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Abstract

This paper introduces a new coordination method to intercept a mobile
target in urban areas with a team of sensor platforms. The task is to intercept
the target before it leaves the area. The approach combines algorithmic
concepts from ant colony and particle swarm optimization in order to bias the
search and to spread the team in the search area. The algorithms introduced
are tested in simulation experiments on grids. The success probabilities
measured are relatively high for most parameter combinations, and the target
is intercepted in roughly half the simulation time on average. Furthermore,
the experiments reveal robust behavior with regard to the parameter setting.
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1. Introduction

In recent years, wireless sensor networks (WSNs) have

gained more and more importance – for instance in disaster

relief missions, maritime interdiction operations, and in civil-

military co-operations. The focus of the present paper lies

on the use of a WSN, or a sensor swarm, in an urban

environment for locating and intercepting a mobile target that

is being tracked. The task is challenging since the situation is

dynamic and uncertain: Measurements are imprecise leading

to uncertainty in the present target position and possibly

also the sensor positions are not known exactly. While these

measurement errors may not be large, they may cause the

assumption that the target is presently in one street while it

is actually in another. Therefore the swarm of (autonomous)

sensors must search several streets. In addition, there is always

the possibility that one or more sensors malfunction delivering

strongly erroneous signals or that information may be lost due

to faulty communication. Furthermore, time is usually a very

critical component.

This paper addresses the task of coordinating the search

focusing on one important submechanism of a mobile sensor

network. Other important tasks, e.g. data fusion or sensor

measurement planning are not subject of the present paper.

It treats the sensors as abstract mobile agents which are able

to take measurements which are then combined for a common

picture of a part of the area. To coordinate the movement of

the sensors, the paper introduces a new stochastic approach

inspired by ant colony optimization (ACO) [6] and particle

swarm optimization (PSO) [7]. It is structured as follows:

First, the scenario considered is introduced. Afterwards, a

brief overview over pursuit-evasion games is provided. This

is followed by a presentation of the approaches and a first

experimental analysis.

2. A Tracking and Intercepting Scenario

The scenario is based on a occurrence during the CENETIX

simulation experiments in 2011 which were conducted by an

international research group lead by A. Bordetsky from the

Naval Postgraduate School, Monterey, USA. A team tracked

the vehicle of a suspected group of terrorists into the out-

skirts of a city and tried to intercept the target in the urban

environment. However, due to an effect later termed “cyber

distortion” [9], the position of the target was too imprecise

for its being successfully located. This is the baseline for the

following scenario:

A number of ground vehicles (the sensor platforms) are

tracking a target that may or may not be aware of being

tracked. The target has entered an urban environment and

shall be intercepted by the tracking team while in the area.

However, due to measurement uncertainties, the position of

the target cannot be determined with the required accuracy

so that the target may be in several streets with a positive

probability. This leads to the question which strategies shall

be applied by the sensor platforms in order to locate the target.

The task is complicated by the movement of the target: The

probabilities for its being on certain streets change over time

when new measurements are made. It is therefore in general

not sufficient to deploy the team or swarm members to certain

locations in the urban environment. Instead, an active search

is required covering the interesting part of the region without

loosing the network connectivity.

3. Search and Pursuit-Evasion Games

The scenario above is best described as a search and pursuit-

evasion game. Also there are some similarities to the area of

terrain covering although the latter usually assumes stationary

targets that must be located by one or more sensors. Search

and pursuit-evasion games in general and on graphs have a

long research tradition (see [4, 1] for surveys) dating back
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to the 1970s, e.g. [12]. Aside from security related applica-

tions, pursuit-evasion games are also important for multi-robot

systems in search-and-rescue missions. Finding an adversarial

target represents a worst case for search-and-rescue and gives

thus an estimate for the worst case performance of the systems

[4].

