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Abstract

This paper explores the possibility of automated support for detecting inconsistencies in software systems
and requirements. The inconsistencies are introduced when the environment of the software system changes.
We refer to the software environment as its context. We review the recent research progress on nonmonotonic
logics, pointing out the significance of these results to software maintenance. We explain how a practical
implementation of such logics can be obtained via a simple extension to logic programming in the form of
an answer procedure that realizes the Extended Logic Semantics [7] for nonmonotonic logic programs that
have a unique answer set (which is a large and useful class of logic programs).

We augment the existing automated capabilities of the Computer Aided Prototyping System (CAPS)
for rapid prototyping via the extension to logic programming to provide an improved automated capability
for detecting certain kinds of inconsistencies created by implicit requirements changes. We illustrate the
significance of this capability via an example prototype for a problem originally suggested by Lehman.

1 Introduction
1.1 Costs of Software Evolution

Software evolution accounts for more than half of the total software cost. FEach time a new software system
i1s put into use, some fraction of the work force must be devoted to its maintenance. If it 1s assumed that all
systems require some maintenance effort and a constant work force engages in software development for a long
time, the fraction of effort available for developing new systems will get small, and can be kept from vanishing
only by retiring or replacing some old systems [16]. There has been a great deal of interest in reducing software
evolution costs. The reduction of evolution costs may involve some level of automated support for maintenance.
This paper explores the extent to which it is possible to automatically detect the need for maintenance.

It is well known that maintenance activities can be divided into three distinct classes: corrective, perfective,

and adaptive. Corrective maintenance largely reflects the failure of software engineers to validate and verify.
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Figure 1: Context Changes Trigger Software Changes.

Prototyping is one promising approach to reduce the amount of corrective maintenance [6]. Perfective main-
tenance is traditionally viewed as a form of maintenance necessary to improve or change the performance of a
system, but not its functionality. Adaptive software maintenance represents responses to requirement changes
and reflect the kind of change that occurs naturally in the software environment (or context). Even if software
is valid and verified, adaptive changes continue to be necessary. In this paper, we focus strictly on the detection

of the need for adaptive maintenance.

1.2 Adaptive Changes and Software Maintenance

Adaptive changes result from a changing software context. By context (or software context), we mean the parts
of the real world with which a specified system is to interact, including people and organizations as well as other
programs, databases, and hardware devices. When valid, the initial specification Sy of a software system reflects
the initial context Cy as well as the appropriate ways in which the software system is to interact with Cy. In an
ideal software development process, only those parts of the context which will truly affect the software system
should be represented by the software specification - all irrelevant features of the context are abstracted out of
So. The initial program Py, if correct with respect to Sy, should operate correctly in Cy. Whether or not a
specification reflects the context is a problem of validation and the correctness of a program with respect to a
specification is the problem of verification.

In practice, one often finds that Sy does not correctly reflect Cy (i.e., the specification is invalid) and Py is
not correct with respect to Sy (i.e., the program does not completely satisfy the specification). In such cases,
corrective and/or perfective changes are needed.

In any case, the context of a typical system will change. Over the life of the system, we typically observe a
series of contexts C; which should lead to a corresponding series of specifications S; and a corresponding series
of programs F;, as shown in Fig. 1.

In this ideal case, the need for adaptive change is obvious. If the context is C; (where i > 0) and the current
version of the program is P;_1, then the program does not correspond to a valid specification. It is clear that
each change in the software context requires an appropriate adaptation of the software. As Lehman’s laws [9]
indicate, for a software system to survive it must evolve; it must adapt to its everchanging context. We call
the change in context from C; to C; (where j > i) a context shift, denoted by C; — C; in Figure 1. Figure 1

also illustrates the notion of a mapping from a context to a specification and from a specification to a program,



denoted as: C; | S; and S; | P;. A context shift should result in maintenance activity where valid changes are
made to a specification and correct changes are made to a program.

Notice that each P; (where ¢ > 0) is actually a completely new system compared to P;_;. In general, the
main difference between the production of Py and a later version P; is the fact that in the production of P; a
great deal of software from P;_; is reused. The maintenance process suggested here is identical to Basili’s Full
Reuse Maintenance Process [2].

Software evolution should be viewed as a continual process of re-validation and re-verification. The contri-
bution made in this paper is the use of a logic to detect the need for maintenance. To detect context shifts; we
need to detect when the current software is based upon a specification that is no longer valid. In other words,
a context shift results in an invalid specification - the specification that correctly reflects C; does not correctly
reflect Ciyq.

In order to show the feasibility of our approach, we combine results from the area of nonmonotonic logics
to a Prolog version of the Computer Aided Prototyping System (CAPS). We choose CAPS because it provides
a well defined, high level language and is easy, as a result, to combine with the nonmonotonic logic semantics.
We believe that it is possible to extend the results we have obtained with CAPS to an operational software

environment.

1.3 Modeling a System and its Context

A system specifier attempts to make precise statements about the intended behavior of the system and its
context. There are two important classes of specification in any system: those which are tmmutable and those
which are mutable. Immutable specifications are statements about the software and/or its context which remain
true for all time. A mutable specification is a statement which i1s believed or assumed to be true, 1.e., an
assumption or a belief. Beliefs or assumptions are typically true in some contexts but not in all possible
contexts.

EXAMPLE 1. Immutable Specification: Bill and Sam Cooke are brothers.

EXAMPLE 2. Mutable Specification: Tt may be assumed/believed that Bill and Sam are kind to each other.

The knowledge that Bill and Sam are brothers is a known fact which is forever true (i.e., immutable). They
are now and will forever be brothers. However, it is a belief (i.e., mutable) that Bill and Sam are kind to each
other. The validity of this belief can change with time. With alarming frequency, Sam and Bill may substantiate
or invalidate this statement through their behavior.

This discussion of immutable and mutable specifications is analogous to Lehman’s S- and E-type programs.
The types are based upon the nature of the program’s specification. An S-type program is a program which
is correct with respect to specifications which do not change over time and an E-type program is one which is
correct with respect to specifications which may indeed change over time. A large system is typically comprised

of some mixture of the program types. We focus on E-type and S-type programs.



An E-type program has to evolve because the validity of the assumptions coded into the program change with
time. Lehman [10] gives a dramatic example involving British ships in the Falkland Island War. The software
system defending the ships was based, in part, on the assumption that an EXOQCET missile is friendly. The
assumption had been true until the Falkland Island War in which a British ship was sunk by an EXOCET. The
assumption in an E-type program is a mutable specification. Tt is the mutable specifications (or assumptions)
which serve as the seed for adaptive maintenance. The mutable specifications correspond to the parts of the
software context which are susceptible to the changes which result in context shifts.

Results from the study of nonmonotonic logic serve as a basis for understanding the mutable specification [18,
19, 21]. Nonmonotonic logics provide formalisms to handle beliefs (or assumptions). Intuitively, nonmonotonic
logics allow the retraction of beliefs when new information is presented which contradicts those beliefs. In
contrast, in monotonic logics, once the truth of a statement is established, new information cannot invalidate
the justification for believing the statement (i.e. its proof or derivation).

Consider the following definitions of monotonic and nonmonotonic. Let S and S’ represent a specification
and a changed specification, respectively. A specification is viewed here, as a set of assertions (both extensional
and intensional) in predicate logic. Let f(.S) and f(.S”) represent the interpretations of S and S’. In other words,
f(S) and f(S) are specified relations of S and S’. If the specification is valid, the specified relation relates
each input of a program to all output values that can be valid responses to the input according to the software
context. The most important observation to make is that f(S) is a model of the software context. Therefore,

if S is valid, then a change from f(5) to f(S’) represents a model of a software context shift: C; — Cj41.

