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ABSTRACT

This thesis considers distributed capability systems as a potential solution to securing data
in cloud environments. The U.S. Navy, Intelligence Community and Department of De-
fense have begun a significant investment to leverage scalable, distributed cloud-based so-
lutions for information sharing. We believe capability systems suggest a promising direc-
tion for new platforms, a bold approach drawing directly from mature ideas first explored
in the 60s and 70s. We survey the properties and limits of existing distributed capability file
systems, as a step toward understanding how capability-based designs might serve cloud-
scale systems. We highlight some lessons learned in our observations and find that, while
no existing capability-based distributed file system demonstrates all of the desirable secu-
rity traits observed of smaller-scale capability systems, it should be possible to define and
create one that does, using capabilities carefully designed to obey a set of known properties.
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CHAPTER 1:
Introduction

This thesis considers distributed capability systems as a potential solution to securing data
in cloud environments. The U.S. Navy, Intelligence Community and Department of De-
fense have begun a significant investment to leverage scalable, distributed cloud-based so-
lutions for information sharing. We believe capability systems suggest a promising direc-
tion for new platforms, a bold approach drawing directly from mature ideas first explored
in the 60s and 70s. We survey the properties and limits of existing distributed capabil-
ity file systems, as a step toward understanding how capability-based designs might serve
cloud-scale systems.

1.1 Navy Cloud Computing
The U.S. Navy is currently in the process of charting a course to a common, cloud-based
architecture. The chief aim of this initiative is to bring all Unclassified, Secret, Top Secret,
and SCI systems into a cloud architecture [1]. The motivation is to increase performance
and simultaneously to “decrease the long term costs of end to end architecture” [1]. The
Department of Defense (DOD), and the Intelligence Community (IC) have each announced
plans to migrate their information systems to cloud-based environments, implementing the
Joint Information Environment (JIE) and the Intelligence Community Information Tech-
nology Enterprise (ITE), respectively. While recognizing its own unique operational en-
vironment will require a different approach, the Navy hopes to leverage commonalities in
cloud environments for relatively seamless interoperability with its sister services in the
DoD and with the IC.

A recent 2014 RAND report describes an approaching “flood of data coming from the in-
telligence, surveillance, and reconnaissance (ISR) systems that Navy... commanders rely
on for situational awareness” [2]. It reports that “as little as 5% of the data collected by
ISR platforms actually reach the Navy analysts who need to see them” [2]. In a 2011 Mar-
itime ISR Enterprise Acquisition Review, researchers concluded early in their analysis that
“ongoing Navy ISR acquisition programs will generate far more new data than the exist-
ing C2ISR afloat and ashore infrastructure and associated acquisition programs. . . ” could
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realistically accommodate, quickly reaching petabyte (1015 bytes) scale [3]. The report
goes on to observe an issue widely acknowledged throughout the Navy: in the present
system-centric information environment, frequently, required data can be spread or sepa-
rated across multiple classification levels, or stored in databases and networks not accessi-
ble to the war-fighters, analysts, or tactical commanders that need it [3]. “Unlike a Google
search, users have to know not only what they are looking for, but also where to look for
it” [3]. Often this means that data from which a warfighter could have benefited is inacces-
sible when it is needed most. Moving to the cloud is seen as the best solution to deal with
both the Navy’s emerging Big Data problem and the increasing fiscal constraints under
which it must operate and in which it must innovate [2].

1.2 Benefits of the Cloud
The Navy’s current Information Technology (IT) environment is very much like the state
of federal government systems, described in the 2011 Federal Cloud Computing Strategy:
“characterized by low asset utilization, a fragmented demand for resources, duplicative
systems, environments which are difficult to manage, and long procurement lead times” [4].
The potential benefits of moving to a cloud-based IT environment are attractive: more
efficient use of computing resources (i.e., storage, memory, computational power), rapid
provisioning of resources, elimination of data silos, scalable and on-demand services, and
disaster recovery through multisite mirroring [5]. Cloud adoption promises a significant
reduction in costs to the Navy, allowing it to reduce its population of data centers from 125,
its current size, to roughly 20 [6]. This alone can result in substantial savings, considering
both real estate reduction, and the savings in cooling, staffing, maintenance, and additional
overhead incurred running those 105 eliminated data centers. Further, it has been suggested
that cloud-based defenses can be more robust, scalable, responsive, and cost-effective [7].

1.3 A Growing and Continued Threat
While the Navy adopts new technologies in response to changing demand in its informa-
tion environment, U.S. adversaries are growing more adept at finding and taking advantage
of vulnerabilities in our information systems. The Wall Street Journal recently reported
the discovery of a large cyber attack from Iran that infiltrated U.S. Navy unclassified net-
works [8]. In 2013, Mandiant published a report on what it called Advanced Persistant
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Threat 1 (APT1), revealing a large-scale Chinese military operation to infiltrate and ex-
ploit the United States government, industry and infrastructure, employing diverse tactics
(e.g., 40 different malware families, spear phishing, webserver exploits) [9]. Other attacks
and programs have been attributed to Russian actors, targeting everything from defense,
to the energy industry, to our banking industry [10], [11]. Further, a series of high-profile
attacks by insiders have broad repercussions on how we partition trust across and within
our networks, and severely undermine our reliance on boundary defenses in system secu-
rity [12], [13]. Our adversaries are clearly not standing still. Increasingly, they employ the
cyber domain as an arena in which they can stand, strike, and meet real objectives, arguably
with both plausible deniability and impunity.

1.4 Security in the Cloud
In light of these threats, researchers have identified open questions regarding data security
and integrity in the cloud, including:

• Confidentiality. How does an organization know that its data is protected when at
rest and when in motion? How can we know that separation is assured between
organizations, users with differing classification levels, or users in general?
• Integrity: When critical data is stored in the cloud, how can one know it will be

present at a later time in an uncorrupted state?
• Provenance: When one possesses a piece of data, how can I track its pedigree, its

source to give a commander an understanding of its level of certainty or trustworthi-
ness? What is the origin of a particular piece of data [14]?
• Jurisdiction: Where does data reside (at rest) or pass through (in motion) physically

under any given circumstances? What laws apply to it as a result?
• Secure Sharing: Allow sharing of data among authorized parties while obeying all

the access control policies set by object creators.
• Program Encapsulation: Run untrusted software in a restricted environment that re-

sists system hijacking and quarantines errors that the software might produce.
• Access Revocation: Enable revocation of access rights at any time, regardless of the

number of parties that may be sharing access.
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In moving to a common, cloud-based operating environment, the Navy will face bringing
multiple distinct, formerly disconnected information systems together under a new operat-
ing and sharing paradigm. NIST’s Big Data Public Working Group observes that "clouds
and federations tend to introduce complications for application and the technology do-
mains, and security mechanisms are often a previous generation of enterprise solutions that
are being repurposed inappropriately for a radically different threat model” [15]. Clearly,
finding methods to encapsulate, securely compose and protect these systems (internally
and externally) will be as much a challenge as interoperability, enhancing performance,
and developing new applications and analytics.

1.5 Capabilities for Cloud Systems
In the context of advanced perstent external threats, insider threats in privileged roles, and
many open questions about security in the cloud, we are strongly motivated to investigate
capability systems in the context of distributed environments, like the cloud. Capability
systems represent a fundamental shift in approach regarding access, addressing, and con-
trol.

Capabilities can provide an elegant solution to some security problems that have continued
to demand our attention over the years. In the 1960s, capability addressing was developed
by Dennis and Van Horn [16]. The idea was to encapsulate all software in least-privilege
protection domains, and to grant access to the objects belonging to domains by means of
special protected pointers called capabilities. Capability architectures were successfully
implemented on several commercial systems. Unfortunately, when RISC chips arrived in
the early 1980s, the emphasis shifted from security to performance, and capability princi-
ples disappeared from many chips and operating systems.1

Today, security is once again a top priority, and capability architectures are making a come-
back. In particular, the DOD has already begun to investigate clean-slate approaches to se-
curing new systems, under a recent DARPA program. One such approach, CHERI, employs
memory capability architecture. See Section 2.2 for more on CHERI and other contempo-
rary capability projects. Among the intrinsic security features that make capability systems

1Though successful capability research continued throughout this period, (i.e., KeyKOS, EROS and oth-
ers).
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attractive as a solution, are the following:

• Enable fine-granularity, least privilege operation.
• Provide a mechanism for encapsulation and protection of process memory.
• Provide unforgeable references, supporting strong resource protection.
• Increase system reliability due to the highly compartmentalized nature of their re-

source and authority management.
• Use subject-controlled authorities, removing centralized management of permissions

and admitting more scalable and efficient distributed designs.
• Enable controlled sharing, providing a secure way to delegate privilege and enable

flexible methods of sharing data.
• Permit programmers to develop services less open to abuse (i.e., avoiding so-called

confused deputies), reducing the threat of program hijacking, manipulation by mal-
ware, and memory safety violations.
• Reduce insider threat via compartmentalization of memory and resources.
• Allow systems to eliminate admin, super-user or root accounts [17].

Given the inherent security properties of capability systems, our principal question is: can
capabilities be applied to similar effect in the Cloud?

1.6 Capability-based Distributed File Systems
As a first step toward exploring capabilities in a distributed cloud context, we survey ca-
pabilities in the context of distributed file systems (DFS). Several secure DFS have been
proposed using capabilities for security policy enforcement. We survey six prominent, rep-
resentative systems—Tahoe-LAFS, Maat, CapaFS, DisCFS, DOI, Neo—examining their
designs and resultant properties. The rationale for this survey is in the sometimes ambigu-
ous use of the term “capability” in systems engineering. Indeed, wide belief exists that
capability systems are incapable of some desirable security properties (i.e., confinement,
privilege revocation). Miller, Yee and Shapiro present a categorization of these properties
and survey many capability-based operating systems, showing that not all capability sys-
tems are equal [18]. They find some systems are able to support these properties, while
others do not. In particular, they describe one class of capability system (object capability

systems), capable of supporting all their target properties.
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We evaluate each of our distributed capability file systems using the criteria proposed by
Miller et al. [18] for non-distributed capability operating systems, and using the security
principles of Saltzer and Schroeder [19]. Our motivation is to extend prior analysis in this
domain, with the following goals:

• Confirm (or correct) the claimed security properties for each system.
• Determine if capability-based distributed file systems exist satisfying all desirable

properties described by Miller et al.

• Highlight tradeoffs made by designers in balancing the properties of capabilities and
distributed systems.
• Confirm (or amend) the claimed relationship between the primary properties outlined

by Miller et al. and a set of secondary, or emergent, properties (the later believed to
be derived from the former).

We find that the distributed file systems we survey do not fall neatly into the capability
models identified by Miller et al., challenge some previously identified patterns among ca-
pability systems, and leave open the possibility of new DFS designs with desirable security
properties.

1.7 Research Questions
We seek to interpret essential properties provided by capability systems in a distributed
context. We adapt a metric from Miller et al. to enable our survey work, analyzing the
security of distributed capability systems [18]. This metric may be successfully put to use
for future proposed platforms employing capabilities in a cloud context. In particular, our
work contributes to the following larger research questions:

• Are capabilities able to produce the security environment needed for the cloud?
• Do systems that meet this capability metric satisfy the cloud security requirements?
• Identify systems may be able to satisfy Navy cloud security requirements?

Before resolving any of these, we first consider which existing distributed file systems meet
all the requirements outlined by our metric for distributed capability systems. The goal is
to identify the key principles of capability systems in those distributed systems that may
contribute in the same way to the security of cloud-scale clustered file systems.
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1.8 Organization
Our work takes the following organization:

• In Chapter 2, we review capabilities and related work.
• In Chapter 3, we introduce the Saltzer and Schroeder security principles and the

properties for evaluating capability systems defined by Miller et al.

• In Chapter 4, we review the capability-based file systems we survey.
• In Chapter 5, we survey the properties of our target systems.
• In Chapter 6, we discuss essential patterns and summary findings with respect to

applying the metric of Miller et al. to distributed capability systems; we suggest
refinements and interpretations.
• In Chapter 7, we conclude and outline future work.

7
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CHAPTER 2:
Background

In this chapter, we remind the reader of the general theory of how a capability system
operates; we give a brief history of implementations, and we review recent work employing
capabilities in related mobile, web and distributed settings, applicable to the cloud.

2.1 Capability Systems and History
There are more than a few interpretations of what constitutes a capability. Therefore, it is
understandable as to why there are some differences in the understanding of their derivative
properties. The idea is to encapsulate all software in least-privilege protection domains, and
to grant access to the objects belonging to domains by means of special protected pointers
called capabilities. Its useful before explaining capabilities further to define what we will
mean by the terms object and subject. An object is any data entity that can be named
and manipulated (e.g., files, images, data records, directories, and protection domains). A
subject is a process that can access an object and must abide by the rights permissions
granted it by other subjects.

2.1.1 What are Capabilities?
We choose the following description as it complies with most major system implemen-
tations. A capability is a protected bit pattern which simultaneously identifies an object
(designates) and grants authority to access that object to the subject which holds it [19].
Capabilities should be unforgeable [20]. Unlike most systems we see today, in a capability
system, resources do not reside in a global shared namespace. Instead they are created by a
subject within its own subject-space [21, p. 6]. A subject’s own space cannot be accessed
without possessing a capability to either that space or a specific object in that space.

