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Microlocal ISAR for Low Signal-to-Noise
Environments

Brett Borderit and Margaret Chenéy

Abstract—The problem of extracting radar target information ~ not be applicable when the signal-to-noise or signal-to-clutter
from multi-aspect high-range-resolution data is examined. We ratio is especially poor.
suggest a new non-imaging approach that is based on microlocal |, addition, traditional ISAR imaging presumes a highly

analysis, which is a mathematical theory developed to handle high- . .
frequency asymptotics. In essence, we relate features of the targetlocahzed (point scatterer) model for local target structure.

to high-frequency components of the data. To deal with realis- WWhen this model is inappropriate—as in the case of structural
tic band-limited data, we propose an iterative algorithm (based on dispersion—the usual images will contain artifacts. (One ap-
the generalized Radon-Hough transform) in which we estimate the proach to handling non-point-like scatterers is High Definition

high-frequency features of the data, one after another, and sub- Vector Imaging (HDVI) [1], [15].) What is more generally

tract out the corresponding band-limited components. The algo- . Ll .
rithm has been successfully tested on noisy data, and may have a.needed is a nontraditionditting method that can be applied

number of advantages over conventional imaging methods. in data space not only to aid in the imaging of general scatterers
but also to facilitate the range alignment process.

In [7] we proposed a new non-imaging approach, based on
microlocal analysis, for extracting target information directly
from radar data. This approach has a number of potential ad-

IGH range resolution (HRR) radar systems can be us@gntages. First, this method offers the capability of extracting

to acquire range profiles which map the energy reflectegkget dynamics and using these dynamics to differentiate tar-
from local target scatterers to the travel time of the radar pulggst from clutter. This separation is possible because the analysis
Target-identification procedures based on these range profilgsione in the data domain and these data are a record of range
however, suffer from a lack of detailed target information iRersus (slow) time, which is determined by the target dynamics.
dimensions orthogonal to range because all equidistant targBifferentiating the target from clutter by its dynamics would be
elements are mapped to the same point. Such ambiguity ehtficult or impossible in the image domain.) Second, because
be partially removed by considering multiple pulses that intefhe approach operates in the data domain, it opens the door
rogate the target from different directions. The different targes the possibility of identifying targets directly from the mea-
views, which are also known as targetpectscollectively de- sured data without the necessity of first constructing an image.
fine asynthetic apertur@nd more complete target images carmhird, the scheme allows for artifact removal by first deleting
be recovered from multi-aspect data by, for example, backpigata components not corresponding to recognizable scattering
jection methods [13], [14]. In inverse synthetic-aperture radajvents and then forming an image from the edited data. Fourth,
or ISAR, this effective imaging aperture is created by the meie microlocal theory can treat scatterers other than points, such
tion of the target. as multiple scattering events and structural dispersion. This ex-

Conventional image reconstruction, however, suffers fromtansion may enable us to classify scatterers in a way akin to
number of shortcomings. Perhaps the most significant amoA@VI.
these limitations is the need for phase coherence to be mainSection 2 outlines the ISAR scattering model, establishes
tained across the entire aperture. This aperture must be lasgenotation, introduces some microlocal concepts, and summa-
(i.e., longslow timeduration [5]) in order to obtain good cross-rizes our approach for the illustrative case of point scatterers. In
range resolution. Since airborne targets will typically translatection 3 we propose a method for extracting the relevant struc-
as well as rotate during the measurement interval, a pulse-igre from the data. Finally, section 4 presents examples and
pulse phase error may be introduced. Traisge walkproblem results.
requires that the phase error be carefully remoyedse range
alignmenj before reconstruction can be attempted. This re- [l. BACKGROUND

moval, in turn, typically requires that the target's location be ex- s section outlines the background material necessary for
tractable from the HRR data [5], [11], [19]. In the presence Qfie remaining discussion. In this point-scatterer example, we
noise, estimating a target's location at any instant can be prliypit the mathematical model that provides the necessary link
lematic. Consequently, traditional ISAR imaging methods may,yeen objects in the target domain and the data domain. This