Def. A function f is monotonic if and only if ¥S,5(S C 5" = f(S) C f(5')). (Where = denotes implica-

tion.) O

The definition of nonmonotonic essentially negates the formula above:

Def. f is nonmonotonic if and only if 35, 5'(S C S A f(S) € f(5')). O

The definition of nonmonotonic suggests a classification for specification changes where the classification
is based on the fact that we can add to or delete from S, i.e., S C 5" or S D S’. There are exactly three
ways that the addition to or deletion from S impacts the specified relation. The three ways are based upon

the possible relationships between f(S) and f(S’) due to C; — Cjt1, assuming that no change will result in
JSN S =0.

L f(5) € f(5);
2. f(5) 2 f(5");
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Figure 2: Relationships among specifications due to change.

3. f(5) Z F(S") A J(S) 2 F(S");

Through these relationships one immediately sees the primitive effects of a context shift C; —
Cit+1. Observe that in all of the cases for change in the specified relation, there will exist an
inconsistency between the old and the new specified relation. Suppose it is possible to know the
information about both .S and S’. A change to the specification S # S’ is detectable through the detection of an

inconsistency:
L. f(S) C f(S") means 3p(p € f(S) Ap € f(S')) where p is an input/output pair;
2. f(S) 2 f(5") means Ip(p € f(S) Ap & F(5"));
3. f(S) L F(S") A F(S) D S(S") means Tp, p'(p' £ p A (p & F(S) Ap € F(S) AP € F(S) Np' & F(5"))).

Figure 2 presents the meanings of the three possible relationships between f(.S) and its successor f(S’) in
terms of Venn Diagrams. Absent is a diagram for disjoint sets, f(S)() f(S’) = @. This is due to the fact that
disjoint sets represent completely different systems.

The facility to have knowledge about S and S’ requires the ability to monitor relevant aspects of the
corresponding software contexts. Implied by the foregoing is a framework for the automatic detection of the

need for adaptive maintenance. The framework is as follows:

1. The specifier of a problem solution must identify the specifications that are actually assumptions (i.e.,

those specifications that are mutable);

2. The specifier must determine how the assumptions can be contradicted or, in other words, lead to an

inconsistency (this leads to the rules by which it is possible to detect context shifts);
3. The specifier must identify the additional inputs necessary to detect the context shifts; and
4. The system must have the facility to detect inconsistencies when they arise.

Our goal is to demonstrate that the results from the study of nonmonotonic logics provide the necessary
framework for detecting the need for adaptive maintenance. We then apply these results to a practical system.
Section 2 explores different forms of mutable specifications based on results from the study of nonmonotonic

logic. Tn section 2 the framework for detecting the need for adaptive maintenance (i.e., the detection of context



shifts) is presented. Section 3 applies the framework to the CAPS model and demonstrates that the integrated

model possesses the facility to detect the context shift and the need for maintenance.

2 Overview of Context Dependent Specifications

2.1 Introduction
There are three different kinds of mutable specifications:
1. Specifications whose validity depends on time - i.e., valid in some possible contexts and invalid in others;

2. A distinguished subset of 1: specifications which are usually valid but there exist exceptions - e.g., in

general birds can fly, however penguins are an exception; and

3. An incomplete specification (missing specifications). Such a specification brings with it an implicit as-

sumption that the cases that are left undefined will not occur in practice.

We illustrate these three types of mutable specifications with three logic programs. The first is a situational
logic program in which some of the context dependent concerns are handled (type 1 above). The second program
is based upon autoepistemic logic. It handles conflicts with default assumptions as well as problems with
reasoning with incomplete information (types 1, 2 and 3 above). The last program extends the autoepistemic
logic-based program to detect context shifts in which specifications that once were valid are later found to be
invalid (covering all three specification types).

All of the examples in this paper have executed using Quintus Prolog Release 3.1.1 for the SUN SPARCstation

2.2 Situational Logic

Situational logic adds an extra parameter called a situation to every predicate to explicitly represent the depen-
dence of the truth of the predicate on the context or state of the world at some given time. Consider a standard
situational logic program to determine if a student is to be considered an honors student. For the purposes of

this example, an honors student never makes a grade below 90.

PROGRAM 1.

/* Model of the application. */
/* The constant s0 represents the initial situation. */
/* Situation S becomes situation grade(G, S)
after making the grade G. */
holds (honors(X), 8) :- high_grades(X, S).

high_grades(X, grade(G, s0)) :- is_high(G).
high_grades(X, grade(G, S)) :- is_high(G), high_grades(X, 8).
/* high_grades is not defined in so. */



is_high(G) :- number(G), 90 =< G, G =< 100.

/* Reusable system code: front end for situational logic */
ans(P, true) :- P.
ans(P, false).

This program uses the standard Prolog answering mechanism (represented by the ans predicate) for an

arbitrary goal P:
e if P can be proven then the answer is true,
e otherwise the answer is false.

We expect all queries to be expressed via the answer predicate to enable delivery of both positive and negative
Boolean results. The ans predicate will gain more significance in the next two versions of the program, where
it will be extended to incorporate features of nonmonotonic logic.

The program represents the state of the student’s progress in the situation variable S and effectively checks

if the property honors holds for student X in state S. Consider the following queries and the resulting answers:

(a) ?- ans(holds(honors(bob), s0), A).

A = false

(b) 7- ans(holds(honors(joe), grade(91, grade(95, s0))), A).
A = true

(c) 7- ans(holds(honors(sam), grade(89, grade(95, s0))), A).
A = false

(d) ?7- ans(holds(honors(art), grade(98, grade(80, s0))), A).
A = false

(e) 7- ans(holds(honors(bill), grade(incomplete, grade(95, s0))), A).
A = false

(f) 7- ans(holds(honors(dirk), grade(incomplete, grade(89, s0))), A).
A = false

The answers to the queries (b), (¢), (d), and (f) are valid (i.e. correct relative to our expectations and
experience). However, this version of the program has two problems: in query (a) the answer false is obtained
when in fact there is no data on which to base an answer; and in queries (e) and (f) null values have been
entered for some grades, making the false answer incorrect for (e) and correct by accident for query (f). Even
though the information concerning Dirk is incomplete, the answer to query (f) is correct because there is enough
information to know that he cannot be an honors student.

The problematic answers are due to the fact that the context has presented data which is exceptional.
Although the program accepts this exceptional data, it is giving answers which are incorrect. The default
assumptions implicit in the initial model of the problem domain include: (1) any student considered for honors
will have taken a class (with which (a) conflicts) and (2) any grade obtained will be a number in the range 0

through 100 inclusive (with which (e) and (f) conflict).



Note that one aspect of nonmonotonicity is captured in program 1. The answer to (b) is true for the situation

given, but the answer to the same query relative to a possible future situation is false:

(g) 7- ans(holds(honors(joe), grade(75, grade(91, grade(95, s0)))), A).
A = false

Although Joe was considered to be an honors student after receiving a 91 and 95, his most recent grade
(i.e., a 75) disqualifies him as an honors student. This example and the previous query (b) demonstrate the
temporal aspects of nonmonotonic reasoning in situational logic (i.e., nonmonotonicity includes the situation

where information that becomes available at a later point may falsify earlier answers).

2.3 Handling Conflicts With Default Assumptions

Several formalisms have been developed for nonmonotonic reasoning which provide varying degrees of appli-
cability to software context monitoring. Among these are Circumscription [14], Nonmonotonic modal logies
[4, 15], Autoepistemic Logic [17], etc. These works have been surveyed in the context of the concern for mutable
specifications in [18, 19].