Several subtypes exist which differ in the assumptions they

make, e.g. the sensor model used (perfect/imperfect informa-

tion), information about the environment (accurate map/no

map beforehand), or how the environment is modeled. It

should be noted that the situation leads in general to NP-

hard optimization problems. Often, it is assumed that the

target is aware of being tracked and evades the pursuers [14],

whereas other approaches follow a nearly opposite strategy

and assume a random behavior of the target. Similarly, see

[4], two main focuses can be identified. Either strategies

are developed that maximize a worst-case performance often

combined with an omniscient evader with infinite speed or

probabilistic methods are applied which optimize a statistical

performance indicator, e.g. expected minimal time to detection

or the probability to detect the target. Various approaches

have been introduced ranging from stochastic heuristics [8]

to specialized branch-and-bound optimization [13]. In the

following, a brief overview is provided to illustrate the broad

range of subjects and methods.

A special case concerning a graph representation is edge

searching in which a omniscient and arbitrarily fast target shall

be detected by a party of searchers [10]. Kolling et al. [10, 11]

developed several algorithms based on a graph representation

introducing the graph-clear problem. This problem differs

from the usual edge search in the procedure that is required to

clear an edge or a vertex. In a graph-clear problem a vertex is

considered cleared if it is blocked from all edges and searched

by a third robot. The task is to create a schedule and to

coordinate the search such that the graph is cleared by the

least number of robots. In [11], it was shown that the graph-

clear problem is NP-hard in general.

Gerkey et al. [8] applied a stochastic parallel hill-climbing

approach called Parish to a general robot coordination prob-

lem. They used heuristics to estimate the benefits and costs

of action plans that may involve more than one robot. Since

the heuristics give only an estimate of the “true” value, they

coupled it with a stochastic plan selection to overcome local

optima.

Vidal et al. [14] investigated a probabilistic pursuit-evasion

game with heterogeneous multi-robot teams and a randomly

moving evader. Instead of assuming that the environment

is completely known, the robot team builds a map while

searching for the evader. The authors considered two greedy

strategies: a local-max policy where each pursuer moves

towards the cell with the highest probability of containing the

evader in a local neighborhood and a global-max policy which

uses the entire map. For the global-max policy, the cells with

the globally highest probability are determined as well as the

desired positions of the pursuers. This information is then used

to derive the navigation policy. The strategies were tested in

computer and real-life simulations with the global-max leading

to better results in the majority of experiments.

This paper represents a simple and fast approach to intercept

a target for which uncertain position estimates exist. The

situation differs from the scenarios in most literature in that the

target must be located while it traverses a certain area. Similar

to Vidal et al. [14] we consider local information, i.e., local in

time and environment. However, we use a stochastic approach

which counteracts to some extend the common problems of

that approach. It should be noted that our approach does

not explicitly plan ahead in contrast to [8]. Instead we bias

the search by incorporating global information concerning the

current most promising search region.

4. Sensor Platforms: Coordinating the Search

In a first approach, we use the following model: Let x̂(t) ∈
R2 be the estimate of the target position. In our scenario,

we assume that the sensor error follows a multivariate normal

distribution. The error defines an area of interest E(t) at time

t in the R2-plane which includes all streets, crossroads and

alleys where the probability of the target’s current location

exceeds a threshold value εC > 0. Let U = (VU , EU ) be

an undirected connected graph representing the street map of

the urban area. Each edge is associated with a weight (i.e.,

the length of the edge) l : EU → R+. The edges denote the

streets, whereas the nodes or vertices stand for crossroads. At

time t we denote with p(e, t) the probability that the target is

on the edge e. A sensor intercepts the target if both are on the

same edge (including the nodes) at the same time. In other

words, a sensor can observe the whole edge. If this is not the

case, we introduce an artificial node and split the edge. We

also assume that all sensors are omnidirectional.

A team of K sensor platforms (called swarm in the follow-

ing) searches for the single mobile target z. The swarm and

the target are assumed to travel with constant speed with the

sensors’ speed vs greater than or equal to the target’s speed vz .

A sensor platform therefore needs l/vs time units to traverse

an edge of length l. Nodes can be passed in negligible time.

In our model, we assume that the probability model for the

target position is updated in discrete time steps by one or more

sensors after new measurements arrive. In our first approach,

we start with an unbounded communication radius leading to

a common situational awareness. In order for the swarm to

spread out, the current area of interest must be divided among

the swarm members will. Several coordination methods can be

applied for this task including e.g. auctioning. In this paper,

we will present an approach based on particle repulsion.