Depending on the system, a subject can be fine-grained (e.g., an individual process), or
coarse-grained (e.g., a user). A subject can grant other subjects specific types of access
to resources it creates or has capabilities to, by passing them capabilities to the resources.
This is called delegation of authorities. The only form of access control in a pure capability
system is showing possession of a capability to a resource. Without a capability, there is

9



no way to access a resource; in some systems there is no way to even refer to a resource
without a capability to it [18]. Unless a process is explicitly granted a capability, it cannot
access the object named by the capability.

2.1.2 Why Capabilities?
Many researchers have expressed that capability systems have unique potential to imple-
ment secure systems. Saltzer and Schroeder state that “the capability system has as its chief
virtues its inherent efficiency, simplicity, and flexibility” [20]. Most capability systems fa-
cilitate the principle of least privilege in a way that appears unmatched by other systems,
that is, each process or instance of an object, is delegated only the authority it needs to
execute its assigned tasks [21], [22], [23]. Miller argues that a capability architecture pro-
vides a far more sound foundation on which to provide precise, minimal, and meaningful
delegation of authority [18]. According to Hardy, capabilities are the best way to prevent
what he calls the confused deputy problem [19] (see Section 3.3.3). It is the presence of
the privileged state in other systems that has allowed minor system flaws to yield dramatic
escalation of privilege attacks. Denning observes that a by-product of capability systems is
the elimination of the need for a privileged state (i.e., root) [17, p. 374].

2.1.3 A Brief History
Following the invention of capabilities by Dennis and Van Horn, the first practical imple-
mentation of a capability system was a modification of the PDP-1, called PDP-1 Supervisor,
built in 1967 at MIT with Dennis’s assistance [24]. It was a timesharing operating system
that supported up to five simultaneous users [25]. The first architecture specification for a
capability machine was made by Robert Fabry around 1967. He called it the MAGNUM
machine (for magic number, because a capability was like a magic number that conferred
access) [26, p. 39]. Maurice Wilkes extoled capability addressing in his 1968 book Time
Shared Computer Systems [27]. The first commercially-produced capability system was
the Plessey System 250. This system was produced primarily to be a reliable telecommu-
nications switching computer, though significant military procurement suggests RADAR
switching use as well [25], [28].

The Hydra system was implemented by Cohen and Jefferson at Carnegie Mellon as part
of a DARPA project in 1975 [29]. Hydra was a fault tolerant multi-processor system that

10



was the first to implement a fully object-based design [25]. In 1976, the Cambridge CAP
computer was brought on line by Wilkes and Needham [21]. It served as an experimental
machine, then later provided computing services in support of research and remained opera-
tional for a number of years [30]. In 1980, IBM delivered the System/38, a capability-based
machine for commercial distribution [31]. The system met with some success; however,
the follow-on IBM system AS400 dropped the capability addressing design [25], [32].

KeyKOS, a capability system designed to support “secure, reliable, 24-hour availability for
applications on Tymnet hosts,” grew out of the Great New Operating System In the Sky
(GNOSIS) effort. The system began operating in 1983 and production continued for nearly
ten years by the Key Logic team. Norm Hardy was the lead architect who developed it
to be run on the IBM S/370 [33]. KeyKOS successfully ran VISA transaction processing
and networking applications [34]. In 1999 and the early 2000s, the Extremely Reliable
Operating System (EROS) took much of the lessons learned from KeyKOS, made it as
fast as its contemporary systems, and formally proved the property of confinement for
the system [35]. There are currently two projects which continue to extend this research,
CapROS, (led by Landau, an original KeyKOS designer), and Coyotos (led by Shapiro, the
creator of the EROS follow-on). Coyotos is reportedly being commercialized [36].

2.2 Capabilities in Cloud Systems
There are a number of capability systems and active areas of research that do not fall within
the scope of our distributed file system survey work, but are worthy of mentioning.

2.2.1 Capsicum
An ongoing Cambridge project, Capsicum is a capability-based lightweight operating sys-
tem built as an extension to FreeBSD 9. It extends the modified POSIX application pro-
gramming interfaces (API), leveraging two new kernel primitives and a modified userspace
API. It allows an array of options to implement hybrid capability programming designs
within the OS [37]. This hybrid approach allows programmers to incrementally phase-in
least-privilege handling of file operations in a traditional UNIX environment.
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2.2.2 CHERI
Recently, an on-going Defense Advanced Research Projects Agency (DARPA) project, the
CRASH-worthy Trustworthy Systems Research and Development program, led by Stan-
ford, Cambridge, and Google researchers, seeks to build a clean-slate hardware and soft-
ware capability design. Capability Hardware Enhanced RISC Instructions (CHERI) is
a hybrid capability system and represents the hardware portion of the project. It com-
bines “capability-based addressing with RISC ISA and MMU-based virtual memory” and
demonstrates strong performance while enforcing memory protection [38]. The design em-
ploys a capability coprocessor (defining capability registers), and tagged memory (protect-
ing capabilities stored in memory) [38]. This system is being designed to be the substrate
for a future Clean-Slate Design of Resilient, Adaptive, Secure Hosts (CRASH) platform.

2.2.3 seL4
seL4 is a capability-based micro-kernel for ARM, with the goal of securing mobile plat-
forms. This mobile operating system kernel is capability-based and has been formally
verified to be functionally correct with respect to the following properties: the kernel

• will not crash.
• will not perform unsafe operations.
• is completely deterministic in every situation.

seL4 is the first comercial-grade general-purpose, microkernel; and the implementors de-
cided that would be best accomplished using capabilities as a basis [39]. On-going research
exists to formally prove seL4 implements a type of memory integrity and authority confine-
ment [40]. Further, complimentary work seeks to implement a L4-based micro-hypervisor
able to support general OS virtualization [41].

2.2.4 BCAP
Google’s Belay Cloud Access Protocol (BCAP) project is a capability-based web API that
enables code to “create and use capabilities as a means to securely enable access to re-
sources” [42]. Modules are code and data that executes, like a process. The module can
be passed or create a capability that gives it the ability to invoke some object or another
module of code. Capabilities in this system are unforgable and resemble the capabilities in
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traditional systems. The system leverages Chrome to implement a secure browser protocol
that enables secure sharing of modules or data [42].
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CHAPTER 3:
Principles and Properties

Before we survey the various capability-like distributed file systems, we establish guiding
principles and a metric to serve as a point of comparison to differentiate their relative secu-
rity strengths and weaknesses. This section defines the principles that guide our notions of
what is best in regard to system security properties. These security properties are the core
metrics in the survey tool with which we evaluate the target distributed file systems.

3.1 Security Principles
In their seminal paper The Protection of Information in Computer Systems, Saltzer and
Schroeder identify eight foundational design principles to guide the creation of security
mechanisms [20]. We explain and interpret these in an access control policy setting (i.e., a
policy governing access to objects by subjects), which is both classic and relevant to us.

• Fail-Safe Defaults. The default condition of any subject is a lack of access to any
object. Subjects that require access to an object must therefore be explicitly granted
access to that object.
• Complete Mediation. Every attempt to access any object within the system must be

authorized before access to that object is granted.
• Least Privilege. Every subject within a system, no matter the granularity, whether

a user or a specific program instance, should have only those privileges which it
requires to complete its assigned tasks, and no more.
• Economy of Mechanism. Any security measure that is to be implemented should be

kept as small and as simple as possible.
• Least Common Mechanism. The sharing of resources between subjects should be

minimized or eliminated when possible.
• Separation of Privilege. A system should only grant permission based on when two

or more conditions have been met.
• Open Design. The security of a mechanism should not depend on portions of its

design or implementation being kept secret; secrets should be represented only by
highly changeable keys, so that the whole of the mechanism is not compromised
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when a secret is not kept.
• Psychological Acceptability. Any security mechanism should be seamless to the user,

reflecting that its use is easier than any attempt to circumvent its use.

Saltzer and Schroeder also suggest two additional security design principles they contended
“imperfectly translate” to computer systems, naming these “Work Factor” and “Compro-
mise Recording.” They are very useful nonetheless. We present them as broadened princi-
ples that may be applied to systems and design decisions:

• Adequate Protection. Objects should be protected to a level commensurate with their
value [43].
• Accountability. Security mechanisms should show when they have been tampered

with, if at all possible. This turns out to be at least very difficult, if not impossible
to do, especially with a very knowledgeable and skilled attacker. It can be approxi-
mated by an audit system that records every access or use of a resource or security
mechanism. This enables post-incident forensic analysis on the system to provide
indications of attack and attack source.

Mechanisms for one of the principles above may complicate or even contradict mecha-
nisms for other principles. Designers must determine which take priority in their system’s
requirements. The principles are guides for design, not binding rules [44].

Many of the Saltzer and Schroeder principles manifest naturally in capability systems. We
discuss the relationship between typical capability systems and these principles next:

• In a capability system the default is that a subject has no access to any object. A
subject gains access either by creating the object itself or by being granted the capa-
bility. The base case for a subject is an empty capability list (C-List). This follows
the principle of fail-safe defaults.
• Because capabilities are the only method of authority invocation in capability sys-

tems, and every capability simultaneously names (designates) an object and grants
specific rights to the object, it follows that it is impossible to access a resource with-
out a capability. Complete mediation is a necessary consequence in such a system.
• Capabilities facilitate the implementation of the principle of least privilege. Since
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transferring capabilities is the only means of transferring authority, a security-
conscious programmer may easily ensure that only the authorities that the new pro-
cess will need to execute its intended purpose are given to it, and no more. This is
a marked contrast with a non-capability system that relies on root-associated privi-
leges.
• With regard to economy of mechanism, Saltzer and Schroeder attribute efficiency

and simplicity as the virtues of a capability system [20, §II-b-3].
• Capabilities support least common mechanism as well. This is especially true if

resources and subjects are finely grained to the level of individual files or instances of
processes, and subjects require capabilities to one another in order to communicate.
• Capabilities also naturally lend themselves to separation of privilege as demonstrated

early in their history through the Hydra and CAL capability operating systems [20].
A simple implementation requires that in order to access a particular data object, two
or more capabilities must be obtained by the would-be accessor.
• A capability is an unforgeable token that, when invoked by any subject, is sufficient

to grant access to its designated resource. Because capability validations in their
non-augmented state do not require identities, mapping an action back to a specific
identity can be very difficult if not impossible, without additional mechanism [45].
As a result, capabilities do not axiomatically lend themselves to the principle of ac-
countability.

Open design, psychological acceptability, and adequate protection are implementation de-
pendent and orthogonal to the properties of capability systems. That said, all known capa-
bility systems to date have followed open designs. Additionally, there has been little or no
investigation of the psychological acceptability of capability systems. This is an interesting
avenue for further research and would require a human factors analysis study of the various
implementations of capability systems.

3.2 Object Capability Properties
In the years following the invention of capabilities by Dennis and Van Horn in 1966, several
successful capability machines were built [24], [28]. That led Wilkes and Needham to
design a general purpose time sharing system in the 1970s called the Cambridge CAP
Computer. They ran into problems of complexity with their design (1979) [21]. Their
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doubts took root and became accepted beliefs that capability systems would not work.
The myths have propagated by people who did not understand the principles of capability
systems.

In 2003, Miller, Yee, and Shapiro challenged the myths in the paper Capability Myths De-

molished. They define a number of system properties, establishing a metric to distinguish
between different types of capability systems [18]. They argue that many commonly un-
derstood deficiencies of capability systems were in fact limited to only certain classes of
capability systems. Furthermore, they define a class of capability system—called object

capability systems—whose properties avoid many of those limitations that had come to be
widely accepted as the direct consequence of capabilities. Next, we describe the capability
properties outlined by Miller et al., and interpret them, explaining the method by which we
determine if a capability file system satisfies each.

A. No Designation Without Authority
B. Dynamic Subject Creation
C. Subject Aggregated Authority Management
D. No Ambient Authority
E. Composability of Authority
F. Access Controlled Delegation Channels
G. Dynamic Resource Creation

3.2.1 A: No Designation without Authority
No designation without authority is the property requiring that there exists no mechanism
other than a capability by which a resource may be designated (named). If there exists
some method to reference or point to an object by a subject lacking the authority to access
it, then the system does not have this property. According to Miller et al., a capability
simultaneously designates a resource (as in addressing) and encodes the authority to use
that resource (as in access) [18, p. 3].

Miller et al. credit this property as enabling systems to avoid global, shared namespaces for
resources [18]. Wilkes and Needham recognized the merits of this property much earlier,
in the context of the Cambridge CAP system, observing that, much like the scoping rules
of a high level programming language where “a programmer has no way of addressing a
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variable that is out of scope... similarly, the possession of a capability for an object gives the
programmer the means of addressing that object; without the capability, he cannot validly
even refer to it” [21, p. 6]. They saw this property as a natural form of memory protection
stemming from a capability design.

