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Abstract.
This paper describes the results from a comparative wavelet analysis of a 0.1◦,
40-level Parallel Ocean Program model simulation of the North Atlantic with
coincident in situ measurements of sea surface height (SSH) and temperature.
The wavelet analysis is used to examine the realism of the surface’s variability
and its high frequency signals (less than a year). Along the coast, it shows that
the model’s simulated fields of SSH are realistic with the correlations to tide
gauge measurements on the order of 0.8. The wavelet spectra show that the
model replicates the observations’ frequency space. Comparisons of the model’s
temperatures to temperatures from NOAA buoys north and south of the Gulf
Stream show that, while not replicating the location of mesoscale features all the
time, the model’s energy in the strong mesoscale regions compares favorably to
data. Due to the TOPEX/POSEIDON’s (T/P) sampling, which requires large areal
averages and because of the model’s spontaneous eddy field, the evaluation of the
simulation in the open ocean is less conclusive. The model does show similarities
to the T/P data at high latitudes where the sampling by the sensor is denser and
also on the eastern side of the basin with its lower mesoscale activity. Spatially,
there are similarities in the amplitude of the signals between the model and the
observations in areas with a significant signal in a given spectral band.

1. Introduction

The large scale, low frequency signal observed in na-
ture is reproduced reasonably well in ocean models forced
with realistic, daily varying momentum, heat, and freshwa-
ter fluxes [Smith et al., 2000]. There has been little analysis
of the realism of the high frequency components of the vari-
ability represented in an ocean model.McClean et al.[2002]
describe a comparison of Eulerian and Lagrangian statis-
tics between surface drifting buoys and an eddy-resolving
ocean model, the same as used in the analysis presented in
this paper. They found that typical time and length scales
for these data are between 2-4 days and between 20 and 50
km. The model’s scales show reasonable statistical agree-
ment with these values. Differences were seen in the North
Atlantic Current (NAC), the Canary Current, over the Mid-
Atlantic Bight, and in places where the model’s Gulf Stream
is displaced to the south of the observed stream. This has
been noted and discussed inSmith et al. [2000]. Ad-

ditional examination of the realism of the high frequency
band of a model is given inChao and Fu[1995] using a
low resolution (2◦x 1◦) primitive equation ocean model and
only for a two year period. When comparing the simulated
fields to the same two years of TOPEX/POSEIDON altime-
ter data, they find that there are large areas in the simulated
fields which are coherent with the 20 to 100-day band ob-
served by TOPEX/POSEIDON. They relate these changes
to a barotropic response of the ocean to the wind forcing.

This paper discusses the results from wavelet analysis
applied to an ocean model with 40 levels, 0.1◦ resolution
forced with daily varying, realistic winds and a daily vary-
ing climatological heat flux. The modeled fields evaluated
in this paper can be used to initialize either a similar model
for prediction purposes or for providing boundary conditions
for even higher resolution regional models. To use simulated
fields for such purposes, the fields need to be qualitatively
evaluated, not only at the annual and lower frequencies, but
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also at high frequencies. Such an evaluation is performed in
this paper using different sets of in situ measurements and
using a technique which helps describe temporal changes.
Rather than strictly looking at in situ data and simulated
fields using first order statistics, we examine the temporal
variation in the spectra of comparable fields. The ocean
model is described first followed by the descriptions of the
in situ data sets, and the analysis method that we have used
(wavelet theory). The next three sections describe the re-
sults of the analysis performed on the model output and three
different data sets: tide gauges, altimetry, and near surface
temperatures from buoys. Current speeds were examined,
but time series were not available for an extended temporal
comparision and thus are not discussed. A discussion of the
combined results follows including comments on how the
analysis can be helpful in assimilating data for ocean state
prediction efforts.

2. Description of the ocean model and in situ
data sets

The ocean model whose high frequency signal is ex-
amined in this paper is the Parallel Ocean Program (POP)
model. It has a resolution of 0.1◦ at the equator with 40
levels. It is configured for the North Atlantic basin; the do-
main is defined as 20S - 72N, 98W - 17E, which includes
the Gulf of Mexico and the western Mediterranean Sea. It
has a Mercator grid resulting in horizontal resolutions vary-
ing from 11.1 km at the equator to 3.2 km at the northern
boundary. The horizontal spacing of this grid is less than or
equal to the first baroclinic Rossby radius which results in
eddies being reasonably well resolved up to approximately
50 degrees latitude. [Smith et al., 2000, Fig. 1]. POP has
an implicit free surface and includes mix layer dynamics [
Semtner and Chervin, 1992,Dukowicz and Smith, 1994].

