brought to you by .{ CORE

View metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

alhoun

Institutional Archive of the Naval Pastgraduate School

Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

1992-01

Computer-Aided Prototyping for a
Command-and-Control System Using Caps

Luqgi

IEEE

http://hdl.handle.net/10945/43625

DUDLEY 'hounisaproject of the Dudley Knox Library at NP, furthering the precepts and
goals of open government and government transparency. All information contained

K H DK herein has been approved for release by the NPS Public Affairs Officer.
q‘“ LIBRARY

Dudley Knox Library / MNaval Postgraduate School
411 Dyer Road / 1 University Circle
Monterey, California USA 93943

hitp://www.nps.edu/library

https://core.ac.uk/display/36735813?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

FEATURE

This case study shows
the feasibility of using
computer-uided
profotyping to validate
a Cl system ’s
requirements and
describes the enabling
technology.

Lual
Naval Postgraduate School

COMPUTER-AIDED
PROTOTYPING FOR A
COMMAND-AND-CONTROL
SYSTEM USING CAPS

FLAP

]
|

COmputer—aided prototyping, which
seeks to automate early design phases,
is an important technique for developing
complex embedded systems that have
strict time constraints. System analysts and
users need prototyping methods to ade-
quately formulate and assess the require-
ments for those systems. They can then
use computers to apply these methods
rapidly.

At the Naval Postgraduate School, my
colleagues and I have recentdy completed
an experiment to evaluate our rapid-pro-
totyping methods and computer-aided
design environment.

1
|
|
|
|
I
1
|
|
I

-

Our experiment was to prototype a ge-
neric command, control, communica-
tions, and intelligence station! and gener-
ate the Ada code from the prototype’s
specifications automatically. The results
show that it is feasible to use computer-
aided prototyping for practical, real-time
Ada applications,

C*T applications are difficult to de-
velop, for the reasons outlined in the box
on p. 58. The C¥I prototype we developed
had characteristics typical of embedded
software, including distributed process-
ing; hard real-time constraints; multiple,
predefined hardware interfaces; and com-

56

0740G-7458,/92/0100/0056/$03.00 © IEEE

JANUARY 1992

plex requirements. We generated a color,
multdwindow executable Ada prototype
that can process tactical data from muldple
interfaces in real ime.

We used the prototype to get feedback
about the proposed design’s effectiveness,
performance, and structure and to evaluate
the soundness of our design decisions. The
feedback helped us improve and refine re-
quirements and evaluate the feasibility of the
functional specification. We iteratively re-
fined and validated requirements by modify-
ingan operational prototype until users were
satisfied with its behavior.

We used the Prototype System De-
scription Language? and Computer-
Aided Prototyping System® in our experi-
ment. PSDL integrates the tools in CAPS,
which help the designer create the design,
automatically construct a real-dme sched-
ule, and automatically generate an execut-
able Ada model of the proposed system
from the PSDL specificaion. The Ada
model is a combinaton of CAPS-gener-
ated Ada programs and reusable atomic
Ada components.

CAPS also supports system manage-
ment and helps control a system’s evolu-
tion.* This support helps designers give
dmely responses to modification requests
and helps protect the system’s integrity as
it evolves, extending its life.

SYSTEM REQUIREMENTS

ACI system helps military officers un-
derstand tactical situations: It provides
communication among officers on differ-
ent platforms and external forces, and it
processes tactical data from various inter-
nal and external sources, such as radar and
sonar.

Structure. The proposed CI system is a
network of generic C’1 stations, each of

which is a specialized instance of a com- |

mon design. The network is a large, geo-
graphically distributed system that may
have many thousand nodes. Each station is
mounted on a plaform whose locadon
typically is not fixed. Larger platforms can
have several stations serving officers with
different responsibilities.

Each station can be viewed as a single

embedded system or a local distributed
system with multiple processors. A sub-
goal of our research is to establish the fea-
sibility of a low-cost CT system consisting
of a loosely coupled network of C*I sta-
dons installed in sites without substantal
C’1 support, like noncombatant ships or
small combatant platforms.

Fach station would be a generic CI
station, although individual configura-
tions could provide tailored subsets of
functionality. Steve Anderson’s report
gives a detailed description of the generic
C*1 station’s requirements.’

Interfaces. Figure 1 shows a single-user
CI station and its external interfaces to
the user and to the weapon systems, plat-
form sensors, navigation system, and com-
munication links. The information the
user requires includes the platform’s loca-
don, the status of its weapon systems, and
the locations and characteristics of other
platforms in the area. The stadon receives
and transmits track information and com-
mand-and-control data via communica-

ton links, receives track information from
platform sensors, outputs a tactical display
to the user, provides a text editor for gen-
erating and sending messages, and pro-
vides a way to verify and maintain track-
data integrity. (A track is the system’s
representation of an external object such
as a platform or a navigation hazard.
Tracks contain information about the lo-
cation and characteristics of the external
object.)

The user is an officer at some com-
mand level. The stadon is the officer’s
communication channel to superiors,
subordinates, and other officers at the
same command level. The user communi-
cates with the station via a keyboard,
graphical display, and pointing device to
obtain information about selected tracks,
the status of the host platform and C*I
system, and messages from other officers.
The user may update track information,
control the status of the C’T system, and
originate messages.

The antennas, notch filters, and data-
terminal sets provide communication

Weapon systems

N RN

Status
information

Generic (%1 station

i

User

Communication links
| Oall _M“_”ﬂe—
e M‘
g s M

R X

information.