. o link is the foundation for the microlocal approach.
TResearch Department, Naval Air Warfare Center Weapons Division, China

Lake, CA 93555-6100 USA
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I. INTRODUCTION



and receiving antennas are co-located; that the target is in Wieeret,, = ¢t — 0,, is thefast time.We see that ifv; — —oc0
far-field of the antenna; and that the target is moving slowbndws — oo, then equation (6) is precisely a Radon transform
enough so that it can be treated as being approximately statioh&): for eachd,,, one integrate§) over the line in thez-plane
ary during the time interval over which the pulse sweeps acragisen byt,, = 2[R + R(@n) - z)]/c. ISAR images are tradi-
it. For simplicity we also assume that the target is supportéidnally produced by Radon inversion methods (such as filtered
on a plane that includes the radar. Then, in the weak-scattdvackprojection [13], [14]).
approximation, we have the following expression for the signal The fact that (6) is only a bandlimited version of the Radon
scattered from the-th transmitted pulse and measured at tHgansform results in ISAR images with limited resolution.
receiving antenna at time

B. Microlocal analysis
Ssc (1) = (1) Microlocal analysis, like the Radon-based theory, applies

1 /Q(z) Sinc(t — 0, — 2[R+R(0 )-z)/c)dz. to the infinite-bandwidth case. In many ways, however, the
(47 R)? e " " infinite-bandwidth theory distills the traits relevant to target
In this equation,R denotes the distance from the antenna trgcogn_ition from the coarser features a_vailable fr_om limited-
the origin of coordinates (which is fixed at the center of targ@gndwidth data. These features are highly localized scatter-
rotation), R denotes the unit vector from the radar to the origi'd CeNters of the target, such as corners, edges, and re-entrant
¢ denotes the speed of light in vacuum,c R? denotes the structures such as ducts and engine inlets. Mathematically, such

position on the target)(z) is the target reflectivity function at features correqund to smgulqnnes@q. . . .
the pointz, 6, is the time at which the-th pulse begins, and The mathematical study of singularities is done with microlo-

Sinc denotes the second derivative with respect to time of tﬁgl. gnalysis; the term “miprolocal” refers to th.e facF tha't singu-
incident field. We consider this incident field to be of the for arities have both a locatior and corresponding directiorgs

9].
Sinc(t) = 2) 1) Wavefront sets:Mathematically, singularities of a func-
1 wy , tion such ag) is described by itsvavefront setwhich encodes
E / e dw = VAw e sinc(tAw/2), both the location and direction 6J’s singularities.
Jwi

) ) a) Definition: The point(xg, &) is notin the wavefront
whereAw = w; — w is the bandwidth and, = (w1 +w2)/2  setWF () of the functionf if there is a smooth cutoff function
is the center frequency. We assume the narrowband conditigQith (x, ) + 0, for which the Fourier transfori ( f1)(A¢)

Aw < we. In this case, the amplitud¢’Aw sinc(tAw/2) of  gecays rapidly (i.e., faster than any polynomialpas: oo for
(2) is slowly varying in comparison with the carrier modulatio i 5 neighborhood of,.

elwet and this impliesi,. ~ (iwe)?sinc.
We correlate the scattered signal with a signal of the forrH
sinc(t) [6] to obtain the output of the correlation receiver: t

This definition says that to determine whetfigp, &) is in
e wavefront set off, one should: 1) localize arounxt, by
multiplying by a smooth functiony supported in the neighbor-
_ N / hood ofx; 2) Fourier transforny; and 3) examine the decay
1(ns 1) = /ssc(n’t ) Sine(t =) dt 3 of the Fourier transform in the directigg. Rapid decay of the
—w? . , Fourier transform in directiof, corresponds to smoothness of
= (=R? /Q(Z) X(t,0n + 2[R+ R(0n) - 2]/c) dt'dz, the functionf in the directiont, [11].