For each mobile sensor platform, the search can be divided

in at least two phases: A preliminary phase during which the

sensor moves towards the region of interest and the actual

pursuit and intercept phase when the sensor has entered the

region. Only the latter is considered in the present paper since

it provides a proof of concept. At present only one sensor plat-

form type is considered, that is, the swarm is homogeneous.

All sensor platforms are able to intercept the target and all
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are given the same task of intercepting the target as soon as

possible updating the probability model with other sensors

while they move through the graph. The approach can be

extended to heterogeneous swarms where team members are

tasked with sampling information and others with intercepting

the target.

4.1. Swarm Search: A Stochastic Approach

Here, we focus on the interception phase of the search

assuming thus that the swarm is in the vicinity of the target.

If a vehicle sk has reached a node u, it has to choose the next

edge. Our approach is inspired by stochastic (meta)heuristics

[6]. The basic equation for the probability of choosing an edge

e reads

pe(sk, t) =
p(e, t)α∑

e′=(u,v′) p(e
′, t)α

(1)

for e = (u, v) with parameter α ≥ 0. Good values for α will

have to be determined in experiments. One point for further

investigation is whether the edge used by sk to travel to u
shall be considered or not. Its probability could be set to

zero in order to induce a wider movement. The exception to

this rule are of course cul-de-sacs which can be determined

by counting the incident edges of node u. In that case, the

probability of choosing edge e must one. We will investigate

both possibilities in the experimental section. Please note

that these decisions are made when a vehicle arrives at an

intersection.

4.2. Follow the Best: Incorporating Global Informa-
tion

Equation (1) equals a stochastic greedy search. Since greedy

approaches seldom lead to good overall solutions – even when

coupled with stochastic selection, we incorporate an additional

bias for “promising search directions”. This approach is in-

spired by particle swarm optimization where each particle has

a tendency to move the current best position. The underlying

assumption is that the current best region is the best estimate

for the global best solution and that by moving towards

it, a swarm member has a good chance to identify further

promising regions. Particle swarm optimization (PSO) [7] has

been introduced in the 1990s and is usually seen as one of

the more efficient metaheuristics for continuous optimization.

It propagates a swarm of particles through the search space

by adjusting the velocity vectors of the particles.

In our case, we try to improve the selection probability of

promising directions defined by their distance to the current

“best edges”. Let pmax(t) := maxe∈EU
p(e, t) and Emax(t) :=

{e ∈ EU |pmax(t) = p(e, t)}. This requires the concept of a

distance between the current edge e = (u, v) and Emax(t), for

instance defined by computing the shortest path between node

v and both vertices of all edges e′ ∈ Emax(t) and taking the

minimum as the distance d(e, Emax).

Another way to proceed is e.g. to determine the Euclidian

distance between v and all vertices in Emax and to take the

minimal value as an estimate for the distance. We will con-

sider this approach in the later work. Switching to Euclidian

distances will speed up the computation considerably if the

graph is large. However, the quality of the estimate may be

low which could limit the usefulness.

It remains to determine a suitable transformation of the

distance into a bias for the probabilistic decision. Smaller

distances shall be preferred, larger distances shall decrease

the probability. This is fulfilled e.g. by

f(e, t) =
1

1 + ed(v,Emax(t))
. (2)

The updated probability for choosing an edge e reads

pe(sk, t) =
p(e, t)αf(e, t)β∑

e′=(u,v′) p(e
′, t)αf(e′, t)β

(3)

for e = (u, v) with parameters α, β ≥ 0 and function f , (2).

Until now, the situation that more than one vehicle at a time

traverses an edge has not been considered. Since simultaneous

searches of edges waste scarce resources, the probability of

a sensor platform’s choosing edges in the vicinity of other

sensors has to be decreased. This holds of course only in cases

where the sensor platform has sufficient capabilities to search

the edge or node on its own.

