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This case study shows 
the feasibility of using 

com puter-aided 
prototyping to validate 

a C31 system s 
requirements and 

describes the enabling 
technology. 

LUQl 
Naval Postgraduate School 

COMMAND-AND-COWROL 

FLAP 6 FLAP C 

omputer-aided prototyping, which C seeks to automate early design phases, 
is an important t e c h q u e  for developing 
complex embedded systems that have 
strict time constraints. System analysts and 
users need prototyping methods to ade- 
quately fonnulate and assess the require- 
ments for those systems. They can then 
use computers to apply these methods 
rapidly. 

At the Naval Postgraduate School, my 
colleagues and I have recently completed 
an experiment to evaluate OUT rapid-pro- 
totyping methods and computer-aided 
design environment. 

Our experiment was to prototype a ge- 
neric command, control, communica- 
tions, and intelligence station’ and gener- 
ate the Ada code from the prototype’s 
specifications automatically. The results 
show that it is feasible to use computer- 
aided prototyping for practical, real-time 
Ada applications. 

C31 applications are difficult to de- 
velop, for the reasons outlined in the box 
on p. 58. The  C’l prototype we developed 
had characteristics typical of embedded 
software, including distributed process- 
ing; hard real-time constraints; multiple, 
predefined hardware interfaces; and com- 

~ 
~ 
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plex requirements. We generated a color, 
multiwindow executable Ada prototype 
that can process tactical data from multiple 
interfaces in real time. 

We used the prototype to get feedback 
about the proposed design's effectiveness, 
performance, and structure and to evaluate 
the soundness of our design decisions. The 
feedback helped us improve and r e h e  re- 
quirements and evaluate the feasibility of the 
functional specification. We iteratively re- 
lined and vahdated requirements by m&- 
ing an operational prototype until users were 
sa&fiedwith its behavior. 

embedded system or a local distributed 
system with multiple processors. A sub- 
goal of our research is to establish the fea- 
sibility of a low-cost C31 system consisting 
of a loosely coupled network of C'I sta- 
tions installed in sites without substantial 
C31 support, like noncombatant ships or 
small combatant platforms. 

Each station would be a generic C31 
station, although individual configura- 
tions could provide tailored subsets of 
functionality. Steve Anderson's report 
gives a detailed descritxion of the Peneric 
?:'I station's requirem'ents.' 

Y 

We used the Prototype System De- 
scription Language' and Computer-  
Aided Prototyping System' in our experi- 
ment. PSDL integrates the tools in CAPS, 
whch help the designer create the design, 
automatically construct a real-time sched- 
ule, and automatically generate an execut- 
able Ada model of the proposed system 
from the PSDL specification. The  Ada 
model is a combination of CAPS-gener- 
ated Ada programs and reusable atomic 
Ada components. 

CAPS also supports system manage- 
ment and helps control a system's evolu- 
tion.' Ths support helps designers give 
timely responses to modification requests 
and helps protect the system's integrity as 
it evolves, extending its life. 

SYSTEM REQUIREMENTS 

A C'I system helpsmilitary officers un- 
derstand tactical situations: It provides 
communication among officers on differ- 
ent platforms and external forces, and it 
processes tactical data from various inter- 
nal and external sources, such as radar and 
sonar. 

Structvre. The proposed C'I system is a 
network of generic C'I stations, each of 
which is a specialized instance of a com- 
mon design. The  network is a large, geo- 
graphically distributed system that may 
have many thousand nodes. Each station is 
mounted on a platform whose location 
typically is not fixed. Larger platforms can 
have several stations serving officers with 
different responsibilities. 

Each station can be viewed as a single 

Interfaces. Figure 1 shows a single-user 
:'I station and its external interfaces to 
ie  user and to the weapon systems, plat- 
3rm sensors, navigation system, and com- 
iunication links. T h e  information the 
ser requires includes the platform's loca- 
on, the status of its weapon systems, and 
ie  locations and charaderistics of other 
llatforms in the area. The station receives 
nd transmits track infomiation and com- 
iand-and-control data via communica- 

I local area network 1 

.... 

tion links, receives trackinformation from 
platform sensors, outputs a tactical display 
to the user, provides a text editor for gen- 
erating and sending messages, and pro- 
vides a way to verify and maintain track- 
data integrity. (A track is the system's 
representation of an external object such 
as a platform or a navigation hazard. 
Tracks contain information about the lo- 
cation and characteristics of the external 
object.) 

The  user is an officer at some com- 
mand level. The  station is the officer's 
communication channel to superiors, 
subordinates, and other officers at the 
same command level. The user communi- 
cates with the station via a keyboard, 
graphical display, and pointing device to 
obtain information about selected tracks, 
the status of the host platform and C'I 
system, and messages from other officers. 
The user may update track information, 
control the status of the C31 system, and 
originate messages. 

The antennas, notch filters, and data- 
terminal sets provide communication 

Weapon systems yy,myi' 
1 jinfFLo/ J 

.............................................. 

