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Microlocal ISAR for Low Signal-to-Noise
Environments

Brett Borden†‡ and Margaret Cheney†§

Abstract—The problem of extracting radar target information
from multi-aspect high-range-resolution data is examined. We
suggest a new non-imaging approach that is based on microlocal
analysis, which is a mathematical theory developed to handle high-
frequency asymptotics. In essence, we relate features of the target
to high-frequency components of the data. To deal with realis-
tic band-limited data, we propose an iterative algorithm (based on
the generalized Radon-Hough transform) in which we estimate the
high-frequency features of the data, one after another, and sub-
tract out the corresponding band-limited components. The algo-
rithm has been successfully tested on noisy data, and may have a
number of advantages over conventional imaging methods.

I. I NTRODUCTION

H IGH range resolution (HRR) radar systems can be used
to acquire range profiles which map the energy reflected

from local target scatterers to the travel time of the radar pulse.
Target-identification procedures based on these range profiles,
however, suffer from a lack of detailed target information in
dimensions orthogonal to range because all equidistant target
elements are mapped to the same point. Such ambiguity can
be partially removed by considering multiple pulses that inter-
rogate the target from different directions. The different target
views, which are also known as targetaspects, collectively de-
fine asynthetic apertureand more complete target images can
be recovered from multi-aspect data by, for example, backpro-
jection methods [13], [14]. In inverse synthetic-aperture radar,
or ISAR, this effective imaging aperture is created by the mo-
tion of the target.

Conventional image reconstruction, however, suffers from a
number of shortcomings. Perhaps the most significant among
these limitations is the need for phase coherence to be main-
tained across the entire aperture. This aperture must be large
(i.e., longslow timeduration [5]) in order to obtain good cross-
range resolution. Since airborne targets will typically translate
as well as rotate during the measurement interval, a pulse-to-
pulse phase error may be introduced. Thisrange walkproblem
requires that the phase error be carefully removed (pulse range
alignment) before reconstruction can be attempted. This re-
moval, in turn, typically requires that the target’s location be ex-
tractable from the HRR data [5], [11], [19]. In the presence of
noise, estimating a target’s location at any instant can be prob-
lematic. Consequently, traditional ISAR imaging methods may
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not be applicable when the signal-to-noise or signal-to-clutter
ratio is especially poor.

In addition, traditional ISAR imaging presumes a highly
localized (point scatterer) model for local target structure.
When this model is inappropriate—as in the case of structural
dispersion—the usual images will contain artifacts. (One ap-
proach to handling non-point-like scatterers is High Definition
Vector Imaging (HDVI) [1], [15].) What is more generally
needed is a nontraditionalfitting method that can be applied
in data space not only to aid in the imaging of general scatterers
but also to facilitate the range alignment process.

In [7] we proposed a new non-imaging approach, based on
microlocal analysis, for extracting target information directly
from radar data. This approach has a number of potential ad-
vantages. First, this method offers the capability of extracting
target dynamics and using these dynamics to differentiate tar-
get from clutter. This separation is possible because the analysis
is done in the data domain and these data are a record of range
versus (slow) time, which is determined by the target dynamics.
(Differentiating the target from clutter by its dynamics would be
difficult or impossible in the image domain.) Second, because
the approach operates in the data domain, it opens the door
to the possibility of identifying targets directly from the mea-
sured data without the necessity of first constructing an image.
Third, the scheme allows for artifact removal by first deleting
data components not corresponding to recognizable scattering
events and then forming an image from the edited data. Fourth,
the microlocal theory can treat scatterers other than points, such
as multiple scattering events and structural dispersion. This ex-
tension may enable us to classify scatterers in a way akin to
HDVI.

Section 2 outlines the ISAR scattering model, establishes
our notation, introduces some microlocal concepts, and summa-
rizes our approach for the illustrative case of point scatterers. In
section 3 we propose a method for extracting the relevant struc-
ture from the data. Finally, section 4 presents examples and
results.

