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Abstract. We explore ways to reduce the number of bit operations re-
quired to implement AES. One way involves optimizing the composite
field approach for entire rounds of AES. Another way is integrating the
Galois multiplications of MixColumns with the linear transformations of
the S-box. Combined with careful optimizations, these reduce the num-
ber of bit operations to encrypt one block by 9.0%, compared to earlier
work that used the composite field only in the S-box. For decryption,
the improvement is 13.5%. This work may be useful both as a starting
point for a bit-sliced software implementation, where reducing operations
increases speed, and also for hardware with limited resources.

Keywords: AES, tower field, composite Galois field, bitslice.

1 Introduction

There have been many implementations of the Advanced Encryption Standard,
optimized for various criteria, for different applications. Some approaches seek
to minimize circuitry, e.g., [1,2,3,4,5]. For this goal, Rijmen[6] suggested using
subfield arithmetic in the crucial step of computing an inverse in the Galois
Field of 256 elements. [Note: strictly speaking, the operation is not x → x−1 but
rather x → x254 so 0 → 0, but we will refer to this as the inverse for convenience;
similarly for subfields.] Rudra et al.[1] gave a detailed implementation using that
subfield approach. This idea was further extended by Satoh et al.[2], using sub-
subfields (the “tower-field” representation of Paar[7], also called the “composite-
field” approach), along with other innovative optimizations, which resulted in the
smallest AES circuit at that point. The S-box architecture of Satoh was improved
by Canright[8], mainly through carefully chosen normal bases, resulting in the
most compact S-box to date. This S-box has been used in bit-sliced software
implementations of AES, by Rebeiro et al.[9], and (slightly improved by [10]) by
Käsper and Schwabe[11].

The present work seeks to further reduce the size of AES, in terms of the
number of bit operations. While [8] showed that normal bases gave a more com-
pact Galois inverter for the S-box, the specific basis chosen did not yield compact
Galois multiplications by the constants used in the MixColumns step; hence that
composite basis was used only for the S-box. Here we reconsider the approach
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of maintaining the composite-field representation throughout the rounds of en-
cryption, as in Rudra et al.[1]. We find that a different choice of basis than in
[8] does indeed give a smaller AES implementation with this approach, in part
through combining the linear transformations of the S-box with the constant
multiplications (or “scalings”) of MixColumns. Moreover, applying optimization
software to certain portions of the logic further reduces the number of opera-
tions. Together, these improvements give a 9.0% reduction in the number of bit
operations needed to encrypt one block with a 128-bit key.

First we briefly review the AES algorithm in Section 2, then detail our method
in Section 3, including choices of basis for the tower field and integration of the
scalings of MixColumns with the linear transformations of the S-box. Finally, we
summarize our results in Section 4 and briefly discuss conclusions in Section 5.

2 AES Algorithm

The Rijndael algorithm, as adopted for the Advanced Encryption Standard, is
a symmetric block cipher with 128-bit blocks and three key sizes: 128, 192, or
256 bits[12]. Here, we give just enough detail to explain our method below.

For encryption, each block of 16 bytes is processed by several rounds: 10, 12,
or 14, depending on key size. From the initial key, the key schedule generates a
different round key for each round. Each round comprises the following steps.

1. SubBytes subjects each byte independently to a nonlinear function, often
called the S-box, and substitutes the result for the original byte. The S-box
function consists of two sequential operations:

(a) first, inversion treats the byte as an element of GF(28), where the bits
are coefficients of a polynomial, and polynomial arithmetic is modulo
the irreducible polynomial q(x) = x8 + x4 + x3 + x + 1; each nonzero
byte is replaced by its multiplicative inverse in this field, while a zero
byte remains unchanged.

(b) then an affine transformation is applied: treating the byte as a vector of
bits, the byte is multiplied by a constant bit matrix M and then a con-
stant byte b is added (with bit arithmetic in GF(2), where multiplication
is AND and addition is XOR), so x → M x + b.