Generic t3I station 

rq,/21V]F] 
Platform sensors 

'igure 1. Dzagam ofsingleemer genenr C'I ystmt and its extwnal riiterfaces 
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NATURE OF c31 SYSTEMS 
C31 systems help military officers understand tactical situations. They are difficult 

to develop because 
+ Their use in strategic defense applications makes correctness and reliability crit- 

ical. 
+ They are influenced by many people, by organizations, and by policies, so their 

requirements are complex and difficult to determine. 
+ Their design depends on techniques to guarantee that hard real-time con- 

straints will be met both in large distributed systems connected by long-haul net- 
works and in local distributed systems with many hardware structures. Current soft- 
ware research has not solved many of these systems’ problems, like 
real-time-database design, network-flow prediction, upper bounds for the actions of 
real-time operating systems, hard real-time algorithms for general problems, and ro- 
bust identification of processes in distributed systems. 

+ Their complex, dynamic interfaces make it almost impossible to deal with 
changes in requiremenE. 

+ As with any large system, their development is costly, and the current low pro- 
ductivity of soha re  development aggravates the problem. 

We use prototyping and computer-aided design techniques to address many of 
these difficulties. 

TY Pe Response time 

Question and answer 
Menu selection 
Form filling 
Function keys 
Command language 
NaturaVQuery language 
Graphical interaction 

0.5 to < 2.0 seconds 
< 0.2 second 
> 2.0 seconds 
< 0.2 second 
0.5 to > 2.Oseconds 
0.2 to < 0.5 second 
< 0.2 second 

Message 
precedence 

lime between message 
completion and transmission 

l ime between message 
reception and display 

Flash < 1 second < 1 second 
Immediate < 2 seconds < 2 seconds 
Priority < 3 seconds < 3 seconds 

e 4 seconds < 4 seconds 

links to stations on other platforms. The 
local area network connects to other sta- 
tions on the same platform, if any. 

The  navigation system provides infor- 
mation about the platform’s current loca- 
tion and movement. 

The  sensors provide the location of 
surrounding platforms. 

The weapon systems provide inform- 
tion about their status. 

Requirements. The  requirements for a 
generic C31 station include hard real-time 
constraints on system responses. Any de- 
sign for such a station depends on assump- 
tions about the timing characteristics of 

the extemal systems with which it inter- 
acts. Because accurate values for many of 
the hard real-time constraints in a C31 sys- 
tem are classified, we based the design of 
our unclassified prototype on seven arbi- 
trary assumptions: 

+ It  should be able to retrieve up to 
1,000 tracks in less than one second. 

+ It should enter the contents of a 
track-data message into a track database in 
less than two seconds. 

+ It should conform to the dialogue- 
response and message-delay times sum- 
marized in Tables 1 and 2. 

+ It has four sensors, four weapon sys- 
tems, and four communication links. 

+ Its navigation system updates veloc- 
ity every 41 m, transmits velocity every 
983 ms, and updates latitude and longi- 
tude every 1.3 seconds. 

+ Its platform sensors track a maxi- 
mum of 100 tracks per sensor per second. 

+ Its weapon systems update their sta- 
tus once every second. 

We did not consider networkdelay be- 
cause the focus of this requirements anal- 
ysis and prototyping effort was on timing 
constraints w i h  individual stations. 

PROTOTYPE SLICE 

The  prototype includes a generic C31 
station and its interacting external sys- 
tems. We formulated the prototype as a 
closed system because we must simulate 
the extemal systems to demonstrate the 
proposed behavior of the C31 station. 
(Vedat Coskun and Cengiz Kesoglu6 pro- 
vide complete details of the prototype.) 

Figure 2 shows a representative slice of 
the PSDL definition that contains a part of 
the system related to message routing (see 
the box on p. 62-63 for an overview of 
PSDL). The slice takes a path from the 
hierarchically structured prototype’s root 
to its leaves. The root is a single PSDL 
operator, c3iPsystem, which is decom- 
posed into more primitive operators. The 
designer defines the decomposition via a 
PSDL graph hke that shown in Figure 2 .  

Ti’g requirements. Figure 2 defines the 
control constraints for the operators in its 
graph. Each operator d e h t i o n  includes 
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its timing c o n s k t s ,  based on the re- 
quirements o u h e d  earlier. For example, 
the minimum calling period for the sen- 
sor-interface operator is 2,500 p, whch 
was derived &om our assumption that the 
maximum data rate from each of the four 
sensors is 100 tracks per second, so the 
minimum calling period is one second di- 
vided by 400, or 2,500 p. T h s  is the long- 
est time the system can allow between 
consecutive firings of the sensor-interface 
operator in the static schedule. 

The requirements state that the maxi- 
mum delay between receivinga trackmes- 
sage and entering it into the database is 
two seconds. In the initial design of the 
prototype we allocate this delay evenly be- 
tween the sensor-interface and the 
track-database-manager operators, lead- 
ing to maximum response times of one 
second each. We may reallocate these con- 
straints later as we explore requirements in 
more detail. 