The simulation was forced with daily varying Naval Op-
eration Global Atmospheric Prediction System (NOGAPS)
winds for a period of six years [McClean et al., 2002], 1993
through 1998. The heat flux also varied daily, but was
a yearly climatology (monthly fields averaged for the pe-
riod 1986-1988, [Barnier et al., 1992]). Surface salinity is
weakly restored to climatology. TheLarge et al. [1994]
mixed layer formulation, K- Profile Parameterization (KPP),
is active in this simulation. It was initialized from theSmith
et al. [2000] run which was configured in the same man-
ner but was forced with different winds and lacked a mixed
layer. Three day averages of the prognostic variables (veloc-
ity x and y components, U,V; temperature, T; salinity, S; and
sea surface height, SSH) were saved for the complete time
period of the simulation.

Three in situ data sets have been used to evaluate the re-
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Figure 1. Map of correlations between tide gauges and
model (gray dots) and between T/P 5◦x 5◦ averages and
model SSH fields (black dots/circles). For the the compar-
isons, the open circles have correlations between 0.4 and 0.5
and the black dots are greater than or equal to 0.5. The tide
gauges are all gray dots. The values are all significant for
the black dots and also for the tide gauges with correlations
greater than 0.35

alism of the model. The first, and most robust set is the tide
gauge data set from the University of Hawaii [Kilonsky and
Caldwell, 1991] . A large number of the time series from
coastal stations in this data set were collected over the entire
period of the simulation. Daily averages of the sea level data
set are used for comparisons to the model’s SSH field. An
inverse barometer contribution to the tide gauge SSH signal
is removed so that direct comparisons can be made to the
model fields which do not include surface forcing pressure.
The contribution is determined using daily maps of sea level
pressure. The tide gauge daily values were averaged to the
center time of the model’s three day averaged period. Based
on Tokmakian[1996], Figure 1 shows a map of correlations
(tide gauge stations are those shown in gray, black closed
and open circles for the T/P comparisons) of the Atlantic
time series with the model’s SSH. Only stations with series
longer than three years are shown. Because of the high fre-
quency and localized sampling of the tide gauges, compar-
isons can be made between the model output and the data at
frequencies as short as six days.

The second daily sampled data set we use is from a set
of buoy temperature data provided by NOAA that are co-
incident with the model time period. We have chosen to
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show two examples which are representative of many of the
data/model pairs. Daily values are averaged every three days
to match the sampled fields saved during the run. The model
fields are sampled and averaged in an area within 60km of
the location of the buoy.

The third set is a global data set, the TOPEX/POSEIDON
altimeter’s estimate of the SSH anomaly field. To examine
frequencies at relatively high frequencies (20 days), it is nec-
essary to average the 10-day repeat cycle data into bins over
large areas (2◦x 2◦) to reduce the sampling error inherent in
the widely spaced along track T/P measurements [Chelton
and Schlax, 2001].

We have processed the data from the altimeter in the stan-
dard manner by removing the geophysical contributions to
the signal which we are not interested in (e.g. tides, inverse
barometer) and range errors, for example those associated
with water vapor in the atmosphere. A complete explana-
tion for altimeter data processing can be found inKoblinsky
et al. [1998]. The data is derived from the set known as
the NASA-Goddard Altimeter Pathfinder [Koblinsky et al.,
1998] data set. Prior to averaging into the 2◦x 2◦ boxes, a
long temporal mean has been removed from the along track
data over all the repeats of a track. Even with such averag-
ing, the RMS error as given byChelton and Schlax[2001],
is around 4 cm for low to mid latitudes and closer to 3 cm for
latitudes greater than 35◦. The satellite tracks converge with
increasing latitude near the poles and the sampling becomes
more dense and thus, results in smaller RMS errors at these
latitudes.

In Figure 1, the black circles define the relative size of
the correlations between the model SSH fields binned on a
5◦x 5◦ area, with the closed circles defining correlations
greater than 0.5 and the open circles for correlations between
0.4 and 0.5. This plot is shown with 5◦x 5◦ binned corre-
lations, but it should be noted that similar correlations are
found when using 2◦x 2◦ bins and when comparing to ERS2
data (35-day repeat cycle giving a denser spatial sampling).
While individual locations contain differences, the spatial
distribution of where the model correlates highly with the
data is similar. That is, the correlations are highest in the
north and eastern parts of the basin, along with the tropics
and lowest in the more turbulent regions. The ERS2 data
covers a much shorter time period than the modeled simu-
lation. These data were averaged on the instrument’s 3-day
subcycle.