In software, the S-box is often implemented as a table lookup.
2. ShiftRows considers the 16 bytes as a 4 × 4 array and rotates each row to

the left by its position, so row #0 does not move, row #1 moves 1, etc.
3. MixColumns operates independently on each column of the 4× 4 array: the

column, as a vector of four bytes, is multiplied by a constant byte matrix,
where the byte arithmetic is in GF(28) as in the S-box inversion:

⎛
⎜⎜⎝

x0

x1

x2

x3

⎞
⎟⎟⎠ →

⎛
⎜⎜⎝

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x0

x1

x2

x3

⎞
⎟⎟⎠

4. AddRoundKey bitwise adds (XOR) a 128-bit round key to the 128-bit state.
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The first round is preceded by an AddRoundKey step, and the last round skips
the MixColumns step.

For decryption, the whole process is reversed, using the inverse operation for
each step in the reverse order. AddRoundKey is its own inverse, and the inverse
of ShiftRows rotates rows to the right instead of left. The inverse of MixColumns
just multiplies each column by the inverse of the constant byte matrix, so

⎛
⎜⎜⎝

x0

x1

x2

x3

⎞
⎟⎟⎠ →

⎛
⎜⎜⎝

E B D 9
9 E B D
D 9 E B
B D 9 E

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x0

x1

x2

x3

⎞
⎟⎟⎠

where the constant values are in hexadecimal (the leading 4 bits of each are 0).
For the inverse of SubBytes, first the inverse affine transformation is applied, so
x → M−1 (x + b), then the Galois inversion is its own inverse operation.

Some reordering of the steps in each round is possible. SubBytes commutes
with ShiftRows, and MixColumns and AddRoundKey can be swapped by mod-
ifying the key schedule appropriately; similarly with the inverse operations for
decryption. Commonly, fast software implementations, e.g., those of Bernstein
and Schwabe[13], combine the S-box function with the Galois multiplications
of MixColumns, using each input byte to index a table of 4-byte columns, as
suggested in the Rijndael proposal[14], which called them “T-tables.”

3 Method

Our goal was to develop an implementation of AES with a minimal number of bit
operations. The result could be useful for a bit-sliced software implementation,
or for hardware with limited resources. (Our original inspiration was considering
a bit-sliced AES for the CellBE processor[15].) Our starting point, and baseline
for comparison, was the compact AES of [2], with the improved S-box of [8].

These prior works used a tower-field representation of GF(28) so that the
Galois inversion in the S-box could be calculated compactly. But where [8] opti-
mized the choice of basis for the S-box only, we sought to find the best basis for
whole rounds of AES, as [1] did for a different composite-field representation.

One reason not to do this, i.e., to change back to the standard basis after
the S-box, is that the Galois multiplication by the constant 2 byte, as required
in MixColumns, is very compact in the standard basis: three bitwise XORs.
Nonetheless, we found that overall the advantages of our approach overcame
this disadvantage.

One way we reduced operations is by combining the constant Galois multipli-
cations of MixColumns with the linear part of the affine transformation of the
S-box. We tried different places to put these combined transformations, either
earlier as parts of the S-box or later as parts of MixColumns, as we will describe
in subsection 3.2.

Another way was by finding the tower-field basis that would be most compact
not just for the inverter, but for an entire round of encryption or decryption.
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There are actually many different tower-field representations possible; here we
only need to examine a small subset of those considered in [16], as discussed in
subsection 3.1 below.

Lastly, we applied state-of-the-art optimizing software to the transformation
matrices and to parts of the inverter operation. The optimizing software employs
heuristics to arrive at very efficient implementations.