As Figure 2 shows, we don't specify the 
timing requirements for the communica- 
tion interface at tlus level because they are 
influenced by two separate requirements: 
the maximum delay of a communication 
message (one second), and the maximum 
delay of a track message (two seconds). Be- 
cause each requirement is likely to affea 
components on different dataflow paths, we 
define the corresponding timing constraints 
at the next decomposition level. 

In the initial prototype version, we do 
not distinguish timing requirements for 
different message classes or different types 
of user interaction. Instead, we design for 
the worst case: All messages must be deliv- 
ered within one second and all user-inter- 
face functions must complete w i h  200 
ms. We may relax these assumptions in 
later iterations ifwe find it is not feasible to 
meet these simplified requirements. At 
present, we introduce distinctions only to 
show the feasibility of the timing require- 
ments. 

The BY REQUIREMENTS clauses in Fig- 
ure 2 document by keyword the require- 
ments from whch we derived the timing 
constraints. 

Commlm'Klltion interhe. The commun- 

DATA STREAMS 
- Type declarations for the data streams in the graph go here. 

CONTROL CONSTRAINTS 
OPERATOR comms-interface 
OPERATOR sensor-interface 

MINIMUM CALLING PERIOD 2500 mcrosee BY REQUrREhENT? sensor-rate 
MAXLMUM RESPONSE TIME 1 sec 

MINIMUM CALLING PERIOD 1 ms 
BY REQUIREMENTS track-retrieval-rate 

MAXIMUM RESPONSE TIME 1 sec 
BY REOUIREMENTS track delav 

BY REQUIREMENTS track-delay 
OPERATOR track-databasemanager 

- i  OPERATOR user-interface 
MAXIMUM RESPONSE TIME 200 ms 

BY REQUIREMENTS dialome-response-time 
I .  

OPERATOR weapons-interface 
TRIGGERED BY SOME weapon-statu-data 
OUTPUT weapons-emrep IF 
weapon-status-data.status = damaged OR 
weapon-status-datasatus = service-required OR 
weapon-status_data.status = out-of-ammunition 

BY REQUIREMENTS weapons-status-rate 

BY REQUIREMENTS weapons-status-rate 

MINIMUM CALLING PERIOD 250 ms 

MAXIMUM RESPONSE TIME 1 sec 

OPERATOR comms links 
OPERATOR sensors- 
OPERATOR navigation-system 

PERIOD 1300 ms BY REQUIREMENTS navigation-rate 
OPERATOR WEAPONS-SYSTEMS 

PERIOD 250 ms BY REQUIREMENTS weapons-status-rate 
END 

cation interface performs functions di- 1 F i p r e  2. S h e  Of'PSDL dejinittonfor menage muting, including n decomposition graph 

~ _ ~ _ _ _ _ .  
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CONTROL CONSTRAINTS 
OPERATOR incomingmessage-resolver 

MINIMUM CALLING PERIOD 40 ms 
BY REQUIREMENTS link-speed 

MINIMUM CALLING PERIOD 7 1 ms 

MAXIMUM RESPONSE TIME 800 ms 

OPERATOR outgoing-message-resolver 

BY REQUIREMENTS transmission-rate 

BY REQUIREMENTS message-delay, dialogueresponse-time 
OPERATOR track-report-generator 

PERIOD 2 sec 

TRIGGERED IF not terminate-trans 
BY REQUIREMENTS track-reporting-rate 

END 

F i p e  3. PSDL dej~zitio7zfw the con~w~zmication interjace. 

rectly related to message reception and 
transmission. Because stations use differ- 
ent communication equipment, this 
module’s implementation will vary greatly 
from one instantiation to another. How- 
ever, all generic C31 stations are subject to 

l a common set of behavioral and timing 
requirements. The requirements dictated 
that the implementation of th~s interface be 
very modular, to isolate site dependencies.’ 

Figure 3 shows the PSDL definition 
for the communication interface. T h ~ s  in- 

terface must monitor, relay, and transmit 
messages on various networks witlun hard 
real-time deadlines. It filters, routes, sorts, 
and translates messages, and it analyzes 
messages amving at the communication 
interface to determine if they contain track 
information, if they must be relayed to 
other participants in the network, and if 
they must be archived. 

Condminls. At a network speed of 1,300 to 
5,000 bps and assuming the shortest mes- 
sage is about 100 characters (800 bits, 
minus stadstop bits and redundant data), 
the system will receive a maximum of 25 
messages &om four links in one second. 
Therefore, the minimum calling period of 
the incoming-message-resolver is one 
second divided by 25, or 40 ms. We leave 
the specification of the maximum re- 
sponse time to the next level because th~s  
operator processes both messages con- 
taining tracks (comms-add-track) and 
messages containing communications 
among officers (com-email). 

We estimate the maximum number of 
outgoing messages in one second as 

+ one message every two seconds from 
the track-report-generator (a periodic 
operator) plus 

+ 12.5 messages every second to relay 
(assuming that half the messages received 
should be relayed) plus 

+ one message every second from the 
user (an assumption) 
for a maximum of 14 messages per second. 
Thus, the minimum calling period for the 
outgoing-message-resolver operator is 
one second divided by 14, or 71 ms. Its 
maximum response time is one second 
minus 200 ms, or 800 ms, since we assume 
messages must be transmitted within one 
second of completion, and that the user 
interface can have up to a 200-ms delay. 