where the narrowband ambiguity function is here given by b) Example. A point scatterertf f(x) = 0(x —xq), then

1 WE(f) = {(x0,£) : £ # 0} (7)
Xt = 3 [Suclt — st 02, @ |
we c) Example. A line: Supposef(x) = d(x - v). Then
and where the star denotes complex conjugation. WE(f) ={(x,av) :x-v =0,a # 0}.
Equation (2), when used in (4), results in Our strategy has been to work out explicitly how the wave-
1 wo o wo o front set of() corresponds to the wavefront set:pf We have
x(tm) = A= // el =7) dw/ e W=D qu/dt’  done this [7] for singly and multiply scattering points and for
v ot w1 re-entrant structures such as ducts and cavities. In the current
_ / §(w — w') T qu quy work, we consider only the simplest case of isolated point scat-
AW Juy Jun terers (6), although the theory applies more generally.
_ /w2 G@(t=7) g 2) Wavefront Set dfSAR data: In the infinite-bandwidth
Aw J,, ’ case, (6) is of the form of a Fourier Integral Operator (FIO) [9]
— elwe(t—T) sinc[(Aw)(t — 7)/2], 5) applied toQ. The phage of an FIO deyermines how it maps
wavefront sets. In particular, the mapping between wavefront
and sets is determined by a relation in phase space callechinen-
ical relation. This relation is determined by the phase of the
1(0n, 1) = (6) FIO, which in the case of point scatterers is the phase in (6):

w2
w1

e T /Q(z)/ o~ iltn—2(R+R(02)71/] 4y AW, O, tn,2) = w (tn — 2[R+ R(6,) .Z]/c]> )



We consider only the case in which the target is rotating at "’
a constant raté) and chooseR(6,) - z = xcos(Q0,) + 04t
ysin(Q6,,). (We have set the componentsof= (z,y): the
cross-range and down-range target coordinates, respectively.(}‘3 I

In this case the canonical relation is 02|
A = {((On,tn;0,7),(2,Q)) : dp/dw = 0,0 = d¢/db,, 0.1
T= d¢/dtn7 ¢= _Vz(b} t, of |
= {((Ont0;0.7), (2,0) t ta = 2AR + R(02) - 2] c, a _
(0,7) = w (2Q(zsin(Q6,,) — y cos(26,,)) /¢, 1), ' mm/
(= —2w(cos(99n),sin(Q@n))/c} . C) I

0.3
The wavefront set of the radar measuremerissobtained as

the set of point$6,,, t,,; o, 7) for which there is a corresponding 04 1
(z,¢) in the wavefront set of). In the present cas€) consists .|, : : : ; ; . . .
of point scatterers, so its wavefront set is a union of sets of the 08 06 04 -02 0 02 04 06 08
form (7). If we denote the location of the point scatterers by 26, (radians)

z/ = (27, y7), then the wavefront set of can be written

Fig. 1. This shows the magnitude of data corresponding to three point scatter-
ers.

WFEn = U {(971,1571;0, 7—) = 2[R+ R(an) ’ Zj]/c’

J

i ; such scheme uses matched filters [16] (which are known to be
(0,7) =w (2Q(mj sin(Q20n) — y” cos(Q6n)) /e, 1) } (10) optimal in a certain sense). Here, th[e a]p(propriate matched filter
The microlocal theory, which is based on the method @pproach would search for the maxima of the modulus of

stationary phase, is a systematic way of working out high-

frequency asymptotics. Strictly speaking, of course, bandlirﬁ\fl{”}(z) - (1)

ited data are smooth and_therefore the v_va\_/efront set is empty. 1O tn) X (tn, O + 2[R + f{(Gn) -2)/c) dt,db,, .

Our analysis, however, views the bandlimited case as an ap-

proximation to the infinite-bandwidth problem.