This section presents a standard mechanism for handling exceptions to default assumptions based on au-
toepistemic logic, using a front-end answering mechanism to Prolog. The front-end presented was developed to

study the “Yale Shooting Problem”. The autoepistemic logic front-end provides the ability to:

1. answer yes, no, or unknown;
2. reason using true negation (i.e., assertions of facts known to be false);
3. support exceptions to general rules; and

4. reason with null values [20] or account for incomplete knowledge (i.e., the closed world assumption).

The ability to process an equivalence (i.e., iff) is also an aspect of support for autoepistemic logic, but the
implications of this feature are beyond the scope of this paper. A restricted form of equivalence is implementable
in Prolog.

To handle incomplete specifications, the series of answer clauses of the autoepistemic logic front-end provides

the ability to answer yes, no, or unknown:

ans(P, true) :- P. (1)
ans(P, false) :- not(P). (2)
ans (P, unknown). (3)
not(not(P)) :- P. (4

As before, all queries are routed through the answer predicate. The answer to a query P is true if P is proven

in (1); the answer is false if not (P) is proven in (2); and otherwise, the answer is unknown in (3). Since not is



not a Prolog primitive, we also have to explicitly tell the system in (4) that not (not(P)) means the same thing
as P to make the answer mechanism work properly when P has the form not(Q).

The concept of state is essential in autoepistemic logic to allow the truth of a query to vary depending on
the context. For example, if one shoots a gun that has not been previously loaded, it is false that a bullet
will discharge. Autoepistemic logic achieves this by using situations in the same way as situational calculus.
Autoepistemic logic also provides classical negation through explicit assertion of the conditions which make a

predicate false, as illustrated by the following examples.

not (P, 8). (5)
not(P, 8) :- q_1, ..., q_n. (6)

In (), P is asserted to be false in the situation S. In (6), P is false in situation S if q_1 through q_n are
proven. Note that any q_i may itself be negated.
Another feature of autoepistemic logic is its ability to express default assumptions (general rules that may

have some exceptions). This is accomplished by asserting abnormalities for general rules as follows:

abnormal (P, S). (7)

In (7), the specifier is stating that the situation S is abnormal with respect to the literal P. Default as-
sumptions are expressed as statements about all situations that are not known to be abnormal. For example, a
student is normally an honors student as long as the grades made thus far (i.e., in the given situation) are satis-
factory. A student is abnormal with respect to being an honors student when a situation is reached wherein some
other event has occurred that could disqualify the student from becoming an honors student. Incompleteness

of knowledge is captured via the negation as failure rule (NFR) as follows.

not_known(P) :- call(P), !, fail. (8)
not_known(P). (9

The literal not_known(P) means that one does not have reason to believe that P is true. Therefore, if P can
be proven, then not_known(P) fails (8). Otherwise, not_known(P) is true (9).
Program 2 and the following examples illustrate how features of autoepistemic logic can be used to address

the problems of queries (a), (e), and (f) in Section 2.2.

PROGRAM 2.

/* Model of the application. */
/* The constant s0 represents the initial situation. */
/* Situation S becomes situation grade(G, S)
after making the grade G. */
| /* Situation S becomes situation retake(G, S)
I after retaking a course with grade G. */
holds (honors(X), 8) :- high_grades(X, 8),
| not_known (abnormal (honors(X), S)).
| not(holds(honors(X), 8)) :- not(high_grades(X, S)).



high_grades(X, grade(G, s0)) :- is_high(G).
high_grades(X, grade(G, S)) :- is_high(G), high_grades(X, 8).
/* high_grades is not defined in so. */
| high_grades(X, 8) :- functor(S, F, N), F \== grade, arg(N, 5, Last_S),
| high_grades(X, Last_S).
I /* This invariance rule says that events other than getting a grade
I do not affect the high_grades predicate. */

| not(high_grades(X, grade(G, S))) :- not(is_high(G)).

| not(high_grades(X, 8)) :- functor(S, F, N), arg(N, S, Last_S),

| not (high_grades(X, Last_S)).

I /* This invariance rule says that if the high_grades predicate is

| false it will remain false in all possible future situations. */

is_high(G) :- number(G), 90 =< G, G =< 100.
| not(is_high(G)) :- number(G), 0 =< G, G =< 90.

| abnormal (honors(X), S) :- repeated_course(S).

| repeated_course(retake(G, S5)).

| repeated_course(S) :- functor(S, F, N), arg(N, S, Last_S),

| repeated_course(Last_S).

| /* Subsequent events do not affect whether or not a course
| has been repeated. */

/* Reusable system code: front end for autoepistemic logic */

ans(P, true) :- P.
| ans(P, false) :- not(P).
| ans(P, unknown).

| not(not(P)) :- P.

| not_known(P) :- call(P), !, fail.
| not_known(P).

The parts of program 2 that differ from program 1 are highlighted using vertical bars ( | ) in the left
margin (the bars must be removed to execute the program). Program 2 extends the model of the application to
include another kind of event that can affect the honors status of a student - retaking a course. The program
also includes invariance rules that enable it to ignore other kinds of events (i.e. other situation-constructing
functions recording events that do not affect the honors status of a student). This removes the assumption that
there is only one kind of event, which is implicit in program 1. We have thus transformed the model into a
form that can be consistently combined with models of other aspects of the application, such as whether or not
a student is eligible for financial aid. This is significant because models for real (i.e., complicated) systems are
understandable only if they can be factored into independent parts that can be analyzed in isolation.

We have also refined the model by adding explicit definitions of the default assumption that normal honors
students do not retake courses, and by adding rules for deriving negative assertions. To see the effects of these

changes, reconsider the queries (a) - (f):
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(a’) 7- ans(holds(honors(bob), s0), A).
A = unknown
(b’) ?- ans(holds(honors(joe), grade(91, grade(95, s0))), A).

A = true

(c?) 7- ans(holds(honors(sam), grade(89, grade(95, s0))), A).
A = false

(d’) 7- ans(holds(honors(art), grade(98, grade(80, s0))), A).
A = false

(e’) ?- ans(holds(honors(bill), grade(incomplete, grade(95, s0))), A).
A = unknown

(£’) ?- ans(holds(honors(dirk), grade(incomplete, grade(89, s0))), A).
A = false

Note that queries (a’), (¢’), and (f’) now give valid answers. These answers are obtained due to the improve-
ment in the answering mechanism (ans), the treatment of null values (e.g., “incomplete” in (e’) and (f”)) in the
is_high procedure, and reasoning with negated information. These are some of the standard features used by
the autoepistemic logic improvement to handle conflicts with default assumptions.

For the situational logic answer procedure, if it was not possible to prove a predicate, the predicate was
assumed to be false (this is Negation as Failure - NFR), leading to an incorrect result for query (a). The
autoepistemic answer procedure, on the other hand, will produce “false” only if it can prove that the predicate
is false. When the autoepistemic logic answer procedure is applied to query (a’), it is not possible to prove
or disprove the goal holds(honors(bob), s0). Therefore, the correct answer “unknown” is obtained. This
handles the exception to the default assumption that any student considered for honors will have at least one
grade.

The autoepistemic logic answer mechanism supports reasoning about null values by explicit assertion of
negative information, as illustrated by queries (¢’) and (f”). Situations of the form grade(incomplete, S) are
interpreted to mean that a student has a grade of “incomplete” or “in-progress” for some class. The definition
of the is_high predicate has been extended to explicitly define when the predicate is false as well as when it
is true, thus making the expected range of values for normal grades apparent. This handles null values in the
decision making as follows.