The requirements give no time con- 
straint for track repom. The prototype is 
designed to produce track reports every two 
seconds when this feature is activated, based 
on the analyst‘s assumption of a reasonable 
reportingrate. Thisassmptionmustbeval- 
idated and adjusted as necessary. 

incoming mesoyes. T h e  incoming-mes- 
sage-resolver is still too complicated for 

6 0  J A N U A R Y  1 9 9 2  



direct implementation, so it is decom- 
posed into four atomic operators, shown 
in Figure 4. 

The  maximum time delay for a mes- 
sage is one second. The user interface re- 
quires 200 ms, and the remaining 800 ms 
are initially allocated evenly between the 
input-file-parser and the message- 
type-decision. 

The  time delay for a track message can 
be at  most two seconds. T h e  track 
database manager requires one second, 
and the input-file-parser and message- 
typedecision have been allocated 400 
ms each, leaving 200 ms for track-ex- 
tractor. 

The maximum response time allowed 
for relaying-decision depends on the 
maximum delay allowed between the re- 
ceipt and transmission of a relayed mes- 
sage. The requirements do not contain 
&IS information, so the analyst makes an 
arbitrary assumption that this delay should 
be no more than 1.5 seconds. Because the 
outgoing-message-resolver takes 800 ms 
and the input-file-parser takes 400 ms, 
t h~s  leaves 300 ms for relaying-decision. 

T h e  analyst annotates each atomic 
component in the graph in Figure 4 with 
these execution-time estimates. T h e  
CAPS tools use these annotations to find 
reusable components from the software 
base. 

Triggering conditions are designated 
as BY ALL because they must execute for 
every incoming data value. This implies 
input-text-record and corn-text- file 
must be dataflow streams, and the execu- 
tion rates of the operators input-file- 
parser, message-type-decision, track-ex- 
tractor, and relaying-decision must be 
synchronized. The output guards on 
message-type-decision suppress output 
when the incoming message is neither 
email nor track information. 

To complete this top-down slice, Fig- 
ure 5 shows the PSDL specification for 
one atomic operator in the prototype, 
message-type-decision, which decides if 
the input-text-record contains track in- 
formation. The  CAPS graphical editor 
derives this operator’s maximum execu- 
tion time and its I/O interface mechani- 
cally from the implementation graph of its 

parent operator. The specification serves 
as the basis for the retrieval of a reusable 
component or for a manual implementi- 

tion effort. As indicated in the PSDL de- 
scription, this operator is implemented in 
Ada. 

DATA STREAMS 

CONTROL CONSTRAINTS 
input-text-record,comm-text-file : text-record 

OPERATOR input-ae-parser 
MAXIMUM RESPONSE TIME 400 ms 
TRIGGERED BY ALL input-link-message 

MAXIMUM RESPONSE TIME 3 0 0  ms 
BY REQUIREMENTS relaying-delay 

TRIGGERED BY ALL input-text-record 
OUTPUT tcd-transnu-command IF 

OPERATOR relaying-decision 

lnuut-text record.relaved 
I -  - 

OPERKTOR message-type-decisikn 
MAXIMUM RESPONSE TIME 400 ms 
TRIGGERED BY ALL input-text-record 
OUTPUT comms-text-file IF comms-text-file.is-track 
OUTPUT comms-eniail IF N O T  comms-text-file.is-track 

MAXLMUM RESPONSE TIME 200 ms 
TRIGGERED IF comms-text-fileis-track 

OPERATOR track-extractor 

END 

Figure 4. Fmir atomic operatun fw iizcomhrg-message-resolv~. 
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OPERATOR message-type-decision 
SPECIFICATION 
INPUTinput-text-record : text-record, 
tdd-archive-setup : archive-setup 
OUTPUTco"s_text_file : text_record, 
c0mm.s-email : filename 
MAXIMUM EXECUTIONTIME 100 ms 
DESCRIPTION { Sets the is-track field of a m - t e x - f i l e  if 
input-text-record contains track information. } 

END 
IMPLEMENTATlON Ada message-type-decision 
END 

Figure 5. PSDL definition for message-type-derision. 

OVERVIEW OF PSDL 
PSDL provides the de- 

signer with a uniform concep- 
tual h e w o r k  and a high- 
level system description. PSDL 
components are either opera- 
tors or types, realized by de- 
composing PSDL or by remev- 

Figure A. Sample PSDL graph. 

USING CAPS 

To generate the prototype's Ada 
code, we used CAPS and the Transport- 
able Applications Environment Plus, a 
windowing package developed at the 
Na t iona l  Aeronautics and Space 
Administration's Goddard Space Flight 
Center.' TAE Plus provides either Ada 
or C code to create the user-interface 
modules, but we had to modify the gen- 
erated code to make it fit the CAPS cod- 
ing conventions. 