II. BACKGROUND

This section outlines the background material necessary for
the remaining discussion. In this point-scatterer example, we
exhibit the mathematical model that provides the necessary link
between objects in the target domain and the data domain. This
link is the foundation for the microlocal approach.

A. Model forISAR data

We model the propagation of radar waves by the scalar wave
equation (see the Appendix). We assume that the transmitting
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and receiving antennas are co-located; that the target is in the
far-field of the antenna; and that the target is moving slowly
enough so that it can be treated as being approximately station-
ary during the time interval over which the pulse sweeps across
it. For simplicity we also assume that the target is supported
on a plane that includes the radar. Then, in the weak-scatterer
approximation, we have the following expression for the signal
scattered from then-th transmitted pulse and measured at the
receiving antenna at timet:

ssc(n, t) ≈ (1)
1

(4πR)2

∫
Q(z) s̈inc(t− θn − 2[R+ R̂(θn) · z]/c) dz .

In this equation,R denotes the distance from the antenna to
the origin of coordinates (which is fixed at the center of target
rotation),R̂ denotes the unit vector from the radar to the origin,
c denotes the speed of light in vacuum,z ∈ R2 denotes the
position on the target,Q(z) is the target reflectivity function at
the pointz, θn is the time at which then-th pulse begins, and
s̈inc denotes the second derivative with respect to time of the
incident field. We consider this incident field to be of the form

sinc(t) = (2)
1√
∆ω

∫ ω2

ω1

eiωt dω =
√

∆ω eiωct sinc(t∆ω/2) ,

where∆ω = ω2 − ω1 is the bandwidth andωc = (ω1 + ω2)/2
is the center frequency. We assume the narrowband condition
∆ω � ωc. In this case, the amplitude

√
∆ω sinc(t∆ω/2) of

(2) is slowly varying in comparison with the carrier modulation
eiωct, and this implies̈sinc ≈ (iωc)2sinc.

We correlate the scattered signal with a signal of the form
sinc(t) [6] to obtain the output of the correlation receiver:

η(θn, t) =
∫
ssc(n, t′) s∗inc(t

′ − t) dt′ (3)

=
−ω2

c

(4πR)2

∫
Q(z)χ(t, θn + 2[R+ R̂(θn) · z]/c) dt′dz ,

where the narrowband ambiguity function is here given by

χ(t, τ) =
−1
ω2

c

∫
s̈inc(t′ − τ) s∗inc(t

′ − t) dt′ , (4)

and where the star denotes complex conjugation.
Equation (2), when used in (4), results in

χ(t, τ) =
1

∆ω

∫ ∫ ω2

ω1

eiω(t′−τ) dω
∫ ω2

ω1

e−iω′(t′−t) dω′dt′

=
1

∆ω

∫ ω2

ω1

∫ ω2

ω1

δ(ω − ω′) ei(−ωτ+iω′t) dω′dω

=
1

∆ω

∫ ω2

ω1

eiω(t−τ) dω,

= eiωc(t−τ) sinc[(∆ω)(t− τ)/2] , (5)

and

η(θn, t) = (6)

−ω2
c

(4πR)2∆ω

∫
Q(z)

∫ ω2

ω1

e−iω[tn−2[R+R̂(θn)·z]/c] dωdz ,

wheretn = t − θn is thefast time.We see that ifω1 → −∞
andω2 →∞, then equation (6) is precisely a Radon transform
of Q: for eachθn, one integratesQ over the line in thez-plane
given bytn = 2[R + R̂(θn) · z)]/c. ISAR images are tradi-
tionally produced by Radon inversion methods (such as filtered
backprojection [13], [14]).

The fact that (6) is only a bandlimited version of the Radon
transform results in ISAR images with limited resolution.

B. Microlocal analysis

Microlocal analysis, like the Radon-based theory, applies
to the infinite-bandwidth case. In many ways, however, the
infinite-bandwidth theory distills the traits relevant to target
recognition from the coarser features available from limited-
bandwidth data. These features are highly localized scatter-
ing centers of the target, such as corners, edges, and re-entrant
structures such as ducts and engine inlets. Mathematically, such
features correspond to singularities inQ.