The test for property A is the following question: For a given system, is it possible for a

subject to designate a resource without also possessing the corresponding authority? If the
answer is no, then this property is met by that system.

3.2.2 B: Dynamic Subject Creation
Dynamic subject creation is the property requiring that any process (subject) can dynami-
cally create a new process and grant that child a strict subset of the parent’s authority. In
other words, parent processes cannot create a child with more authorities than it (the parent)
has itself. This refers to creation only. A subject can gain authorities if some other subject
with that authority grants it. This property is often used to guarantee that a subject can
launch an untrusted process with the minimal set of capabilities that it needs to accomplish
its purpose.

Miller et al. claim that capability systems enable a much finer granularity for author-
ity management during subject creation, compared to systems using access control lists
(ACLs). In ACL systems a domain corresponds to a user level account. In capability sys-
tems, a domain is defined by a C-list and can be associated with a subject as fine-grained
as the designer wishes, even to the level of an individual process or software component.

The test for property B is the following question: Does the system allow a subject to dy-

namically create a new subject, granting it only a subset of the parent’s authority? Given
a system can do this, it has this property.

3.2.3 C: Subject Aggregated Authority Management
Subject aggregated authority management requires that a subject controls its own list of
authorities. A subject can only downgrade its authorities and privileges. It can delete them,
pass them as is or downgraded to other subjects, or create new subjects to whom it passes
only a subset of its own authorities. A subject can gain an authority only when granted by
another subject that has that authority.
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As a result of this property, each subject (process or object) has no authorities granted by
its environment. Its only authorities are those granted on creation or subsequently passed
to it by subjects already having those authorities. Thus this property supports the next one,
property D.

This property is conspicuously absent in ACL systems, where the access control list is
necessarily associated with the object for which it provides access and protection. It is also
absent in systems that allow supervisor states or supervisor privileges.

The test for property C is the following question: Is the power to edit authorities aggregated

by subject? If the answer is yes, then the system has this property.

3.2.4 D: No Ambient Authority
No ambient authority means that no subject gets authorities implicitly from its environment.
Miller et al. describe it as “...authority that is exercised, but not selected, by its user” [18, p.
8]. Ambient authority is analogous to a general power of attorney. Even though no specific
rights are conveyed by the document, the general power of attorney allows the party who
possesses it to do and exercise any authority its signatory would have had legal right to do
his or her self. In the same way ambient authority, as in Linux or another ACL system,
allows a process to act with the rights of the user or process that called it, even if some
of those rights have nothing whatsoever to do with the purpose or actions it was called to
perform. This behavior is a violation of Saltzer and Schroeder’s principle of least privilege.

Thus, “no ambient authority” means that no general power of attorney exists. Instead, the
signatory grants specific special powers of attorney to allow another party to accomplish
a set of tasks on his or her behalf. Recipients must present the specific special power of
attorney that grants them the authority to perform a particular task.

Most capability systems have this property. There is no ambient authority to convey to a
subject(a process or object). A subject’s authority comes solely from its C-list. When it
wants to access a resource it must select which authority in its C-list to use.

The test for whether a system has property D is the following question: Must subjects a

priori select which authority to use when performing an access to an object? If so, then the
system has this property.
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3.2.5 E: Composability of Authority
Composability implies that a system’s subjects and objects can be freely combined and
recombined in various networks of relationships to achieve different, yet reliable and pre-
dictable properties [44].

In a system with composability of authority subjects are functionally equivalent to re-
sources, meaning “every subject is a resource, and every resource is conceptually a sub-
ject” [18, p. 9]. When the interfaces exposed by subjects and objects are equivalent (e.g.,
when requesting access to an object is functionally equivalent to sending a request to a
subject), then networks of subject/resource relationships can be composed to any depth.

The test for property E is the question: Are resources indistinguishable from subjects in

this system? If yes, then this property is present.

3.2.6 F: Access Controlled Delegation Channels
For a system to possess access controlled delegation channels, an access relationship must
exist between any two subjects in order for a capability or authority to be passed from one
to the other. Subjects are not allowed to pass their capabilities over unauthorized channels.
The sender can only pass a capability if it possesses a capability to communicate with the
receiver.

The test for property F is the question: “Is an access relationship between two subjects X

and Y required in order for X to pass an authority to Y?” [18, p. 10]. If the answer is yes,
the property is present in the system.

3.2.7 G: Dynamic Resource Creation
Dynamic Resource Creation has to do with a system allowing subjects to create resources
and to express restrictions on those resources’ accessibility. A system has this property if
subjects can dynamically create new objects and set restrictions on their accessibility. This
property complements the granularity issue expressed in property B. The ability to dynami-
cally create new resources is a “dividing line between fine-grained and coarse-grained” [18,
p. 10].

The tests for property G are the questions: Can the system dynamically create new objects?
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Further, can a subject express access restrictions on objects as they are created dynami-

cally? If the system manages a static set of resources with a static policy, then the answer
is necessarily, no. Additionally, if interfaces for creating resources provide no option for
assigning policy then the answer is also no.

3.3 Emergent Properties
Having defined, explained, and established a metric to determine whether a system has
each of the Miller et al. properties, in this section we express the claimed consequences of
these properties. We call these consequences secondary properties, or emergent properties.
The following is a brief explanation of that reasoning.

3.3.1 Revocation
In the context of operating systems and file systems, revocation can refer to a number of
related, yet subtly different system attributes. It is useful here to distinguish from among
those a few that are germane to our survey (i.e., immediate revocation, temporal revocation,
and selective revocation). Immediate revocation has to do with whether a system imme-
diately removes access to an object previously made accessible, or if some period of time
must pass before access is removed [29]. This can be an important aspect of revocation to
consider in distributed systems. Temporal revocation has to do with whether it is possible
to revoke access then later reinstate it [29].

Finally, selective revocation is the specific aspect of revocation we consider central to our
discussion. It is the ability within a system to terminate a single specific subject’s authority
to access a resource when they have previously been given that authority without affect-
ing other subject’s access [46]. Consider a subject, Alice, with a capability to a customer
database. She grants Bob access by giving him a copy of the capability. At some later
time Alice determines that Bob is no longer trustworthy and decides to revoke Bob’s ac-
cess authority to the customer database. If the system provides a mechanism for Alice to
accomplish this, then the system supports selective revocation.

Miller et al. observe that, historically, some types of capability systems have not supported
this type of revocation. In particular, selective revocation is not possible in those systems

22



where property B is present but property E is not.2

Miller et al. constructively show that for object capability systems, selective revocation
can be achieved using forwarding proxy subjects; that is, creating new subjects, composing
these with the target object, then using the new forwarding proxy subjects to extend the
original object’s access to the desired recipients. If the originating subject later changes its
mind about the authorities it delegated, it need only destroy the intermediate proxy subjects
to revoke the recipients’ access to the target object.3

As a preemptive polemic, we also note that a solution that would rely on the cancellation of
an entire capability to a resource does not meet the requirements of selective revocation, as
this would be a costly and difficult practice. The system would have to redistribute the new
capability to the revoked resource to all subjects that were still authorized its access. The
nature of a capability system prevents tracking or having this knowledge, and any mech-
anism to track and keep it would significantly tax the benefits of that capability system.
Finally, in that event, there would likely be a significant period of non-availability as this
process was carried out.

3.3.2 Confinement
Confinement is the property of a system such that when an untrusted program is executed
on it, the system does not permit that program to leak information to untrusted parties [47].
Miller et al. observe that, historically, some capability systems have been unable to control
the bounds on the propagation of access rights (i.e., delegation) through the system and,
thus, restrict the extent to which data is shared (i.e., confinement). They claim systems
unable to achieve confinement are those where property B is present and property F is not.4

Originally, Lampson identifies seven ways in which an untrusted program could accomplish
leaking sensitive information [47]. The property of confinement described by Miller et al.

is a strict subset of the notion of confinement described by Lampson, in that it does not
consider covert channels such as processor timings, however it does consider all the overt

2Miller et al. express this observation as the logical proposition B∧E→ Rev [18, figure 15].
3As referenced by Miller et al. this idea is not new, it was first introduced by Redell with respect to

his Typical Capability System (TCS) both of which he introduced in his 1974 MIT dissertation, Naming and
Protection in Extendible Operating Systems [46].

4Miller et al. express this observation as the logical proposition B∧F →Con f [18, figure 15].
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ways in which a program may misbehave and attempt to leak information.

3.3.3 Confused Deputy
A confused deputy is a program that is “fooled” by another program which abuses or mis-
uses its authorities. The phrase was coined and the phenomenon described by Norm Hardy
in his 1988 paper, The Confused Deputy [19]. Miller et al. describe it as a process “...that
has been manipulated into wielding its authority inappropriately” [18, p. 11]. This may oc-
cur when an authorization given by one party for a certain purpose is used by a process to
access a resource designated by a different party for a different purpose. This brings about
an unintended transfer of authority to that separate purpose, enabling abuse. They further
observe that when “designators and authorities take separate paths through a system, their
recombination is likely to lead to confused deputies” [18, p. 12].

The confused deputy problem is the root of how many forms of malware are able to take
advantage of systems [19]. Miller et al. admit that nothing can prevent the possibility of a
confused deputy if a programmer is determined to write bad code, but offer that “...certain
properties of a security model can have a profound effect on our likelihood of writing
reliable programs” [18, p. 12]. They propose that a gradient of three preparedness levels
exists with regard to a system’s propensity for eliminating Confused Deputies. They are
danger (missing property D, no ambient authority), better (having property D but missing
property A, no designation without authority), and best (possessing both property D and
property A).

As a note here, both confinement and confused deputy are related to one another, and re-
lated to the principle of least common mechanism. A system implementation that ensures
confinement and minimizes the likelihood of a confused deputy is likely on the road to
implementing this principle well.

3.3.4 Least Privilege
The final property that Miller et al. relate to properties A–G is least privilege. They state
that least privilege operation requires that the minimum number of subjects are granted
access to the minimum number of resources at the lowest permission level possible. Addi-
tionally, policies among subjects and resources must be expressed at a very fine granularity.
Recall that property B enables subjects to be distinguished at a much finer granularity (i.e.,
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per process), compared to systems without the property. Recall as well that property G
likewise enables fine-grained access restrictions on objects. Thus, Miller et al. argue that
the potential for least privilege operation can be maximized by the presence of both prop-
erty B and property G. In particular, these properties are described as necessary, but not
sufficient, prerequisites for least-privilege operation.
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CHAPTER 4:
Capability-based File Systems

In this chapter, we introduce the target systems for our survey. We target a variety of
distributed file systems (DFS) claiming to utilize capabilities for security. We include a
simple, non distributed file system implemented using object capabilities, primarily as a
point of comparison for our survey.

4.1 SFS
The Simple File System (SFS) is an object capability file system implemented for the Ex-
tremely Reliable Operating System (EROS) [34]. EROS has been formally verified to have
the properties of confinement and revocation [34], [48]. Miller et al. [18] argue that EROS
has the best possible properties of capability systems, including least privilege, and preven-
tion of confused deputies.

In EROS, all resources are instantiated as processes and are held in-memory. Periodically,
these active processes and all of the machine’s operational state is flushed to the hard disk
through what it calls a checkpoint. In this way, EROS implements persistence and fault
recovery [49].

Each process in EROS is associated with a capability register, managed by the kernel, which
holds the capabilities that the process can invoke directly [34]. The only method by which
processes can interact and provide services to one another is through capability invocation.
Capability invocation is essentially inter-process communication, where the capability both
designates the process to which it is going and grants the authority to accomplish its purpose
at that process [49].

SFS implements only two types of resources: file objects and directory objects. The file
object process presents a simple interface, including the write call, read call, check alleged
key type call (specifies whether a file or directory), and seek call (return or set a file’s read or
write offset). The directory object presents an interface that allows another process to read
the contents of the directory, remove a file or subdirectory, create a new file or subdirectory,
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and check alleged key type. The file system consists simply of a tree of directory and file
processes that are brought online as they are traversed or opened.

4.2 DOI
The Digital Object Identifier (DOI) system is a handle-based system for accessing resources
on the Internet. It resembles, at least superficially, a capability-based distributed file system
using unguessable identifiers in a global namespace. The DOI system that has experienced
the widest adoption is the implementation described by the Corporation for National Re-
search Initiatives (CNRI) [50]. This system is used by most publishers, movie studios, and
even the Library of Congress [51]. It is made up of three constituent parts: digital object
repository (dorepository), the handle system, and digital object registry (doregistry).

A dorepository provides storage and continuous access to the digital objects (DO) it con-
tains. Dorepositories are interoperable, using a standard extensible interface protocol called
Digital Object Protocol (DOP) [51]. DOP enables the DO’s administrator to easily trans-
fer the DO from one dorepository to another, while preserving all access control settings,
provenance information, and other important metadata about the DO [52]. Additionally,
and most importantly, the handle for the DO during such transfers remains entirely unal-
tered.

The handle system provides DOI resolution to the overall DOI system. It is a distributed
system providing an extensible global name service for DOs. Each DO is associated with a
handle, which is a persistent, globally unique name. The handle system accomplishes this
by creating and storing a handle record for each handle-DO pair. In addition to the handle
itself, the handle record stores other known identifiers and useful state information about
the associated DO; for example, the IP and MAC address where it is stored, or information
to verify the authenticity of the DO, etc. [52]. The handle system protocol enables the
system to resolve these handles, and to respond to queries for them [53].