Navigation system |

T |

Platform sensors

Figure 1. Diagram of single-user generic 'l system and its external interfaces.

IEEE SOFTWARE

57

NATURE OF C31 SYSTEMS

(I systems help military officers understand tactical situations. They are difficult

to develop because

¢ Their use in strategic defense applications makes correctness and reliability crit-

ical.

¢ They are influenced by many people, by organizations, and by policies, so their
requirements are complex and difficult to determine.

¢ Their design depends on techniques to guarantee that hard real-time con-
straints will be met both in large distributed systems connected by long-haul net-
works and in local distributed systems with many hardware structures. Current soft-
ware research has not solved many of these systems’ problems, like
real-time-database design, network-flow prediction, upper bounds for the actions of
real-time operating systems, hard real-time algorithms for general problems, and ro-
bust identification of processes in distributed systems.

¢ Their complex, dynamic interfaces make it almost impossible to deal with

changes in requirements.

¢ As with any large system, their development is costly, and the currentlow pro-
ductivity of software developmentaggravates the problem.
We use prototyping and computer-aided design techniques to address many of

these difficulties.

TABLE 1
DIALOGUE-RESPONSE TIMES

Type

Response fime

Question and answer
Menu selection

Form filling

Function keys
Command language
Natural/Query language
Graphical interaction

0.5 to < 2.0 seconds
<0.2 second

> 2.0 seconds

<0.2 second

0.5 to > 2.0 seconds
0.2 to < 0.5 second
<0.2 second

TABLE 2
MESSAGE-DELAY TIMES

Message Time between message Time between message
precedence completion and fransmission reception and display
Flash < 1 second <1 second
Immediate < 2 seconds < 2 seconds
Priority < 3 seconds < 3 seconds
Routine <4 seconds <4 seconds

links to stations on other platforms. The
local area network connects to other sta-
tons on the same platform, if any.

The navigation system provides infor-
mation about the platform’s current loca-
ton and movement.

The sensors provide the location of
surrounding platforms.

The weapon systems provide informa-
ton about their status.

Requirements. The requirements for a
generic C’I station include hard real-time
constraints on system responses. Any de-
sign for such a station depends on assump-
tions about the timing characteristics of

the external systems with which it inter-
acts. Because accurate values for many of
the hard real-time constraints in a C*1 sys-
tem are classified, we based the design of
our unclassified prototype on seven arbi-
trary assumptions:

¢ It should be able to retrieve up to
1,000 tracks in less than one second.

¢ It should enter the contents of a
track-data message into a track database in
less than two seconds.

¢ It should conform to the dialogue-
response and message-delay times sum-
marized in Tables 1 and 2.

¢ Ithas four sensors, four weapon sys-
tems, and four communication links.

¢ Its navigation system updates veloc-
ity every 41 ms, transmits velocity every
983 ms, and updates latitude and longi-
tude every 1.3 seconds.

¢ Its platform sensors track a maxi-
mum of 100 tracks per sensor per second.

+ Its weapon systems update their sta-
tus once every second.

We did not consider network delay be-
cause the focus of this requirements anal-
ysis and prototyping effort was on timing
constraints within individual stations.

PROTOTYPE SLICE

The prototype includes a generic C1
station and its interacting external sys-
tems. We formulated the prototype as a
closed system because we must simulate
the external systems to demonstrate the
proposed behavior of the CI station.
(Vedat Coskun and Cengiz KesogluS pro-
vide complete details of the prototype.)

Figure 2 shows a representative slice of
the PSDL definition that contains a part of
the system related to message routing (see
the box on p. 62-63 for an overview of
PSDL). The slice takes a path from the
hierarchically structured prototype’s root
to its leaves. The root is a single PSDL
operator, c¢3i_system, which is decom-
posed into more primitive operators. The
designer defines the decomposition via a
PSDL graph like that shown in Figure 2.

Timing requirements. Figure 2 defines the
control constraints for the operators in its
graph. Each operator definition includes

JANUARY 1982

its timing constraints, based on the re-
quirements outlined earlier. For example,
the minimum calling period for the sen-
sor_interface operator is 2,500 ps, which
was derived from our assumption that the
maximum data rate from each of the four
sensors is 100 tracks per second, so the
minimum calling period is one second di-
vided by 400, or 2,500 ps. This is the long-
est time the system can allow between
consecutive firings of the sensor_interface
operator in the static schedule.

The requirements state that the maxi- |

mum delay between receiving a track mes-
sage and entering it into the database is
two seconds. In the initial design of the
prototype we allocate this delay evenly be-
tween the sensor_interface and the
track_database_manager operators, lead-
ing to maximum response times of one
second each. We may reallocate these con-
straints later as we explore requirements in
more detail.

As Figure 2 shows, we don’t specify the
timing requirements for the communica-
tion interface at this level because they are
influenced by two separate requirements:
the maximum delay of a communication
message (one second), and the maximum
delay of a track message (two seconds). Be-
cause each requirement is likely to affect
components on different dataflow paths, we

define the corresponding timing constraints |

at the nextdecomposition level.

In the initial prototype version, we do
not distinguish timing requirements for
different message classes or different types
of user interaction. Instead, we design for
the worst case: All messages must be deliv-
ered within one second and all user-inter-
face functions must complete within 200
ms. We may relax these assumptions in
later iterations if we find it is not feasible to
meet these simplified requirements. At
present, we introduce distinctions only to
show the feasibility of the tming require-
ments.

The BY REQUIREMENTS clauses in Fig-
ure 2 document by keyword the require-
ments from which we derived the dming
constraints.