The mathematical study of singularities is done with microlo-
cal analysis; the term “microlocal” refers to the fact that singu-
larities have both a locationx and corresponding directionsξ
[9].

1) Wavefront sets:Mathematically, singularities of a func-
tion such asQ is described by itswavefront set,which encodes
both the location and direction ofQ’s singularities.

a) Definition: The point(x0, ξ0) is not in the wavefront
setWF(f) of the functionf if there is a smooth cutoff function
ψ with ψ(x0) 6= 0, for which the Fourier transformF(fψ)(λξ)
decays rapidly (i.e., faster than any polynomial) asλ → ∞ for
ξ in a neighborhood ofξ0.

This definition says that to determine whether(x0, ξ0) is in
the wavefront set off , one should: 1) localize aroundx0 by
multiplying by a smooth functionψ supported in the neighbor-
hood ofx0; 2) Fourier transformfψ; and 3) examine the decay
of the Fourier transform in the directionξ0. Rapid decay of the
Fourier transform in directionξ0 corresponds to smoothness of
the functionf in the directionξ0 [11].

b) Example. A point scatterer:If f(x) = δ(x−x0), then

WF(f) = {(x0, ξ) : ξ 6= 0} . (7)

c) Example. A line: Supposef(x) = δ(x · ν). Then
WF(f) = {(x, αν) : x · ν = 0, α 6= 0}.

Our strategy has been to work out explicitly how the wave-
front set ofQ corresponds to the wavefront set ofη. We have
done this [7] for singly and multiply scattering points and for
re-entrant structures such as ducts and cavities. In the current
work, we consider only the simplest case of isolated point scat-
terers (6), although the theory applies more generally.

2) Wavefront Set ofISAR data: In the infinite-bandwidth
case, (6) is of the form of a Fourier Integral Operator (FIO) [9]
applied toQ. The phase of an FIO determines how it maps
wavefront sets. In particular, the mapping between wavefront
sets is determined by a relation in phase space called thecanon-
ical relation. This relation is determined by the phase of the
FIO, which in the case of point scatterers is the phase in (6):

φ(ω, θn, tn, z) = ω
(
tn − 2[R+ R̂(θn) · z]/c]

)
. (8)
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We consider only the case in which the target is rotating at
a constant rateΩ and chooseR̂(θn) · z = x cos(Ωθn) +
y sin(Ωθn). (We have set the components ofz = (x, y): the
cross-range and down-range target coordinates, respectively.)
In this case the canonical relation is

Λ = {((θn, tn;σ, τ), (z, ζ)) : dφ/dω = 0, σ = dφ/dθn,
τ = dφ/dtn, ζ = −∇zφ}

=
{

((θn, tn;σ, τ), (z, ζ)) : tn = 2[R+ R̂(θn) · z]/c,
(σ, τ) = ω (2Ω(x sin(Ωθn)− y cos(Ωθn))/c, 1) ,
ζ = −2ω(cos(Ωθn), sin(Ωθn))/c

}
. (9)

The wavefront set of the radar measurementsη is obtained as
the set of points(θn, tn;σ, τ) for which there is a corresponding
(z, ζ) in the wavefront set ofQ. In the present case,Q consists
of point scatterers, so its wavefront set is a union of sets of the
form (7). If we denote the location of the point scatterers by
zj = (xj , yj), then the wavefront set ofη can be written

WFη =
⋃
j

{
(θn, tn;σ, τ) : tn = 2[R+ R̂(θn) · zj ]/c,

(σ, τ) = ω
(
2Ω(xj sin(Ωθn)− yj cos(Ωθn))/c, 1

) }
. (10)

The microlocal theory, which is based on the method of
stationary phase, is a systematic way of working out high-
frequency asymptotics. Strictly speaking, of course, bandlim-
ited data are smooth and therefore the wavefront set is empty.
Our analysis, however, views the bandlimited case as an ap-
proximation to the infinite-bandwidth problem.