Lastly, within the DOI system, a doregistry is a final layer of abstraction that allows users to
define and manage collections of DOs for searching and browsing, even when constituent
DOs are stored across separate dorepositories. The doregistry facilitates protected access
to these collections, from full private access, to group access, to complete public availabil-
ity [51].
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4.3 CapaFS
CapaFS is a global, decentralized file system allowing users to collaborate with each other,
with no prior arrangements [54], [55]. The system uses capability file names (CFN) as
sparse capabilities to name and grant access to files on remote servers. CapaFS allows re-
mote users possessing a CFN to access the local file or directory it designates [55]. Though
the files are stored remotely, they are interacted with as if they are stored locally. CapaFS
is not a clustered file system, in fact, unlike other DFSs all files must be created on a local
server; that is, file creation cannot be done on a server from a remote client.

CapaFS consists of two parts: a shared library replacing libc on client, and a user level file
server that acts as a proxy for remote users to access the local filesystem. The shared library
wraps file operations such as open, close, read, write, lseek and fcntl, extending these to
handle capability file names. When a client calls open on a remote file via its capability
file name, the library establishes a secure connection with the remote server whose IP and
port number are encoded in the CFN [55]. Once established, the client passes the CFN to
the server, which verifies its validity and issues a temporary sparse string key for use in all
subsequent interactions during that session.

Each CFN encodes two parts: the client part and the server part. The client part consists of
a distinguished CapaFS namespace designator, the IP and port for the proxy service used to
access the resource, and optionally, its public key. The server part contains a cryptograph-
ically protected representation of the local resource’s path and access rights [55]. Later the
creators of a another capability based file DFS levy the criticism that CapaFS’s CFNs were
“long and meaningless” and as a result were difficult for users to remember or interact with,
necessitating the creation of persistant symbolic links to overcome this [56].

4.4 Maat
Maat is a system that extends an existing high-performance cluster file system, such as
Ceph [57], Panasas [58], or zFS [59]. Performance for high-throughput applications is an
essential goal for Maat, which has reported handling peta-scale amounts of data with as
little as a 6− 7% additional overhead [60]. This goal has motivated many of the design
features of Maat, including how capabilities are handled. The details of Maat described in
this survey pertain to the prototype developed for Ceph.
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Maat consists of three main components: the client, a metadata server (MDS) cluster and
an object storage device (OSD) cluster. Clients authenticate and log in with the MDS in a
manner much like Kerberos [61]. The clients then are able to establish secure communica-
tions with the MDS and each OSD. Clients make open requests to the MDS for resources
they need. The MDS issues cryptographically signed capabilities back to the client, en-
abling access to the requested resources. The client is then free to use the capabilities to
perform the desired file I/O with the distributed OSDs. The OSDs are able to verify the
capability once using the MDS’s public key, then cache the result for future I/O calls with
that capability [60].

Maat’s capabilities have some noteworthy augmentations. They are designed to have short
lifetimes, such as a five-minute expiration time. These short lifetimes enable automatic

revocation; if a client’s access is revoked, the capability is simply not renewed, allowing
the capability to time out. If a client continues to need the file and its access has not been
revoked, the MDS reissues a capablity to it automatically before the expiration occurs.
Another feature of Maat is that authorized user identities are encoded into the capabilities.
This ensures that an eavesdropper cannot steal and use the capability for unauthorized
access to the files [60].

Finally, Maat also introduces the concept of extended capabilities to ameliorate the cost of
generating and managing tokens between every client and resource, instead using a single
token to embed policy between an arbitrary number of clients and resources [60].

4.5 Tahoe-LAFS
Tahoe-LAFS (Least Authority File System) is an open source distributed file system mak-
ing extensive use of cryptography to reduce trust in its operation [62]. If some portion
of Tahoe-LAFS nodes fail or are compromised by a malicious party, the filesystem can
continue to provide confidentiality, integrity, and availability. This system has been used
in operation commercially for several years: in an early incarnation as the service allmy-

data.com [63], and recently as the cloud-based S4 service [64], making use of Amazon’s
S3 infrastructure. The designers openly encourage hackers to break Tahoe’s security claims
via an online challenge and reward [65].

Tahoe is designed around the idea of provider-independent security, meaning the “service
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provider never has the ability to read or modify your data” [66]. Tahoe claims to use
“...capabilities for access control, cryptography for confidentiality and integrity, and erasure
coding for fault-tolerance” [62, p. 1].

Tahoe distributes its client data and metadata across a number of servers on its grid [62]. A
Tahoe grid is made up of servers or what we refer to as storage nodes, clients or gateway

nodes, and one introducer. The introducer is a special type of server whose fixed address
and port are hand-entered into every new node. Upon a storage or gateway node start-up, it
first communicates with the introducer, which then notifies the new node of all other nodes
on the grid so that it can establish communications with each [66].

A user can only access a resource on a tahoe grid if that user has a capability to that resource
and presents that capability to a node. Tahoe has three basic types of capabilities: read-write
capabilities (read-write-cap), read only capabilities (read-only-cap), and verify capabilities
(verify-cap). From a writecap a user can derive a readcap. Likewise from a readcap, a user
can derive a verifycap. A verify-cap enables its holder to verify the integrity of a file, but
not learn the file’s plaintext [62].

A gateway node connects a user or group of users on a mutually trusting network to the
Tahoe storage grid, which is distributed over an untrusted network, such as the Internet.
Data is encrypted inside a user’s own trusted network on their gateway node. The gateway
splits the encrypted file into n erasure coded shares. To retrieve a file, any k <= n shares
must be retrieved and recombined by the gateway. This logic is transparent to the client
behind the gateway [66].

There are two types of data storage files on Tahoe, mutable and immutable. An immutable

file cannot be changed after it has been created. A mutable file can be written and rewritten
an unlimited number of times. A directory is an example of a mutable file [62].

4.6 DisCFS
The Distributed Credential FileSystem (DisCFS) is a distributed file system that enables
users to access files on a remote server and collaborate with users from other domains [67].
It is not a clustered file system, but a distributed file system in the style of NFS or CapaFS.
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DisCFS delegates access rights by allowing subjects to issue credentials, which are “a
direct binding between a public key and a set of authorizations” [67, §4.1]. A credential
is a type of capability, providing to the subject both designation and authority to access a
resource. A credential has the added restriction that the subject must hold a corresponding
private key to complete a signature chain associated with the credential before the server
will allow access to the resource. This feature allows credentials to be passed arbitrarily
and in the clear, without extending access to unauthorized third parties. Only the subject
who is specifically issued, or intentionally delegated a credential through extending the
signature chain, can use it to access a resource [67].

DisCFS is implemented over NFS, and thus supports a single remote server or a clustered
server configuration. The client software runs on a user’s workstation and uses a valid
credential to esablish secure communication to the server. DisCFS resources appear to a
user as a mounted file system. Files for which valid credentials were supplied to the server
will appear under the mount point like local files [67].

In DisCFS, minimally a single administrative setup action is required to initialize and make
available for sharing existing resources: issuing some original user a credential binding his
or her key to the resources (directories and files) they own. Thereafter, that user and sub-
sequent generations of users, as allowed by policy, can delegate all or some subset of their
authority to other users. Delegating the abilities to read, write, execute or even create new
resources (files or directories) within existing directories [67, §5]. This is accomplished by
issuing users a new credential, derived from an existing credential. Rights are appended to
the existing credential, authorizing the new user to access the files. The delegator includes
the new user’s public key, and signs the new chain of credentials. This chain and the new
credential are a delegated capability that can be used to access the resource.

4.7 Neo
Neo is a distributed file system supporting flexible user-defined access control policies, ac-
countable access, revocable authorities, and confinable access privileges [45]. The system
is comprised of three types of components: clients, block servers to store file data, and a
single, trusted metadata server to manage chits and store file metadata. All communication
between components is over untrusted channels.
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Policies on resources are mediated by a capability mechanism using an XML-based access
token, called a chit. The chit differs from many capability systems in that it is not a secret
token, but is an XML object paired with a fingerprint hash, to prevent tampering or abuse.
There are three types of chits: the master chit associated with the user originally uploading
the resource, and two derivative chits, called authenticated chits and unauthenticated chits.
Authenticated chits use embedded public keys (similar to DisCFS’s credential) to allow
the metadata server to challenge the user holding the chit to verify it has a matching private
key. The unauthenticated chit does not require authentication and must be passed via secure
channels (much like CapaFS’s capability file names), as any subject who learns the chit may
employ it [45].

A chit can give read or write access to some set of files, or a tree of directories and their
associated files. A subject holding a chit can add tags to a chit to edit the encoded policy
before passing the chit to another subject. These tags can be used to label the chit (so
that label will be logged during any transactions with the server), narrow the privileges the
chit conveys, cause the chit to expire earlier than the existing chit, revoke the access of
existing derivative chits, or even make the chit unable to be delegated further. These tags
can be added, but they cannot be removed. Thus authority can only be decreased and never
increased during the creation of derivative chits [45].

Though chits can be shared as allowed by the policies enacted by a chit’s creator, there is
no necessary limit to the number of users that can interact with the server via derivative
chits. Only a single user with a conventional server-based user account is needed to create
the original master chit for the shared resources [45].
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CHAPTER 5:
Analysis and Findings

In the course of our survey of capability-based distributed file systems, we found no sys-
tems exhibiting possession of all of the Miller et al. properties. In particular, we found
no examples of object capability distributed file systems (DFS). Four of the six DFSs—
CapaFS, Tahoe-LAFS, DisCFS and Neo—have a very similar distribution of Miller et al.

properties. These resemble a Capabilities as Keys (CAK) model, with Tahoe matching
perfectly and CapaFS, DisCFS and Neo differing only by the absence of property D. The
remaining two DFSs, Maat and DOI, depart significantly from any of the capability models
described by Miller et al. and appear to have more in common with an ACL model. Ta-
ble 5.1 summarizes our findings for each system, each of which are explained in depth in
the sections that follow.

Property Obj
Cap
DFS

Caps
as
Keys

SFS
(EROS)

DOI CapaFS Maat Tahoe-
LAFS

DisCFS Neo

A: No Desig w/o Authority Y N Y N N N N N N
B: Dynamic Subj Creation Y Y Y N Y N Y Y Y
C: Subj Agg. Authority Mngt Y Y Y N Y N Y Y Y
D: No Ambient Authority Y Y Y N N N Y N N
E: Composability of Authority Y N Y N N N N N N
F: Access Cntrl Deleg. Chnls Y N Y N N N N N N
G: Dyn. Resource Creation Y Y Y Y Y Y Y Y Y

Table 5.1: File System Evaluation Results for Miller et al. Properties [18]

5.1 Generic System Categories
Miller et al. [18] describe four security models in their paper Capability Myths Demol-

ished. We reproduce two in Tables 5.1 and 5.2: Capabilities as Keys (CAK) and Object
Capabilities. These columns in Tables 5.1 and 5.2 are filled in directly from Miller et al.;
we refer the reader to their paper for further explanation on those columns.
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5.2 SFS
EROS’s Simple File System (SFS) is an example of what Miller et al. call the Object Ca-
pability model, for which each of the seven properties is true. We highlight the underlying
features in SFS that support each property.

5.2.1 A: No Designation without Authority
Recall from Section 4.1, every object in SFS is instantiated as a process. As in EROS, for
a subect to reference or access an object in SFS, that subject must possess a capability or
key allowing that type of access to that specified object; that is, the authorization is in the
subject’s keyring5 [34]. A file or directory cannot be read, written to or referenced without
a key granting that authority to the subject. In particular, there is no method to name or
designate the resource in the absence of the capability; therefore, property A is true for
SFS.

5.2.2 B: Dynamic Subject Creation
In SFS, the subjects are file and directory processes, which hold authorities in the form
of keys in their keyrings. When a process creates a new process, it is able to pass a strict
subset of its keys to a child process, thereby meeting the requirements for property B.

5.2.3 C: Subject Aggregated Authority Management
As explained in Section 5.2.2, each subject holds its authorities in a structure called a
keyring. The keyring holds the keys (capabilities) possessed by the subject. Every subject
may edit its own authorities, creating new resources with their associated keys, receiving
messages from other subjects containing new keys, or destroying keys in its keyring that
are no longer needed.

5.2.4 D: No Ambient Authority
In order for a subject to exercise an authority to access a resource, it must select the specific
key to use ahead of time. It passes this key via a system message to the designated resource
to which the key both points and grants access. No authority is derived by the process
metadata or from the environment, only from the key that it selected. Therefore, SFS
demonstrates property D.

5keyring: elsewhere described as a capability list, C-list, or capability register.
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5.2.5 E: Composability of Authority
In SFS, the functional components are files and directories. When created, each file and
directory is instantiated as a process with its own keyring. Every resource is also a subject,
and every subject also a resource. In other words, requesting access to an object by invoking
a capability is functionally equivalent to sending a request to a subject. Therefore, property
E is true.