In query (¢’), honors(bill) cannot be shown to be true because the constant “incomplete” cannot be
proven to be a high grade because it is not a number. Similarly, “incomplete” cannot be proven not to be a
high grade, so that the negation of honors cannot be proven either. Consequently, the answering mechanism
produces the answer “unknown”. Thus, the default assumption that all grades are numbers in the range from
0 to 100 is represented explicitly in the positive and negative assertions about the is_high predicate, and is
handled properly in the reasoning process. In contrast, query (f’) contains enough information to determine
that Dirk is definitely not an honors student, regardless of the null value and the fact that the truth value
of is_high(incomplete) is not known, because the appearance of the grade 89 in the situation of query (f”)

enables the system to prove that high_grades is false.

11



Another kind of exception to a general specification is illustrated by the following query:

(h) ?- ans(holds(honors(john), grade(98, retake(91, grade(99, s0)))), A).
A = unknown

In query (h), John would normally be considered an honors student based on the grades he has made.
However, the fact that he has retaken a class makes him exceptional: a student who has retaken a class is not
judged to be an honors student according to the same criteria as a student who has made the same grades
without retaking a course. Note that the abnormality condition says only that the rules about determining
honors from high_grades do not apply to students with repeated courses, and it does not disqualify such
students from the honors category. It does say that additional criteria are needed for determining whether
or not a student with repeated courses is an honors student, as reflected by the answer to query (h). Rules
covering this case can be added to the specification without affecting the completely defined part of program
2 (i.e. the results of all queries that currently produce “true” or “false” will be unaffected, but queries that
produce “unknown” may be refined to produce more definite answers).

The last example illustrates the effect of declared abnormalities: they are retractions that make some
previously defined answers become undefined. This prepares the way for future conservative extensions to the
theory defined by the specification, and supports the application of monotonic transformations to organize
the history of an exploratory development [5]. Such a view is useful because several different extensions are
often explored in a development effort, particularly in the context of prototyping. Each extension corresponds
to a different alternative in the design of the functional specification for the proposed system. Information
elicited from the users via experiments with the corresponding versions of the prototype is used to evaluate
the alternatives and to choose one of them. This process is enhanced if the concrete representation of the
specification can be separated into a common part and several different extension parts, so that after one of
the alternatives is adopted it is easy to determine which part of the specification to keep and which parts to
remove and archive as explored but inferior alternatives. The definition of the abnormalities associated with
a concept, as illustrated in program 2, is a convenient mechanism to pin down the boundaries of the common
(or certain) part of a specification in preparation for an exploration of several competing formulations of an
unresolved issue. The effect of the abnormality is to leave a neat hole in the domain of the specification, which
can be filled with several different refinements corresponding to the competing solutions for resolving the issue

in question.

2.4 Detecting Context Shifts

Recall figure 1. It is a context shift that requires adaptive maintenance. The parts of the context which
may change, resulting in a context shift, are reflected by mutable specifications. The desire here is to detect

any possible context shift. The formulae in section 1.3. make it clear that one must be capable of detecting
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—holds(honors(Sam)) holds(honors(Sam))

f(S1) f(S2)

Figure 3: The Intended Relationship.

inconsistencies between the model of the software context and the actual context. In this section, we elaborate
how one detects the context shift by a further extension to the Prolog front-end presented in program 2.
It is apparent that program 2 can deal with many of mutable changes that may appear in the problem

domain. Suppose, however, that the following information becomes known to the program (i.e. is asserted in

the database):

holds(honors(sam), S).

Consider the following query:

(i) ?- ans(holds(honors(sam), grade(98, grade(80, s0))), A).

If the new information about Sam is asserted at the beginning of the autoepistemic logic program (i.e.,
program 2), the answer to this query is “true” under program 2. However, there is a problem. The normal basis
for determining honors has been overridden: Sam has been asserted to be an honors student even in situations
such as the one in query (i), where Sam has made an 80 (i.e., a grade less than 90). This situation indicates
that a context shift from the initial context Cy to a new context €' has taken place.

If we look more closely at the problem, we find that there is an undetected inconsistency in this example.
It is clear that S; C Ss: some information has been added to the specification, and none has been removed.
Specifically, holds(honors(Sam), X) & Sy Aholds(honors(Sam), X) € Sa. Furthermore, the intent of the change
is f(S1) € f(S2). See figure 3.

Since the program contains both f(S1) and f(S2), it is possible to prove that Sam is an honors student, and
it is also possible to prove that Sam is not an honors student. A minor extension to the autoepistemic logic
answer mechanism will, in general, enable the detection of context shifts when exploratory queries result in such

inconsistencies, as illustrated below.

PROGRAM 3.

/* Model of the application. */
/* The constant s0 represents the initial situation. */
/* Situation S becomes situation grade(G, S)
after making the grade G. */
/* Situation S becomes situation retake(G, S)
after retaking a course with grade G. */
holds (honors(X), 8) :- high_grades(X, 8),
not_known (abnormal (honors(X), S)).
not (holds (honors (X), S)) :- not(high_grades(X, S)).

| holds (honors(sam), S).
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| not(holds (honors(joe), S)).

high_grades(X, grade(G, s0)) :- is_high(G).
high_grades(X, grade(G, S)) :- is_high(G), high_grades(X, 8).
/* high_grades is not defined in so. */
high_grades(X, S) :- functor(8, F, N), F \== grade, arg(N, S, Last_8),
high_grades(X, Last_S).
/* This invariance rule says that events other than getting a grade
do not affect the high_grades predicate. */

not (high_grades(X, grade(G, S))) :- not(is_high(G)).
not (high_grades(X, S)) :- functor(S, F, N), arg(N, S, Last_S),
not (high_grades(X, Last_S)).
/* This invariance rule says that if the high_grades predicate is
false it will remain false in all possible future situations. */

is_high(G) :- number(G), 90 =< G, G =< 100.
not(is_high(G)) :- number(G), 0 =< G, G =< 90.

abnormal (honors(X), S) :- repeated_course(S).

repeated_course(retake(G, S5)).
repeated_course(S) :- functor(S, F, N), arg(N, S, Last_S),
repeated_course(Last_S).
/* Subsequent events do not affect whether or not a course
has been repeated. */

/* Reusable system code: front end for stable model semantics */

| ans(P, inconsistency) :- P, not(P).
ans(P, true) :- P.
ans(P, false) :- not(P).
ans (P, unknown).

not(not(P)) :- P.

not_known(P) :- call(P), !, fail.
not_known(P).

As before, differences from the previous version are highlighted using vertical bars on the left margin. The
final version of the answer mechanism shown in program 3 is suggested by Table 1. Table 1 presents the series of
answering mechanisms (CWA for Closed World Assumption; AE for Autoepistemic Logic: and EL for Extended
Logic) that have arisen out of the study of logic programming and nonmonotonic logics. The most powerful
mechanism is FL which is based upon the Extended Logic Semantics [3]. Table EL shows us that there are four
possible outcomes if we try to determine the truth value of an arbitrary predicate p by attempting to construct
proofs. In Table 1, a hyphen, ‘-’ indicates there is no attempt to prove the goal which labels the associated
column. For example, in the C'WA subtable, if the attempt to prove p fails, then the answer is false.

If, in Extended Logic Programming, the attempt to prove p succeeds and the attempt to prove not (p) fails,

then we can safely conclude that p is true. Similarly, when not (p) can be proved and p cannot be proved then

we can safely conclude that p is false. However, 1t is possible that we succeed in proving both p and not(p)
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I CwA I AP I L |

P not(p) | Answer P not(p) | Answer P not(p) Answer
success - true success - true success | failure true
failure - false failure | success false failure | success false

failure | failure | unknown || failure | failure unknown
success | success | inconsistent

Table 1: Possible Qutcomes for Query p.