3. Wavelet Analysis

Standard analyses applied to time series to examine dom-
inant signals of variability are Fourier techniques, followed
by an examination of the resulting energy spectra for the lo-

cations of dominant peaks [Smith, 2000]. Such spectra do
not provide information on how the localized signal varies
in time. Wavelet analysis allows us to look at how the the
dominant modes vary temporally. An in depth description of
wavelet analysis, the application of it, and a discussion of the
significance of the results are given inTorrence and Compo
[1998]. The method is becoming widely used to analyze
a variety of geophysical signals on a wide range of scales.
For example,Gu and Philander[1995] used the method to
examine the ENSO signal.Meyers et al.[1993] examined
ocean wave dispersion, and others have used the method to
analyze wave growth [e.g.Liu, 1994].

Similar to windowed Fourier transforms, wavelet analysis
allows the localized and dominant frequencies (for which a
predetermined scaling can not be defined) to be determined.
To begin, given a time seriesxn, wheren = 0 ... N -1 and
equal temporal spacing,δt , let Wn(s) define the wavelet
transform such that

Wn(s) =
N−1∑
n′=0

xn′ψ∗
[
(n′ − n)δt

s

]
, (1)

where (*) indicates the complex conjugate andψ defines the
”wavelet function” which we are using. We construct the
wavelet pattern by varying the wavelet scale,s and translat-
ing it along the time indexn. This pattern shows the am-
plitude of features verse the scales and how the amplitude
changes in time.

ψ, the wavelet function, can be defined in an infinite num-
ber of ways, but it must have zero mean and be localized in
time and space [Farge, 1992]. Torrence and Compo[1998]
give a detailed discussion on how to choose an appropri-
ate wavelet function. This analysis is done using a Mor-
let wavelet function, a plane wave modulated by a Gaussian
curve where

ψ(η) = π−1/4eiωηe−η2 /2 . (2)

Because the chosen wavelet function is complex, the
transformWn(s) is complex. The transform, thus, can re-
veal both amplitude,|Wn(s)|, and phase, tan−1 [={Wn(s)}/<{Wn(s)}]
information. The wavelet power spectrum is defined as
|Wn(s)|2 and for comparisons, different wavelet spectra are
normalized by their variance. This gives a sense of the power
relative to white noise.

When determining what portion of the signal is signifi-
cant, an assumption can be made regarding the redness of the
spectrum.Torrence and Compo[1998] estimate the back-
ground ”redness” coefficient (α) for modeling the NINO-3
spectra by calculating the lag-1 and lag-2 coefficients of their
data. If

xn = αxn−1 + zn (3)



4 Tokmakian and McClean

describes the time series whereα is defined as(R(1) +√
(R(2))/2 andR is the autocorrelation ofx and wherezn

is a Gaussian white noise addition to the signal, then the
mean power spectrum can be defined as

Pk =
1− α2

1 + α2 − 2αcos(2πk/N)
, (4)

whereN is the length of the series andk is the spectral point.
If a point of the wavelet spectra is greater than the 95% chi-
square distribution curve for this mean spectra, the signal is
significant. We use a similar method of determining the cor-
relation coefficients to estimate the value ofα for the portion
of the full signal we are interested in (20 days to 6 months).
Overall, our time series are red with the annual signal dom-
inating the spectra. For this study, we concentrate on peri-
ods that are shorter than one year. It should, also, be noted
that this paper is, primarily, a comparison study rather than a
study to definitively identify a set of specific locations where
the spectral peaks occur. However, we do attempt to identify
these locations for both the T/P data and the simulated fields.

3.1. Comparisons to tide gauges

Wavelet analyses were produced for several of the tide
gauges shown in Figure 1 to demonstrate the realism of the
model at high frequencies. Figure 2 shows the results of
the method when applied to the location at Atlantic City
at 38.35◦N, 74.42◦W; the correlation is 0.75. The wavelet
analysis is performed on the time series normalized by its
variance resulting in a power spectra in normalized variance
units. When determing where the spectra is significant, we
have assumed a white noise background (α = 0) for the fre-
quencies of interest ( 0 to 6 months). If a different assump-
tion for the spectra’s redness is used, the resulting plot would
indicate different areas of significance. The spectral time se-
ries on the left side of the Figure 2 can be used to compare
the similarity in the signal regardless of the value assigned
to α and to examine the differences in absolute magnitudes
of the signal in real units.