4.3. Charged Swarms: Spreading the Search

For spreading the swarm, the concept of particle repulsion

is transferred from charged swarms [3]. Charged swarms were

introduced in particle swarm optimization to increase the

diversity in a swarm. One application area is for instance

dynamic optimization. In charged swarms, a part of the swarm

consists of charged particles which repel each other if they

are getting to close. This counteracts the typical tendency of

the swarm to converge towards a search point after a time

and enables it to cover a broader search region. In particle

swarm optimization, the extend of the repulsion depends on

the load carried by the particles and the distance (vector) of

the particles to each other. As soon as the distance of two

particles is smaller a predefined radius, the particles are both

repelled in opposite directions along the line defined by the

distance vector – proportional to the charge and reciprocally

proportional to the square of the distance. To prevent vast and

sudden position changes, a minimal distance was introduced

limiting the repulsion magnitude. We will apply a similar

concept for the search strategy.

Particle repulsion requires a measure for distances between

sensor platform positions and other nodes. To this end, we

define the dI -neighborhood: A vehicle sk is said to be in

the dI -neighborhood of a node v if sk can reach v in dI
time units. This concept requires the determination of shortest

paths between either the end or the start vertex of the edge

the vehicle is currently located in. If the distances are only

determined when a swarm member is in a vertex, the reference
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point is of course the opposite vertex of the edge. Again,

a faster but inaccurate distance estimate can be given by

the Euclidian distance which will underestimate the distance

in metric graphs. However, in metric graphs the Euclidian

distance may serve to limit the number of sensors for which

the shortest path has to be determined. Whether this leads to

a speed up depends on the size of the graph and the number

of sensors and will be investigated in a follow-up paper.

Recall that the sensor sk under consideration is located at

node u and considers edge e = (u, v). Similar to charged

particle swarm optimization variants [3], we use two distances,

a minimal distance dmin and a influence distance dI . The min-

imal distance is introduced as a safeguard to avoid potential

numerical problems. The equations read

r(e, t, sk) =
1

1 + e−d(e,S,sk))
with

d(e, S, sk) =
∑

sj �=sk

d̃(e, sj) (4)

and

d̃(e, sj) =

⎧⎨
⎩

0 if d(e, sj) > dI
d(e, sj) if dmin ≤ d(e, sj) ≤ dI
dmin if dmin ≥ d(e, sj)

(5)

As for (2), other functional dependencies are possible in (4)

and will be investigated in further work. Finally, we arrive at

pe(sk, t) =
p(e, t)αf(e, t)βr(e, t, sk)

γ

∑
e′=(u,v′)

p(e′, t)αf(e′, t)βr(e′, t, sk)γ
(6)

for e = (u, v) with parameters α, β, γ ≥ 0. In the following,

the algorithm which applies (6) is called simple probabilistic
search (SPS). Suitable values for all parameters have to

be determined experimentally. An important point for later

investigations is the performance robustness with respect to

parameter values.

4.4. Taking a Look at Ant Colony Optimization:
Exploiting the Information

A second algorithm is inspired by ant colony system

(ACS)[5] – a specific ant colony optimization algorithm.

Ant colony optimization (ACO) takes its inspiration from

mathematical models of search behavior of ant colonies and

belongs to the class of search and optimization metaheuristics.

It has been applied successfully to several combinatorial prob-

lems ranging from (quadratic) assignment to vehicle routing

problems [6]. Ant colony system is usually considered one

of the best ACO-methods with respect to solution quality and

efficiency [6]. Normally, ACO algorithms employ a similar

stochastic rule to Eq. (6). Ant colony system follows a different

approach: For each ant (a sensor in our case), ACS chooses

the basic stochastic decision rule with a given probability.

Otherwise, it aggressively exploits the information and chooses

Figure 1. An exemplary 10 × 10 graph (not used in
the experiments). The target starts on the red node in
the upper left corner. The gray nodes around the target
indicate possible initial positions for the sensors if e.g.
dimax = 4. The target chooses one of the nodes of the
lower side as an exit point and follows then a shortest
path.

the edge with the largest probability deterministically which

in our case would translate to

e = arg max
e′=(u,v′)

pe′(sk, t). (7)

The algorithm with probability pSPS for choosing (6) and

1−pSPS for (7) will be referred to as exploiting probabilistic
search (EPS).