(i.e., an inconsistency). In such a case, the program possesses an inconsistency which is not detectable by the
standard Prolog answering procedure or even by the autoepistemic answering procedure, because the conflict is
masked by the answer given by the first clause to succeed. Finally, it may not be possible to prove either p or
not(p), which means that the program does not possess sufficient knowledge to give an answer.

Notice that programs 2 and 3 have two forms of negation. The not_known is an implentation of the negation
as failure rule (NFR). The NFR implements the closed world assumption which, given an arbitrary predicate,
p, states that p is not true if it is not possible to prove p.

The other form of negation in the programs, not, is classical negation. In other words, if it is known that p
is false, not (p) is explicitly stated in the logic program.

Our answering mechanism (not to be confused with the answer set) extends Prolog to implement a restricted
version of the Extended Logic Semantics. The extension implements the Extended Logic Semantics for logic
programs with unique answer sets by considering all of the answering possibilities as shown in Table 1. The
class of programs with unique answer sets is large [8], and we believe that it contains all specifications that are
sufficiently complete to be considered for the purposes of a software development project.

An answer set is a deductive closure of a set of rules where NFR (negation as failure) is treated in accor-
dance with the closed world assumption. (See [3] for details on the construction of answer sets.) An incomplete
specification without negation as failure corresponds to multiple models but only one answer set that contains
the features common to all models. Let A be the answer set of a program PI1. If gis a goal of the logic program,
then gis true if ¢ € A. Notice that NFR has a great deal of significance in the discussion of answer sets. NFR

succeeds for goal g when ¢ € A. If a logic program, P2, contains:

p :- not_known(q).
q :- not_known(p).

then multiple answer sets are obtained because p and ¢ are answers based upon mutually exclusive conditions
relative to the answer sets. Specifically, p € Ay if ¢ & A1 and ¢ € Az if p & Ay. Thus, multiple answer sets
occur due to mutually exclusive conditions on membership in the answer set(s) of a program.

One can clearly see that a program that does not contain NFR is guaranteed to have a unique answer set.

Furthermore, a program may contain an NFR that is not contained in a loop (i.e., there are no negative loopsin
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the program). A program without negative cycles is guaranteed to have a unique answer set. Since stratifiable
programs [1] do not contain negative cycles, stratifiable programs have unique answer sets [3]. Program 3 is a
stratifiable program and, thus, has a unique answer set.

The answer mechanism presented in program 3 computes the intersection of the answer sets of a logic pro-
gram. For programs with unique answer sets, the answer mechanism implements the Extended Logic Semantics.
For programs with more than one answer set, the answer mechanism will provide the correct answer for queries
which are contained in the intersection of the answer sets. For queries with answers outside the intersection,
if the answer is unknown, the answer mechanism will answer correctly. For the remainder of answers lying
outside the intersection, the answering mechanism will not terminate. For example, given the negative loops in
the program segment P2 above, the evaluation of either of the queries, ans(p, X) and ans(q, X), will execute
without termination.

One might view a specification with multiple answer sets as incomplete, in the sense that there is not enough
information in the specification to determine the value of a query that can have different values in different
answer sets. The extended logic semantics of such an incomplete specification consists of all possible models
that are consistent with the specification. The answering mechanism we present gives a definite answer to a
query only if all answer sets contain the same answer for the query, and for cases where there is just one answer
set, the answering mechanism corresponds to the theoretical semantics of the logic.

In software development, we would like our specifications to provide answers to all queries of interest to
the users and developers. For this reason, we believe that it is always the goal of the specifier to construct a
specification that is complete in the sense of having a unique answer set, at least for the set of queries that
have practical value. However, it is almost certain that the initial versions of the specifications for any real
system will not be complete in this sense. A theoretically complete answering mechanism for extended logic
generates all possible answer sets even if there is more than one. Such an answering mechanism might be useful
in practice for diagnosing incompleteness and helping developers understand what choices have to be made in
order to make their specifications complete.

The answering procedure we present in program 3 is capable of detecting when the problems of inconsistency
or incompleteness occur. Inconsistencies arise when the program’s specification i1s no longer valid, i.e., the
specification no longer correctly reflects the program context. Incompleteness means that the specification does
not completely cover the program context. Incompleteness and inconsistency are the two fundamental problems
of validation. Validation is the process by which we attempt to the answer the question: is the specification
complete and consistent with respect to the environment. If a specification is not complete or consistent adaptive
maintenance is necessary — the specification is, in other words, invalid.

All of the previous answers (for queries a - h) are unaffected by the change to the answer mechanism, but

the answer to query (i) is now “inconsistency”. In query (i), it can be observed that the basis of deciding who is
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and who is not a honors student has changed, as reflected in the inconsistency in the modified specification and
program. Thus, the context shift implicit in the new statement about Sam is detectable via the new answering
mechanism. The detection of such an inconsistency will lead a requirements engineer to propose one or more new
specifications, check and modify the proposals until a validated new specification S; is reached, and construct
the corresponding program P; to reflect the new context Cj.

The remainder of this paper shows how to combine the CAPS model and the answering mechanism.

3 Detecting Context Shifts in CAPS Prototypes via Logic Pro-
gramming

CAPS is a computer aided prototyping system for real-time software (see [13] and [11]). CAPS is based upon a
prototyping language PSDL (Prototype System Description Language, [12]). This section shows how a simulator
for a small subset of PSDL can be realized in Prolog and augmented with the answering mechanism introduced in
Section 2.4. We then use a simplified version of the missile defense example introduced by Lehman to illustrate

how this approach can detect context shifts during the execution of the prototype.

3.1 A Spartan PSDL Simulator In Prolog

The fundamental constructs of PSDL are operators, data streams, timing constraints, conirol constrainis (i.e.,
condition and data triggers), and timers. In this section, we present a simplified version of the CAPS system as
implemented in Prolog. In particular, the simplified version implements the operator, data streams, and control
constraints. To simplify the presentation, we have left out timing constraints, timers, user-defined data types,
exceptions, and output guards. These features can be added without invalidating our approach. However, doing
so would complicate the example considerably without contributing much to the issue of detecting context shifts.

A PSDL program is a network of operator and data streams, augmented by control constraints. We represent
this network using assertions of the following form.

operator(Dperator_Name, Input_Stream_List, Dutput_Stream_List).

The state of a PSDL computation can be described by giving the current data values on all of the data
streams, and stating whether or not each of those values is new (i.e. whether or not it has been written since
the last time it was read). We represent this information using assertions of the following form.

stream(Stream_Name, Current_data_value, New_or_not).

The designer specifies an application by writing a set of assertions of these forms, describing the network
and the initial state of the data streams, as well as some assertions describing the intended behavior of the
prototype, as described after we introduce the simulator.

The simulator is invoked via the run predicate, which specifies how many steps the simulator is to execute.

In each step, the simulator scans all of the operators, and fires those that are ready to execute based on the
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triggering conditions specified in the user-defined network of operators. When an operator fires, it reads a value

from each input stream and writes a value on each output stream. The core of the simulator is shown below.

/* Mini-PSDL Simulator. */

run(0). /#* The simulation is complete when Steps = 0. */
run(Stepsg) :- scan_operators, New_Steps is Steps - 1, run(New_Steps).
scan_operators :- get_op(Name), operator(Name, Inputs, Outputs),

nl, print(executed(Wame)), nl, fire(Name, Inputs, Outputs).

