” TiSafe, Rio de Janeiro, Brazil. White Paper, Jun.

13, 2013.

[32] Digital Bond. (2014, Jul.). Quickdraw SCADA IDS. [Online]. Available:

http://www.digitalbond.com/tools/quickdraw/

[33] ICS-CERT. (2011, Oct.). Rockwell RSLogix overflow vulnerability (Update A).

[Online]. Available: https://ics-cert.us-cert.gov/advisories/ICSA-11-273-03A

[34] CVE Details. (2011, Feb.). Vulnerabilities details: CVE-2010-4709. [Online].

Available: http://www.cvedetails.com/cve/CVE-2010-4709/

[35] GitHub. (2013, Oct. 15). Modbus_findunitid.rb. [Online]. Available:

https://github.com/rapid7/metasploit-

framework/blob/master/modules/auxiliary/scanner/scada/modbus_findunitid.rb

[36] The Modbus Community. (2012, Jan. 26). Modbus TCP—What is the correct

usage of Unit ID? [Online]. Available:

http://modbus.control.com/thread/1327578856

 88

[37] GitHub. (2014, Jun. 28). Modbusclient.rb. [Online]. Available:

https://github.com/rapid7/metasploit-

framework/blob/master/modules/auxiliary/scanner/scada/modbusclient.rb

[38] Wago. (2007). Modbus communication between WAGO Ethernet couplers and

controllers. [Online]. Available:

http://www.wago.com/wagoweb/documentation/app_note/a3000/a300003e.pdf

Accessed Sep. 6, 2014.

[39] Wago. (2011). Wago-I/O-System 750 ethernet TCP/IP programmable fieldbus

controller. [Online]. Available:

http://www.wago.com/wagoweb/documentation/750/eng_manu/coupler_controlle

r/m07500841_00000000_0en.pdf Accessed Sep. 6, 2014.

[40] GitHub. (2013, Oct. 15). Modbusdetect.rb. [Online]. Available:

https://github.com/rapid7/metasploit-

framework/blob/master/modules/auxiliary/scanner/scada/modbusdetect.rb

[41] D. Efanov. (2012, Dec. 4). Plcscan.py. [Online]. Available:

https://code.google.com/p/plcscan/source/browse/trunk/plcscan.py

[42] Positive Technologies. (2013, Jan. 22). PLCScan. [Online]. Available:

https://www.youtube.com/watch?v=SgZTJva2NfA

[43] Digital Bond. 3S CoDeSys. [Online]. Available:

http://www.digitalbond.com/tools/basecamp/3s-codesys/ Accessed Sep. 6, 2014.

[44] 3S CoDeSys. (2013). The CoDeSys device directory. [Online]. Available:

http://www.sks.fi/www/images/CODESYS_DeviceDirctory_en_2013-

14.pdf/$FILE/CODESYS_DeviceDirctory_en_2013-14.pdf Accessed Sep. 6,

2014.

[45] ICS-CERT. (2013, Jan. 10). 3S CoDeSys vulnerabilities. [Online]. Available:

https://ics-cert.us-cert.gov/advisories/ICSA-13-011-01

[46] Def Con. (2011, Jan. 18). DEFCON 16: ModScan: A SCADA network Modbus

scanner. [YouTube video]. Available:

https://www.youtube.com/watch?v=z14tgdvZf_E Accessed Sep. 6, 2014.

[47] M. Bristow. (2008, Aug.). ModScan: A SCADA Modbus network scanner

[Online]. Available: https://www.defcon.org/images/defcon-16/dc16-

presentations/defcon-16-bristow.pdf

[48] Google Code. (2008, Aug.). Modscan.py. [Online]. Available:

http://modscan.googlecode.com/svn/trunk/modscan.py

 89

[49] M. S. Javate. (2014, Jun. 22). Moki Linux. [Online]. Available:

https://github.com/moki-ics/moki

[50] D. Burks. (2013, Feb.). Introduction to Security Onion. [Online]. Available:

https://code.google.com/p/security-onion/wiki/IntroductionToSecurityOnion

[51] Tenable Network Security. Passive vulnerability scanner critical capabilities.

[Online]. Available: http://www.tenable.com/products/passive-vulnerability-

scanner/capabilities Accessed Sep. 6, 2014.

[52] Digital Bond. About us. [Online]. Available: http://www.digitalbond.com/about-

us/ Accessed Sep. 6, 2014.

[53] National Instruments. (2014, Jan.). Introduction to Modbus. [Online]. Available:

http://www.ni.com/white-paper/7675/en/pdf

 90

THIS PAGE INTENTIONALLY LEFT BLANK

 91

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

 Ft. Belvoir, Virginia

2. Dudley Knox Library

 Naval Postgraduate School

 Monterey, California