3.1 Basis Choices

In [8], 432 different choices of basis were considered for the tower-field represen-
tation of GF(28), where GF(28) is considered as a quadratic extension of GF(24),
which in turn is considered as a quadratic extension of GF(22). We will use the
notation GF(28)/GF(24)/GF(22) to indicate such a tower-field representation; of
course, all representations of GF(28) are isomorphic. Such a representation really
involves three bases: one each for GF(22)/GF(2), for GF(24)/GF(22), and for
GF(28)/GF(24), where each basis consists of two elements linearly independent
over the subfield.

Only polynomial bases (of the form [r, 1]) and normal bases (of the form
[rq, r], where q = 21, 22, or 24 is the size of the subfield, and r, rq are conjugates)
were considered in [8]; other types are generally less efficient. And only choices
with a trace of unity τ = r + rq = 1 were considered, that is, where the minimal
polynomial has the form x2+x+ν and ν = r×rq is the norm of r, since this choice
eliminates some operations. Some other special forms would also eliminate some
operations, such as where the norm is unity ν = 1 or where the trace and norm
are equal τ = ν, but these turned out to be less efficient for the Galois inverter of
the S-box. Normal bases were shown to have a definite advantage for the inverter,
since more factors are shared in the lower level operations. And one particular
choice, #4 of the 432 in [16, App. E], gave the smallest optimized transformation
matrices, and hence the smallest merged S-box (where encryption and decryption
share a Galois inverter), as well as the smallest S-box for encryption only or for
decryption only.

But basis #4 did not give a compact form for the Galois multiplications
needed in MixColumns, so the tower-field representation was only used for the
S-box, with the rest of each round using the standard basis. In particular, for
encryption, MixColumns requires multiplying bytes by the constants 2 and 3 (in
the standard representation), where multiplying by 2 only requires three bitwise
XORs. (In the standard representation, “2” represents a root of the irreducible
polynomial q(x) = x8 + x4 + x3 + x + 1, and “3” = “2” + 1, where 1 is the
multiplicative identity as usual. So multiplication of a byte by 2 involves shifting
left one bit, and if the msb was 1, then XOR with 0x1B.)

We explored whether a different approach might give a more compact imple-
mentation: using a tower-field representation throughout the rounds of encryp-
tion, similar to the approach of [1]. We sought an optimum basis for both the
S-box and MixColumns steps; ShiftRows is just a re-ordering of bytes, and Ad-
dRoundKeys works the same in any basis. To keep the optimization tractable,
we limited consideration to encryption only, or separately for decryption only;
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we did not consider a merged encrypt/decrypt architecture as in [2]. And to keep
the Galois inverter of the S-box small, we only looked at normal bases with unit
trace.

This left 16 possibilities out of the 432 in [16, App. E]: basis numbers 1, 4,
19, 22, 37, 40, 55, 58, 73, 76, 91, 94, 109, 112, 127, and 130. It turns out that
all these cases give a Galois inverter of the same size; though the specifics of the
operations change, the total number of bit operations in the optimized inverter
is the same.

Besides the inverter, the S-box includes the affine transformation, and Mix-
Columns requires Galois multiplication by 2 and 3, or by four different constants
for decryption. We will use the term “scaling” to indicate such Galois multiply-
ing of a byte by a specified constant byte. Then both scaling and the affine part
of the S-box (ignoring the additive constant for now; see subsection 3.3) can each
be represented as a linear transformation: multiplication of an 8-bit vector by
a bit matrix (with all bit arithmetic modulo 2). These transformations can be
combined by simply multiplying the bit matrices. To see more precisely which
matrices would be required in each round, we needed to consider how to imple-
ment MixColumns. Then we could choose the basis that gave the most compact
versions of those matrices.

3.2 MixColumns

Satoh[2] gave an elegant implementation that combined MixColumns with its
inverse, for the architecture with both encryption and decryption merged (with
a selector signal). For just MixColumns, each column, as a vector of four bytes,
is multiplied by a 4 × 4 matrix, where scalar multiplication is in GF(28). Satoh
effectively decomposed the matrix as below:

⎛
⎜⎜⎝

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎞
⎟⎟⎠ = 2 ×

⎛
⎜⎜⎝

1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠

This decomposition allowed reuse of certain combinations of bytes[2, (6)], and
each byte multiplication by 2 took three XORs, so altogether each 4-byte column
took 108 XORs.