On the right side, the top panel, Figure 2f and g, show the
wavelet spectra in units of normalized power squared (plot
shows the log2 of the quantity) for the tide gauge (f) and the
model (g). Just above, Figure 2e, is a plot of the two time se-
ries, with the tide gauge in gray and the model in black. The
time series covers the period of the simulation from 1993
through the end of 1998. The seasonal cycle is evident along
with the higher frequency signals. The power spectra show
strong similarity between the two time series in both the pe-
riods that are enhanced and the temporal variability within
the frequency bands. The significant power, as determined
by assuming a white noise mean signal, is contoured. Con-
fidence levels are shown by the curved, dashed lines.

To further demonstrate how well the variability of the
model across the spectra compares with the tide gauge data,
the left side of Figure 2 shows a set of averaged power spec-
tra for various temporal bands, a) centered at 30 days, b) cen-
tered at 45.5 days, c) centered at 65.5 days, and d) centered
at about 100 days ( 3 months). Only the 45-day band shows
significant difference between the two signals. These band
averages show strong similarity in the full signal, regardless
of any assumption made about the redness of the spectra and
the related significance level (the dashed and dotted lines of
the a-d plots). These plots (a-d) of the variance magnitudes
show that the model is reproducing the measured variance
amplitudes within the chosen bands.

The method is applied further south at Ft. Pulaski, Geor-
gia (32.03◦N, 80.9◦W) where the model-T/P correlation is
0.77. The high frequency power spectra again shows that
the wind driven variability is realistic in the model simula-
tion (Figure 3). At this location there is significantly more
energy in the sea surface signal during 1994/5 then during
1997 in the 30 to 40-day band and the 100-day signals. The
model’s energy is somewhat differently distributed in the 56
to 75-day band than that of the tide gauge.

Both local and remote forcings play a part in the variabil-
ity of the sea level seen at these coastal stations. At high
frequencies, less than 20 days, the wind forcing is highly
coherent with the change in the sea level for both the north
and south locations and for both the simulated SSH and the
in situ fields. The extreme hurricane season of 1995 is re-
flected in the sea level energy levels for both these stations
(Figure 2a and Figure 3a).

At longer periods, for the weak wind period of 1993/1994,
there is an increase in energy in the 45-day band for At-
lantic City (Figure 2b) but not at the more southerly station,
Ft. Pulaski. This period, 1993/1994 period, is defined by
Landsea et al.[1998] as a ”cool” sea surface temperature
(SST) phase for the North Atlantic with winds weaker than
the mean wind. Suggestions of where the enhanced 45-day
SSH signal might come from are given inShaw et al.[1994].
The oscillations may be due to topographical waves gener-
ated at a remote location (such as a Gulf Stream ring) or by
some locally generated mechanism on the continental slope.
Because both the model and the data exhibit similar distribu-
tions of energy in this band and because the model does not
reproduce Gulf Stream rings which are temporally accurate
(see following section), we believe the second explanation.
This significant 45-day signal is damped between 1995 and
1997, and then is followed by a peak in the spectra during
another relatively weak wind period in 1997.

At lower frequencies, for example, the 100-day band, the
southern station at Ft. Pulaski, Figure 3d, shows enhanced
energy during the years where the tropical cyclone activity is
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Figure 2. Decomposition of SSH anomaly signal near Atlantic City, NJ, 38.35◦N, 74.42◦W. a-d) averaged power squared
for temporal bands 30 days, 45.5 days, 65.5 days, and 100.5days. e) Time series, at 3 days for the model (black line) and the
tide gauge measurements (gray line) - units of cm. f) wavelet power spectrum for tide gauge data in log2(cm2) units and g)
same as f, except for the model. Contoured lines show significant signal at the given periods and the dashed line shows the
confidence interval retrieved from the length of the time series.
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Figure 3. Decomposition of SSH anomaly signal near Ft. Pulaski, GA , 32.02◦N, 80.9◦W. a-d) averaged power squared for
temporal bands 30 days, 45.5 days, 65.5 days, and 100.5 days. e) Time series, at 3 days for the model (black line) and the
tide gauge measurements (gray line) - units of cm. f) wavelet power spectrum for tide gauge data in log2(cm2) units and g)
same as f, except for the model. Contoured lines show significant signal at the given periods and the dashed line shows the
confidence interval retrieved from the length of the time series.
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the greatest, (1995/1996 [Landsea et al., 1998]). The north-
ern station, Atlantic City, is less energetic for this band in
both the data and in the modeled fields. It is notable that the
model has the ability to reproduce this complicated variabil-
ity on these short time scales (less than one year).