5.2.6 F: Access Controlled Delegation Channels
In SFS, in order for a process to pass a capability (key) to another process it must have
a capability authorizing access to that subject. In simple terms, if process Alice wants to
pass process Bob a capability to file process Diane, Alice must first have a capability to Bob
enabling her to pass that authority to him. This means SFS does enforce access controlled
delegation channels.

5.2.7 G: Dynamic Resource Creation
Shapiro et al. [34] subscribe to the same understanding and implementation of a capability
as Dennis and Van Horn, namely: “a capabilty is an unforgeable pair made up of an object
identifier and a set of authorized operations (an interface) on that object” [34, §2]. When a
resource-object is created in EROS’s SFS, that resource receives both a capability to itself
and a capability list of its own in the form of a keyring. The parent process creating the
resource puts the capability for the new resource (with read, write and execute permissions)
into its keyring. Any process passed a capability to this resource will necessarily possess
authorization to use it, as defined by the permissions specified in this capability.

5.3 DOI
Despite initial appearances, the DOI system turns out to be a very different kind of system
for which it is inaccurate to describe as either a distributed file system or capability sys-

tem [53, §6]. It is more akin to an access control list (ACL) model than a capability-based
model.

5.3.1 A: No Designation without Authority
Recall from Section 3.2.1 that property A requires that a system have no form of designa-
tion separate from authority. The DOI system has many forms of designation separate from
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authority, such as the title of the object itself, its local identifier or any of its handle values.
Most importantly, the DOI, or handle, does not convey any authority to access the object. If
the handle’s administrator chooses to make the object confidential, then the handle does not
convey authority to access the resource. Instead, the system will authenticate the subject
and perform an access control check [53, §5], [68, §6]. As a result the DOI system does
not have property A.

5.3.2 B: Dynamic Subject Creation
As mentioned in Section 5.3.1, the handle does not convey authority to access an object,
instead using an access control check based on the subject’s identity and an ACL (or, the
resource is public and no check is performed). As a result, a subject cannot grant a subset of
its authority to a new subject. Instead, a subject relies on the ambient authority associated
with its identity, to use any handles it may possess.

5.3.3 C: Subject Aggregated Authority Management
In DOI, the power to edit authorities is not aggregated by subject. Although a handle can be
deleted, this has little to do with authority management, as access control lists are managed
at the server by the handle’s administrator [53, §5]. Access to the object is granted if it
is not protected; otherwise, an access control check is performed based on the requestor’s
identity. This means that DOI implements resource aggregated authority management.

5.3.4 D: No Ambient Authority
As stated in Section 5.3.3, authorities in DOI are managed via an ACL associated with the
resource. For non-public resources, the server issues a challenge to the requesting client,
which must authenticate itself to prove it has authorization to access the object [53, §5].
Thus, subject identity carries ambient authority for all handles to which it has access. Ad-
ditionally, the DOI system may support identity management so that, after presenting a
single DOI and authenticating, access can be provided to a registry where multiple objects
can be accessed without specifying any additional DOIs. Administrator privileges are re-
quired to edit each resource’s ACL permissions. Administrator accounts by their nature
require ambient authority to exist.
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5.3.5 E: Composability of Authority
In DOI, the subject and the resource to be accessed are fundamentally different: requesting
access using a handle is inherently different than sending a request to another subject. The
handle is sent to the handle server where it is resolved and an action is taken by the server
(e.g., challenge-response followed by returning a pointer to the object’s location). The
resource being accessed is not a subject that will reply to the request. While it is possible
to “chain together” handles, this is not the same as composing subjects and resources into
a “network of authority relationships to any depth” [18, p. 9].

5.3.6 F: Access Controlled Delegation Channels
No prior relationship or authorization is required in the DOI system to allow the exchange
of handles between subjects. In fact, the system was designed to enable “universal informa-
tion access,” in the form of persistent global namespace handles [51]. The premise being
it should be easier for everyone to acquire the information they seek. A handle can be ob-
tained by reading it from an advertisement, receiving it in an email or seeing it referenced
in a scientific journal. Clearly, no access relationship is required between subjects in order
for a handle to be passed.

5.3.7 G: Dynamic Resource Creation
DOI allows for fine-grained administrative control of its digital objects. Handle creators can
administer and express restrictions on the resource’s accessibility, dynamically at creation
and any time subsequent.

5.4 CapaFS
CapaFS is the earliest capability-based DFS that our survey evaluates. In many ways, it is
a template upon which later capability-based DFSs, like DisCFS and Neo, improved. Its
properties in Table 5.1 resemble the CAK model, but differ in that it lacks property D, no

ambient authority.

5.4.1 A: No Designation without Authority
In CapaFS, files on a server have a path and file name separate from the capability itself.
As a result, a resource can be designated without possessing any authority to access it.
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5.4.2 B: Dynamic Subject Creation
Capability file names (CFN) are the representation of authorities in CapaFS. In this system,
a new subject can be passed a subset of a parent process’s authorities; however, at least
two exceptions must be noted. First, any local subject with the same identity as its parent
subject may have access to all the authorities of the parent on the local host. In light of this
fact, the following precautions could be taken to preserve property B when new subjects
are created on the local host.

Remark 5.1 In this system, no assumptions are made about how subjects are managed

on the local system. Consider a local operating system employing a separation policy

between subjects, for example, type enforcement under SELinux. This would enable forked

processes to transition to a new domain on creation, and be sandboxed with a fewer set

of resources on the local system. The newly forked process can make only a subset of

its authorities accessible in this new domain. Alternatively, the local host could employ

an operating system itself supporting capabilities with property B. With either approach,

its possible to fork a new local process holding only a subset of its parent’s authorities.

Although this requires additional effort, it demonstrates that it is possible to implement a

system with property B for locally created subjects.

Further, for a subject to pass a subset of its authorities, each of those authorities must be

instantiated as separate capabilities. Miltchev et al. [56, §3.2.7] observe that CapaFS does
not allow a remote user to diminish the file permissions of a capability (e.g., from a read

and write authority to a read-only authority). This is due to the cryptographic protection
of the server part of the capability and the inability to invoke the creation of a new CFN
remotely. Not specifically pointed out in Miltchev’s analysis, this cryptographic protec-
tion also prevents the diminishment of a directory capability to a specific file within the
directory.

5.4.3 C: Subject Aggregated Authority Management
Either a subject in CapaFS owns a CFN to a resource, owns a CFN to a resource’s parent
directory or does not have access to it. There is no other source of authority by which a
resource may be accessed. So, in this system, authority management is aggregated at the
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subject, who may create an authority, be passed the authority or delete the authority from
its C-list.

5.4.4 D: No Ambient Authority
A pure CAK model would have this property; however, as pointed out in Section 5.4.2, the
authority to access a directory under CapaFS (encoded as a single CFN) yields the authority
to access all of the files and subdirectories it contains. More generally, we observe: as
currently described, ambient authority could be avoided in CapaFS by requiring CFNs be
implemented only at the granularity of individual files.

Remark 5.2 Any system that allows a subject to encode the authority to access multiple

separate resources into a single capability exhibits ambient authority. This is because, upon

invocation of the capability, these separate authorities are simultaneously and implicitly

available to the invoker. No individual authority is specifically selected prior to its use,

rather the authority is ambiently available to the subject.

Thus, CapaFS does not have property D.

5.4.5 E: Composability of Authority
CapaFS is very similar to the capability as keys (CAK) models, for which the following
observation applies.

Remark 5.3 Property E is not reflected in CAK-like systems such as this, where subjects

are not equivalent to resources. In these systems, subjects authorize other subjects by

passing them a capability for a resource. This is contrasted with how subjects access
objects; that is, they submit a capability to a server and receive access to the resource in

return. In these systems, it makes no sense for a resource itself to have a capability to

a subject. Instead, the relationship between subject and resource is uni-directional and

authority relationships cannot be composed to any depth, as required by property E [18].

In particular, in CapaFS, subjects authorize subjects by passing a CFN that provides access
to a resource, while subjects access resources by submitting a CFN to the server to receive
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responses holding resource data. This precludes composing these authority relationships to
arbitrary depth; thus, CapaFS does not have property E.

5.4.6 F: Access Controlled Delegation Channels
CapaFS does not have access controlled delegation channels, due to the following observa-
tion, which is relevant to CAK systems generally.

Remark 5.4 For any CAK-like system, the analogy of a key and lock may be employed. A

key (capability) can be copied and passed to any subject and that subject can then use it to

unlock the designated resource. It would not matter that the subject holding the key has no

immediate connection to its original owner. Receiving a key does not require any special

relationship with the resource owner or the original owner of the key. Access decisions are

simply a matter of whether the key unlocks the door. Under these systems, a capability can

be passed at will by any subject possessing it.

In CapaFS, any subject who presents a valid CFN to the server has the authority specified
by that capability. Additionally, a CFN can be freely communicated between subjects,
over any medium. Thus, CapaFS does not have property F, access controlled delegation

channels.

5.4.7 G: Dynamic Resource Creation
This property is exhibited in CapaFS, albeit in a diminished sense. New resources can-
not be created on a server by remote clients. However, each client is free to start their
own local server and create new resources, expressing access restrictions on the resource’s
accessibility, and distributing the associated CFN’s to remote collaborators.

5.5 Maat
Maat extensively uses what it calls capabilities, but the manner in which they are aquired,
held and employed is significantly different from traditional capability architecture. So
much so, that most of the properties surveyed in Table 5.1 are not present in the system.
While Maat is able to overcome some limitations of the CAK model, its implementation
fails to attain several of the benefits of capabilities, as discussed later in Section 5.9.
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5.5.1 A: No Designation without Authority
As stated in Section 4.4, a client must request a capability for a resource from the MDS. It
does this by sending a message to the MDS, calling open(path, mode) for the resource [60,
Fig. 3]. The fact that the resource has a path and file name separate from the mechanism
conveying authority to the resource, establishes that Maat has designation without authority
and, therefore, lacks property A.

5.5.2 B: Dynamic Subject Creation
In Maat, a subject can be created, but it cannot be passed a subset of the parent process’s
authorities: authorized subjects are encoded in the capability [60, §3.3.1]. As a result, a
new subject would not be able to use any of its parent’s authorities. Instead, it must request
access from the MDS, requiring an ACL check and a new capability to be created. Further,
extended capabilities in Maat encode access to multiple resources and cannot be split up
to give another process6 a strict subset of those authorities [60, §3.3]. Thus, Maat does not
support the creation of new subjects with less authority dynamically, instead it requires the
intervention of the MDS to re-issue capabilities to new subjects.

5.5.3 C: Subject Aggregated Authority Management
Superficially, on a short time-scale, this system appears to be subject aggregated. However,
the power to edit authorities is explicitly held at the MDS and managed as an ACL. When
a subject wants access to an object it must request a capability from the MDS, passing a
global identifier for the resource and a desired mode. The MDS will then use its ACL to
grant or deny the subject a temporary, short-lived capability to the resource [60]. Subjects
cannot manage the authorities handed to them without help from the MDS; that is, they can-
not split up extended capabilities and cannot assign capabilities to new users. Effectively,
authority to manage permissions is aggregated at the MDS and not at the subject.

6Maat does provide a secure delegation ability, which encodes short-term non-renewable leases to re-
sources, for outsourcing computation. This is enabled by the delegated capability, essentially an entirely
parallel, second-class capability system. This amounts to a secondary short-term lease that must be period-
ically renewed by the sponsoring node (the actual capability holder). These delegated-capabilities can be
granted to any subject with no ACL check or determination of whether it is appropriate for that client to have
that resource [60, §3.5]. The existence of delegated capabilities, however, does not satisfy the requirements
to meet property B.
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5.5.4 D: No Ambient Authority
Maat allows for the authority for many files to be encoded into a single extended capabil-
ity [60, §3]. Extended capabilities act as blanket authority to access a set of resources using
a single capability, ignoring whatever individual capabilities may otherwise be associated
with each of those resources. Per Remark 5.2, this mechanism provides ambient authority,
as it means a resource’s individual capability does not have to be selected before opening
each specific resource.

5.5.5 E: Composability of Authority
In order for networks of authority relationships to be composable, access to a resource must
be equivalent to making a request to a subject, each requiring the invocation of a capability
to the respective entity. In Maat, this is not the case. Resources are not equivalent to
subjects. Resources are striped across OSDs and are accessed via passing capabilities to
the OSD. There are no capabilities to subjects in Maat and thus subjects and resources are
not composable.

5.5.6 F: Access Controlled Delegation Channels
Maat does not have access controlled delegation channels between subjects as there is no
logic to restrict communication between client nodes. For both system capabilities and
extended capabilities, however, the system does effectively restrict delegation by encoding
authorized users into the capability itself. As a result, non-authorized parties who obtain a
capability are unable to access the associated resources, because the OSD checks prior to
allowing access.

5.5.7 G: Dynamic Resource Creation
Access restrictions can be specified on objects as they are created dynamically in Maat. As
an object is created, its ACL (specifying the clients and their permissions) is specified and
recorded at the MDS.