For decryption, the inverse MixColumns matrix of [2] came from adding more
terms to the MixColumns matrix:

⎛
⎜⎜⎝

E B D 9
9 E B D
D 9 E B
B D 9 E

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎞
⎟⎟⎠ + 4 ×

⎛
⎜⎜⎝

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎞
⎟⎟⎠ + 8 ×

⎛
⎜⎜⎝

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞
⎟⎟⎠

where the 4 and 8 came from repeated multiplications of common terms by 2, at
3 XORs each. With the reuse of common terms, altogether each 4-byte column
took 195 XORs.
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We considered similar decompositions that could re-use some byte sums, but
with the constant scaling combined with the affine transformation of the S-box.
Let T2 be the matrix (given in subsection 3.3) below that performs the “times 2”
operation, and similarly for other constants. (Note: T1 = I, the identity matrix.)
So with the matrix M of the affine transformation, the combined transformations
needed for encryption are M , T2 M , and T3 M .

Our approach uses the decomposition below:
⎛
⎜⎜⎝

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

2 3 0 0
0 3 2 0
0 0 2 3
2 0 0 3

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

0 0 1 1
1 1 1 1
1 1 0 0
1 1 1 1

⎞
⎟⎟⎠

Using the common terms in the last matrix, this approach has 11 byte additions
(88 XORs) per column.

One way to do the transformations is for half the bytes, after the inverter
of the prior S-box, to get transformed with both M and T2 M separately, and
the other half with M and T3 M ; no byte needs both T2 M and T3 M . Another
way is to do half the bytes with just T2 M , the other half with T3 M , and later
apply M only to two common terms: sums of untransformed bytes 0 & 1 and 2
& 3. While the latter (“later” transformations) way has fewer transformations
overall, in the former (“early” transformations) way, pairs of transformations
apply to each byte, allowing additional optimizations of the pairs. We explored
both, and it turned out the early transformation approach was slightly better.

For decryption, the inverse MixColumns matrix has four different constants
(hexadecimal E, B, D, & 9), linearly independent over GF(2), so is more expen-
sive. These scalings can be combined with the inverse affine transformation for
the following inverse S-box, since inverse MixColumns is a linear operation.

We considered a direct, early approach, where after AddRoundKey, each byte
is transformed by the four transformations M−1 TE, M−1 TB, M−1 TD, and
M−1 T9, followed by the 12 byte additions (96 XORs) for inverse MixColumns.
We also considered a decomposition:

⎛
⎜⎜⎝

E B D 9
9 E B D
D 9 E B
B D 9 E

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

3 2 0 0
0 3 2 0
0 0 3 2
2 0 0 3

⎞
⎟⎟⎠ + D ×

⎛
⎜⎜⎝

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎞
⎟⎟⎠ + 9 ×

⎛
⎜⎜⎝

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎞
⎟⎟⎠

Each byte gets transformed with both M−1 T2 and M−1 T3, and later the two
common expressions, sums of untransformed bytes 0 & 2 and 1 & 3, each get both
M−1 TD and M−1 T9. This still has 12 byte additions but fewer transformations.
Again, we tried both, and this time the later approach was better.