5. First Experiments on Grids

For a proof of concept of the algorithms proposed the urban

environment is represented as a N×N graph with equidistant

nodes. The target enters over the node in the upper left corner

of the graph and leaves the area over a randomly chosen node

on the lower side following a shortest path (see Fig. 1). The

target can only be intercepted while it remains in the area. The

sensors are initialized on nodes relatively close to the target

since we consider the pursuit and interception phase. For the

initialization of the sensor positions, a minimal initial distance

(dimin) and a maximal distance (dimax) are introduces. We

allow two sensors to start on the same position.

It is assumed that the sensor can identify the target if they

are either on the same node or edge or if the target is on one

of the incident nodes of the sensor’s edge. Both targets and

sensors move from node to node in one time step. We simulate

the uncertainty of the target position by a discrete probability

distribution with nc bins or classes with probabilities between

pmax and pmin for all edges with at least one node within the

influence radius ir of the target’s current position. All other

edges are given a small positive probability. The information

is updated once the target has reached a new node. The radius

remains constant in the simulation whereas the center of the

distribution changes with the target’s position. A simulation

run ends when the target reaches its exit node. A run is called

successful if the target is intercepted at least once by a sensor.
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parameter significance

N no of nodes
in a row/colum

nS no of sensors
dimin minimal initial distance

to target
dimax minimal initial distance

to target
ir influence radius

of prob. distribution
nc no of classes of

discrete prob. distribution
pmin minimal edge probability

for edges inside ir
pmax maximal edge probability
vt target speed
vs sensor speed

α exponent edge probability
β exponent influence

dist. to best edges
γ exponent influence repulsion
dmin minimal repulsion distance
dmax maximal repulsion distance
pSPS prob. for choosing

the SPS-rule (only EPS)

Table 1. The parameter of the algorithms and the model
variables. The parameter of the algorithms are set in

bold face.

We consider the following performance measures for the

algorithms. The first is the success probability, i.e., how often

the target is intercepted by at least one sensor before it leaves

the area

psucc =
# successful runs

# all runs
. (8)

For successful runs SR, it is interesting to find out when

the interception occurred. We will use the expected relative
interception time (relative with respect to the time the target

needed to reach the exit node)

T
rel

ic =
1

|SR|
∑
i∈SR

time to first intercept(i)

target exit time(i)
. (9)

with |SR| the number of successful runs.

Since the difficulty of intercepting the target depends on

the initial sensor positions and the choice of the exit point

of the sensor, we consider the following experimental set-

up. For each parameter configuration, we conduct 900 runs

of the algorithms: 30 target exit points combined with 30

sensor initializations. Duplicates are allowed. For each of

these combinations, we use 30 repeats because the algorithms

themselves are also stochastic. Since the scenario states that

the target is already being tracked by the sensors, we assume

that they are close to the target but have had no visual contact.

In other words, we set dimin = 2 and dimax = ir/ir + 1.

Table 1 lists the variables of the model and the parameters of

the algorithms. Please note that setting α = β = γ = 0 equals

a random search in the case of SPS with each edge having

the same probability. EPS (as it is currently implemented)

always takes the first edge with maximal probability and

parameter default min max
value

N∗ 15 15 20
nS 3
dimin 2
dimax 6 5 6
pmax 0.95
pmin 0.1
nc 5
ir 5
vt 1
vs 1

α∗ 1 0 5
β∗ 1 0 5
γ∗ 1 0 5
dmin 1
dmax 2
pSPS 0.1

Table 2. The settings for the baseline runs. The
influence of the parameters marked with ∗ will be
investigated closer in the experimental section.

differs such from pure random search. Generally, experimental

investigations on the influence of all parameters would be

interesting. Due to space restrictions, we focus on a selection

of the parameters we assume to have the greatest influence on

the performance if neither swarm nor graph size is variable.

5.1. A First Look at the Approaches

Four algorithms with the baseline configuration given in

Table 2 are considered

1) SPS: simple probabilistic search using Eq. (6),

2) SPS NR: simple stochastic search without allowing im-

mediate returns,

3) EPS: exploiting stochastic search using Eq. (6) with

probability pSPS and (7) with 1− pSPS , and

4) EPS NR: exploiting stochastic search without allowing

immediate returns.