/* Random choice on operators for nondeterminism  */
get_op(Name) : ~choose(operator, Name).

fire(Name, [I | Other_Inputs], Outputs) :- stream(I, V, _),
retract(stream(I, V, _)), asserta(stream(I, V, not_new)),
print (read_from(Name, V, I)), nl, !, fire(Name, Other_Inputs, Outputs).
/* Simulate reading the input streams in this clause. */

fire(Name, [], [0 | Other_Outputs]) :- choose(0, V),
retract(stream(0, _, _)), asserta(stream(0, V, new)),
print (wrote_into(Name, V, 0)), nl, !, fire(Wame, [], Other_Outputs).
/* Simulate writing into the output streams in this clause. */

fire(_, [1, [1). /* Operator execution complete. */
/* Random Choice Functions. */

choose (What, Choice) :-
last_choice(What, N), random(1, N, K), choice(What, K, Choice).
/* Pick the K-th declared choice for random K, */
/% 1 =< K =< number of choices available. %/
choose(What, Choice) :- choose(What, Choice).
/* Try a different choice if a failure backtracks to a choose. */

The simulator prints out a trace of all the operators that were executed, all of the input values that were
read from data streams, and all of the output values written into the data streams. Note that changes to the
state of the prototype are caused by both reading from input streams (the value in the stream is no longer
new) and by writing to output streams (the stream gets a new value). The operation of the simulator is based
on a mixture of random sampling (for output values) and semantic constraints on output values (provided by
the descriptions of operator behavior in the choice declarations). The nondeterminism inherent in the CAPS
model is reflected in the random selection of operators for execution. The choose predicate makes a random

choice from a set of possibilities defined using assertions of the following form.

choice(What_Attribute_To_Choose, Index_Number, Value_To_Choose).

The choose predicate is used for choosing the operators (in get_op) and for choosing the values that an
operator writes into its output data streams. The choices can be made deterministic by supplying computation

rules in the declarations of the choices to add semantic information, as illustrated by the examples in Section
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3.2. A more general explanation of the use of the simulator is given after we introduce the examples. The rest of
the simulator consists of a pseudo-random number generator and the answering mechanism presented in Section
2.4. A complete listing of the simulator can be found in Appendix A. The simulator does not contain negation

as failure (NFR). Thus it has a unique answer set and, therefore, implements the Extended Logic Semantics.

3.2 The Missile Firing Problem

We illustrate the definition of a prototype in the notation of the logic programming PSDL simulator using an
example adapted from a problem introduced by [10], the missile defense system for an allied vessel. Immutable
specifications in this domain are likely to include the following: (1) shoot down all hostile missiles, (2) de-
scriptions of radar signatures for particular kinds of missiles, etc. A simplified version of this example can be
represented as the network of operators defined by the following declarations and illustrated graphically in Fig.

4.

operator(radar, [], [detected_missile]).
operator(radio, [], [has_hit_ally]).
operator(intelligence_database,

[detected_missile, has_hit_ally, hostile_missiles],

[threat, hostile_missiles]) :- stream(detected_missile, _, new).
operator(defense_system, [threat], [fire_control]) :-
stream(threat, Threat, new), Threat == true.

operator (defensive_weapon, [fire_control], []) :-
stream(fire_control, shoot, new).

operator (completeness_monitor, [threat], []1) :-
stream(threat, unknown, _).

operator(consistency_monitor, [threat], []) :-
stream(threat, inconsistency, _).

consistency_monitor).
completeness_monitor).
choice(operator, defensive_weapon) .

choice(operator, 7,
6,

5,
choice(operator, 4, defense_system).
3,

2,

1,

choice(operator,

choice(operator, intelligence_database).
radio).

radar) .

choice(operator,
choice(operator,

The operator declarations specify the network by listing the operators in the network and by listing the
inputs and outputs of each operator. Triggering conditions are also defined by the right hand sides of the rules,
as explained in Section 3.4.

The operators completeness_monitor and consistency_monitor are not part of the application — they are
included to monitor the prototype execution for evidence of context shifts. The operator completeness_monitor
is triggered whenever the threat stream carries the value unknown and the operator consistency_monitor
whenever the threat stream carries the value inconsistency. These are the two special values produced

by our extended answering mechanism when it cannot determine a normal Boolean answer. This answering
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mechanism is provided as part of the PSDL simulator, and is explained in Section 2.4. The purpose of these

Figure 4: The Missile Defense Prototype

operators is to alert the designer to situations in which context shifts have affected some of the assumptions on
which the specification is based - if everything works as expected, then these operators should never be invoked.
In general, such operators should be placed on every stream whose value is defined using the ans predicate
(e.g., the stream threat). This rule can be used to automatically place such monitoring operations if we use a
translator program to generate the Prolog declarations from a PSDL definition of a prototype.

We also have to specify the initial states of the data streams. For the example, the initial states are:

/* Stream declarations: stream(Name, Current_data_value, New_or_not). */
stream(detected_missile, patriot, not_new).

stream(has_hit_ally, scud, not_new).

stream(hostile_missiles, [], not_new).

stream(threat, none, not_new).

stream(fire_control, none, not_new).

The behavior model of a prototype is defined using choice declarations. The behavior definitions for the

example follow.

/* Behavior model. */
choice(detected_missile, 5, phantom?2).
choice(detected_missile, 4, phantoml).
choice(detected_missile, 3, patriot).
choice(detected_missile, 2, exocet).
choice(detected_missile, 1, scud).

choice(has_hit_ally, 5, phantom?2).
choice(has_hit_ally, 4, phantoml).
choice(has_hit_ally, 3, patriot).
choice(has_hit_ally, 2, exocet).
choice(has_hit_ally, 1, scud).

choice(threat, 1, X) :- stream(detected_missile, M, _), ans(not(friendly(M)), X).

choice(hostile_missiles, 1, X) :- stream(hostile_missiles, L, _), stream(has_hit_ally, M, _),
include(M, L, X).

choice(fire_control, 1, X) :- stream(threat, T, _), fire_control_policy(T, X).
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include(X, L, L) :- member(X, L). /# include(X, Y, Z) => Z = {X} U Y %/
include(X, L, [X | L1).

The PSDL simulator supports two kinds of behavior simulation. The first is a rough model that works by
random sampling from a set of declared possible values for a stream. The example shows this kind of definition
for the stream detected_missile, which is produced by the radar operator, and for the stream has_hit_ally,
which is produced by the operator radio. In this case we are simulating data from external sensors by random
sampling.

The second kind of behavior modeling is more detailed, and computes the resulting data values according
to specified rules. For example, the stream threat produced by the intelligence_database operator is modeled
deterministically and in detail; the value produced by the only possible choice is represented by the value of a
variable, which is computed according to a stated rule: the stream threat is supposed to carry the Boolean value
true if and only if the detected missile (from the the input stream of the intelligence_database operator) is
classified as not friendly. The intelligence_database operator also maintains a state variable in the stream
hostile_missiles, which is a list that contains all of the missiles that have been reported as having hit an
allied vessel. The fire_control operator operates according to a simple fire control policy: shoot down a
missile if 1t is hostile. The definitions for policies like these are part of the context model associated with the
prototype. The context model for the example is shown below.

friendly(exocet).
friendly(patriot).
not(friendly(scud)).

not(friendly(M)) :- stream(has_hit_ally, M, _).
not(friendly(M)) :- stream(hostile_missiles, L, _), member(M, L).

member (X, [X | _1). /# Set membership test. */
member (X, [_ | L]) :- member(X, L).

fire_control_policy(Threat, shoot) :- Threat == true.
fire_control_policy(Threat, do_not_shoot) :- Threat \== true.