5.6 Tahoe-LAFS
Our investigation of Tahoe-LAFS extended beyond its documentation to include experi-
mentation with an operational Tahoe grid of storage and gateway nodes, as well as ex-
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amination of the open-source code. Our analysis allows us to affirm Wilcox-O’Hearn and
Warner’s assertion that Tahoe-LAFS follows a general CAK model.

5.6.1 A: No Designation without Authority
Tahoe stores one or more erasure-coded shares on a user-designated number of storage
nodes. Each share has a designation of its own, the storage index, or SI. The SI is used on
each storage node as the directory name under the path /.tahoe/shares/<SI>/. Each share
under the path is named by a share number. This SI is used to retrieve the file shares when
a capability is invoked at a gateway. The client iterates through each storage node request-
ing a share matching the SI derived from the capability. Shares are regularly designated
separate from the authority to access the resource (i.e., reconstruct it from its shares); thus,
strictly, Tahoe does not have property A.

5.6.2 B: Dynamic Subject Creation
Recall from Section 3.2.2 that property B asks: does the system allow a subject to dy-

namically create a new subject, granting it only a subset of the parent subject’s authority?

Tahoe subjects include processes running on the gateway, processes running on a trusted
local host behind the gateway and processes running on a remote client. In each of these
cases, it is possible to dynamically create new subjects and pass to these a subset of author-
ities. This property is especially supported when considering remote processes: subjects
on local hosts can pass to remote subjects a subset of the capabilities in their C-list.

One exception must be noted with regard to the originating gateway for a resource, that
is, the gateway which first uploaded the resource to the grid. The capabilities to these
resources are stored in a plaintext file reachable by any subject started under the same
identity as the Tahoe server daemon. In particular, a subject under the same identity can
perform a “get” request on any known Tahoe path and file name to retrieve the plaintext
file without invoking the corresponding capability. Furthermore, when the command tahoe

manifest is invoked on a gateway the tahoe utility returns a list of all the capabilities for
resources uploaded from that gateway. This poses a problem for passing only a subset of
authorities to subjects created on the gateway.

To limit the authority of local subjects at or behind the originating gateway, Remark 5.1 can
be used to ameliorate the above exception and enable property B to be met. Without such
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precautions, however, property B would not necessarily be preserved for newly created
local subjects.

5.6.3 C: Subject Aggregated Authority Management
In Tahoe, a subject can manage its authority either by adding a capability to their list upon
creation of a new resource, adding a capability to their list upon receiving it from a remote
subject, or deleting an existing capability from their list. Thus, property C is present in
Tahoe.

5.6.4 D: No Ambient Authority
In the context of the remarks from Section 5.6.2 for controlling local subjects, property D is
provided by Tahoe. For a subject to access a resource, it must specifically select and invoke
the associated capability from the list of capabilities it possesses. This can be executed
from the command line of a gateway node with the get <capability> request.

Organizationally, a Tahoe directory holds the capabilities to the directories and files it con-
tains. This, however, does not constitute the type of implicit authority described in Remark
5.2. Rather, each file’s capability must be individually invoked to gain access to the files
contained in the directory.

5.6.5 E: Composability of Authority
In Tahoe, as in CAK models and following Remark 5.3, subjects and objects cannot be
composed to any depth. Specifically the invocation of a capability to a resource is not
similar to making a request via a capability to another subject. In particular, there are no
capabilities to subjects, only capabilities for access to resources like files. The invocation
of a capability is always the same: a get request for the capability string is processed by the
gateway node. The gateway retrieves the associated shares from the grid, recombines the
shares, to recover the plaintext file, returning it to the requestor.

5.6.6 F: Access Controlled Delegation Channels
As for any CAK system and as described in Remark 5.4, there exists no mechanism in
Tahoe for controlling how capabilities are shared. No capability is required to communicate
to another subject. No method is provided to limit sharing a capability.
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5.6.7 G: Dynamic Resource Creation
Subjects in Tahoe are free to create either a mutable file, which can be either read or writ-
ten, or an immutable file, which can only be read. For mutable files, subjects are free to
distribute read-only-caps, read-write-caps or verify-caps to other subjects. Thus, property
G is present in this system.

5.7 DisCFS
DisCFS makes some significant improvements over CapaFS, especially in the flexibility
of its capability implementation, the credential. Despite this, its properties from Table 5.1
exactly parallel those of CapaFS, and closely approximate CAK, the only difference being
the absence of property D.

5.7.1 A: No Designation without Authority
Resources specified in credentials are referenced by handles. These handles designate the
resource to be fetched on the server, but convey no authority themselves. Additionally, the
file name on the server is preserved in the comment section of the credential [67].

5.7.2 B: Dynamic Subject Creation
With respect to subjects dynamically created on remote clients, DisCFS has property B.
A subject can create a new subject and pass to it a subset of its authorities. When sub-
jects share the same client machine, the observations from Remark 5.1 apply, to limit the
authority shared with new local subjects.

Overall, DisCFS demonstrates improvements over previous DFS systems we survey ex-
hibiting property B. For instance, unlike CapaFS, DisCFS allows a subject to diminish
existing capabilities. This can be done in two ways. First, a subject may reduce permis-
sions rwx associated with a credential. Second, a subject may split a credential encoding
authority to multiple resources into individual authorities. As every file on the server has
its own handle, it is possible in DisCFS to reduce a credential for a directory to one for a
specific file within that directory. This flexibility makes it possible for a subject whose C-
list holds a single directory credential to pass to other subjects some diminished authorities
for a subset of those resources.
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5.7.3 C: Subject Aggregated Authority Management
In DisCFS, the subject is able to discard, create or even narrow the authorities it owns via
modifying its credentials. Subjects can pass authorities to and receive them from other sub-
jects, according to the policy set within those credentials. Thus, authorities are aggregated
at and managed by the subject.

5.7.4 D: No Ambient Authority
Despite the ability to narrow credentials to individual files and diminish the permissions
associated with credentials, discussed earlier in Section 5.7.2, DisCFS does not support
property D. Remark 5.2 applies here, resulting in the absence of this property. Since a
single credential (capability) can encode authority to access many separate resources, the
bundled authorities constitute ambient authority when invoked.

5.7.5 E: Composability of Authority
As with other CAK-like systems, the argument from Remark 5.3 applies equally to Dis-
CFS: the relationship between subject and resource is uni-directional and does not allow
composability of authorities to arbitrary depth, as described by Miller et al. [18].

5.7.6 F: Access Controlled Delegation Channels
In DisCFS, no prior access relationship needs to exist between subjects for one to pass
an authority to another. The rationale follows from Remark 5.4: a subject may delegate
capabilities to any other subject. It is worth noting that the process to delegate a credential
in DisCFS requires more actions than in other systems. A subject must copy the credential,
(possibly) reduce its authorities, then add the recipient’s public key to the credential and
sign it, effectively delegating these authorities to the new subject. Thus, compared to other
CAK systems, merely observing a capability does not grant the subject authority to use its
associated resource.

5.7.7 G: Dynamic Resource Creation
DisCFS enables dynamic resource creation. It allows new resources to be created freely
on the server as authorized by the policy in the credential that is being exercised. Access
restrictions can be expressed as needed in the resultant credential to the resource.
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5.8 Neo
The final system we survey is also the most recently developed. Neo incorporates many
features expressed in CapaFS and DisCFS, providing more policy functionality and flexi-
bility than either. Its properties from Table 5.1 resemble those of a CAK model, with the
exception of lacking property D.

5.8.1 A: No Designation without Authority
In Neo, the chit conveys authority to use a resource. Each chit must specify within it the
path for the server to follow to retrieve the referenced resource [45]. The existence of the
path constitutes a method to designate a resource without authority, so Neo does not exhibit
property A.

5.8.2 B: Dynamic Subject Creation
Neo exhibits property B. Neo also features the options supported by DisCFS (described in
Section 5.7.2). In particular, a capability to a directory may be reduced to allow access to
only a single file, or may be diminished from read-write-execute to read-only. As with the
other distributed systems, Neo suffers from the same issues related to controlling new local
subjects, described in Remark 5.1.

5.8.3 C: Subject Aggregated Authority Management
In Neo, a subject is able to discard, create, narrow or receive new authorities from other
subjects through chits (capabilities). Chits are held and managed by subjects, so the system
exhibits property C.

5.8.4 D: No Ambient Authority
Neo does not exhibit this property in general, for the same reasons documented in Remark
5.2. In particular, Neo allows authorities to many resources to be encoded into a single chit
that, when invoked, implicitly associates all these authorities to the subject—even when the
full set of authorities is not required by that subject (i.e., ambient authority).7

7As with our comments for DisCFS and CapaFS, Neo could exhibit this property by limiting each chit to
a single file object.
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5.8.5 E: Composability of Authority
Just as in other CAK-like systems, the reasoning in Remark 5.3 applies equally to Neo
and property E is not present. In particular, resources and subjects are not equivalent, and
accessing a resource is not functionally equivalent to requesting a service from another
subject.

5.8.6 F: Access Controlled Delegation Channels
In Neo, a subject can delegate a chit to any other subject. No capability is required between
subjects to enable this. The prior observations in Remark 5.4 apply equally to Neo and,
thus, the system does not satisfy property F.

The above notwithstanding, Neo allows subjects to introduce policies into delegated chits
that disable delegation further. This policy is sufficiently expressive to also limit the number
of generations that can be further delegated, such as limiting delegation to no more than
two degrees of separation from the original resource creator.8

5.8.7 G: Dynamic Resource Creation
Neo supports dynamic resource creation. Authority to each resource is expressed through
chits authorizing subjects to use a resource.

5.9 Emergent Property Trends
In this section, we investigate properties Miller et al. attribute to consequences of the
primary properties surveyed earlier. We call these emergent properties: revocation, con-
finement, confused deputy, and least privilege. In the sections that follow, we discuss the
(degree of) presence or absence of each emergent property. The results are summarized in
Table 5.2.

5.9.1 Revocation
DFSs in general appear to run into some issues with regard to revocation, for example:

• How does one revoke copies of data cached at a remote client?
• How does one revoke all replicas stored across the DFS?

8A kind of access controlled delegation would be enforced if Neo’s design required (a) only authenticated
chits may be passed, and (b) public keys are limited to a predetermined whitelist of authorized subjects.
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Obj
Cap
DFS

Caps as
Keys

SFS
(EROS)

DOI CapaFS Maat Tahoe-
LAFS

DisCFS Neo

Irrevocability Myth F T F F T F T T F
Confinement Myth F T F F T F T T T
Confused Deputy Best Better Best Danger Danger Danger Better Danger Danger
Least Privilege Better Better Better N Unlikely N Better Better Better

Table 5.2: Capability-based File System Emergent Properties

• How does one revoke data that has been copied into new objects in the DFS?

None of the distributed systems we observe fully address these problems. Recall from Sec-
tion 3.3.1 that the type of revocation our survey considers is selective revocation. Having
granted an authority to a subject, selective revocation allows the granting subject to revoke
that authority without affecting other user’s access to that object. The focus is on revocation
of authority to a specific instance of data, and not revocation of all copies of that data. For
some systems, separate authority may allow access to the same data by the same user, even
after one authority held by that user is revoked; this is allowable and can obey selective
revocation. The systems we observe fall into one of the following groups with regard to
their support for revocation:

1. Revocation through resource deletion: CapaFS, Tahoe-LAFS, DisCFS
2. Selective revocation through expiring capabilities and Blacklists: Neo
3. Selective revocation through revocable forwarders: SFS
4. Selective revocation through access control list management: DOI
5. Selective revocation through a combination of these methods: Maat

5.9.1.1 Capability Deletion and Redistribution
This group of systems correspond to those offering only a trivial form, that is, one provided
any system: deletion of the capability, followed by redistribution9 of a new capability for
the resource. This sense of revocation is specifically not the kind considered by Miller et al.

and we believe it to be particularly inflexible and impractical in large distributed systems.

CapaFS proffers to support only this kind of revocation, that is, complete revocation for

9Redistribution in these cases is not a trivial task since, in many capability systems, the knowledge of
which subjects hold a capability is not visible globally.
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all users. Regan and Jensen suggest implementing revocation in CapaFS by keeping a list
of revoked Capability File Names on the server and checking the list prior to responding
to a CFN request [55, §3.1.5]. This would revoke access to the resource for all users,
invalidating the CFN. The method could also slow every CFN invocation, as the list is
searched for a match prior to fulfilling a request. As the blacklist increases, this per-request
overhead would increase as well. This suggestion would also encounter those challenges
associated with redistributing a new capability to subjects who should retain access to the
resource.

Tahoe-LAFS makes no claims to support revocation. Subjects can effectively accomplish
the same type of revocation accomplished by deleting the resource from the server entirely,
making a small change10 to it, then re-uploading the resource. The resource will necessarily
have a new capability which, at that point, can be redistributed to all subjects requiring
access.

DisCFS states that it supports revocation through invalidating the original access creden-
tial by changing the resource’s handle. This removes access to the resource for all users
with credentials referencing that handle. Miltchev et al. suggest blacklisting user keys as
another option for revocation [67, §4.4]. This would instead remove a user’s access to all
of his files, not just a particular resource. Disallowing a user’s key would have the ad-
ditional unintended consequence of removing access for any users who have credentials
derived from that user’s credentials, even for other files. In summary, none of the existing
suggestions to support revocation under DisCFS provide selective revocation.