Figure 1 shows the magnitude of data computed using equa-
tion (6) withQ consisting of three delta functions of strengths
1.0, 0.6, and 0.3 at respective positions(−0.25,−0.25),
(0.3,−0.1), and (0, 0.3). These data are roughly consistent
with those obtained by scattering a pulse with center frequency
of 5 GHz and20% bandwidth from a15-meter target. The an-
gular aperture, i.e., the range of values ofθn, in this example
is 100◦. The sine curves predicted by (10) are clearly visible,
albeit in a band-limited form.

While ISAR imaging schemes are usually based on equa-
tion (6), equation (10) shows that the wavefront set of the data
contains considerable information about the target. This infor-
mation can be extracted without forming an image. A point
scatterer (whose wavefront set contains all directionsξ) lo-
cated atz corresponds to the curvetn = 2[R + R̂(θn) · z]/c
in the data domain. The coordinates of this scatterer are usu-
ally estimated from the intersection of the backprojections con-
structed from data (i.e., lines oriented with angleΩθn and off-
set 2R̂(θn) · z.) But the wavefront-set analysis suggests an-
other possibility: find the range2R̂(θn) · z from knowledge
of tn and estimate the cross-range position from the directions
(σ, τ) = ω (2Ω(x sin(Ωθn)− y cos(Ωθn))/c, 1).

III. E XTRACTION OF STRUCTURE FROM THE DATA

ISAR imaging methods are usually based, one way or an-
other, on the Radon transform and its inversion [12]. These
conventional imaging methods, however, are subject to the lim-
itations discussed in the introduction. Alternative target esti-
mation methods are often based on parametric fitting, and one

Fig. 1. This shows the magnitude of data corresponding to three point scatter-
ers.

such scheme uses matched filters [16] (which are known to be
optimal in a certain sense). Here, the appropriate matched filter
approach would search for the maxima of the modulus of

M{η}(z) = (11)∫
η(θn, tn)χ∗(tn, θn + 2[R+ R̂(θn) · z]/c) dtndθn .

But this approach can be computationally expensive.
Another approach is suggested by the fact that Figures 1 and

2 clearly hint at the wavefront-set structure associated with (9).
The wavefront-set method presumes that we can extract the
wavefront set of the data, but currently no methods are avail-
able for doing this. In the ideal case, this process would involve
identifying curves in the (infinite-bandwidth) data, and the stan-
dard approach for identifying curves is to use the generalized
Radon-Hough transform [10], [17]. This, by itself, is not ad-
equate in our case because the data are band-limited. To deal
with the band-limited nature of the data, we propose a modifica-
tion of the CLEAN algorithm [18]—but in the data domain. In
particular, we apply the generalized Radon-Hough transform to
find the locus of the curve; the peak of the Radon-Hough trans-
form tells us the most likely curve. Once we know the curve,
we can determine the location of the scattering center responsi-
ble for that structure by microlocal analysis. Once we know the
scattering center, we know the ambiguity structure in the data
set, and can subtract that away. This process tends to eliminate
the sidelobes. In summary, the algorithm is:

1) apply the generalized Radon-Hough transform to find the
greatest-energy curve in the range-aspect data;

2) from this curve, use the microlocal theory to find the as-
sociated scattering centerz;

3) from the scattering center, find the associated ambiguity
functionχz (theω integral in (6));

4) subtract a (correct) multiple of this ambiguity function
from the data;

5) return to step 1.
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The iterations are terminated when the energy of the curve
found in step 1 is less than a pre-specified threshold.

Step 4) of this algorithm is problematic because the data are
highly oscillatory and small errors in the location of the scat-
tering centers cause constructive and destructive interference
in the subtraction process. Incorrect data structure subtraction
can lead to further errors in following iterations. To overcome
this difficulty, we use a least-squares minimization criterion to
pick the multiplierµ used in subtracting the ambiguity structure
from the data. In particular, we chooseµ as the solution to the
minimization problem

min
µ
E(µ) = min

µ
‖η − µχz‖ (12)

= min
µ

∑
θn,tn

|η(θn, tn)− µχz(θn, tn)|2 .