Comparing the results, we find that using EPS with a prob-

ability of 0.1 for the SPS-rule is apparently beneficial with

respect to the success probability. In the case of EPS, success

probabilities of psucc = 0.955 (EPS) and psucc = 0.956
(EPS NR) can be measured compared to psucc = 0.912 (SPS)

and psucc = 0.872 (SPS NR).

The results also indicate that allowing immediate returns

appears to have more influence on the SPS methods (in favor

of allowance) whereas EPS appears more robust. There are

no great differences concerning the expected mean relative

time to first intercept. In the case of EPS, it reads T
rel

ic =

0.452. If returns are not allowed, it lies lower at T
rel

ic = 0.429

(EPS NR). For SPS, we have T
rel

ic = 0.426 and T
rel

ic = 0.411
for SPS NR.

Statistical tests (one-sided Mann-Whitney, p = 0.01) reject

the zero hypothesis of equality of the means for returns

allowed/not allowed EPS and SPS but it must be recalled

that the data sets are large. The SPS methods appear to
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Figure 2. Box-plots of the relative time to first intercept for
the basis scenario.

be slightly faster than the EPS approaches (see Figure 2).

The box-plots show various outliers, in case of EPS very

often towards small values. This could be due to initialization

effects, however that would not explain why it appears more

often for EPS. The findings so far may be affected by the size

of the graph and further scenario parameters (initial distances,

travel speeds) necessitating further experiments. Extrapolating

from our findings, we gain the following hypotheses:

1) EPS/EPS NR has a higher success probability compared

to SPS/SPS NR. This could be the effect of exploiting

the information.

2) Allowing no immediate returns favors exploration and

thus leads to a shorter time to the first intercept. How-

ever, this goes along with a lowered success probability

for SPS.

3) The SPS variants find the target faster due to the

increased exploration due to the stochastic nature of the

SPS-rule (6). Since EPS NR has an enforced exploration

by disallowing immediate returns this effect could also

be the cause for finding the target faster on average than

EPS.

5.2. The Influence of the Exponents

The aim of this section is to investigate the influence of

the parameters α, β, and γ. The main focus is to analyze the

algorithms’ robustness, i.e., whether an broader value range

of these parameters exists for which acceptable results are

obtained. This is crucial for practical use since otherwise a

carefull fine-tuning is required. Optimal parameters are not

determined since these are commonly very problem specific

and their determination usually requires design-of-experiments

techniques to explore the parameter space.

Please also note: In the case of metaheuristics, a rigorous

theoretical determination of optimal parameters can usually

be performed only for very simple scenarios or algorithms

which limits the practical usefulness. Therefore, it is common

practice to perform experimental investigations. The number

of nodes in a row is set to N = 20 and dimax = ir = 5. The

influence distance is set to dmax = 1 since for the scenario

described larger values could open a path for the target which

should be avoided. All other parameters are set to their default

values.

5.2.1. Experimental Setup. We use a factorial design for all

three parameters with values of 0, 0.1, 0.5, 1, 2, 5 leading to

343 configurations for an algorithm. In the following we com-

pare the results of the experiments for the two performance

measures, the success probability and the expected relative

time to the first intercept.

5.2.2. Success Probability. Tables 3 - 6 show exemplary the

best and worst success probabilities grouped by β. Random

search with α = β = γ = 0 for SPS leads to a success

probability of around 0.29. Other configurations with lower

success probabilities (evader behavior, graph structure, and

size) will be investigated in future research. It should be noted

that some combinations lead to worse results: Spreading the

swarm by using γ without directing the search with α and β
apparently opens a path on the grid for the target.

A clear finding emerges: On a grid with size 20 × 20 and

for three searchers, the parameter β which decides on the

influence of the global information is an important factor. In

the case of EPS, setting β = 0 may result in weak performance

on the grid if α and γ are not chosen correctly. Otherwise, it

is remarkably robust with worst success probabilities above

0.78 for β > 0. The same holds for EPS NR, which also

exhibits good performance if β > 0. The SPS variants appear

more sensitive than EPS concerning the worst performances.