Figure 1 shows the magnitude of data computed using eqt?é’—t this approach can be computationally expensive.

tion (6) with @@ consisting of three delta functions of strengthi ,Tnotlher:.appror?ch IS sn%lggested by the fact that.Flglére.shl z;nd
1.0, 0.6, and 0.3 at respective positiong—0.25, —0.25), clearly hint at the wavefront-set structure associated with (9).
n'{he wavefront-set method presumes that we can extract the

(0.3,—-0.1), and (0,0.3). These data are roughly consiste front set of the data. but " thod i
with those obtained by scattering a pulse with center frequen‘@g\’e ront set of the data, but currently no methods are avail-
le for doing this. In the ideal case, this process would involve

of 5 GHz and20% bandwidth from a 5-meter target. The an- avle for . o )
gular aperture, i.e., the range of valuesdgf in this example identifying curves in the (infinite-bandwidth) data, and the stan-

is 100°. The sine curves predicted by (10) are clearly visibl ard approach for identifying curves is to use the generalized
albeit in a band-limited form adon-Hough transform [10], [17]. This, by itself, is not ad-

While ISAR imaging schemes are usually based on equ‘,g_quate in our case because the data are band-limited. To deal
tion (6), equation (10) shows that the wavefront set of the da%th the band-limited nature of the data, we propose a modifica-

contains considerable information about the target. This infd{o" Of the CLEAN algorithm [18]—butin the data domain. In
mation can be extracted without forming an image. A po“p(artlcular, we apply the generalized Radon-Hough transform to

scatterer (whose wavefront set contains all directigndo- find the locus of the curve; the peak of the Radon-Hough trans-
cated atz corresponds to the cunig = 2[R + R(6,,) - 2] /c form tells us the most likely curve. Once we know the curve,
in the data domain. The coordinates of this scattnerer are ud(g can determine the location of the scattering center responsi-
ally estimated from the intersection of the backprojections coRie for that structure by microlocal analysis. Once we know the

structed from data (i.e., lines oriented with angié, and off- scattering center, we know the ambiguity structure in the data

set2R(6,) - z.) But the wavefront-set analysis suggests arset, and can subtract that away. This process tends to eliminate
n) * Z.

other possibility: find the rang@R(Gn) - z from knowledge the sidelobes. In summary, the algorithm is:
of ¢, and estimate the cross-range position from the directionsy) apply the generalized Radon-Hough transform to find the

(0,7) = w (2Q(z sin(20,,) — y cos(026,,))/c, 1). greatest-energy curve in the range-aspect data;
2) from this curve, use the microlocal theory to find the as-
[1l. EXTRACTION OF STRUCTURE FROM THE DATA sociated scattering center

ISAR imaging methods are usually based, one way or an-3) from the scattering center, find the associated ambiguity
other, on the Radon transform and its inversion [12]. These functiony, (thew integral in (6));
conventional imaging methods, however, are subject to the lim-4) subtract a (correct) multiple of this ambiguity function
itations discussed in the introduction. Alternative target esti-  from the data;
mation methods are often based on parametric fitting, and on&) return to step 1.



The iterations are terminated when the energy of the curve™
found in step 1 is less than a pre-specified threshold. 04l

Step 4) of this algorithm is problematic because the data are
highly oscillatory and small errors in the location of the scat- ** [
tering centers cause constructive and destructive interference, |
in the subtraction process. Incorrect data structure subtraction
can lead to further errors in following iterations. To overcome *'[
this difficulty, we use a least-squares minimization criterion ta, o |
pick the multipliery, used in subtracting the ambiguity structure

. . 0.1 I ‘M 1
from the data. In particular, we choogeas the solution to the ' —

minimization problem 02 | |
min () = minlln — pxa| (12) o2 -_.
04 F
= i S bilnt) el
Orstn 0 004 -003 002 001 0 001 002 003 004

. . . . . . . 08 (radians)
This minimization is one-dimensional and can be carried out n (radians)

explicitly by differentiating with respect ta and setting the fig. 2. The data of Figure 1 restricted to the small apertsit
derivative equal to zero:
0.5

dE
S 13 ol
= _22 (MO, tn) — Xz (On,tn)) Xa(On, tn) - 03}

02|
This equation has the solution
0.1

> NXs

n= ) (14) Yy ot
> IXal?