5.9.1.2 Blacklists and Expiration
This grouping of systems achieves selective revocation by blacklisting capabilities. This is
made practical through the use of regular capability expiration. In Neo, chits have defined
expiration times. Subjects can revoke any chit descended from a chit they hold by issuing
a revocation certificate to the server. This adds the revokes tag into the XML of the parent
chit (or higher), followed by the label of the chit targeted for revocation. The revocation

10This change is necessary as identical immutable files uploaded from the same gateway will converge to
the same key. This is because the process is deterministic and designed to prevent storage of the same file
twice. Thus, deleting the file then re-uploading it would result in the same capability string that was in use
before. Changing the file, even as small a change as an added space, would prevent this convergence.
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certificate is sent to the server, which verifies its authenticity and stores it [45, §5.5]. In
the future, when the revoked chit is inspected for validity at the server, the delegation chain
will not appear valid due to the revocation certificate, and the access will be denied. When
the revoked chit expires, the revocation certificate expires as well and is garbage-collected.
This prevents extensive use of server resources to maintain blacklists of revoked chits.11

This mechanism provides fine-grained revocation of authority in Neo. Relatedly, it should
be noted that DisCFS could achieve selective revocation through adopting the same method
employed by Neo.

5.9.1.3 Revocable Forwarders
This group of systems implements selective revocation through the mechanism known as
revocable forwarders. Revocable forwarders are a conceptual mechanism conceived by
Redell in the context of capabilities in his 1974 dissertation. In it, he called the mechanism
a caretaker [46, §2.3]. Graham and Denning actually presented the same idea in a slightly
more general context two years earlier in their well-known paper, Protection: Principles

and Practice [69]. The capability mechanism requires that the system interface between a
subject and a resource be the same as the interface between a subject and another subject;
that is, accessing a resource is functionally equivalent to sending a request to another sub-
ject. This enables a subject, say process Alice, to pass an authority to access a resource, say
a database, to another subject, process Bob, yet retain the ability to revoke that authority in
the future. Alice, instead of issuing a direct capability to the database, creates a new subject
process, Carol, to which is given the direct capability to the database. Alice then issues a
capability to access process Carol to Bob. This way when Bob invokes his capability to
Carol, Carol provides Bob access to the database. At a later time Alice can revoke Bob’s
access by retiring process Carol [18].

EROS’s SFS can accomplish selective revocation in the same manner, inserting directory
processes in place of Alice, Bob, and Carol, and a file process in place of the database. This
mechanism provides fine-grained immediate revocation in whatever system it is utilized.

11What is not clear in Neo, is the mechanism for renewal of chits before their expiration. One relatively
easy solution is for the server to implement a daemon that looks through revocation certificates and if none
apply to a certain chit approaching expiration, reissue that chit to its owner with the same paths, and new
expiration date. This is similar to a mechanism implemented by Maat for capability renewal [60].
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5.9.1.4 Access Control Lists
These systems can revoke access for a subject by altering the ACL associated with the
resource. DOI operates in this way, requiring remote subjects authenticate themselves and
be checked against the ACL. Access to the actual resource held in the object repository can
be protected in a similar manner, requiring authentication using PKI [52].

5.9.1.5 Combination
Maat’s implementation of revocation essentially comes down to an access control list man-
aged at the MDS. The MDS makes all determinations as to whether it replies to an open()
call with a capability or not. This is the long-term strategy for revocation on Maat.

When a capability has already been issued for a resource to a subject that is no longer
trusted, revocation is performed by updating the ACL on the MDS. The MDS will then do
one of several things depending on the value of the data. In Maat, capability expirations
are very short, a maximum of five minutes. Automatic revocation occurs when the server
does not renew the capability and it is allowed to expire. The designers comment that this
seems sufficient for protecting some low-value resources.

For data that is of higher value, Maat allows subjects an alternative method: immediate

revocation. OSDs are able to keep blacklists of capabilities that are revoked. In the event
a capability is revoked, the MDS sends out a revocation message to all of the OSDs on the
network. While called immediate, this process takes time to propagate and occurs at the
speed of the network [60]. As in Neo (see Section 5.9.1.2), the blacklist is kept small in
Maat since capabilities regularly expire.

5.9.2 Confinement
Recall from Section 3.3.2 that confinement is the property of a system such that when
an untrusted program is executed on it, the system does not permit that program to leak
information to untrusted parties. We found confinement related issues that no existing
distributed systems address, such as the following:

• Copying content to new resources and delegating those further than the original re-
source is allowed.
• Sending resources to subjects outside the system.
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• Leakage of secret key material allows new subjects to access related resources when
the system is dependent on keys.

In our survey, we observe five approaches used by systems for confinement:

1. Confinement via access controlled delegation channels: SFS
2. No confinement but limited delegation: Neo, DisCFS
3. Trivial confinement via tokens that convey no authority: DOI
4. Trivial confinement via tokens that are non transferable: Maat
5. No confinement support, that is, capabilities can be delegated arbitrarily: CapaFS,

Tahoe-LAFS, Neo (unauthenticated)

5.9.2.1 Access Controlled Delegation Channels
SFS is the only system surveyed that belongs to this group. SFS limits the authorities that
a subject can pass to its child to a strict subset of its own authorities, and it constrains
passing authorities to those subjects for which it holds a capability. Thus, it follows that
a new subject process cannot communicate outside of the channels explicitly given to it
on creation. “Confinement of authorities within a set of objects can be determined. . . by
observing that the subgraph containing the set of objects is not connected to the rest of the
object graph” [18, p. 5]. In other words, if capabilities to outside objects are not explicitly
given to a child process, there is no way for it to communicate with those outside processes.
This is the method by which confinement is achieved in SFS.

We see this group and type of system as embodying the strongest implementation of con-
finement, as no action on the part of an untrusted subject can result in undermining its
confinement. Though other systems that we survey do claim to enable confinement of
some form, we believe them to implement strictly weaker notions of confinement.

5.9.2.2 Limited Delegation
DisCFS and Neo allow a subject to disable delegation for capabilities that they pass to other
subjects. When capabilities in these systems are delegated, their authority can be narrowed

such that the receiving subject cannot delegate them any further. We describe the details of
how both systems implement this approach.

DisCFS implements a mechanism to limit delegation with certain policy settings in the
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credential. Recall from Section 4.6 that DisCFS enables subjects to delegate authority to
access resources to other subjects by appending the recipient’s public key to a credential
chain and signing this chain. DisCFS checks these delegation chains on access requests
to grant access to the new subjects. This allows the issuer of credentials in DisCFS the
freedom to implement a number of different delegation policies. The issuer can disable
delegation entirely, or restrict the number of credential (capability) delegations that will be
honored. Both policies limit which subjects have authority to access the file, implementing
some form of delegation control.

Neo supports authenticated chits and unauthenticated chits. Unauthenticated chits can be
derived from the master chit, or other unauthenticated chits. These are very similar to
the type of capabilities issued in CapaFS and Tahoe-LAFS, in that mere knowledge of
them constitutes delegation of their associated authority. Therefore, unauthenticated chits
must be passed over protected channels only. Thus, it follows that unmitigated delegation
of unauthenticated chits cannot necessarily be prevented [45]. Neo’s authenticated chits,
however, support a mechanism called nodelegate. Keleher et al. state that Neo supports
confinement by using the no-delegate option in authenticated chits [45, §3]. Signed certifi-
cate chains allow the system to either disable or limit delegation to other subjects. Instead
of signing the chain as in DisCFS, a subject delegates a Neo chit by signing both the sub-
ject’s public key and the chit fingerprint, that is, a hash chain that allows the server to verify
that no tampering has taken place [45, S5.4].

We observe that the limited delegation mechanism in DisCFS and the nodelegate mecha-
nism in Neo can each be undermined by an malicious subject in the same way. In DisCFS,
an untrusted subject could undermine limited delegation by sharing its credential and leak-

ing its private key to other subjects. In much the same way, in Neo, a subject can undermine
the nodelegate mechanism by leaking its key as it passes the chit to other subjects. This
undermines Neo’s confinement implementation.

5.9.2.3 Tokens Convey No Authority
In DOI, handles neither carry authority nor independently provide access. Thus, their prop-
agation does not need to be confined. Instead, authority to access a resource is managed
by the ACLs for the DOI held by the MDS, and by the systems holding the corresponding
object.
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5.9.2.4 Tokens are Nontransferable
In Maat, both capabilities and extended capabilities encode the identity of authorized users
directly into the capabilities, using a Merkle tree. As a result, no unauthorized user is able
to access the resource designated by the capability. Thus, propagation of authorities in Maat
is not possible beyond those users defined in the ACL that is encoded in the capability.

5.9.2.5 No Confinement
In this group of systems, capabilities are implemented much like private keys: they can
be shared arbitrarily, and used by anyone without limit. Tahoe’s capabilities, CapaFS’s
capability file names (CFNs) and Neo’s unauthenticated chits fall into this category.

Tahoe’s capabilities may be freely communicated and delegated. They can be invoked by
any subject capable of communicating with the associated Tahoe grid, which is designed
to be implemented over an untrusted network such as the Internet. Thus, Tahoe does not
enable any mechanism to achieve delegation control or confinement.

CapaFS’s CFNs can be propagated to any subject over any communication channel and
subsequently used to access the designated resource. It provides no method to prevent
uncontrolled delegation or enforce confinement [54]. Regan and Jensen, however, pro-
pose extending CapaFS by adding client authentication through the use of public keys, and
certificate chaining for delegation [55, §3.4]. They suggest this extension can restrict del-
egation according to a variety of policies. It would enable the server to limit users to a
predetermined whitelist, akin to an ACL, to limit the right to delegate, or to prevent dele-
gation past the intended recipient altogether. This approach is similar to the one described
in Section 5.9.2.2, employed by DisCFS.

5.9.3 Confused Deputy
Recall from Section 3.3.3 that a confused deputy refers to a phenomenon in systems where
a program is “tricked” into performing a transfer of authority which may lead to misuse of
that authority. In our survey, we observe three groups of systems with regard to the extent
to which a confused deputy may be implemented:

1. Easily avoided confused deputies: Tahoe-LAFS, SFS
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2. Confused deputies from capabilities encoding authority to multiple resources: Ca-
paFS, DisCFS, Neo, Maat

3. Confused deputies from the ambient authority associated with user IDs and ACLs:
DOI, Maat

5.9.3.1 Easily Avoided Confused Deputies
This group of systems facilitate avoiding confused deputies by requiring subjects to select
a single authority before an access can take place. Every request for access arrives with the
associated authority necessary to grant that access.

In SFS, as in any object capability system, authority and designation are inseparable. Thus,
programs cannot be confused by designation in the absence of the authority to access a
resource. The (non-ambient) authority to perform some service always arrives in-context
with the request to do it. For these systems, Miller et al. argue it is easier to avoid building
confused deputies [18]; following this logic we categorize SFS with respect to confused
deputy avoidance as best.

In Tahoe-LAFS, a capability to a resource must be explicitly selected in order to invoke the
authority it wields. While a method to designate a resource share exists separate from the
authority to invoke the resource, we find this designator adds little avenue for “confusion.”
These designators may allow shares to be retrieved, but the underlying resource must be
recovered through the use of the capability, which acts as a decryption key after shares are
combined. The net effect is similar to that of SFS: it is easier to avoid building a confused
deputy in this system. Following the logic of Miller et al. for CAK models, we have
categorized Tahoe as better.

5.9.3.2 Capabilities Encoding Multiple Resources
This group of systems support capabilities encoding the authority to access multiple re-
sources, where a secondary designation must be provided to differentiate an access. This
accommodation provides a significant risk of a confused deputy. CapaFS, DisCFS, and Neo
each provide mechanisms that open this possibility because they allow multiple authorities
to be encoded into a single capability, for example, access authority to all the files and
subdirectories of a directory. This fact, coupled with the existence of authority-less forms
of designation, mean that authority and designation travel different paths in arriving to a
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subject. If subjects are not careful to associate each capability they receive with the context
of the request in which it was provided, a confused deputy can result.12 As described, these
systems meet what Miller et al. characterize as danger, with respect to confused deputies.

In Maat, the first problem we see with respect to confused deputies is its extended capa-

bilities. They muddy the waters in a similar way as the capabilities encoding multiple re-
sources in CapaFS, DisCFS, and Neo. Extended capabilities grant heuristically-determined
multiple authorities to a large set of subjects, where no context is required to perform an
access to the associated resources. The motivation for extended capabilities is to reduce
the number of requests for capabilities to the MDS; this loose, non-context-associated han-
dling of capabilities is intentional for performance reasons, but dangerous in the context of
confused deputies.

5.9.3.3 Authority from User ID and ACLs
In this group of systems, a resource’s designation is fully separated from authority to access
the resource, which is managed through an access control list. All authority is tied to and
derived from the user identity. A program’s authority to perform some action, and the
designation of the resource on which to perform that action, arrive separately. This makes
the implementation of a confused deputy more likely, following the logic of Miller et al..