3.2. Comparisons to buoy temperatures

We selected two NOAA temperature buoy records for
comparison to the modeled simulation. The stations are ei-
ther side of the Gulf Stream Extension. The temperature
records are much shorter than the records for the tide gauges.
Because the model was only forced with a smooth, daily
varying climatological heat flux, this comparison is only
making an evaluation of the model’s temperature variabil-
ity due primarily to advection, not local variations in high
frequency heat fluxes.

The first wavelet comparisons covers about two years,
1996.5 through 1998.5 at a location north of the Gulf Stream
at 41.09◦N 66.59◦W (see map, Figure 4d). The time se-
ries of the temperature anomaly is shown in Figure 4a with
the normalized wavelet power spectra for the data and the
model, respectively, given in 4b and c; d notes the buoy’s
location, with respect to the SST field of the model for the
day July 1, 1997.

The time series (Figure 4a) shows similarities in the vari-
ability on the short temporal scales. For example, near the
beginning of the record, there is a large deviation in tempera-
tures, plus and minus 2◦C. From the middle of 1997 towards
the end of 1997, both records show large deviations from the
mean, but at different times. The model, does appear to be
simulating some of the variations in the temperature but not
always the extreme events. The wavelet analysis shows the
strong peak in the observations around late 1997 with a pe-
riod of around 60 days, the scale of mesoscale eddies. The
model is capable of producing such an event, as noted by
the peak in the spectrum in Figure 4c around mid 1996 at 60
days. The energy in the periods greater than about 90 days
show similar structures, with a loss of significant power in
both time series for the 128-day period at around January of
both 1997 and 1998.

The second buoy is located to the south of the main path
of the Gulf Stream in the model at 34.68◦N 72.23◦W, Fig-
ure 5. The map shows the temperature field of the model
for the day January 3, 1998. This time period covers about
March of 1996 through mid 1998. The wavelet analysis for
these short series shows that the model has again reproduced
some of the events, but does not have the energy at the short
time periods of less than 60 days that the observations indi-
cate are present again. The dashed lines denote the confi-
dence limits of the observations.

Figure 4. Decomposition of SST anomaly signal at 41.09◦N
66.59◦W. a) Time series, at 3 days for the model (black
line) and the buoy measurements (gray line) - units of◦C.
b) wavelet power spectrum for buoy data in log2(normalized
variance) units and c) same as b, except for the model. Con-
toured lines show significant signal at the given periods and
the dashed line shows the confidence interval retrieved from
the length of the time series. d) Map (July 1, 1997) of SST
from POP with the buoy location indicated by black dot.
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Figure 5. Decomposition of SST anomaly signal at 34.68◦N
72.23◦W. a) Time series, at 3 days for the model (black
line) and the buoy measurements (gray line) - units of◦C.
b) wavelet power spectrum for buoy data in log2(normalized
variance) units and c) same as b, except for the model. Con-
toured lines show significant signal at the given periods and
the dashed line shows the confidence interval retrieved from
the length of the time series. d) Map (January 3 1998) of
SST from POP with the buoy location indicated by black
dot.

3.3. Comparisons to TOPEX/POSEIDON SSH

The wavelet analysis comparison between the model and
the altimeter measured SSH are constrained by the sampling
of the T/P satellite. In the two previous sections, very local-
ized and daily sampled observations could be compared with
the modeled fields. T/P samples at a relatively high rate tem-
porally (every 10 days), but spatially, the sampling requires
fields to be averaged over large areas to reduce the error to
levels of 3-4cm. The model output for this comparison has
been averaged into 2◦x 2◦ bins, resulting in a much-reduced
high frequency signal.

Figure 6e shows the time series of the model in black
and the T/P SSH anomalies in gray at 42◦N, 56◦W. The
wavelet analysis has again assumed a mean white noise sig-
nal (α = 0) and the power spectra for the data (T/P) and
model are shown in Figure 6f and g, respectively. From the
time series, it is easy to observe that the seasonal cycle is
captured reasonably well, while the spectra show that the
both the data and model contain significant energy at peri-
ods greater than around 60 days. Figure 6a-d represent the
average power in the bands 35 days, 60 days, 100 days, and
about 150 days extracted from the full spectra. For this sta-
tion, with a relatively high correlation between the model
and the T/P data, the comparison (Figure 6f,g) to the data
only suggests that the model is simulating what T/P sam-
pled at the lower frequencies. The amplitudes of the signals
within the bands are similar, but the phasing is not (for exam-
ple in Figure 6c and d). And the model shows an enhanced
signal for January 1996 (Figure 6d), and likewise, the ob-
served signal in the 150 day band is significant. Neither the
model or data show a significant signal in the high frequency
band (35 days, Figure 6a).

