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On the Fractional Wideband and Narrowband
Ambiguity Function in Radar and Sonar

Brett Borden

Abstract—We construct the wideband ambiguity function
for signals represented by their fractional Fourier transforms.
Because the reflected signal must be represented as a Doppler
scaled version of the transmitted signal, this wideband form of
ambiguity does not enjoy many of the same properties as the
narrowband form (which is formed from a Doppler shifted version
of the signal). We present the general result and also examine an
approximation appropriate to wideband signals reflected from
slowly moving targets.

Index Terms—Ambiguity, fractional Fourier transform, wide-
band.

I. INTRODUCTION

THE ambiguity function is a useful tool for describing the
ability of a waveform to simultaneously estimate the range

and range-rate (speed) of targets in active (correlation-based)
radar and sonar systems. The narrowband limit of this function
has been well studied in both the time and frequency domains
and is fundamental to modern radar and sonar system design.

With the development of the fractional Fourier transform
(FrFT), an important relationship between the FrFT rep-
resentation of the narrowband ambiguity function and its
transformation under the rotation operator has been observed
[1]. The FrFT can be viewed as an arbitrary rotation of a signal
in time-frequency space, and this relationship cleanly connects
this transformed signal with the rotation of its narrowband am-
biguity function. (A similar relationship exists for the Wigner
distribution and has been found to be useful in signal processing
applications—see, for example, [2], [5], and [6].) Because the
ambiguity function can be interpreted as an imaging kernel, the
link between the FrFT representation and ambiguity is also a
link between this representation and inverse synthetic aperture
imaging.

The simple connection between the FrFT and a rotation of the
narrowband ambiguity function is valid only in the narrowband
limit. Wideband ambiguity functions are used to describe wave-
forms whose bandwidths are proportionally large in comparison
to their center frequencies. These waveforms have always been
important in sonar systems and, in recent years, have become
applicable to radar system analysis.

The question then is: What is the form of the wideband ambi-
guity function in the fractional domain, and is there a relation-
ship between this transform and the rotation operator?

II. RADAR/SONAR DATA

We begin by establishing the relationship between the data
collected by a correlation receiver and an echo wave scattered
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from a target so that the important role of the ambiguity func-
tion as an imaging kernel can be illustrated. For simplicity, we
will use the scalar wave equation—extension to the vector wave
equation is straightforward.

The wave field at time and spatial position obeys the in-
homogeneous wave equation

(1)

where denotes the field propagation speed, and is
the source distribution. The Green’s function for a source-free
region of space satisfies

, where is the free-space prop-
agation speed. Particular solutions of (1) are

.
We write the total field as the sum of an incident (transmitted

field) and a field scattered from the target so that
. The incident field is considered to be es-

tablished by the source distribution of a point radiator (an “an-
tenna”) transmitting a signal from location and satis-
fies with solution

.
The scattered field is to be measured by sensors located in

a target-free space. We assume these sensors to be co-located
with the transmitter (i.e., a “monostatic” configuration). Sub-
stitution of into (1) yields

, where
is related to the target scattering density.

The term acts as a source distribution on the
target, and so this equation has a solution given by the integral
equation .
In the weak-scatterer approximation, we simplify this last result
by substituting to obtain

The free-space Green’s function is given by

(2)

which represents the field at position and time due to an
incremental scattering event occurring at position and time
when the wave propagation speed is .

A. Fractional Fourier Transform

For our analysis, we will rewrite (2) in terms of the fractional
Fourier kernel: The FrFT is defined by [4]

The kernel has various forms—for simplicity, we use
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It is straightforward to show that obeys
; ; and

. In addition, when
is a multiple of , the FrFT reduces to the ordinary Fourier
transform (or the inverse).

Evidently, (2) can therefore be represented as

and the incident field can be written in terms of as

(3)

where is the FrFT of the
signal used to establish the field transmitted to the target.

We assume that the target is in uniform motion: specifically,
the target’s motion (over the duration of the transmitted pulse)
obeys for some function (this
will be exact, for example, when a point target is translating at
a fixed velocity). Then we can write

, where is the scattering density represented in a
coordinate system fixed to the target. We also assume that the
target is situated in the far-field of the radar/sonar transmitter:
denote , , and , so that

. If we let
, then ,

and we have

where . (This approximation retains lowest order terms
in the amplitude and first order terms in the phase and is appro-
priate for small targets located at great distances from the trans-
mitter/receiver; see [3].)

A number of other important properties of the FrFT are de-
rived in [4]. Of particular interest to us is the transform of the
derivative: if is a member of the space of functions
of rapid descent (i.e., functions that decay faster than polyno-
mials), then

Under the change of variables , we obtain
from (3)

where . Then the weak scatterer, monostatic far-field
scattered from a target undergoing uniform motion induces a
receiver signal of the form

where ( and are defined above).