. 0.1 F

and so, at each step we modify the data as -
02
new — 1] — z - 15
n n— KX as .l e

We note thap is complex; its phase compensates for errors |, |
in the location of the scattering center.

05 L L L L L L L L L
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

IV. EXAMPLES AND RESULTS X

In typical practice, the data are collected over a sufficientlyy 3 This shows the magnitude of a conventional reconstruction for the data
narrow aperture that the curves illustrated in Figure 1 becormfeigure 2.

straight lines. For simplicity, we restrict ourselves to this small-

angle situation. Figure 2 shows data computed for the same

three point scatterers as in Figure 1 but now correspondingdfn-t) whereN is a complex-valued Gaussian random vari-
an aperture of°. able with mean zero, standard deviation one, and amplitude

Conventional Radon reconstructions [13], [14], in the small-N€ Signal-to-noise is calculated as

aperture case, can be implemented by fast Fourier transform ALICDIE
methods. The ordinary image reconstruction for the data of Fig- SNR = Znt Nn, 5 a7
ure 2 is illustrated in Figure 3. Zemt [N (6, t)]

As discussed in the previous section, we propose . o .
wavefront-set-based scheme. For a narrow aperture, the %ggrsee?ty;g?gs a realization of such data for which the SNR

eralized Radon-Hough transform is simply the usual Radonh- . . . . .
Hough transform that integrates over lines: Tq these dqta we applied the iterative me'thod dlscussgd inthe
previous section. The results are reported in Table I. This table

H{n}(r,a) = (16) lists the estimated position = (z,y) of the point scatterers
successively retrieved by the algorithm. The scatterer strength
/77(9717 tn)d(r — t, cosa — 0y, sin o) dt,,db,, . is given in the last row and is determined by equation (14). Suc-

cessive iterations are listed from left to right.
To exercise our algorithm we apply it to the basic data of In general, we found that the algorithm converged very
Figure 2 to which have been added varying amounts of Gauapidly, even when the signal-to-noise ratio was very poor. Ob-
sian noise. Specifically, the data used were equal to (6) pkerve that in the-30 dB case, the iterations terminated before



03 e also have well-defined wavefront sets [7] which display unique

4l oo ... | target-relevant characteristics. The foregoing analysis can be
.. | modified to account for these more general scattering situations

03 I8 in a straightforward way.

L
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03 [GEEpe e s S S L DATA MODEL
04 [ty S EERUS Rl e e Ultimately, the behavior of radar data is determined by

o scatttered-field solutions to the wave equation. Since radar sys-
O 0 0 002 oo 0 001 002 003 004 tems transmit and receive radio waves, we should generally ex-

00, (radians) amine the electromagnetic (vector) wave equation. For sim-

plicity, however, we will examine the scalar wave equation and

Fig. 4. Amplitude plot of noisy data of the kind used for testing the algorithn), -
These data were formed from those of Figure 2 plus additive (complex—valu&ﬁsume that the components of the eIeCtromagnetlc field each

Gaussian noise. For this realization, SNR was set20 dB. satisfy
(V? = c72(t,x) 07) u(t,x) = 0. (18)
SNR T y mag. . . -
025  —025 1.00 We write the total field as a sum of the incident and scattered
True Values 030 —010  0.60 fieldsu = v'™° + v*°; the resulting equation far*° is
0.00 0.30 0.30 2 —2 92Y , sc 2
Ve —c 207 ) u*(t,x) = =V (t,%x) d7u(t,x), 19
T0.252  0.252 0.098 (V2= o) witx) () gultox), (19)
+30 dB 0.302 —0.101 0.599 whereV (t,x) = ¢=2 —c72(t, x) is the target scattering density
0.013  0.300 0.294 at timet and positionx € R3.
—0.254 —0.256 0.987 We can write (19) as an integral equation
—20dB 0.300 —0.097 0.621
0015 0290 0.291 e (t,%) = / gt =t x —y)V(t,y)i(t,y)dt'dy, (20)
—0.256 —0.245 1.005
—30dB 0.186 —0.202 0.079 where the dots denote partial derivatives with respect to time
- - - and [2]
6(t —|x|/c
TABLE | ot %) = (t —|xl|/c) 21)
(TYPICAL) ALGORITHM RESULTS USING THE DATA AS INFIGURE 4 WITH 4|x]|
A THRESHOLD VALUE OF0.05. SUCCESSIVE ITERATIONS ARE LISTED SatiSﬁeS(V2 _ atg) g(t, X) _ —5(t)5(X)