This minimization is one-dimensional and can be carried out
explicitly by differentiating with respect toµ and setting the
derivative equal to zero:

0 =
dE
dµ

(13)

= −2
∑

(η(θn, tn)− µχz(θn, tn))χ∗z(θn, tn) .

This equation has the solution

µ =
∑
ηχ∗z∑
|χz|2

, (14)

and so, at each step we modify the data as

ηnew = η − µχz . (15)

We note thatµ is complex; its phase compensates for errors
in the location of the scattering center.

IV. EXAMPLES AND RESULTS

In typical practice, the data are collected over a sufficiently
narrow aperture that the curves illustrated in Figure 1 become
straight lines. For simplicity, we restrict ourselves to this small-
angle situation. Figure 2 shows data computed for the same
three point scatterers as in Figure 1 but now corresponding to
an aperture of5◦.

Conventional Radon reconstructions [13], [14], in the small-
aperture case, can be implemented by fast Fourier transform
methods. The ordinary image reconstruction for the data of Fig-
ure 2 is illustrated in Figure 3.

As discussed in the previous section, we propose a
wavefront-set-based scheme. For a narrow aperture, the gen-
eralized Radon-Hough transform is simply the usual Radon-
Hough transform that integrates over lines:

H{η}(r, α) = (16)∫
η(θn, tn)δ(r − tn cosα− θn sinα) dtndθn .

To exercise our algorithm we apply it to the basic data of
Figure 2 to which have been added varying amounts of Gaus-
sian noise. Specifically, the data used were equal to (6) plus

Fig. 2. The data of Figure 1 restricted to the small aperture (5◦).

Fig. 3. This shows the magnitude of a conventional reconstruction for the data
of Figure 2.

N(θn, t) whereN is a complex-valued Gaussian random vari-
able with mean zero, standard deviation one, and amplitudeA.
The signal-to-noise is calculated as

SNR =

∑
θn,t |η(θn, t)|2∑
θn,t |N(θn, t)|2

. (17)

Figure 4 illustrates a realization of such data for which the SNR
was set to−20 dB.

To these data we applied the iterative method discussed in the
previous section. The results are reported in Table I. This table
lists the estimated positionz = (x, y) of the point scatterers
successively retrieved by the algorithm. The scatterer strength
is given in the last row and is determined by equation (14). Suc-
cessive iterations are listed from left to right.

In general, we found that the algorithm converged very
rapidly, even when the signal-to-noise ratio was very poor. Ob-
serve that in the−30 dB case, the iterations terminated before
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Fig. 4. Amplitude plot of noisy data of the kind used for testing the algorithm.
These data were formed from those of Figure 2 plus additive (complex-valued)
Gaussian noise. For this realization, SNR was set to−20 dB.

SNR x y mag.
−0.25 −0.25 1.00

True Values 0.30 −0.10 0.60
0.00 0.30 0.30

−0.252 −0.252 0.998
+30 dB 0.302 −0.101 0.599

0.013 0.300 0.294
−0.254 −0.256 0.987

−20 dB 0.300 −0.097 0.621
−0.015 0.290 0.291
−0.256 −0.245 1.005

−30 dB 0.186 −0.202 0.079
– – –

TABLE I
(TYPICAL) ALGORITHM RESULTS USING THE DATA AS INFIGURE 4 WITH

A THRESHOLD VALUE OF0.05. SUCCESSIVE ITERATIONS ARE LISTED

FROM TOP TO BOTTOM.

the weakest scatterer could be estimated, and only the strongest
scatterer was recovered correctly.

V. D ISCUSSION ANDCONCLUSIONS

We have suggested a new approach to ISAR target recon-
struction that is appropriate to low signal-to-noise situations in
which range alignment is problematic. This method is distinct
from traditional imaging techniques in that it first fits a paramet-
ric curve directly to the data set, and the target characteristics
are extracted directly from this curve.

This technique allows us to exploit differences, in the data
domain, between the target and the noise. We have shown re-
sults of tests of the algorithm on data with additive Gaussian
noise, but we have also achieved promising results using sim-
ple clutter models. This is an area of future research.