Further to the north and east, at 62◦N and 30◦W (south-
west of Iceland) Figure 7 shows a somewhat better phase
comparison between the model and the observations (Fig-
ure 7e). The model’s amplitude is much lower than that of
the data for the all frequency bands (Figure 7a-d). The phas-
ing within the 150 day band (Figure 7d) is similar between
the two time series, with the highest energy levels in the fall
of every year. The averaged spectral plot to the right of the
wavelet spectra shows that peaks are found in both the mod-
eled fields and the data for 128 days, although in the modeled
data, the averaged spectral peak is not significant. Again,
because of the large area averages, the model’s significant
signal is much reduced. At this latitude, the T/P instrument
has a much reduced sampling error due to the convergence
of its tracks.

Until a more densely sampled altimeter data set is avail-
able with similar temporal resolution to that of T/P, the most
useful comparison of the wavelet produced spectra over the
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Figure 6. Decomposition of SSH anomaly signal at 42◦N 56◦W. a-d) averaged power squared for temporal bands 35 days,
55 days, 100 days and 150 days. e) Time series, at 10 days for the model (black line) and the T/P measurements (gray line) -
units of cm. f) wavelet power spectrum for T/P data in log2(normalized variance) units and g) same as f, except for the model.
Contoured lines show significant signal at the given periods and the dashed line shows the confidence interval retrieved from
the length of the time series. The plot to the right of the wavelet spectra is the averaged, detrended spectra value in units of
cm2. The x’s mark the spectral peaks.
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Figure 7. Decomposition of SSH anomaly signal at 62◦N 30◦W. a-d) averaged power squared for temporal bands 35 days, 55
days, 100 days and 150 days. e) Time series, at 10 days for the model (black line) and the T/P measurements (gray line) - units
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open ocean areas is to examine the mean spectral values for
a given band. Such a calculation is shown in Plate 1. The left
set of panels (a-d) are from T/P and the right side (f-h) are
from the model. Each map gives the value of the significant
mean power for a location and temporal band (a,e 35 days;
b,f 60 days; c,g 100 days; d,h 150 days). The color indi-
cates the relative amplitude of the spectral signal for a given
band. The circles denote areas that contain a possible peak
in the spectral band. The peaks are determined by remov-
ing a trend from the global mean spectra (the average of the
spectra in time) and then determining which values are one
standard deviation above the mean of the detrended mean
spectra. Examples of the averaged, detrended spectra values
are shown in Figure 6 and Figure 7 to the right of the wavelet
power spectra plot. These plots show the peaks defined by
the small ”x”s. The circles on Plate 1 are not intended to in-
dicate that there is a definitive peak in the spectra for a given
band and location, rather to indicate where the spectra has a
tendency for a spectral peak.

First, we examine the amplitude of the energy signal in
both the model and data (color on Plate 1). In both the model
and the T/P, the eastern basin of the Atlantic Ocean is rela-
tively quiet. The model has significant energy in the east-
ern basin only at periods greater than 45 days. The higher
T/P amplitudes in the eastern basin may be due to the sam-
pling and instrument errors of T/P. In the western Atlantic,
both show similarities in the location of their mean ener-
gies for each band. These plots affirm what has been pre-
viously shown in maps of SSH total variance [Smith et al.,
2000]. Previous papers on this model [Smith et al., 2000,
McClean et al., 2002] have discussed the mislocation of the
Gulf Stream and the NAC and the reader is directed to these
papers for a discussion of the reasons for the differences.

On close examination, another difference is seen in the
two sets of maps with respect to the amplitude. The model
shows that there is an increasingly higher amplitude in its
energy with lower frequencies (note in particular the energy
levels in the NAC region). This is consistent with the de-
scription of the wavenumber-frequency spectral plots given
in Smith et al. [2000, Fig.19] for an area defined as 32◦-
42◦N, 50◦- 75◦W. The authors state that the model’s energy
cascade has a steeper slope than the slope calculated from
the data. We show that this generally holds throughout the
Atlantic.

Next, we examine the locations of the peaks in the spectra
(the circles on Plate 1). The two highest frequency bands in-
dicate that both the model and the data show spectral peaks
in the area of the Labrador Sea. Examination of the wavelet
spectra at 58◦N, 56◦W. Figure 8 shows that there is sig-
nificant energy in the 25 to 45-day band during the winter
months in both the model and T/P SSH estimates. The wind

fields are only somewhat coherent with the height field and
only in the 35-day band. Figure 8 also shows that at lower
frequencies, the model fields and the observations have a
quite different spectra - with a peak in the spectra for the T/P
data between 76 and 125 days and no peak, on average, for
the simulated fields. The difference might be because the
simulation was not forced with interannually varying heat
fluxes which may dampen the 35-day signal as exhibited by
the observational data and enhance the intraseasonal signal
around 90 days.