FROM TOP TO BOTTOM When the target does not appreciably perturb the incident

wave, an approximation [2] called th&orn approximatioror
thesingle scattering approximatiois appropriate. This model

the weakest scatterer could be estimated, and only the strong@taces the full field: on the right side of (19) and (20) by the
scatterer was recovered Correcﬂy_ incident fielduinc, which converts (20) into

V. DISCUSSION ANDCONCLUSIONS u™(t, x) ~ /g(t*t/7X*Y)V(t'7}’) ime(t,y)dt'dy . (22)

We have suggested a new approach to ISAR target recon: . S .
struction that is appropriate to low signal-to-noise situations jn The_ vglue Of_ this approxmathn Is that it removes the non-
which range alignment is problematic. This method is distinﬁpea”ty in the inverse prob_lem: it replaces the pr_od_uct of two
from traditional imaging techniques in that it first fits a paramel(’-nknOWrls V gnd u).by a single unknowni() multiplied by
ric curve directly to the data set, and the target characterist‘@%\fnown incident f|eld._ . L .
are extracted directly from this curve. ~We assume that the incident field is a series of .pulsgs, be-

This technique allows us to exploit differences, in the daf§""nNg at t|me_s_t = 0n,n = 1,2,... from an isotropic point
domain, between the target and the noise. We have shownr?ed—Iator at positiorx, so that
sults of tests of the algorithm on data with additive Gaussian )
noise, but we have also achieved promising results using sim- u(t',y) =
ple clutter models. This is an area of future research.

We have used the weak-scattering model here for illustra-We also assume the start-stop approximation, i.e., we assume

tion purposes only. Multiple scattering and dispersive scatteritigat the target is rotating slowly, so that fdrbetweerd,, and

Sine(t' — 0n — [x — y|/c) )

23
4r|x —y| 3)



9n+11 V(t/7 Y) =

V(bn,y) = Q(O71(6,)(y)), whereO de-

notes a rotation operator (an orthogonal matrix). Heris the
target reflectivity function. For simplicity we assume tliat

is supported on a plane that includes the radar. For the more
1

general case, see [7].

We consider thanonostaticcase,
and receiver are co-located. At the radar, the field due to thd18]

n-th

system signal whose Born-approximated value we denote byig)
Ssc (X,

in which the transmitter
transmitted pulse is thugi(¢,x). This field induces a

n,t):

&J&HJ*:/667ﬂ4¢x*yV@QKTW@J@D

dmlx — y|

xéinc(t’—H —|x—yl|/c)dt'dy
dm|x —y|
—1
— [ G st 0, 2ix =yl o)y . (24)

In(2 4) we lett’ =

t'—#0,,, and make the change of variables

= O~1(6,,)y. This approximation converts (24) into

Q(z)

Ssc(x7n7t) = / (47r|X — O<9n)z|)2

We use the far-field approximatidr — w| =

O(|x

0, —2|x — O(0,)z|/c)dz

Xginc (t — (25)

|x| —%-w+
|~1) (with the hat denoting unit vector) and the notation

= x|, R(t) = —OT(t)fc to rewrite (25) as

S

(1]
(2]
(3]

(4]
(5]

(6]
(7]
(8]

(9]
(20]
(11]

(12]

[13]

(14]

se(X,m,t) 4 R /Q
><SmC(t - -2 R + R( ) ]/C) (26)
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