Communication interface. The communi-

comms
interface

Weapon
systems

User
interface

Weapon

Sensor

position_ interfuce
data

Sensors

system sensor_data

DATA STREAMS
~ Type declarations for the data streams in the graph go here.

CONTROL CONSTRAINTS
OPERATOR comms_interface
QOPERATOR sensor_interface
MINIMUM CALLING PERIOD 2500 mictosec BY REQUIREMENTS sensor_rate
MAXIMUM RESPONSE TIME 1 sec BY REQUIREMENTS wrack_delay
OPERATOR track_database_manager
MINIMUM CALLING PERIOD 1 ms
BY REQUIREMENTS track_retrieval_rate
MAXIMUM RESPONSE TIME 1 sec
BY REQUIREMENTS track_delay
OPERATOR user_interface
MAXIMUM RESPONSE TIME 200 ms
BY REQUIREMENTS dialogue_response_time
OPERATOR weapons_interface
TRIGGERED BY SOME weapon_status_data
OUTPUT weapons_emrep IF
weapon_status_data.status = damaged OR
weapon_status_data.status = service_required OR
weapon_status_data.status = out_of_ammunition
MINIMUM CALLING PERIOD 250 ms
BY REQUIREMENTS weapons_status_rate
MAXIMUM RESPONSE TIME 1 sec
BY REQUIREMENTS weapons_status_rate
OPERATOR comms_links
OPERATOR sensors
OPERATOR navigation_system
PERIOD 1300 ms BY REQUIREMENTS navigation_rate
OPERATOR WEAPONS_SYSTEMS
PERIOD 250 ms BY REQUIREMENTS weapons_status_rate
END

interface /1

oo

. . . . | - T
cation interface performs functions di- ‘ Figure 2. Slice of PSDL definition for message vouting, including a decomposition graph.

IEEE SOFTWARE

59

_cuple =
responsible for processing incoming and
well as produ k reports and
o1y nts:} ety o
Incoming ("".“E‘_ﬂ!
message comins odd _ track

fed - network _setup

o

resolver

fed_transmit_command

Outcoming

fed_emission_control

inifiate_irans

message
resolver

ted_transmit_command

ferminate_frans

Track report
generator

CONTROL CONSTRAINTS

PERIOD 2 sec

END

OPERATOR incoming_message_resolver
MINIMUM CALLING PERIOD 40 ms
BY REQUIREMENTS link_speed
OPERATOR outgoing_message_resolver
MINIMUM CALLING PERIOD 71 ms
BY REQUIREMENTS transmission_rate
MAXIMUM RESPONSE TIME 800 ms
BY REQUIREMENTS message_delay, dialogue_response_time
OPERATOR track_report_generator

BY REQUIREMENTS track_reporting_rate
TRIGGERED IF not terminate_trans

Figure 3. PSDL definition for the communication interface.

rectly related to message reception and |

transmission. Because statons use differ-
ent communication equipment, this
module’s implementation will vary greatly
from one instantiation to another. How-
ever, all generic C’1 stations are subject to

a common set of behavioral and timing
requirements. The requirements dictated
that the implementation of this interface be
very modular, to isolate site dependencies.’
Figure 3 shows the PSDL definition
for the communication interface. This in-

terface must monitor, relay, and transmit
messages on various networks within hard
real-time deadlines. It filters, routes, sorts,
and translates messages, and it analyzes
messages arriving at the communication
interface to determine if they contain track
information, if they must be relayed to
other participants in the network, and if
they must be archived.

Constrain’s. At a network speed of 1,300 to
5,000 bps and assuming the shortest mes-
sage is about 100 characters (800 bits,
minus start/stop bits and redundant data),
the system will receive a maximum of 25
messages from four links in one second.
Therefore, the minimum calling period of
the incoming message_resolver is one

. second divided by 25, or 40 ms. We leave

the specification of the maximum re-
sponse time to the next level because this
operator processes both messages con-
taining tracks (comms_add_track) and
messages containing communications
among officers (comms_email).

‘We estimate the maximum number of
outgoing messages in one second as

one message every two seconds from
the track_report_generator (a periodic
operator) plus

¢ 12.5 messages every second to relay
(assuming that half the messages received
should be relayed) plus

+ one message every second from the
user (an assumption)
for a maximum of 14 messages per second.
Thus, the minimum calling period for the
outgoing_message_resolver operator is
one second divided by 14, or 71 ms. Its
maximum response time is one second
minus 200 ms, or 800 ms, since we assume
messages must be transmitted within one
second of completion, and that the user
interface can have up to a 200-ms delay.

The requirements give no time con-

- straint for track reports. The prototype is

designed to produce track reports every two
seconds when this feature is activated, based
on the analyst’s assumption of a reasonable
reporting rate. This assumption mustbeval-
idated and adjusted as necessary.

Incoming messages. The incoming_mes-
sage_resolver is stll too complicated for

60

JANUARY 18982

direct implementation, so it is decom-
posed into four atomic operators, shown
in Figure 4.

The maximum time delay for a mes-
sage is one second. The user interface re-
quires 200 ms, and the remaining 800 ms
are initially allocated evenly between the
input_file_parser and the message_
type_decision.

"The dme delay for a track message can
be at most two seconds. The track
database manager requires one second,
and the input_file_parser and message_
type_decision have been allocated 400
ms each, leaving 200 ms for wack ex-
tractor.