At lower frequencies, we note that the NAC region in the
T/P data indicates peaks in the spectra for periods covering
75 to 125 days (Plate 1c), while the model’s energy is domi-
nated by peaks in the 125 to 181-day band (Plate 1h). There
is a line of circles defining energy peaks along 20◦N in the
model fields for the 125 to 181-day band (Plate 1h). These
energy peaks are not as clearly defined in the T/P data (Fig-
ure 1d) as in the simulation. Plots of time verses longitude of
the raw data clearly show that the signal is related to Rossby
waves (speed of approximately 6cm/s). The model shows a
very distinct propagation pattern; while the pattern is much
harder to observe in the T/P data. This is because of the noise
in the T/P data. The differences seen below 0◦ latitude in the
45-75 band may be due to the model being a regional model
with the southern boundary condition restored to monthly
climatological fields.

4. Discussion and Conclusions

Explanations of causes of the differences between the
model fields and the altimeter measurements can be sepa-
rated, first, into those that are caused by noise or measure-
ment errors within one system or another. Even after av-
eraging over similar 2◦x 2◦ boxes, the altimeter data still
contains 3-4 cm of noise and this contributes to the disagree-
ment. Unlike the altimeter we know that the model output
is smooth with very low, almost non-existent high frequency
noise. Examination of wavelet power series (for example
Figure 6a) for the 25 to 45-day band across 35◦N (Figure 9)
shows distinct, coherent features enhanced in winter time in
some years in the model output (Figure 9a) and not in the
altimeter data (Figure 9b). One explanation why these are
not seen in the altimeter data because they are of the same
order as the noise.

Errors in the altimeter data are also caused by aliased high
frequency motions [Stammer et al., 2000 andTierney et al.,
2000]. Currently, this signal may be corrected by removing
a field estimated from a model. It would be inappropriate to
remove it for this study because the field would not be in-
dependent of the model data presented here. Also, irregular
temporal sampling by the altimeter either by the fundamen-
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Figure 8. Decomposition of SSH anomaly signal at 58◦N 56◦W. a-d) averaged power squared for temporal bands 35 days,
60 days, 100 days and 150 days. e) Time series, at 10 days for the model (black line) and the T/P measurements (gray line) -
units of cm. f) wavelet power spectrum for T/P data in log2(normalized variance) units and g) same as f, except for the model.
Contoured lines show significant signal at the given periods and the dashed line shows the confidence interval retrieved from
the length of the time series. The plot to the right of the wavelet spectra is the averaged, detrended spectra value in units of
cm2. The x’s mark the spectral peaks.
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Figure 9. Time-longitude plot of normalized variance of wavelet power at each longitude point along 35◦N. The power was
normalized by the median power in time for a longitude index. a) POP signal b) T/P signal for the 35-day spectral band. Dark
values are relatively high variance.
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tal orbit pattern or when the altimeter has not collected the
data also contributes to the difference.

For the model, at lower frequencies, within the 125 to
181-day band, incorrect initial conditions may contribute to
advective type errors in the model. Wavelet spectra of the
difference between the model and the altimeter data within
the 125 to 181-day band along 15◦N shows a signal similar
to what one would expect a Rossby wave to look like (Fig-
ure 10). The signal is in the altimeter data (Figure 10b), but
not the model fields (Figure 10a). In general, incorrect or in-
complete physics within the model may contribute to errors,
but would require a local and detailed study to understand
the differences and the reasons may be different for different
locations.

Last, differences between the model estimates and altime-
ter estimates may be due to inaccurate surface forcing of the
model. Interannual varying heat or freshwater forcing was
not included in this model run and to the extent that it may
relate to enhancing signals at higher frequencies is left to an-
other study. Differences in the true wind and the estimates
given by the meteorological models used to force the model
may also account for the differences. This systematic contri-
bution is likely to be small, because the model realistically
simulates SSH along the coasts and also appears to do well
in the quiescent eastern half of the ocean (see Figure 1).

In summary, a large part of the disagreement is most
likely due to the chaotic nature of the mesoscale features in
the western half of the basin.