3.3 Transformation Matrices

In the ShiftRows, S-box, and MixColumns steps of a normal encryption round,
each byte is routed to the correct position in a column, is inverted in a Galois
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inverter, then goes through the affine transformation along with 2 or 3 times
that result (as shown above). The affine transformation on a byte x looks like
y = M x + b, or in detail

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y7

y6

y5

y4

y3

y2

y1

y0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x7

x6

x5

x4

x3

x2

x1

x0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
1
0
0
0
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where bit #7 is the most significant and all bit operations are modulo 2.
To do the same operation in a different basis, we need to apply a similarity

transformation to this matrix M (to account for the change of basis on both
input and output vectors). Let X refer to the 8 × 8 bit matrix that converts a
byte from the tower-field basis to the standard basis, and let u and v be the
tower-field representations of x and y, respectively (so x = X u and y = X v).
Then the affine transformation becomes

v =
(
X−1 M X

)
u + c where c = X−1 b

or equivalently

v =
(
X−1 M X

)
(u + d) where d = X−1 M−1 b

Galois multiplication by the constants 2 and 3 can also be done by matrices; let
T2 and T3 respectively be these matrices with respect to the standard represen-
tation. Then

2 × x = T2 x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x7

x6

x5

x4

x3

x2

x1

x0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and T3 = T2 + I. To get the scaling matrices for decryption, let T4 = (T2)
2,

T8 = T4 T2, TC = T8 + T4; then TE = TC + T2, TB = T8 + T3, TD = TC + I,
T9 = T8 + I. Again, to do these same operations in the tower-field basis, we
would apply a similarity transformation to these matrices. Or, if we combine
with the affine transformation, for encryption we get

2 × v =
(
X−1 T2 M X

)
(u + d) and 3 × v =

(
X−1 T3 M X

)
(u + d)

So for a given byte, with the early transformation strategy, first we apply the
Galois inverter, then apply two transformations, either affine and 2×affine, or
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affine and 3×affine, depending on in which row of a column it ends up. Thus for a
given basis X we need to optimize the matrix pairs [

(
X−1 M X

)
,
(
X−1 T2 M X

)
]

and [
(
X−1 M X

)
,
(
X−1 T3 M X

)
], where each pair is considered as a single

16×8 matrix. For the later transformation strategy, the three separate matrices(
X−1 M X

)
,
(
X−1 T2 M X

)
and

(
X−1 T3 M X

)
would be optimized.

The additive constant c can usually be included by simply replacing some XORs
by XNORs, or it may be incorporated into the key schedule. Note that, because
the row sum of the constants in the MixColumns matrix (or its inverse) is 1, then
c really only needs to be added to any one of the four terms in the row.

For each of the 16 different normal bases, we applied our optimization software
to minimize (smallest number of XORs) the two 16×8 bit matrices (each would
apply to a pair of bytes per column) of the early transformation strategy, and
also the three 8×8 matrices (again for a pair of input bytes) for the later strategy.

Basis #127 was the winner, with an early strategy optimized total of 17+18 =
35 XORs, barely beating the later strategy at 11+13+12 = 36 XORs. Here are
the basis change matrices for basis #127:

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 1 0 0
0 1 1 0 0 0 1 1
1 1 0 1 1 0 1 1
0 1 0 1 0 1 1 0
0 0 1 0 1 1 1 0
1 0 1 1 0 1 1 1
1 1 0 1 1 1 0 1
1 1 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, X−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 1 1 0 1
0 1 0 1 0 1 0 1
1 1 0 1 1 0 1 1
0 1 1 0 0 1 1 1
1 1 1 1 0 0 0 1
0 1 0 1 1 0 1 1
0 1 1 1 1 0 0 1
1 0 1 1 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Besides the matrix transformations in normal rounds, this approach also uses two
others. Before the first round, each byte must be transformed from the standard
representation to the tower-field basis, by the matrix

(
X−1

)
above; the optimized

version requires 15 XORs per byte, which we treat as part of round 0, the initial
AddRoundKey. And the last round of encryption skips MixColumns and needs
to end up in the standard representation, so after the last inverter, the affine
transformation is combined with the basis change in the matrix (M X); this
requires 13 XORs per byte (with the constant b incorporated into the last round
key; otherwise a NOT is needed).