"The maximum response time allowed
for relaying decision depends on the
maximum delay allowed between the re-
ceipt and transmission of a relayed mes-
sage. The requirements do not contain
this information, so the analyst makes an
arbitrary assumption that this delay should
be no more than 1.5 seconds. Because the
outgoing_message_resolver takes 800 ms
and the input_file_parser takes 400 ms,
this leaves 300 ms for relaying_decision.

The analyst annotates each atomic
component in the graph in Figure 4 with
these execution-time estimates. The
CAPS tools use these annotations to find
reusable components from the software
base.

Triggering conditions are designated
as BY ALL because they must execute for
every incoming data value. This implies
input_text_record and comms_text_ file
must be dataflow streams, and the execu-
tion rates of the operators input file_
parser, message_type_decision, track_ex-
tractor, and relaying_decision must be
synchronized. The output guards on
message_type_decision suppress output
when the incoming message is neither
email nor track information.

"To complete this top-down slice, Fig-
ure 5 shows the PSDL specification for
one atomic operator in the prototype,
message_type_decision, which decides if
the input_text_record contains track in-
formation. The CAPS graphical editor
derives this operator’s maximum execu-
tion time and its I/O interface mechani-
cally from the implementation graph of its

tion effort. As indicated in the PSDL de-
scription, this operator is implemented in

Ada.

parent operator. The specification serves
as the basis for the retrieval of a reusable
component or for a manual implementa-

input_text_record

message_
type_

decision

fed_archive_s

extraclor

DATA STREAMS
input_text_record,comms_text_file : text_record
CONTROL CONSTRAINTS
OPERATOR input_file_parser
MAXIMUM RESPONSE TIME 400 ms
TRIGGERED BY ALL input_link_message
OPERATOR relaying_decision
MAXIMUM RESPONSE TIME 300 ms
BY REQUIREMENTS relaying_delay
TRIGGERED BY ALL input_text_record
QOUTPUT tcd_transmit_command IF
input_text_record.relayed
OPERATOR message_type_decision
MAXIMUM RESPONSE TIME 400 ms
TRIGGERED BY ALL input_text_record
OUTPUT comms_text_file IF comms_text_file.is_track
OUTPUT comms_email IF NOT comms_text_file.is_track
OPERATOR track_extractor
MAXIMUM RESPONSE TIME 200 ms
TRIGGERED IF comms_text_file.is_track
END

Figure 4. Four atomic operators for incoming_message_yesolver.

{EEE SOFTWARE

FEATURE

OPERATOR message_type_decision
SPECIFICATION
INPUTinput_text_record : text_record,
tdd_archive_setup : archive_setup
OUTPUTcomms_text_file : text_record,
comms_email : filename

MAXIMUM EXECUTION TIME 100 ms

input_text_record contains track information. }
END

IMPLEMENTATION Ada message_type_decision
END

DESCRIPTION { Sets the is_track field of comms_text_file if

USING CAPS

To generate the prototype’s Ada
code, we used CAPS and the Transport-
able Applications Environment Plus, a
windowing package developed at the
National Aeronautics and Space
Administration’s Goddard Space Flight
Center.” TAE Plus provides either Ada
or C code to create the user-interface
modules, but we had to modify the gen-
erated code to make it fit the CAPS cod-
ing conventons.

The prototype was developed and runs
on a Sun 3 and is direcdy transferable to a
ruggedized Genisco computer.

CAPS strudure. Figure 6 shows the three

main components of CAPS: a user inter-

Figure S. PSDL definition for message_type_decision.

OVERVIEW OF PSDL

PSDL provides the de-
signer with a uniform concep-
tual framework and a high-
level system description. PSDL
components are either opera-
tors or types, realized by de-
composing PSDL or by retriev-

ing or writing code in an under-
lying language.

As Figure A shows, PSDL
decompositions are augmented
computation graphs. The verti-
ces (cirdes) are operators and the
edges (lines) are data streams.

- ;7, i

Figure A. Sample PSDL graph.

Figure B. Diagram of maximum response time (MRT) and minimum calling
period (MCP) for a time-critical sporadic operator.

Operators are state machines
and their internal states are
modeled by variable sets. Oper-
ators with an empty variable set
behave like functions.

Data streams transmit data
values from one operator to an-
other. All the data values ina
stream are instances of an ab-
stract data type associated with
the stream. Data types can be
defined either in PSDL or the
underlying language.

Data streams can be either
dataflow streams or sampled
streams. In PSDL, dataflow
streams act as FIFO buffers of
capacity one and synchronize
data-driven computatons.
Dataflow streams guarantee
that each data value written
into the stream is read exactly
once. Data values are removed
from dataflow streams when
they are read.

Sampled streams act as
atomic memory cells and con-
nectoperators that fire at unco-
ordinated rates. Sampled
streams model data sources for

which only the most recentin-
formation is meaningful. Data
values are removed from sam-
pled streams when they are
overwritten.

Constraints. Each vertex is
augmented with a set of timing
and control constraints.

Timing conshrainks. As Figure A
shows, each vertex is labeled
with a maximum execution
time. The maximum execution
tme is the longest ime be-
tween the instant an operator
begins execution and the in-
stant it completes execution.
For example, in Figure A the
message-translator operator
takes as input a message and
outputs a translated message in
no more than 20 ms. Other
timing and control constraints
are expressed in text.

Operators can be triggered
by data streams or periodic tim-
ing constraints. Operators trig-
gered by data streams are called
sporadic operators. In addition

62

JANUARY 1882

. I
face, software database, and execution- ;

support system.

User interface. The user interface, which
supports concurrent tools, is implemented
using InterViews,® which was developed at
Stanford University and is based on X
Windows (as is TAE Plus), so itis portable.