While they often surpass EPS for the best success probability,

a wrong parameter setting can affect them strongly. However,

the experiments also showed that the SPS variants become

robust for β ≥ 1.

The differences between SPS- and EPS-variants with respect

to the size of β could be explained by considering the different
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SPS, success probability

EPS, success probability

Figure 3. 3D-plots for the success probability for α = 2.

search behavior. Due to the stronger stochastic influence, the

SPS-approaches have a stronger inclination for exploration

than EPS. Larger β-values focus the search towards the present

target position so that SPS-variants generally benefit by an

increase of the parameter. The three-dimensional plots, see

Fig. 3 for α = 2, show a nearly logistic growth curve with

the increase flattening or even reversing slightly after β = 2.

On the simple grid and with a target following the shortest

path to its exit node, a strong focus on the global information

appears favorable for SPS to conteract its strong exploration

tendency to a certain point. The EPS variant which searches

less stochastic is sooner influenced by the global information

and thus works well with small β-values. As depicted in

Table 3, EPS shows already a slight decline in the best and

worst success probability for β = 5, indicating the beginning

of a too strong bias towards the global information. However,

it should be noted that the values (best/worst) are still above

0.88. These findings are affected by the uncertainty model

applied. The edges with the largest probabilities are good

estimates for the true target position. An investigation of

different types of uncertainties is an interesting point for future

research. Also the probability pSPS for choosing the SPS-rule

has an additional important influence. This will be investigated

on more realistic graphs in future experiments.

Interestingly, the influence of α on the performance is less

clear that for β. It has the strongest influence on the worst

success probability. While the data does not show a clear trend

in the case of the best success probability, the worst success

probability generally increases with α. Strengthening the in-

fluence of the repulsion distances is generally not favorable in

β best success worst success
probability probability

0 0.874 (α,γ)=(2,0) 0.031 (α,γ)=(0.0,5)
0.1 0.974 (α,γ)=(0,0) 0.835 (α,γ)=(5,1)
0.5 0.971 (α,γ)=(0.1,0) 0.853 (α,γ)=(5,5)
1 0.965 (α,γ)=(0.5,0) 0.877 (α,γ)=(5,5)
2 0.965 (α,γ)=(1,0) 0.869 (α,γ)=(5,5)
5 0.961 (α,γ)=(5,0) 0.833 (α,γ)=(1,5)

Table 3. Success probabilities for EPS grouped by the
parameter β.

the scenario. The worst success probabilities are encountered

for γ = 5. This can traced back to the swarm size and the

scenario conditions.

β best success worst success
probability probability

0 0.731 (α,γ)=(5,0.5) 0.278 (α,γ)=(0,5)
0.1 0.818 (α,γ)=(5,1) 0.419 (α,γ)=(0,5)
0.5 0.909 (α,γ)=(5,0) 0.727 (α,γ)=(0,5)
1 0.959 (α,γ)=(5,0) 0.882 (α,γ)=(0,5)
2 0.972 (α,γ)=(0,0.5) 0.940 (α,γ)=(5,5)
5 0.974 (α,γ)=(1,0.5) 0.903 (α,γ)=(2,5)

Table 4. Success probabilities for SPS grouped by the
parameter β.

5.2.3. Expected Mean Relative Time to First Intercept.
The expected mean relative time to the first intercept was

also measured in the experiments. Table 7 - 10 show the

best and the worst T
rel

ic grouped by β. The values do not

differ much with the best interception times lying around

0.4. The variants which do not allow immediate returns are

often faster than the original approaches and SPS can achieve

better first interception times than EPS. Again, ultilizing global

information speeds up the search. The EPS variants require

only β > 0, whereas the SPS variants benefit from larger

values of β as Fig. 4 illustrates for α = 2.

Interestingly, the experiments also hint at that choosing β
too large can prolong the search – albeit not much for the

parameter settings considered. The reasons for this must be

investigated further but apparently while increased exploration

lessens the chance of finding the target, it decreases the time

in successful trials.