For decryption, again for each of the 16 normal bases, we optimized the single
32 × 8 bit matrix (four transformations) for the early transformation strategy,
and also the two 16 × 8 matrices for the later strategy. In ranking the results,
recall that the early approach applies the 32× 8 matrix to each input byte; the
later approach applies one 16×8 matrix to each input byte but applies the other
only to the shared sums, half as many bytes. This time, basis #94 won, with
the best later strategy result at 19 + 1

2 × 18 = 28 XORs per byte, better than
the best early strategy result of #58, at 31 XORs. Here are the basis change
matrices for basis #94:
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X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 0 1 0 0
0 1 1 1 0 0 1 0
1 0 0 0 1 0 1 1
1 0 1 1 1 1 0 1
1 1 1 1 0 1 1 0
0 0 1 1 1 0 1 0
0 0 1 0 0 0 1 0
0 0 1 0 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, X−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 1 0 1 1
0 1 1 1 0 0 1 1
1 1 0 0 0 0 0 1
0 0 1 1 0 0 0 1
0 0 1 1 0 1 1 1
0 0 0 0 0 0 1 1
1 1 0 0 0 0 1 1
1 0 0 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

For the first round of decryption, with no MixColumns, we need the transforma-
tion X−1 M−1, which takes 13 XORs. After the last decryption round, before
the additional AddRoundKey corresponding to encryption round #0, we need
to switch back to the standard basis with X , at 13 XORs.

3.4 Galois Inverter

For the inverter of basis #127, applying (by hand) the OR gate substitution
reduced the inverter size to 56 XORs, 30 ANDs, 10 ORs. This is the same
number of bit operations as the inverter for basis #4 of [8], which, like that for
basis #94, is 56 XORs, 34 ANDs, 6 ORs.

But in the tower-field representation, each 8-bit Galois inverter includes a
4-bit Galois inverter in the subfield. The GF(24) inverter performs a bijection
function, as does a 4 × 4 S-box, and hence is a natural target for optimization
with methods like those in [17]. The result reduced the 4-bit inverter from 9
XORs, 8 ANDs, 2 ORs down to 8 XORs, 5 ANDs, 2 ORs, a savings of 4 bit
operations.

3.5 Round Keys

The AddRoundKey step of each round is a simple bitwise XOR in any basis. In
our approach, each round key must be represented in the tower-field basis. One
way to do this would be to pre-compute the usual round keys by some means,
then apply the X−1 matrix transformation to each byte. Another approach is to
do the whole key schedule in the tower-field representation. First the initial key
needs to be transformed into the tower field. For the last round the round key
needs to be transformed, either back to the standard representation and added
after the data block is transformed back, or transformed by the inverse affine
transformation and added before the data is transformed back.

In our comparisons below we do not consider the cost of the key schedule that
generates the round keys. We assume the round keys have been pre-computed,
including their tower-field representations. This is appropriate to using our ap-
proach for bit-sliced software, where the round keys can be stored and applied
to many blocks. But this assumption is less appropriate to compact hardware
implementations, comparable to that of [2], where storing keys in registers is
expensive, so typically keys are computed on the fly.
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3.6 Validation

We implemented our approach in the form of Verilog (hardware description
language) code. This code was written mainly for testing purposes, and defines
one module for each kind of round, including the key schedule. We successfully
tested this implementation by compiling and running it on a FPGA in a SRC
6e computer system, with correct results. (The FPGA implementation was only
to check correctness; true optimization for an FPGA would need to exploit their
Look-Up-Table structure.)

4 Results

We have described our methods to reduce the number of bit operations needed
for AES. Our original motivation was to explore bit-slice techniques to imple-
ment AES in software. For that, reducing the number of operations essentially
translates into increasing the speed. Then an appropriate measure is the total
number of bit operations needed to encrypt a block, as shown in Table 1. The
reduction in operations we achieved might also be useful for compact hardware
implementations, where area is limited. We do not propose a specific hardware
design here.