We have used the weak-scattering model here for illustra-
tion purposes only. Multiple scattering and dispersive scattering

also have well-defined wavefront sets [7] which display unique
target-relevant characteristics. The foregoing analysis can be
modified to account for these more general scattering situations
in a straightforward way.
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APPENDIX

DATA MODEL

Ultimately, the behavior of radar data is determined by
scattered-field solutions to the wave equation. Since radar sys-
tems transmit and receive radio waves, we should generally ex-
amine the electromagnetic (vector) wave equation. For sim-
plicity, however, we will examine the scalar wave equation and
assume that the components of the electromagnetic field each
satisfy (

∇2 − c−2(t,x) ∂2
t

)
u(t,x) = 0 . (18)

We write the total field as a sum of the incident and scattered
fieldsu = uinc + usc; the resulting equation forusc is(

∇2 − c−2 ∂2
t

)
usc(t,x) = −V (t,x) ∂2

t u(t,x) , (19)

whereV (t,x) = c−2−c−2(t,x) is the target scattering density
at timet and positionx ∈ R3.

We can write (19) as an integral equation

usc(t,x) =
∫
g(t− t′,x− y)V (t′,y) ü(t′,y) dt′dy , (20)

where the dots denote partial derivatives with respect to time
and [2]

g(t,x) =
δ(t− |x|/c)

4π|x|
(21)

satisfies
(
∇2 − ∂2

t

)
g(t,x) = −δ(t)δ(x).

When the target does not appreciably perturb the incident
wave, an approximation [2] called theBorn approximationor
thesingle scattering approximationis appropriate. This model
replaces the full fieldu on the right side of (19) and (20) by the
incident fielduinc, which converts (20) into

usc(t,x) ≈
∫
g(t− t′,x−y)V (t′,y) üinc(t′,y) dt′dy . (22)

The value of this approximation is that it removes the non-
linearity in the inverse problem: it replaces the product of two
unknowns (V andu) by a single unknown (V ) multiplied by
the known incident field.

We assume that the incident field is a series of pulses, be-
ginning at timest = θn, n = 1, 2, . . . from an isotropic point
radiator at positionx, so that

uinc
n (t′,y) =

sinc(t′ − θn − |x− y|/c)
4π|x− y|

. (23)

We also assume the start-stop approximation, i.e., we assume
that the target is rotating slowly, so that fort′ betweenθn and
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θn+1, V (t′,y) = V (θn,y) = Q(O−1(θn)(y)), whereO de-
notes a rotation operator (an orthogonal matrix). HereQ is the
target reflectivity function. For simplicity we assume thatQ
is supported on a plane that includes the radar. For the more
general case, see [7].

We consider themonostaticcase, in which the transmitter
and receiver are co-located. At the radar, the field due to the
n-th transmitted pulse is thususc

n (t,x). This field induces a
system signal whose Born-approximated value we denote by
ssc(x, n, t):

ssc(x, n, t) =
∫
δ(t− t′ − |x− y|/c)

4π|x− y|
Q(O−1(θn)(y))

× s̈inc(t′ − θn − |x− y|/c) dt′dy
4π|x− y|

=
∫
Q(O−1(θn)(y))
(4π|x− y|)2

s̈inc(t− θn − 2|x− y|/c) dy . (24)

In (24), we lett′′ = t′−θn, and make the change of variables
z = O−1(θn)y. This approximation converts (24) into

ssc(x, n, t) =
∫

Q(z)
(4π|x−O(θn)z|)2
×s̈inc(t− θn − 2|x−O(θn)z|/c) dz . (25)

We use the far-field approximation|x−w| = |x| − x̂ ·w +
O(|x|−1) (with the hat denoting unit vector) and the notation
R = |x|, R̂(t) = −OT(t)x̂ to rewrite (25) as

ssc(x, n, t) ≈
1

(4πR)2

∫
Q(z)

×s̈inc(t− θn − 2[R+ R̂(θn) · z]/c) dz . (26)
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