"The user interface includes a graphics
editor, a syntax-directed editor, and a tool
interface. The graphics editor lets the de-
signer edit a graphical representation of
the prototype and automatically produces
a PSDL representation that other CAPS
tools can use.

"The designer can specify parts ofa pro-
totype using graphical objects to represent

PSDL computational structures like oper-

ators and data streams. The designer en-

Software
database

Execution
support

User
interface

[

— l

Software
base

Static
scheduler

Design

database

Syntox
editor

Translator

Dynamic Graphic
editor
Tools

scheduler
interface

Debugger

ters text annotations with the syntax-di-
rected editor. The tool interface hides the
details of the interfaces among CAPS tools
from the designer.

Database. The software database, which
includes a design and software database,

to a maximum execution time,
each time-critical sporadic op-
erator has a maximum response
time and a minimum calling pe-
riod, as Figure B shows.

"The maximum response time
is the longest time that may
elapse between the instant an op-
erator is activated to read its input
streams and the instant it writes
an event. The minimum calling
period is the shortest time be-
tween two successive activations.

You can view the maximum
response time as the operator’s
window of opportunity, the max-
imum execution time as the used
portion of the window, and the
minimurn calling period as the
maximum firing rate the system
must support. The minimum
calling period determines the
amount of CPU time the system
must allocate to the operator.

Operators triggered by peri-
odic timing constraints are
called periodic operators. Peri-
odic operators are triggered by
temporal events that must
occur at regularly scheduled in-

tervals. Figure Cillustrates how
the scheduling interval and
deadlines are specified.

A periodic operator’s execu-
tion must fit entirely within the
scheduling interval, which is
analogous to the maximum re-
sponse time of a sporadic opera-
tor. You can view scheduling in-
tervals as sliding windows
whose position on the time axis
relative to each other is fixed by
a specified period and whose
absolute position is fixed by the
time the first read occurs, as
Figure D illustrates. The first
read must be scheduled less
than one period after the sys-
tem starts operation.

Cortrol constraints. You use control
constraints to adapt reusable
code to particular designs. Con-
trol constraints can express con-
ditional execution and output
and control exceptions and tim-
ers. Triggering conditions and
output guards are predicates.

If an operator is guarded by
a triggering condition, the sys-

temn discards input data that an operator prevent computed
does not satisfy the condition output data from being written
without firing the operator. into the guarded streams if the

Output guards associated with condition is not satisfied.

Figure 6. Three main CAPS components and their associated tools.

holds reusable components and manages
the configuration.

CAPS was not integrated with the soft-
ware database when we conducted our ex-
periment, so we used a simulated database
of reusable Ada components to generate

the C*I prototype.

Period

|

Adivated fo reod

{==—— Scheduling intervol -——»[

Deadine Adtivated to read

Figure C. Diagram of how temporal events occur at regular scheduling intervals

to trigger period operators.

Stheduling
interval

Period

[]

Stariup

1
]
z

ly

f——— Period ——=1 t

Figure D. Scheduling interval.

IEEE SOFTWARE

653

package TL is

end TL;
with SB; use SB;
with PSDL_TIMER_PKG;
package body TL is
type PSDL_EXCEPTION is
package C3I_SYSTEM_SPEC is

procedure MESSAGE_TYPE_DECISION_DRIVER;
— Declarations of other driver procedures go here.

with PSDL,_STREAMS; use PSDL_STREAMS;
with DS_Debug PKG; use DS_Debug PKG;

(UNDECLARED_ADA_EXCEPTION);

if true then
begin

exception

MESSAGE_TYPE_DECISION
(LV_INPUT_TEXT_RECORD,
LV_TDD_ARCHIVE_SETUPLV_COMMS_TEXT_
FILE, IV_COMMS_EMAIL),

when others =>
DS_Debug.Undeclared_Exception
("MESSAGE_TYPE_DECISION"),
EXCEPTION_HAS_OCCURRED := true;
EXCEPTION_ID := UNDECLARED_ADA _
EXCEPTION;

package DS_COMMS_EMAIL is new
FIFO_BUFFER(FILENAME),
package DS_COMMS_TEXT_FILE is new
FIFO_BUFFER(TEXT_RECORD);
package DS_TDD_ARCHIVE,_SETUP is new
FIFO_BUFFER(ARCHIVE_SETUP),
package DS_INPUT_TEXT_RECORD is new
FIFO_BUFFER(TEXT_RECORD),
— Other data stream declarations go here.
end C31_SYSTEM_SPEC;

procedure MESSAGE_TYPE_DECISION_DRIVER is
LV_INPUT_TEXT_RECORD: TEXT_RECORD;
LV_TDD_ARCHIVE_SETUP: ARCHIVE_SETUP;
LV_COMMS_TEXT_FILE: TEXT_RECORD;
LV_COMMS_EMAIL: FILENAME;
EXCEPTION_HAS_OCCURRED: boolean := false;
EXCEPTION_ID: PSDL_EXCEPTION;

end;

if not LV_COMMS_TEXT_FILEIS_TRACK

then
begi

exception
when BUFFER_OVERFLOW =
DS_Debug.Buffer_Overflow
("COMMS_EMAIL",
"MESSAGE_TYPE_DECISION");

end;

end if;

if LV_COMMS_TEXT FILEIS_TRACK

then
begin

C3LSYSTEM_SPEC.DS_COMMS_TEXT_

gm
C3LSYSTEM_SPEC.DS_COMMS_EMAIL.