The  prototype was developed and runs 
on a Sun 3 and is directly transferable to a 
ruggedized Genisco computer. 

CAPS sttudue. Figure 6 shows the three 
main components of CAPS: a user inter- 

ing or writing code in an under- 
lying language. 

As Figure Ashom, PSDL 
decompositions are augmented 
computation graphs. The verti- 
ces (&des) are operators and the 
edges ( h e s )  are data streams. 

Operamrs are state machines 
and their intemal states are 
modeled by variable sets. Oper- 
ators with an empty variable set 
behave like functions. 

values kom one operator to an- 
other. All the data values in a 
stream are instances of an ab- 
stract data type associated with 
the stream. Data types can be 
defined either in PSDL or the 
underlying language. 

Data streams can be either 
dataflow streams or sampled 
streams. In PSDL, dataflow 
streams act as FIFO buffers of 
capacity one and synchronize 

Data streams transmit data 

wrote Adbated to r d  

Figtux B. Diagram of maximum response time (MRV and minimum calling 
period ("VICP) fw a time-critical sporadic operator. 

data-driven computations. 
Dataflow streams guarantee 
that each data value written 
into the stream is read exactly 
once. Data values are removed 
fi-om dataflow streams when 
they are read. 

Sampled streams act as 
atomic memory cells and con- 
nect operators that fire at unco- 
ordinated rates. Sampled 
streams model data sources for 

which only the most recent in- 
brmation k meaningful. Data 
values are removed fi-om sam- 
pled streams when they are 
overwritten. 

bmtrahts. Each vertex is 
augmented with a set of timing 
and control constraints. 

liming amstah& As Figure A 
shows, each vertex is labeled 
with a maximum execution 
time. The maximum execution 
time is the longest time be- 
tween the instant an operator 
begins execution and the in- 
stant it completes execution. 
For example, in Figure A the 
message-translator operator 
takes as input a message and 
outputs a translated message in 
no more than 20 ms. Other 
timing and control constraints 
are expressed in text 

Operators can be triggered 
by data streams or periodic tim- 
ing constraints. Operators trig- 
gered by data streams are called 
sporadic operators. In addition 

- 
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face, software database, and execution- 
support system. 

User inledore. T h e  user interface, which 
sup~orts  concurrent tools, is implemented 

1 .  

usinEInterviews,8 which was developed at 
’ 

StanTord University and is based i n  X 
Windows(asisTAEPlus), soitis portable. 

The  user interface includes a graphics 
editor, a syntax-directed editor, and a tool 
interface. T h e  graphics editor lets the de- 
signer edit a graphcal representation of 
the prototype and automatically produces 
a PSDL representation that other CAPS 
tools can use. 

T h e  designer can specify parts of a pro- 
totype using graphical objects to represent 
PSDL computational structures like oper- 
ators and data streams. The  designer en- 

to a maximum execution time, 
each time-critical sporadic op- 
erator has a maximum response 
time and a minimum calling pe- 
riod, as Figure B shows. 

The maximum response time 
is the longest time that may 
elapse between the instant an op- 
emtor is activated to read its input 
streams and the instant it writes 
an event. The minimum calling 
period is the shortest time be- 
tween two successive activations. 

You can view the maximum 
response time as the operator’s 
window of opportunity, the max- 
imum execution time as the used 
portion of the window, and the 
n l i n i ”  calling period as the 
“um 6ring rate the system 
must support The minimum 
alling period determines the 
amount of CPU time the system 
must allocate to the operator. 

Operators triggered by peri- 
odic timing constraints are 
called periodic operators. Peri- 
odic operators are triggered by 
temporal events that must 
occur at regularly scheduled i r -  

r 5  Translator Debugger interface 

I I -- 

ters text annotations with the syntax-&- 
rected editor. The  tool interface hides the 
details of the interfaces among CAPS tools 
from the designer. 

Dotobose. The software database, which 

holds reusable components and manages 
the configuration. 

CAPS was not integrated with the soft- 
ware database when we conducted our ex- 
periment, so we used a simulated database 
of reusable Ada cormonents to cenerate 

includes a design and software database, 1 the C31 protootype. 

tervds. Figure c ausn-ates how 
the scheduling interval and 
deadlines are specified. 

A periodic operator’s execu- 
tion must fit entirely within the 
scheduling interval, which is 
analogous to the maximum re- 
sponse time of a sporadic opera- 
tor. You can view scheduling in- 
tervals as sliding windows 
whose position on the time axis 
relative to each other is fixed by 
a specified period and whose 
absolute position is fixed by the 
time the first read occurs, as 
Figure D illustrates. The first 
read must be scheduled less 
than one period after the sys- 
tem starts: operation. 

b d e  You use conaol 
constraints to adapt reusable 
code to particvlar designs. Con- 
trol constraints can express con- 
ditional execution and output 
and control exceptions and tim- 
ers. Triggering conditions and 
output guards are predicates. 

If an operator is guarded by 
a triggering condition, the sys- 

tem discards input data that 
does not satisfy the condition 
without firing the operator. 
Output guards associated with 

an operator prevent computed 
output data from being written 
into the guarded streams ifthe 
condition is not satisfied. 