The context model indicates which missiles are known to be friendly, which are known to be hostile, and
how a missile can be determined, dynamically, to be hostile. This determination is based on the contents of
the intelligence database, which summarizes and keeps track of the intelligence reports that are modeled by the

data stream has_hit_ally. Notice, based upon the framework introduced in section 1.3:

1. The specifier notices that the specifications concerning which missiles are hostile or friendly are actually

mutable;

2. The specifier indicates rules which would contradict the mutable specifications (i.e., if a missile strikes an

allied ship it is considered hostile);

21



3. The specifier identifies additional inputs (e.g., has_hit_ally) required in order to monitor the software

context;

4. The answering mechanism provides the ability to discover inconsistencies when they arise.

In steps 2 and 3, intelligence reports on missile sales could be used to determine when missiles should be
considered hostile. Such information would prevent any ship from being sunk.

Notice that the PSDL simulator with the extended answering mechanism could be applied to any number
of possible prototypes. In other words, the example illustrates a general approach that can be applied to detect

context shifts in many different kinds of applications.

3.3 An Example of Detecting Context Shifts

We now examine five sample prototype executions. In the first, a patriot is fired into the vessel’s airspace.
Given the information that the patriot is friendly (i.e., friendly(patriot) in the original specification) and
given no additional information about the patriot, the ship does not shoot the patriot (i.e., the patriot is

not viewed as a threat):

executed(radar)
wrote_into(radar, patriot, detected_missile)

executed(radio)
wrote_into(radio, scud, has_hit_ally)

executed(intelligence_database)
read_from(intelligence_database, patriot, detected_missile)

read_from(intelligence_database, scud, has_hit_ally)

wrote_into(intelligence_database, false, threat)

In the next example, a scud (a missile known to be hostile) is fired and another scud hits an allied vessel.

In this case the system shoots the scud:

executed(radar)
wrote_into(radar, scud, detected_missile)

executed(radio)
wrote_into(radio, scud, has_hit_ally)

wrote_into(intelligence_database, true, threat)
wrote_into(intelligence_database, [scud], hostile_missiles)

executed(defense_system)

read_from(defense_system, true, threat)
wrote_into(defense_system, shoot, fire_control)
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Next, a phantom1 missile is fired into the vessel’s airspace and a scud hits an allied vessel. There 1s no
information concerning whether the phantomi is friendly or hostile. In other words the software context is

presenting information which shows that the current specification is incomplete:

executed(radar)
wrote_into(radar, phantoml, detected_missile)

executed(radio)
wrote_into(radio, scud, has_hit_ally)

executed(intelligence_database)
read_from(intelligence_database, phantoml, detected_missile)
read_from(intelligence_database, scud, has_hit_ally)
read_from(intelligence_database, [], hostile_missiles)
wrote_into(intelligence_database, unknown, threat)
wrote_into(intelligence_database, [scud], hostile_missiles)

executed(completeness_monitor)
read_from(completeness_monitor, unknown, threat)

This may be an indication of a context shift, especially if there was previously an assumption that the friendli-
ness (or otherwise) of all possible missile types was known to the missile defense system. The completeness_monitor
operator 1s executed to alert the designer that something unexpected has happened.

As an example of the application of the simulator to detecting context shifts, consider the situation in the

missile defense example where 1t is known that an exocet has hit an allied ship and an exocet is fired.

executed(radio)
wrote_into(radio, exocet, has_hit_ally)

executed(radar)
wrote_into(radar, exocet, detected_missile)

executed(intelligence_database)

read_from(intelligence_database, [exocet], hostile_missiles)
wrote_into(intelligence_database, inconsistency, threat)

executed(consistency_monitor)
read_from(consistency_monitor, inconsistency, threat)

Recall that the exocet is considered friendly in the original specification, but the system has “sensed”
information implying that the exocet is not friendly. The context (as sensed by the system) has shifted
resulting in an inconsistency (which is detected via the answering mechanism extension to Prolog).

Finally consider how this framework also allows for the prototyped system to learn about its context. Recall

that there is no information about the phantom1 missile. Suppose a phantoml sinks an allied ship. Given this
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information it is reasonable to assume that the phantomi missile is hostile. The following sequence of events

causes the defense system to treat the phantomi missile appropriately:

executed(radio)
wrote_into(radio, phantoml, has_hit_ally)

executed(radar)
wrote_into(radar, phantoml, detected_missile)

executed(intelligence_database)
read_from(intelligence_database, phantoml, detected_missile)
read_from(intelligence_database, phantoml, has_hit_ally)
read_from(intelligence_database, [], hostile_missiles)
wrote_into(intelligence_database, true, threat)
wrote_into(intelligence_database, [phantoml], hostile_missiles)

executed(defense_system)
read_from(defense_system, true, threat)
wrote_into(defense_system, shoot, fire_control)

The combination of the PSDL language and the answering mechanism of Section 2.4 results in a framework
to produce prototypes which are capable of reporting when they are inconsistent or incomplete. In other words,
given the appropriate inputs, a prototype developed in this framework can report when data occurs which
indicates that the prototype is not valid with respect to its context. It can report on the validity of a system
in terms of both completeness and consistency. We believe this to be a significant step towards the automation
of software maintenance activities. Also notice that in this example it is a minor step which leads to a fault
tolerant response to the detected inconsistencies. For example, the system could be arranged in a manner where
if an inconsistency arises, the missile causing the inconsistency is shot down. Fault tolerant responses could
be provided for incomplete knowledge as well. The potential for fault tolerance that this work implies is the

subject of continued research.

3.4 The General Approach

This section outlines how a prototyping project would use the PSDL simulation framework presented in Section
3.1. First, the author of a prototype would define the prototype as a network of operators by writing a set of
operator declarations. In the network declarations for the PSDL simulator, PSDL operators without guard
conditions are represented as Prolog assertions of the following form.

operator (Name, Input_streams, Output_streams).

In the example, the radar operator has this form. In general, operators with PSDL control constraints of
the form TRIGGERED BY ALL x, y IF p(x, y) are represented as Prolog rules of the following form.
operator (Name, Input_streams, Output_streams) :-—

stream(x, X, new), stream(y, Y, new), p(X, Y).
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This rule says that both streams x and y must have new values, and that these values must satisfy the execu-
tion guard p(X, Y).In the example, the defense_systemoperator has this form. The defensive_weapon oper-
ator illustrates an equivalent simplified representation for this kind of guard, and the intelligence_database
operator illustrates the form of the rule when there is a data trigger without any execution guard. This rule
works because the scan_operators procedure will only find those operators whose execution guards are true
in the current state.

PSDL control constraints of the form TRIGGERED BY SOME x, y IF p(x, y) are represented as sets of rules

of the following form.

operator (Name, Input_streams, Output_streams) :-—
stream(x, X, new), stream(y, Y, _), p(X, Y).

operator (Name, Input_streams, Output_streams) :-—
stream(x, X, _), stream(y, Y, new), p(X, Y).

The above rules say that at least one of the streams x and y must have new values, and that values
on these streams must satisfy the execution guard p(X, Y). This form of the rules is illustrated by the
intelligence_database operator in the example, which is triggered by either a new detected missile or a
new report of a missile hitting an ally. These alternatives are randomly determined in the choice predicates.