BUFFERWRITE
(LV_COMMS_EMAIL),

begin

RECORD.NEW_DATA then
begin

exception
DS_Debug.Buffer_Underflow
end;
begi
SETUPBUFFER.READ
exception

DS_Debug.Buffer_Underflow

end;

if C31_SYSTEM_SPEC.DS_INPUT_TEXT_

C3I_SYSTEM_SPEC.DS_INPUT_TEXT _
RECORD.BUFFER.READ
(LV_INPUT_TEXT_RECORD);
when BUFFER_UNDERFLOW =>
("INPUT_TEXT_RECORD",
"MESSAGE_TYPE_DECISION"),
gmn
C3I_SYSTEM_SPEC.DS_TDD_ARCHIVE_
(LV_TDD_ARCHIVE_SETUP),

when BUFFER_UNDERFLOW =>

FILE BUFFERWRITE
(LV_COMMS_TEXT _FILE);

exception

when BUFFER_OVERFLOW =>
DS_Debug.Buffer_Overflow
("COMMS_TEXT_FILE",
"MESSAGE_TYPE_DECISION");

end;

end if;

if EXCEPTION_HAS_OCCURRED then
DS_Debug.Unhandled_Exception
("MESSAGE_TYPE_DECISION",
PSDL_EXCEPTION’
image(EXCEPTION_ID));

end if;
end if;

end if;

end MESSAGE_TYPE_DECISION_DRIVER;
— Other driver procedure declarations go here.

end TL;

("TDD_ARCHIVE_SETUP",
"MESSAGE_TYPE_DECISION");

Figure 7. Ada driver for the message_type_decision opevator in Figure 5.

We are now building the software
database system, using existing object-ori-
ented databases and formal models for
prototyping design databases and software
databases.’

Execution supporf. The execution-support |

system includes a translator, static sched-
uler, dynamic scheduler, and debugger.

¢ The wanslator generates code that
binds the reusable components extracted
from the software database. Its main func-
tons are to implement data streams, con-
trol constraints, and tmers.

¢ The static scheduler uses several al-
gorithms to allocate time slots for opera-
tors with real-time constraints before exe-
cution begins.'® I this allocation succeeds,
all the operators are guaranteed to meet
their deadlines even in the worst case. If
the static scheduler can’t find a valid

64

JANUARY 1992

schedule, it provides diagnosticinformation
about the cause of the problem and if it can
be solved by adding more processors.

¢ The dynamic scheduler allocates
time slots for operators that are not time
critical.

¢ The debugger monitors timing con-
straints and various aspects of design in-
tegrity as the prototype runs, reports fail-
ures, and lets the designer adjust deadlines.

CAPS is being developed as an ongo-
ing research effort, and some of the func-
tons just listed were not ready when we
started our experiment.

When we started decomposing the
modules for the C*1 station, the graphics
and syntax-directed editors were notready
to use for a multlevel PSDL example, so
we used Frame Technology Corp.’s
Framemaker to draw the graphs and write
the PSDL code.

After completing the multilevel de-

composition, we prepared a PSDL file |
that included only the atomic operatorsin |

the bottom level of the decomposition.
We did the constraint propagation and
consistency checking among levels and
modules manually.

Prototyping steps. Generating a proto-
type in CAPS has 11 general steps:

1. The designer draws the computa-
tion graphs with the graphics editor.

2. The graphics editor provides the
skeleton PSDL code and propagates in-
herited constraints.

3. The designer uses the syntax-di-

rected editor to modify the skeleton code,

and the system produces a file with the
prototype’s PSDL description.

4. The translator produces an Ada
package that instantiates the data streams,
reads data from and writes data to the data
streams, and executes atomic operators. The
translator uses PSDL descriptions to gener-
ate driver procedures for atomic operators.
For example, Figure 7 shows the Ada

driver procedure for the PSDL message

type_decision operator in Figure 5.

The driver procedures provide a stan-
dard interface between the Ada compo-
nents and the generated scheduling soft-
ware. They include exception handlers for
stream overflow and underflow conditions

with GLOBAL_DECLARATIONS; use GLOBAL_DECLARATIONS;
with DS_DEBUG_PKG; use DS_DEBUG_PKG;
with TL; use TL;
with DS_PACKAGE; use DS_PACKAGE,
with PRIORITY_DEFINITIONS; use PRIORITY_DEFINITIONS;
with CALENDAR; use CALENDAR;
with TEXT_IO; use TEXT_IO;
procedure STATIC_SCHEDULE is
MESSAGE_TYPE_DECISION_TIMING_ERROR : exception;
— Other exception declaratons go here.
task type SCHEDULE_TYPE is
pragma priority (STATIC_SCHEDULE_PRIORITY);
end SCHEDULE_TYPE;
for SCHEDULE_TYPE'STORAGE_SIZE use 200_000;
SCHEDULE : SCHEDULE,_TYPE;
task body SCHEDULE_TYPE is
PERIOD : duration := duration(5.00000000000000E+01);
MESSAGE_TYPE_DECISION_STOP_TIME3 : duration :=
duration(2.20000000000000E+00); — Deadline for message_type_decision.
— Other declarations of scheduled stopping times go here.
SLACK_TIME : duration;
START OF PERIOD : time := clock;
CURRENT _TIME : duration;

begin
loop
begin
— Calls on other driver procedures go here.
MESSAGE_TYPE_DECISION_DRIVER;
SLACK_TIME :=
START _OF_PERIOD + MESSAGE_TYPE_DECISION_STOP_TIME3 -
CLOCK;
if SLACK_TIME >= 0.0 then
delay (SLACK_TIME);
else
raise MESSAGE_TYPE_DECISION_TIMING_ERROR;
end if
— Calls on other driver procedures go here.
START_OF_PERIOD := START_OF_PERIOD + PERIOD;
delay (START_OF_PERIOD - clock),
exception
when MESSAGE_TYPE_DECISION_TIMING_ERROR =>
PUT_LINE("timing error from operator MESSAGE_TYPE_DECISION");
START_OF_PERIOD := clock;
— Other exception handlers go here.
end;
end loop;

end SCHEDULE _TYPE;

begin
null; — Initializadons are not needed for this example.
end STATIC_SCHEDULE;