β best success worst success
probability probability

0 0.637 (α,γ)=(5,0) 0.171 (α,γ)=(0,5)
0.1 0.974 (α,γ)=(0.1,0) 0.873 (α,γ)=(5,5)
0.5 0.976 (α,γ)=(2,0) 0.868 (α,γ)=(2,5)
1 0.980 (α,γ)=(0.1,0) 0.938 (α,γ)=(0.1,5)
2 0.974 (α,γ)=(0,0) 0.925 (α,γ)=(5,2)
5 0.974 (α,γ)=(0.5,0) 0.881 (α,γ)=(2,0.1)

Table 5. Success probabilities for EPS NR grouped by
the parameter β.
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β best success worst success
probability probability

0 0.609 (α,γ)=(5,5) 0.272 (α,γ)=(0,5)
0.1 0.723 (α,γ)=(5,0.1) 0.370 (α,γ)=(0,5)
0.5 0.882 (α,γ)=(5,0.1) 0.676 (α,γ)=(0,5)
1 0.941 (α,γ)=(5,0.1) 0.835 (α,γ)=(0.1,5)
2 0.968 (α,γ)=(0.5,0.5) 0.927 (α,γ)=(0,5)
5 0.969 (α,γ)=(0.5,0.1) 0.930 (α,γ)=(0.5,5)

Table 6. Success probabilities for SPS NR grouped by
the parameter β.

SPS, α = 2

EPS, α = 2

Figure 4. The relative time to first intercept.

6. Outlook

We have presented two new algorithms for a pursuit and

interception game based on a occurrence during an interna-

tional real-life experiment and provided a first experimental

analysis. The task was to intercept a mobile target in an urban

environment represented as a grid. The evader was assumed

to behave deterministically – choosing an exit point and

following a shortest-path. Once the target has exited the area,

the opportunity for intercepting is lost. This situation differs

from usual pursuit-evasion games which assume that the target

remains in the area since all exit points can be closed. The

evader’s behavior is straightforward but since a shortest path

is followed, the time for interception is relatively short. The

algorithms combine concepts stemming from particle swarm

optimization and ant colony optimization. Both algorithm

types lead to good results and are quite robust with regard

to the parameter setting.

Further work will consider more realistic and complicated

graph topologies taken from urban street maps. Design of

β best T
rel
ic worst T

rel
ic

0 0.100 (α,γ)=(0,5) 0.815 (α,γ)=(5,5)
0.1 0.412 (α,γ)=(0.1,0) 0.451 (α,γ)=(5,1)
0.5 0.410 (α,γ)=(0.1,0) 0.441 (α,γ)=(5,5)
1 0.417 (α,γ)=(0.5,0) 0.445 (α,γ)=(5,5)
2 0.422 (α,γ)=(0.5,0) 0.444 (α,γ)=(5,5)
5 0.430 (α,γ)=(0.1,0) 0.451 (α,γ)=(5,5)

Table 7. EPS: mean relative time to first intercept
grouped by the parameter β.

β best T
rel
ic worst T

rel
ic

0 0.420 (α,γ)=(0,0) 0.727 (α,γ)=(5,5)
0.1 0.432 (α,γ)=(0,2) 0.679 (α,γ)=(5,5)
0.5 0.412 (α,γ)=(0,0.1) 0.529 (α,γ)=(5,5)
1 0.400 (α,γ)=(0.1,0) 0.452 (α,γ)=(5,5)
2 0.397 (α,γ)=(0,0.5) 0.423 (α,γ)=(5,5)
5 0.416 (α,γ)=(0.5,5) 0.427 (α,γ)=(5,0.1)

Table 8. SPS: mean relative time to first intercept
grouped by the parameter β.

computer experiments methodology will be applied switching

to space-filling designs [2] to provide an in-depth analysis of

the algorithms. Also, sensor networks with a limited communi-

cation radius will be addressed considering at least two main

approaches: One is to maintain the cohesion of the swarm

similar to swarm approaches in underwater terrain covering.

The other is to allow a wide spread of the swarm and thus

different beliefs of the target position. The latter will increase

the exploration behavior in contrast to the former. There

are strong similarities to sparsely connected neighborhood

structures for PSO which will be investigated by introducing

personal and neighborhood estimations of the target position.

The present paper did not made any assumptions on the

probability model for the target position since it represents

a proof of concept. However, the framework can be extended

by adapting the probability model.
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