The prototype designer must also supply definitions of the initial values for any data streams representing
state variables, and define the behaviors of the operators, which is characterized by the data values each operator
can write into its output streams. This is done either by explicitly listing a set of legal values, or by giving rules
for computing those values. The designer must define a context model that is sufficient to support the rules for
computing output values. The context model usually contains facts known to affect the decisions made by the
operators and rules which allow the system to discover dynamically when facts may change.

Note that the developer must not only analyze the problem solution, but also must determine what infor-
mation is needed to detect when the proposed problem solution is no longer valid. The analysis of the missile
defense system recognizes that the decision to fire is based upon whether or not an incoming massile is friendly.
It has also considered which missiles are known to be friendly in the original software context and how the
system may discover if some missile is later found to be unfriendly. In the defense system example, the author
needed to add the rule that a type of missile 1s to be considered hostile if a missile of that type has hit an allied
vessel. Based on this rule, it was determined that the has_hit_ally information needed to be reported to the
system to enable the PSDL framework to detect context shifts automatically.

Providing such information places a new burden on the analyst. In addition to determining the solution to
a problem in terms of a system, the analyst must also determine what information the system will require in
order for it to determine when the system should be modified. In other words, the analyst must specify the

software solution and also design its maintenance process from the start.
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4 Conclusions and Summary

The extended prototyping framework suggests the following process model for software evolution:
1. Divide a system into its immutable and mutable specifications.

2. Determine what information must be reported to the system so that it can analyze itself to determine if

1t needs to be modified.

3. Validate the original specifications via rapid prototyping. This step is iterated based upon effective

interaction with the client.
4. Develop the system release based upon final prototype.
5. Verify the system release according to previously validated specifications.
6. Maintain the software in a proactive rather than reactive manner.

In step 6, we propose that maintainers of a software system periodically review all specifications to determine
which are immutable and which are mutable (because of the possibility of misclassifications) and revalidate the
mutable specifications, since these are the specifications which are most likely to become invalid over the life of
the project. The mutable specifications are periodically revalidated with emphasis on those recently reclassified
as mutable. Any mutable specification found to be no longer valid triggers an exploration of changes to the
specifications.

Prior to changing the production software, the proposed change is validated together with the entire system
of specifications to ascertain side effects of the change. This is accomplished via prototyping. Thus the effect of
change becomes more predictable and manageable. Once the change has been validated through the prototype,
the requirements tracing feature can be used to identify the program unit(s) which need(s) to be adapted to
incorporate the validated change into the released software.

CAPS suggests a form of maintenance which is more scientific, proactive, and focused than many of the
approaches currently used in practice. Although CAPS is targeted at real-time systems, CAPS and the general

philosophy of the CAPS framework should facilitate the management of uncertainty in any context.
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A Complete Listing of the Spartan PSDL Simulator

/* Mini-PSDL Simulator. */
:— dynamic stream/3, seed/1. /* Declarations for assert, retract. */

run(0). /#* The simulation is complete when Steps = 0. */
run(Stepsg) :- scan_operators, New_Steps is Steps - 1, run(New_Steps).
scan_operators :- get_op(Name), operator(Name, Inputs, Outputs),

nl, print(executed(Wame)), nl, fire(Name, Inputs, Outputs).

/* Random choice on operators for nondeterminism  */
get_op(Name) : ~choose(operator, Name).

fire(Name, [I | Other_Inputs], Outputs) :- stream(I, V, _),
retract(stream(I, V, _)), asserta(stream(I, V, not_new)),
print (read_from(Name, V, I)), nl, !, fire(Name, Other_Inputs, Outputs).
/* Simulate reading the input streams in this clause. */

fire(Name, [], [0 | Other_Outputs]) :- choose(0, V),
retract(stream(0, _, _)), asserta(stream(0, V, new)),
print (wrote_into(Name, V, 0)), nl, !, fire(Wame, [], Other_Outputs).

/* Simulate writing into the output streams in this clause. */

fire(_, [1, [1). /* Operator execution complete. */
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/* Random Choice Functions. */

choose (What, Choice) :-
last_choice(What, N), random(1, N, K), choice(What, K, Choice).
/* Pick the K-th declared choice for random K, */
/% 1 =< K =< number of choices available. %/
choose(What, Choice) :- choose(What, Choice).
/* Try a different choice if a failure backtracks to a choose. */

last_choice(What, N) :- choice(What, N, _).
/* Find the last index for a choice. */
/* Choices are numbered consecutively from 1 to N. */

random(L, U, N) :- L =< U, newseed(S), N is (S mod (1 + U - L)) + L.
/* N is a pseudo-random number in the range L =< N =< U. */

newseed(8) :- seed(01d_Seed), S is (125 * 01d_Seed + 1) mod 4096,
retract (seed(01d_Seed)), asserta(seed(S)).

seed(45). /* Initial value of the seed. */
/* Logic Programming Extensions. */
not(not(P)) :- P.

ans (P, inconsistency) :- P, not(P).

ans(P, true) :- P.

ans(P, false) :- not(P).
ans(_, unknown).

not_known(P) :- P, !, fail.
not_known(_).

B Complete Listing of the Missile Defense Example

operator(radar, [], [detected_missile]).
operator(radio, [], [has_hit_ally]).
operator(intelligence_database,

[detected_missile, has_hit_ally, hostile_missiles],

[threat, hostile_missiles]) :- stream(detected_missile, _, new).
operator(defense_system, [threat], [fire_control]) :-
stream(threat, Threat, new), Threat == true.

operator (defensive_weapon, [fire_control], []) :-
stream(fire_control, shoot, new).

operator (completeness_monitor, [threat], []1) :-
stream(threat, unknown, _).

operator(consistency_monitor, [threat], []) :-
stream(threat, inconsistency, _).

/* Stream declarations: stream(Name, Current_data_value, New_or_not). */
stream(detected_missile, patriot, not_new).

stream(has_hit_ally, scud, not_new).

stream(hostile_missiles, [], not_new).
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stream(threat, none, not_new).
stream(fire_control, none, not_new).

/* Behavior model. */

choice(detected_missile, 5, phantom?2).
choice(detected_missile, 4, phantoml).
choice(detected_missile, 3, patriot).
choice(detected_missile, 2, exocet).
choice(detected_missile, 1, scud).

choice(has_hit_ally, 5, phantom?2).
choice(has_hit_ally, 4, phantoml).
choice(has_hit_ally, 3, patriot).
choice(has_hit_ally, 2, exocet).
choice(has_hit_ally, 1, scud).

choice(operator, 7, consistency_monitor).
choice(operator, 6, completeness_monitor).
choice(operator, 5, defensive_weapon).
choice(operator, 4, defense_system).
choice(operator, 3, intelligence_database).
choice(operator, 2, radio).

1

choice(operator, 1, radar).

choice(threat, 1, X) :- stream(detected_missile, M, _), ans(not(friendly(M)), X).
choice(hostile_missiles, 1, X) :- stream(hostile_missiles, L, _),
stream(has_hit_ally, M, _), include(M, L, X).

choice(fire_control, 1, X) :- stream(threat, T, _), fire_control_policy(T, X).
/% Context model. */

fire_control_policy(Threat, shoot) :- Threat == true.
fire_control_policy(Threat, do_not_shoot) :- Threat \== true.
friendly(exocet).

friendly(patriot).

not(friendly(scud)).

not(friendly(M)) :- stream(has_hit_ally, M, _).
not(friendly(M)) :- stream(hostile_missiles, L, _), member(M, L).

member (X, [X | _1). /# Set membership test. */
member (X, [_ | L]) :- member(X, L).

include(X, L, L) :- member(X, L). /% include(X, Y, Z) => Z = {X} U Y %/
include(X, L, [X | LI1).
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