Figure 8. Ada static schedule task generated for the message_type_decision operator in Figure 5.

and for undeclared exceptions that might
be raised by faulty implementations of
atomic Ada components. The exception
handlers interface to the PSDL debugger
to produce diagnostdc messages.

5. The static scheduler tries to find a

schedule for the time-critical operators
and — if it finds a feasible schedule —
produces an Ada package thatcontains the
schedule, represented as an Ada task that
calls the driver procedures. Figure 8 shows
the part of the static schedule task gener-

\EEE SOFTWARE

65

FEATURE

with TL; use TL;
package DS_PACKAGE is

end DS_PACKAGE;
package body DS_PACKAGE is
begin
delay (1.0);
loop

STATUS_SCREEN_DRIVER;
MESSAGE_EDITOR_DRIVER;

end loop;

end DS_PACKAGE;

with PRIORITY_DEFINITIONS; use PRIORITY_DEFINITIONS;
task type DYNAMIC_SCHEDULE_TYPE is
pragma priority (DYNAMIC_SCHEDULE_PRIORITY);
end DYNAMIC_SCHEDULE_TYPE;

for DYNAMIC_SCHEDULE_TYPE'STORAGE_SIZE use 100_000;
DYNAMIC_SCHEDULE : DYNAMIC_SCHEDULE,_TYPE;

task body DYNAMIC_SCHEDULE_TYPE is

— Invocations of other non-~critical operators go here.

end DYNAMIC_SCHEDULE_TYPE;

|

Figure 9. Ada task to invoke noncritical operators.

ated for the PSDL description in Figure 5.

"The static schedule contains time allo-
cations for the time-critical operators in a
fixed pattern that can be repeated indefi-
nitely. The static scheduler determines the
length of this pattern, which is represented
by the Ada constant Period. The schedule
also includes a control structure that mon-
itors ime-critical components and reports
missed deadlines, which are determined
by the static scheduler and are represented
by Ada constants like message_type_deci-

sion_stop_time3. The static scheduler re-

covers from missed deadlines by resetting
its time reference and skipping to the next
iteration of the static schedule.

6. Once the static schedule is found,
the dynamic scheduler produces an Ada
package that contains a dynamic schedule
for noncritical operators. This task, shown
in Figure 9, invokes noncritical operators
during tme slots not being used by the
static-schedule task. Unused time slots can
arise because of either scheduled waiting
periods or an operator’s early completion.
Relatvely large vacant slots can be created

the execution of a time-critical operator
for a subser of all the potendal actvations.
The dynamic schedule is represented

8. CAPS compiles and loads the code
and begins executing the prototype.

9. Potential users observe the
prototype’s behavior, paying particular at-
tention to the consequences of arbitrary
ASSUMPpUONS.

10. The designer modifies the proto-
type in response to user feedback.

11. When users accept the prototype’s
demonstrated behavior, the designer adds
any required noncritical functions, opt-
mizes the prototype, and ports it to the
target hardware and operating system.

LESSONS LEARNED

We used CAPS to successfully gener-
ate an Ada C*1 prototype quickly and at
low cost. The prototype was constructed |
with about one man-month of effort, not
counting time spent in formulating the re-
quirements and fixing problems with the
i tools.
| The resuldng Ada prototype executes
, ina color, graphical, multiwindow user in-

terface; provides all essental functions de-
| fined in the prototype specification; and

proves that all the hard real-dme con-

straints placed on the station’s compo-
| nents are met completely.

as an Ada task with a priority less than that

of the static schedule task, so it can be exe-
cuted whenever there is nothing more im-
portant to do. This decouples the analysis
of the time-critical operator’s resource re-
quirements from the design and imple-

: R
mentation of the prototype’s noncritical

parts, thus simplifying the analysis and
speeding prototyping.

Context switching is handled by the
scheduling mechanism provided by the
Ada runtime system and does not require
any special code to be generated, other
than the pragmas that declare the priori-
tes of the schedule tasks.

7. CAPS provides the designer with |

matching reusable Ada components for
the atomic operators. If a reusable compo-
nent cannot be found, the designer either
writes the code for that operator or de-
composes it in an effort to find reusable
components. (We are now designing a tool
that can generate Ada code from equatons

when PSDL control constraints suppress | describing the desired behavior.)

Bus errors. During prototype execution,
| the system continuously gave bus errors at
a certain point. After a long debugging
effort, we noticed that the error occurred
only for the data stream defined by the last
stream declaration in the Ada package in
Figure 8. We solved this error by adding
an extra stream that the program did not
use. Although we could not find any rea-
son for it, we suspect the problem was
caused by a compiler fault.

Another problem during execution in-
volved the schedulers. Because the proto-
type uses so many variables, the default
storage for the static and dynamic sched-
ule tasks was not large enough. So we
modified the static and dynamic schedul-
ers to generate Ada code that explicity

- allocates more storage via representation
clauses. During the experiment, we used a
constant for the storage size. To reduce
portability problems, we are investigating

} the design of an enhancement that will

66

JANUARY 189892

calculate the required storage based on ac-
tual variable use and the size attribute pro-
vided by Ada.