The previous sections have shown and described the real-
ism of the high frequency variability of a primitive equation,
40 level, free surface North Atlantic ocean model simula-
tion at a resolution of 0.1◦. We are confident that where the
forcing for the model is of high quality (around 1◦ resolu-
tion, daily fields) we are able to simulate the variations of the
surface quite well, especially along the eastern coast of the
Americas. It is less clear that the high frequency variability
(less than 100 days) is simulated well in the middle of the
basin. Because of sampling error of 3-4cm of the T/P instru-
ment, we are not able to conclusively quantify the accuracy
of the modeled high frequency signal in the areas where only
T/P data (and not tide gauge data) is available. We await the
time when higher spatially resolved data at a 10-day sample
rate is available from the interleaved Jason and T/P satellite
system.

From this evaluation, we would like to say something
about the confidence that should be placed in the model it-
self and in the data that may be assimilated at these spatial
and temporal resolutions. Using realistic forcing provided
by either coupled models or hindcast fields from a meteoro-
logical model, we are able to reproduce the high frequency
signals, reasonably well in the mean and temporally along

the coast where the high frequency (one to six months) SSH
variability is, largely, controlled by the local wind forcing.
Away from the coast, although there are discrepancies in the
phasing of the significant signals, the model does compare
reasonably well in amplitude of the energy spectra for vari-
ous temporal bands.

For purposes of prediction, especially for temporal peri-
ods less than a season, assimilation of buoy, drifter, float,
and satellite data might enhance a forward model’s predic-
tive skill. Much of the research in the assimilation area is
focused on how to reduce the size of the matrices that are re-
quired in many assimilation techniques. The maps shown in
Plate 1 suggest that in quiescent regions of the model, the as-
similation of SSH data on scales up to 60 days would not be
helpful, because the model does not appear to contain signals
that are much more significant than the background noise.
In active mesoscale regions, the model does exhibit signifi-
cant power, but has features displaced in time (see Figure 4)
and with increasing energy levels relative to that seen in the
T/P data at lower frequencies. We suggest that an efficient
method for assimilation would be to only assimilate data into
the model where the time derivative of the measurement is
greater than the error intrinsic to the measurement ( 5cm for
T/P SSH) itself and in regions where the data contains sig-
nals that are significant with respect to the prediction period
or smaller.

Acknowledgments. Support for this research has been pro-
vided by ONR and NASA, under T/P-Jason SWT. The authors
thank NRL (Ruth Preller and Pam Posey) for providing the wind
fields. The computing resources were provided for by the Dept.
of Defense High Performance Computing Modernization Office,
ARL. Thanks go to two anonymous reviewers for their comments
and suggestions. Wavelet software was provided by Christopher
Torrence and Gilbert Compo and is available at

URL: paos.colorado.edu/research/wavelets

References

Barnier, B., S. Siefridt, and P. Marchesiello, Thermal forcing for
a global ocean circulation model using a three-year climatology
of ECMWF analyses,J. of Mar. Sys., 6, 363-380, 1995.

Chao, Y. and L.L. Fu, A comparison between the
TOPEX/POSEIDON data and a global ocean general cir-
culation model during 1992-1993,J. Geophys. Res., 100,
24965-24976, 1995.

Chelton, D. B., and M.G.Schlax, On the estimation of sea sur-
face height and surface geostrophic velocity from a tandem
TOPEX/POSEIDON and Jason-1 altimeter mission,J. Geophys.
Res.,,submitted, 2001.

Dukowicz, J. K., and R. D. Smith, Implicit free-surface method
for the Bryan-Cox- Semtner ocean model.,J. Geophys. Res.,
99,7991-8014, 1994.



16 Tokmakian and McClean

Figure 10. Time-longitude plot of normalized variance of wavelet power at each longitude point along 15◦N. The power was
normalized by the median power in time for a longitude index. a) POP signal b) T/P signal for the 155-day spectral band.
Dark values are relatively high variance.



HIGH FREQUENCY VARIABILITY OF A 0.1◦ OGCM 17

Farge, M., Wavelet transforms and their applications to turbulence,
Annual Review of Fluid Mechanics, 24, 395-457, 1992.

Gu, D., and S. G. H. Philander, Secular changes of annual and in-
terannual variability in the Tropics during the past century.,J.
Climate, 8, 864-876, 1995.

Koblinsky C. et al., ”NASA/GSFC Ocean Pathfinder”,
http://neptune.gsfc.nasa.gov/ocean.html, 1998.

Kilonsky, B. and P. Caldwell, In the pursuit of high quality SL data,
IEEE Oceans Proceedings, 2, 669-675, 1991.

Landsea, C. W, R. A. Pielke, Jr., A. M. Mestas-Nuñez, J. A. Knaff,
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