I I I I _  I 

Activated to rend Attivoted to read 

Figure C. Diagram ofhm temporal avntsoccurat regilarscheduling intervals 
to h-igeYperiod operatom. 
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package TL is 
procedure MESSAGE-TYPE-DECISION-DRIVER; 
- Declarations of other driver procedures go here. 

end TL; 

with SB; use SB; 
with PSDL-STREAMS; use PSDL-STREAMS; 
with DS-DebugPKG; use DS-DebugPKG; 
with PSDL-TIMER-PKG; 

type PSDL-EXCEPTION is 

package C3I-SYSTEM-SPEC is 

package body TL is 

(UNDECLARED-ADA-EXCEPTION); 

package DS-COMMS-EMAIL is new 
FIFO-BUFFER(FnFNAME); 

package DS-COMMS-TEXT-FILE is new 
FIFO_BUFFER(TEXT-RECORD); 

package DS-TDD-ARCHIVE-SETUP is new 
FIFO_BUFFER(ARCHlVF-SETUP~ 

package DSINPUTTEXT-RECORD is new 
F E O - B U F F E R ~ - R E C O R D ) ;  

- Other data stream declarations go here. 
end C3I-SYSTEM-SPEC; 

procedure MESSAGE-TYPE-DECISION-DRIVER is 
LV-INPUT-TEm-RECORD: TEXT-RECORD; 
LV-TDD-ARCHWE-SETUP: ARCHWE-SETUP; 
LV-COMMS-TEXT-FILE: TEXT-ECORD; 
LV-COMMS-EMAIL: FILENAME; 
EXCEPTION-HAS-OCCURRED: boolean := false; 
EXCEPTION-ID: PSDL-EXCEPTION; 

if C3I-SYSTEM-SPEC.DS-INPUT-TEXT' 
begin 

RECORDNEW-DATA then 
begin 
~3I-SYSTEM-SPEC.DS-INPUT-TEXI- 

RECORD.BUFFER.READ 
(LV-INPUT-TEXT-RECORD); 

exception 
when BUFFER-UNDERFLOW => 

DS-Debug.Buffer-Underflow 
(TNPLJT-TEXT-RECORD", 

"MESSAGE-TYPE-DECISION"); 
end; 

~ ~ - s Y s ~ - S P E C . D s - T D D - A R c ~ -  
SETUP.BUFFER.READ 

(LV-TDD-ARCHIVE-SETUP); 
exception 

when BUFFER-UNDERFLOW => 
DS-Debug Buffer-Underflow 

("TDD-ARCHWE-SETUP", 
"MESSAGE-TYPE-DECISION"); 

end; 

if true then 
begin 

MESSAGE-TYPE-DECISION 
(Lv-INPUT-TEm-RECORD, 

LV-TDD-ARCHWE-Sm,LV-COMMS-TEXF- 
FILE, LV-COMMS-EMAIL); 

exception 
when others => 

DS-Debug Undeclared-Exception 

EXCEFCTON-M-OCCURRED := true; 
(WESSAGE-TYPE-DECISION') 

EXCEPTION-ID := UNDECLARED-ADA- 
EXCEPTION; 

end; 
if not LV-COMMSTEXT-FTLE.IS-TRACK 
then 

begin 
C3I-SYSTEM-SPEC.DS-COMMS-EMAIL. 

BUFFER.WRITE 
(LV.-COMiiS-EMAIL); 

exception 
when BUFFER-OVERFLOW => 

DS-Debug. Buffer-Overflow 
("COMMS-EMAIL" , 
"MESSAGE-TYPE-DECISION"); 

end; 
end if; 
if LV-COMMS-TEXT-FILEIS-TRACK 
then 

begin 
C3I-SYSTEN-SPEC.DS-COMMS-TEXT- 

FILE.BUFFERWRITE 
(LV-COMMS-TEXT-FILE); 

exception 
when BUFFER-OVERFLOW => 

DS-Debug. Buffer-0vedow 
(" COMMS-TEXT-FILE' , 

"MESSAGE-TYPE-DECISION"); 
end; 

end i t  
if EXCEPTION-HAS-OCCURRED then 

(WESAGE-TYPE-DECISION' , 
DS-Debug.Unhandled-Exception 

PSDL-EXCEPTION' 
image(EXCEPTI0N-ID)); 

end if; 
end if; 

end if; 
end MESSAGE-TYPE-DECISION-DRIVER; 
- Other driver procedure declarations go here. 

end TL; 

Figure 7. Ada driver fm the message-type-decision operator in Figure S .  

We are now building the software 
database system, using existing object-ori- 
ented databases and formal models for 
prototyping design databases and software 
databases.' 

Execulion w p f .  The execution-support 
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system includes a translator, static sched- 
uler, dynamic scheduler, and debugger. 

+ The translator generates code that 
binds the reusable components extracted 
from the software database. Its main h c -  
tions are to implement data streams, con- 
trol constraints, and timers. 