The second way in which Maat is susceptible to confused deputies has to do with the way
it associates authorities with a user ID. A request to open a file is compared to the ACL
on the MDS and, depending on the subject’s user identity, access is granted or denied.
Likewise, in DOI, authority is tied to the identity of the subject presenting the handle to
the system. The object’s ACL determines whether a request to use a resource is granted or
denied. Thus, following the logic of Miller et al. we have categorized DOI and Maat as
danger.

5.9.4 Least Privilege
Recall from Section 3.3.4 that in order for a system to operate with least privilege, the
minimum number of subjects must be granted the minimum number of authorities at the

12With each of these systems it should be noted that if a policy of ensuring only a single resource was
encoded to any of their capabilities, the situation with respect to confused deputies could be significantly
improved.
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lowest permission level possible. In our survey, we found the following natural groupings
of systems in regard to their support for least privilege operation:

1. Fine-grained authorities, exclusively: SFS, Tahoe-LAFS
2. Aggregate and separable authorities: DisCFS, Neo
3. Aggregate and inseparable authorities: CapaFS
4. Authority associated with a user: DOI, Maat

5.9.4.1 Exclusively Fine-grained Capabilities
Systems in this group mandate that only one resource be referenced by a capability at a
time. Separate capabilities encode the type of access authority for the resource (i.e., read-
write or read-only). These traits allow systems like SFS and Tahoe to truly operate in least
privilege fashion. Every subject receives only the authority it needs to complete its required
tasks, no more. We categorize these systems as better.

5.9.4.2 Coarse-grained Capabilities that Support Separation
As mentioned in Section 5.9.3.2, some systems allow authorities for multiple resources to
be encoded in a single capability. This would seem to conflict with least privilege when a
subject only needs a subset of those authorities. DisCFS and Neo, however, allow subjects
to separate capabilities from those aggregate forms. These systems, then, are conducive
with least privilege operation, as long as subjects separate unneeded authorities before pass-
ing to them other subjects. We categorize these systems as equal to those in the previous
group, better.

5.9.4.3 Coarse-grained Capabilities that do not Support Separation
CapaFS encodes multiple resources into a single capability file name (CFN) in a way that
cannot be separated or diminished by subjects. This conflicts with least privilege as it would
necessitate a parent subject pass more authority to a child than may be necessary to operate.
Additionally, CapaFS does not allow a parent to diminish those authorities associated with
a CFN. This too prevents least privilege operation. Thus, we categorize CapaFS as less
desirable (or unlikely) with respect to least privilege operation when compared to DisCFS,
Neo, Tahoe and SFS.
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5.9.4.4 Those with User Associated Authority
Subjects in DOI and Maat operate with the authority provided by the identity under which
they are operating. DOI does not follow least privilege because subjects execute with the
ambient authority granted by their identity (environment), not the smallest subset of priv-
ileges that would enable them to execute their assigned tasks. The result is that subjects
may run with more authority than they need to perform required tasks. In Maat, a subject’s
rights and privileges are also determined by the identity under which a subject is operating.
If that identity is listed as an authorized user on the MDS’s ACL for a resource, it will get
access to that resource; therefore, a subject’s authorities depend on the environment of the
user executing it. As a result, there is no way to enforce fine-grained authorities and limit
the authority extended to an instance of a process. Following the logic of Miller et al., we
find that both DOI and Maat are in the category infeasible for least-privilege operation.
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CHAPTER 6:
Discussion

In this chapter, we discuss the implications of our findings, compare some system ap-
proaches to the emergent properties, and address the value and predictive nature of the
metric provided by Miller et al. with respect to the emergent properties. Additionally, we
identify differences between various system designer’s interpretations of revocation and
confinement. Finally, we make some suggestions for topics that should garner more atten-
tion in future distributed file system implementations.

6.1 Revocation
According to Miller et al., the presence or absence of property B and property E have
consequences on whether one can expect revocation to be possible in a system. Specifically,
they imply: B∧E → Rev. Therefore, we would expect any system that exhibited property
B, dynamic resource creation, but lacked property E, composability of authority, to be
unable to provide for selective revocation of authorities. By cross-referencing our findings
in Table 5.1 and Table 5.2 one can observe that, in fact, one system, Neo, demonstrates
that it is capable of supporting selective revocation despite having this distribution of the
Miller et al. properties. Our findings suggest that the Miller et al. logic only applies
to one kind of selective revocation implementation, revocable forwarders, not selective
revocation as a whole. Therefore, we find that the correct logical proposition would be:
B∧E→ Rev−Fwd.

Our observations suggest there are many ways to implement revocation in distributed sys-
tems, with widely varying secondary effects. We describe some of the varying implemen-
tations thereof.

1. Immediate selective revocation: Upon action taken, the resource is not available to a
specific subject via this system [29].
• Revocable forwarders where one process acts as the per-file caretaker, is one

possible implementation.
• Neo’s revocation certificate, when the remote storage server is a single node, is
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another example producing immediate selective revocation.
2. Lazy selective revocation: Capabilities expire if not renewed, as seen in Neo and

Maat.
3. Eventual selective revocation: Knowledge of revocation will eventually propagate

throughout the system at network speed to all storage nodes. This is the case for
Neo when the storage server is spread over many nodes. What Maat calls immediate
revocation is also an example of this.

6.2 Confinement
According to Miller et al., the presence or absence of property B and property F have
consequences with regard to whether a system exhibits confinement. Specifically, they
imply: B∧F → Con f . We would expect any system that exhibited property B, dynamic
resource creation, but lacked property F, access controlled delegation channels, to be unable
to provide confinement. Our survey findings support this logical proposition.

One system, Neo, had property B and lacked property F, yet claimed to support con-
finement [45]. However, our interpretation of confinement is not merely concerned with
whether a rule-abiding program can propagate its authorities or information outside its
granted sphere of operation. Rather, we believe confinement must restrict untrusted sub-
jects like trojan horse programs. These programs may take resources to which they have
access, and try to leak authorities to that data to other subjects [70]. It is clear that a rule-
abiding subject in Neo could not delegate authorities to other subjects using the method of
delegation defined by Neo. However, it is also clear that nothing prevents a subject from
communicating its chit to another subject along with its own secret keys, thereby circum-
venting the nodelegate mechanism and allowing the new subject to use the original chit. We
believe that Neo’s claim to support confinement is not a contradiction of the logical propo-
sition regarding confinement that Miller et al. describe for capability systems. Instead,
Neo meets a strictly weaker notion of confinement, due to the fact that its confinement
mechanism relies on trusting that subjects will not misbehave.

6.3 Least Privilege
Our observations with respect to least privilege agree with Miller et al.; however, we find
that the categories of better and infeasible are not descriptive enough for some systems.
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In particular, CapaFS supports both dynamic subject creation and dynamic resource cre-
ation, but can encode multiple inseparable authorities in its capabilities. This introduces
the possibility of coarse granularity in authority passing, and thus can result in a subject
not operating with least privilege. This point highlights a tension that will arise in large
capability-based distributed file systems between the efficiency afforded by aggregate ca-
pabilities (Maat calls them extended capabilities) and the significant cost of losing least
privilege operation.

6.4 Confused Deputy
Our findings also concur with Miller et al. with regard to each system’s propensity for
confused deputies. We found one distributed system, Tahoe, provides favorable properties
helping prevent the implementation of confused deputies. We note that, of the distributed
systems we surveyed, five of six discuss revocation in their documentation, four of six
discuss confinement in some form (e.g., delegation control), and four of six discuss least
privilege; however, none discuss or mention their system’s propensity for or defense against
confused deputies. This seems to be a large oversight in the security concerns of their
creators given the importance of the problem.

The confused deputy problem captures the heart of what allows server processes and other
programs to get hijacked [19], [71]. If there were no ambient authority in systems; that is,
each program had access only to the authorities it needed to operate, and furthermore, every
authority a process had was tied to the context with which it was to be used, then malware
would be unable to hijack systems, escalate their privileges, and perform their malicious
intent. At most, they could hijack only those small number of authorities for which the
target program had a need.

6.5 Other Observations
It is interesting to note that Miller, Shapiro, and Yee’s work is not about distributed systems.
Our survey highlights that in a distributed capability based system, additional factors can
play into its effectiveness with respect to various tasks, such as: storage node distribution,
the presence of a reference monitor, the existence of centralized metadata store, and even
the mechanism by which capabilities are delegated between subjects.
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Additionally, in a distributed system, accountability as discussed in Section 3.1, becomes
of much greater concern, as the number of subjects and variety of data increases. We be-
lieve it is natural to desire an audit trail for post-event forensic analysis and attribution.
Neo has two separate mechanisms to enable logging, for either authenticated or unauthen-
ticated chits. While authenticated chits provide the more reliable and desireable logging,
unauthenticated chit logging provides value all the same.

In unauthenticated chits, every generation of key can be created with a tamper-proof tag
that differentiates it from previous generations of the chit. This tag can be logged and
associated with its rightful user, so that its user is flagged when it is used [45, §5.7]. This
does not prevent others from using the chit, but it can provide a starting place for a leaked
chit.

In Neo’s authenticated chits, every capability provides the identities (public keys) of the
subjects in the delegation chain as well as the invoking subject. This information is logged
along with the referenced resource and other metadata about the access [45, §5.2]. This
same type of mechanism could be easily implemented in DisCFS by recording the dele-
gation chain used in each credential as it is invoked by a subject. No such mechanism is
available in CapaFS, though a solution using public keys in a similar way to above is sug-
gested by Regan and Jensen [55, §3.3]. Tahoe has a number of daemons it calls gatherers.
Tahoe’s gatherers are limited, however, in the kind of information they can record to at
most a storage node, gateway node or share information. This falls short of the information
that we would like for a proper audit trail, but it may be extensible to act as such [72].

While some designs seem incompatible, small modifications may enable accountability.
Thus, it is an open question whether accountability is orthogonal or related to the properties
of the capability systems as defined by Miller et al. [18].
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CHAPTER 7:
Future Work and Conclusion

The Navy is moving the entirety of its information systems and Big Data processing to the
Cloud. There are still open questions regarding the security of the Cloud. Capability-based
operating systems have many inherent security properties that we find compelling:

• Fine-grained, least privilege operation
• A mechanism for encapsulation and protection of process memory
• Unforgeable references, supporting strong resource protection
• High system reliability
• Subject-controlled authorities, no centralized management of permissions
• Controlled sharing/flexible secure sharing of data
• Resistant to program hijacking, manipulation by malware, and memory safety viola-

tions (confused deputy avoidance)
• Reduced insider threat
• No super-user (no root)

The properties previously observed in capability operating systems motivate us to critically
review the properties of distributed file systems using capabilities, to understand the ad-
vantages and limits of capabilities in distributed designs. One of the aims of this thesis is
to determine if a capability architecture could support the security objectives of a tactical
cloud. We believe that a (yet to be described) design may, indeed, serve as such.

A primary challenge to this goal has been that capability systems vary widely in implemen-
tation; as a result, they vary in the security properties that they exhibit. Miller et al. argue
this by categorizing capability systems into archetypes. Some capability systems exhibit
selective revocation, others do not; the same is true for confinement, confused deputies
(anti-hijacking), and least privilege. Object capability systems are a class of systems they
identify that possess all of the desired emergent properties.

Our survey investigates six capability-based distributed file systems—CapaFS, DOI, Maat,
DisCFS, Tahoe-LAFS, and Neo—and one local object-capability file system—EROS’s
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SFS—using the seven properties defined by Miller et al. Our survey extends their anal-
ysis into the domain of distributed file systems (DFS).

We find that none of the distributed systems surveyed exhibit all of the Miller et al. proper-
ties; to wit, we found no object-capability distributed file system. Additionally, we find that
no distributed systems exhibit all desirable emergent properties: selective revocation, con-
finement, confused deputy resistance (anti-hijacking), and least privilege. We re-evaluated
the relationships Miller et al. claim exist between their capability properties and the emer-
gent properties, affirming some and refuting others. Our observations will be useful to the
Navy because they highlight many tensions that must be considered when making decisions
about future Big Data systems and access control. Capabilities must be further examined as
an avenue toward the robust security enforcement the Navy requires for its future platforms;
however, as we consider cloud-scale distributed capability systems, we will have to weigh
these tradeoffs and prioritize those security properties motivating the use of capabilities in
the first place.

Given the potential benefits of a DFS with the properties of an object capability system,
and the fact that no distributed system exhibiting these properties yet exists, we believe it
to be valuable future work to pursue the following:

• Develop a full reference model for an object capability distributed file system.
• Create a prototype aiming to achieve all of the emergent properties by merging two

of the existing systems that each covered part of them and accountability (i.e., Tahoe-
LAFS and Neo).
• Prototype and evaluate a simple object capability distributed file system using a dis-

tributed object capability framework such as E [73].

In summary, capability systems hold significant promise for solving many of our complex
security problems in the Cloud. More research must be done to harness their benefits and
create the highly-secure, scalable, capability-based distributed systems on which future
cloud systems might be based.
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