Our baseline for comparison is a compact encryption-only (or decryption-only)
AES implementation using the S-box of [8] and the MixColumns of [2], shown
above in subsection 3.2, and our units of comparison are bit operations: XOR,
AND, OR, NOT. These two implementations are compared in detail in Table 1.

One normal round of encryption took 155 ops/byte in the baseline; our new
approach needs only 139.5 ops/byte, smaller by 10.0%. However, our approach
requires an initial transformation into the composite field (15 ops/byte), which
adds on to the cost of round #0, the initial AddRoundKey (8 ops/byte). The

Table 1. Results. The number of bit operations per byte is given for various opera-
tions up to the full 10-round AES, comparing our approach with a baseline compact
implementation

encryption decryption
baseline new approach baseline new approach

Galois inverter 96 92 96 92
initial transformation 0 15 0 13
round transformations 24 17.5 25 28

last transformation 24 13 25 13
MixColumns 27 22 48.75 24

AddRoundKey 8 8 8 8

round #0 8 23 8 21
normal round 155 139.5 177.75 152

last round 128 113 129 113

10-round AES 1531 1391.5 1736.75 1502
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last round skips MixColumns: the baseline version takes 128 ops/byte; ours takes
113 ops/byte.

For a bit-sliced software approach, a reasonable basis for comparison is the
total number of bit operations. Altogether, for 128-bit keys (10 rounds), the
baseline requires 24496 bit operations to encrypt one block, while ours requires
22264, which is 9.0% smaller. For 256-bit keys, our approach is 9.4% smaller. For
decryption, the improvement is even greater: 13.5% for 128-bit keys and 13.8%
for 256-bit keys.

For a compact hardware approach, comparison is less clear, depending on
the specific architecture. Suppose we assume an encryption-only version of the
compact design in [2]. There, the 32-bit data path goes through four S-boxes
including transformations, a MixColumns operation, and AddRoundKey. Selec-
tors are used to skip MixColumns on the last round and also skip the S-box for
round 0. Data register connections do the ShiftRows. To simply plug in our ap-
proach, the basic round has 10% fewer operations, but the paths for round 0 and
the last round would need different transformations added; the result is actually
8.1% larger than the baseline (based only on the bit operations in the rounds,
excluding selectors and registers). A different architecture would be needed in
order to take advantage of our approach, such as one where just the initial trans-
formation into the tower-field basis, and the last tranformation to the standard
representation, have 8-bit data paths instead; this approach would make those
byte-serial rounds slower, but would reduce the total operations for rounds by
5.5%.

5 Conclusions

We have reduced the number of bit operations for 10-round AES by 9.0%. We
achieved this reduction partly through finding a tower-field representation that
compactly calculates both the Galois inversion and the constant scaling of Mix-
Columns (when combined with the affine transformation). The other contribu-
tion to increased efficiency comes from very effective optimization, both of the
4-bit inverter (within the 8-bit Galois inverter) and of the various transformation
matrices.

Our more compact AES approach may be useful for software bit-slice imple-
mentations, or for hardware with limited resources. Of course, in developing a
bit-sliced program for a specific target processor, then parallelism and register
constraints need to be taken into account, as well as the cost of slicing and unslic-
ing. In fact, soon next-generation Intel and AMD processors will include single
instructions to perform whole AES rounds[18], which may render bit-sliced im-
plementations uncompetitive on such targets. However, current and older Intel
and AMD processors may be promising targets for some time, as well as other
possibilities such as the CellBE processor[15]. And further optimization may be
possible for a particular processor, using a suitable slicing arrangement and tak-
ing advantage of specific instructions; for example, on a CellBE processor, the
GF(24) inverter takes only 8 instructions, compared to the 15 bit operations
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mentioned in subsection 3.4. Also, Intel’s coming AVX technology, with 256-
bit registers and RISC-style SSE instructions, may make bit-slicing competitive
with the native AES instructions.

Future work includes developing a bitsliced AES implementation for the
CellBE processor, and possibly for others.
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