+ The static scheduler uses several al- 
gorithms to allocate time slots for opera- 
tors with real-time constraints before exe- 
cution begins." Ifthis allocation succeeds, 
all the operators are guaranteed to meet 
their deadlines even in the worst case. If 
the static scheduler can't find a valid 
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schedule, it provides diagnosticinformation 
about the cause of the problem and if it can 
be solved by addmg more processors. 

+ T h e  dynamic scheduler allocates 
time slots for operators that are not time 
critical. 

+ The debugger monitors timing con- 
straints and various aspects of design in- 
tegrity as the prototype runs, reports fail- 
ures, and letsthe designer adjust deadlines. 

CAPS is being developed as an ongo- 
ing research effort, and some of the func- 
tions just listed were not ready when we 
started our experiment. 

When we started decomposing the 
modules for the C31 station, the graphics 
and syntax-directed editors were not ready 
to use for a multilevel PSDL example, so 
we used Frame Technology Corp.'s 
Framemaker to draw the graphs and write 
the PSDL code. 

After completing the multilevel de- 
composition, we prepared a PSDL file 
that included only the atomic operators in 
the bottom level of the decomposition. 
We did the constraint propagation and 
consistency checking among levels and 
modules manually. 

Protoiypg steps. Generating a proto- 
type in CAPS has 11 general steps: 

1 .  The designer draws the computa- 
tion graphs with the graphics editor. 

2. The graphics editor provides the 
skeleton PSDL code and propagates in- 
herited constraints. 

3 .  The designer uses the syntax-di- 
rected editor to modify the skeleton code, 
and the system produces a file with the 
prototype's PSDL description. 

4. The  translator produces an Ada 
package that instantiates the data streams, 
reads data from and writes data to the data 
streams, and executes atomic operators. The 
translator uses PSDL descriptions to gener- 

with GLOBAL-DECLARATIONS; use GLOBAL-DECLARATIONS; 
with DS-DEBUG-PKG; use DSDEBUG-PKG; 
with TL; use TL; 
with DS-PACKAGE; use DS-PACKAGE; 
with PRIORIm-DEFINITIONS; use PRIORITY-DEFINITIONS; 
with CALENDAR; use CALENDAR; 
with TEXT-IO; use TEX7-IO; 
procedure STATIC-SCHEDULE is 

MESSAGE-TYPE-DECISION-TIMING-ERROR : exception; 
- Other exception declarations go here. 
task type SCHEDULE-TYPE is 

pragma priority (STATIC-SCHEDULE-PRIORITY); 
end SCHEDULE-TYPE; 
for SCHEDULE-TYPE'STORAGE-SIZE use 200-000; 
SCHEDULE : SCHEDULE-TYPE; 
task body SCHEDULE-TYPE is 

PERIOD : duration := duration(5.00oooOoooOoooOE+01); 
MESSAGE-TYPE-DECISION~STOP-TIME3 : duration := 

- Other declarations of scheduled stopping times go here. 
SLACK-TIME : duration; 
S T m - O F P E R I O D  : time := clock; 
CURRENT-TIME : duration; 

duration(2.20000000000E+OO) - Deadline for message-type-decision. 

begin 

begin 
- Calls on other driver procedures go here. 
MESSAGE_TYPE-DECISION-DRIVER; 
SLACK-TIME := 

STm-OF-PERIOD + MEsSAGE-TYPE-DECISION_STOP-~3 - 
CLOCK: 

if SLAcK-TniE >= 0.0 then 
delay (SLACK-TIME); 

raise MESSAGE_rYPE-DECISION-TMING~ERRO~ 
else 

end if; 
- Calls on other driver procedures go here. 

delay (ST2WT-OF-PERIOD - clock); 

when MESSAGE-TYPE-DECISION-TIMJNG-EWOR => 

STAITT_OFPERIOD := STAHT_OF-PERZOD + PERIOD, 

exception 

PUT-LINE("timing error from operator MESSAGE-TYPE-DECISION"); 

- Other exception handlers go here. 
S T m - O F P E R I O D  := clock; 

end; 
end loop; 

end SCHEDULE-WE; 

begin 
null; - Initializations are not needed for this example. 

end STATIC-SCHEDULE; 

ate dnver tx-ocedures for atomic oDerators. Figure 8. Ada static schedrile tusk generatedfbr the n r e s . ~ a ~ e - ~ p e - d e c i s i ~  operutor in Figure 5. 
For example, Figure 7 shows ;he Ada 
driver procedure for the PSDL message- 
type-decision operator in Figure 5. 

The driver procedures provide a stan- 
dard interface between the Ada compo- 
nents and the generated scheduling soft- 
ware. They include exception handlers for 
stream overflow and underflow conditions 

_____ 
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and for undeclared exceptions that might 
be raised by faulty implementations of 
atomic Ada components. The exception 
handlers interface to the PSDL debugger 
to produce diagnostic messages. 