B. Correlation Receiver

In active radar and sonar systems, the fraction of the trans-
mitted energy scattered by the target and measured by the re-
ceiver falls off by a factor of and is often dominated by
thermal noise in the instrument. For this reason, radar/sonar sys-
tems typically rely on correlation receptions methods: Correlate
the scattered signal with one of the form [3] and [7]

where is the Doppler scale factor [3], and this result follows
from the variable change with

.
In this representation for , we set and

obtain

(4)

where .



BORDEN: FRACTIONAL WIDEBAND AND NARROWBAND AMBIGUITY FUNCTION 547

Integrating over and and making the variable change
yields

From the requirement , we obtain

Then, integrating over and and substituting these last re-
sults, we obtain the data model as

(5)

where we have made the dummy variable substitutions
and .

III. AMBIGUITY FUNCTION

Expanding the derivative factor in (5) yields

. Integration by
parts yields

(6)

and, similarly

(7)

Since for any function , we have ,
then, using (6) and (7) with

(8)

it is straightforward to show that (5) can be written as

(9)
where

and .
The quantity

is the “fractional form” of the (wideband) ambiguity
function, which can be seen to be formed from the
product of and a Gauss–Weierstrass
transform1 (or “chirp convolution”) of the function

with
(where denotes “chirp

multiplication”). We have

(10)

(this definition of wideband ambiguity should be compared
with that in [7]).

A. Narrowband Ambiguity Function

In radar systems, the “narrowband ambiguity function” is
much more common. This limiting form occurs when we can
write

(11)

where is the “signal envelope” that is slowly varying in
time, and is the “signal carrier frequency.” The narrowband
approximation is appropriate when the bandwidth of
[i.e., the support of ] is small in comparison with .

The Doppler scale factor is related to target range rate
by , where denotes the
speed of signal propagation. In the radar case, a target’s radial
speed will typically obey , and so . Then,
since is slowly varying in , we can write

,
where and . The FrFT of
can therefore be approximated as [1]

1The Gauss–Weierstrass transform G of a function f is defined by

fG fg(�) = 1p�2�ib exp �i(� � �) =2b f(�)d�
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so
that

Inserting this result into (4) and performing the (now greatly
simplified) subsequent integrations yields the usual (narrow-
band) form for the ambiguity function as [1] and [5]

where we have made the variable change
. From this result, it is easy to

see that and , respectively, satisfy the
usual time and frequency domain definitions of narrowband
ambiguity [3].

If we set and ,
then

(12)
Let denote the rotation operator acting on functions of two
variables by

. We can conclude

(13)

which is a well-known result relating the narrowband ambiguity
function formed from to the rotation of the narrowband
ambiguity function formed from (c.f., [1], [2], [5], and [6]).

B. Wideband Signals on Slow Moving Targets

An increasingly important situation in both radar and sonar
is one for which (11)—with a slowly varying envelope—is
not a valid approximation. This condition occurs, for example,
in so-called ultra-wideband systems, which are of interest be-
cause of their increased range resolution in comparison with
their narrowband counterparts.

In general, a complete analysis of such systems requires ap-
plication of (10). When the target is slow moving (in compar-
ison with the free-space propagation speed ), however, the col-
lected data will have appreciable values only for .
With , we can write

.
Equation (9) is an oscillatory integral, and, when , this

equation can be readily analyzed by the method of stationary
phase. Substituting into the phase term of (8)
and expanding and retaining only those terms of degree 1 or
less in yields

. From
this last result, we can perform the standard stationary phase in-
tegration with “large parameter” and obtain the fractional
ambiguity function as

(14)

Under the variable change ,
(14) becomes (to first order in )

Now let and . Then

(15)

which is an extended form of (12) appropriate for wideband
signals when the target is slowly moving. Note that (15) includes
the chirp factor in the integrand.

IV. DISCUSSION

Relation (13) fails in the wideband case. This breakdown oc-
curs because Doppler scaling can no longer be interpreted as
Doppler shifting. Instead, we are required to apply the com-
plete representation (10), which, in turn, can be approximated
as (15) when the target is moving slowly in comparison with
the free-space wave propagation speed .

Since (9) is a functional relation between an object function
and a set of measurements , it can be interpreted as an

imaging equation with kernel . Recovery of from is an
inverse problem and has been extensively addressed in the liter-
ature for the narrowband case. For rotating targets, (13) relates
the fractional form of the ambiguity function to inverse synthetic
aperture imaging. When the interrogating signals are wideband,
however, these simple relationships fail, and alternate image re-
covery algorithms must be developed.
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