Relative speeds. While the timing con-
straints are feasible for a stand-alone Sun
workstation of the type proposed for the
final system (a Sun SparcStation), this
hardware was not available to us. Our pro-
totype was designed on an older Sun sys-
tem, which is much slower than the pro-
posed hardware.

"This forced us to use longer maximum
execution times and periods to make the
prototype run. We learned that the proto-
type need not execute as fast as the re-
quirements specify, but rather must meet
the requirements relative to the speed of
the proposed target hardware.

‘This realization focused our research
on better methods for evaluating the feasi-
bility of real-time constraints when the
target hardware for the proposed system
differs from the prototype’s hardware*and
it has resulted in changes to the design of
the CAPS system to support explicit re-
source models for the target hardware.

Global constraints. The prototype does not
address global tming constraints because
the version of CAPS we used did notsupport
amultiprocessor model. We are working on
ways to realize global timing constraints in
distributed multiprocessor- systems with
bounded communication delays in point-to-
pointdata transmissions.

Any design that guarantees global mes-
sage delivery within hard real-time con-
straints depends on bounded delivery
dmes for the long-haul network, at least
for transmissions between nodes that are
directly connected. However, such net-
works are impossible to realize because in
practice you must also guarantee accurate
message delivery. If the underlying me-
dium is noisy — which is likely in C’I
applications because of jamming — de-
signs that guarantee bounded message de-
lays must tolerate some message loss.
That’s because error-correcting protocols
can retransmit only a bounded number of
times if the transmission delay is limited by
hard real-time constraints.

Retransmission can reduce the mes-

sage-loss rate, but if a message can get lost
in a single transmission, it can also get lost
in 7 consecutive transmissions. We should
therefore bound message-delivery time by
a constant times the required retransmis-
sions and limit the retransmissions that
can be attempted before a ime-out error
must be reported.

he capabilities CAPS provides are es-
sential to rapid prototyping. In partic-
ular, automatic code generation and in-
strumentation let us try design variations
quickly without cutting corners because the
diagnostics helped us localize and fix bugs.
Automated schedule construction and diag-
nostic information about timing con-
straints helped us navigate the maze of
interacting resource constraints and eval-
uate the feasibility of the requirements.
The experience we gained also suggests
many improvements to CAPS. For exam-

ple, before our experiment the CAPS
static scheduler required the designer to
specify a maximum response time and a
minimum calling period for each tme-
critical sporadic operator. We found that
the designer often did not know these two
attributes, so we modified the static sched-
uler to calculate default values based on
heuristics that seek the fastest feasible re-
sponses yet maintain a balanced use of re-
sources.

The C’I prototype is also serving as a
testbed for ongoing research in computer-
aided software design. A hypothetical net-
work of generic C’T stations is serving as a
test case to investigate deadlock detection
and prevention at the design level. The
goal of this research is to develop a tool
that takes as input a formal specification
of a distributed system, determines if the
design makes deadlock possible and if
so, guides the designer in removing that
possibility. ¢

Lugi is an associate professor at the Naval Postgraduate School. Her research interests in-
clude rapid prototyping, real-time systems, and software-development tools.

She received a BS from Jilin University, China, and an MS and a PhD in computer
science from the University of Minnesota.

Address questions about this article to Luqi at Naval Postgraduate School, NPS 052,
Monterey, CA 93943; Internet lugi@cs.nps.navy.mil.

ACKNOWLEDGMENTS

REFERENCES

Eng., Oct. 1988, pp. 1409-1423.

“ik

=

Calif,, 1990.

~

Center, Greenbelt, Md., 1990.

Feb. 1989, pp. 8-22.

<

1988.

T thank Jeff Schweiger, Gary Hughes, Valdis Berzins, Steve Anderson, Cengiz Kesoglu, and Vedat Coskun
for their contribution to this research and the anonymous referees who helped me improve this article.

1. WR. Beam, Command, Control, and Communications Engineering, McGraw-Hill, New York, 1989.
2. Lugi, V. Berzins, and R. Yeh, “A Prototyping Language for Real-Time Software,” IEEE Trans. Software

. Lugi and M. Ketabchi, “A Computer-Aided Prototyping System,” IEEE Sofiware, March 1988, pp. 66-72.

. Lugqj, “Software Evolution Through Rapid Prototyping,” Computer, May 1989, pp. 13-25.

. E.S. Anderson, Functional Specification For a Generic CPI Station, master’s thesis, Computer Science Dept.,
Naval Postgraduate School, Monterey, Calif., 1990.

. V. Coskun and C. Kesoglu, .4 Soffware Prototype for a C

Control, C ications, and Intelligence

(C?1) Workstation, master’s thesis, Compurer Science Dept., Naval Postgraduate School, Monterey,
- Transportable Applications Enviromment Plus, Nat'l Aeronautics and Space Admin., Goddard Space Flight
8. M.A. Linton, J.M. Vlissides, and PR. Calder, “Composing User Interfaces with InterViews,” Computer,
. E. Borison, “Program Changes and Cost of Selective Recompilation,” Tech. Report CMU-CS-89-205,

Computer Science Dept., Carnegie-Mellon University, Pittsburgh, 1989
10. J. Stankovic and K. Ramamritham, Hard Real-Time Systems Tutorial, IEEE CS Press, Los Alamitos, Calif,,

IEEE SOFTWARE

67