5 .  The static scheduler mes to find a 

schedule for the time-critical operators 
and - if it finds a feasible schedule - 
produces an Ada package that contains the 
schedule, represented as an Ada task that 
calls the driver procedures. Figure 8 shows 
the part of the static schedule task gener- 
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with TL; use TL; 
with PRIOIUTY-DEFINITIONS; use PRIORITY-DEFINITIONS; 
package DS-PACKAGE is 

task type DYNAMIC-SCHEDULE-TYPE is 

end DYNAMIC-SCHEDULE-TYPE; 
for DYNAMICSCHEDULE-TYPE‘STORAGE-SIZE use 100-000; 
DYNAMIC-SCHEDULE : DYNAMICSCHEDULE_TYPE; 

pragma priority (DYNAMIC-SCHEDULE-PRIORIW; 

end DS-PACKAGE; 

package body DS-PACKAGE is 
task body DYNAMIC-SCHEDULE-TYPE is 
begin 

delay (1 .O); 
loop 

STATUS-SCREEN-D WR; 
MESSAGE-EDITOR-DEWER; 
- Invocations of other non-critical operators go here. 

end loop; 
end DYNAMIC-SCHEDULE-TYPE; 

end DS-PACKAGE; 

Figure 9. A d a  tnsk to  invoke nonmtzra l  operatmx 

and begins executing the prototype. 
9.  Potential  users observe the 

prototype’s behavior, paymg particular at- 
tention to the consequences of arbitrary 
assumptions. 

10. The  designer modifies the proto- 
type in response to user feedback. 

1 1. When users accept the prototype’s 
demonstrated behavior, the designer adds 
any required noncritical functions, opti- 
mizes the prototype, and ports it to the 
target hardware and operating system. 

LESSONS LEARNED 

We used CAPS to successfully gener- 
ate an Ada C31 prototype quickly and at 
low cost. The  prototype was constructed 
with about one man-month of effort, not 
counting time spent in formulating the re- 
quirements and fixing problems with the 
tools. 

The  resulting Ada prototype executes 
in a color, graphical, multiwindow user in- 
terface; provides all essential functions de- 
fined in the prototype spedfication; and 

ated for the PSDL description in Figure 5.  ’ the execution of a time-critical operator proves that all the. hard real-time con- 
The  static schedule contains time allo- 1 for a subset of all the notential activations. I straints nlaced on the station’s comm- 

cations for the time-critical operators in a 
fixed pattem that can be repeated indefi- 
nitely. The static scheduler determines the 
length of& pattern, which is represented 
by the Ada constant Period. The  schedule 
also includes a control structure that mon- 
itors time-critical components and reports 
missed deadlines, which are determined 
by the static scheduler and are represented 
by Ada constants like message-type-deci- 
sion-stop-time3. The static scheduler re- 
covers from mised deadlines by resetting 
its time reference and skipping to the next 
iteration of the static schedule. 

6. Once the static schedule is found, 
the dynamic scheduler produces an Ada 
package that contains a dynamic schedule 
for nonc~itical operators. This task, shown 
in Figure 9, invokes noncritical operators 
during time slots not being used by the 
static-schedule task. Unused time slots can 
arise because of either scheduled waiting 
periods or an operator’s early completion. 
Relatively large vacant slots can be created 
when PSDL control constraints suppress 

The  dynamic schedule is represented 
as an Ada task with a priority less than that 
of the static schedule task, so it can be exe- 
cuted whenever there is nothing more im- 
portant to do. This decouples the analysis 
of the time-critical operator’s resource re- 
quirements from the design and imple- 
mentation of the prototype’s noncritical 
parts, thus sitnplifylng the analysis and 
speeding prototyping. 

Context switching is handled by the 
scheduling mechanism provided by the 
Ada runtime system and does not require 
any special code to be generated, other 
than the pragmas that declare the priori- 
ties of the schedule tasks. 

7. CAPS provides the designer with 
matching reusable Ada coinponetits for 
the atomic operators. Ifa reusable cotnpo- 
nent cannot be found, the designer either 
writes the code for that operator or de- 
composes it in an effort to find reusable 
components. (We are now designing a tool 
that can generate Ada code from equations 
describing the desired behavior.) 

lien& are met completely. 

I BUS errors. During prototype execution, 
the system continuously gave bus errors at 1 

a certain point. After a long debugging 
effort, we noticed that the error occurred 
only for the data stream defined by the last 
stream declaration in the Ada package in 
Figure 8. ”e solved t h s  error by adding 
an extra stream that the program did not 
use. Although we could not find any rea- 
son for it, we suspect the problem was 
caused by a compiler fault. 

Another problem during execution in- 
volved the schedulers. Because the proto- 
type uses so many variables, the default 
storage for the static and dynamic sclied- 
ule tasks was not large enough. So we 
modified the static and dynarnic schedul- 
ers to generate Ada code that explicitly 
allocates more storage via representation 
clauses. During the experiment, we used a 
constant for the storage size. To reduce 
portability problems, we are investigating 
the design of an enhancement that will 



calculate the required storage based on ac- 
tual variable use and the size attribute pro- 
vided by Ada. 

Relative speeds. %le the timing con- 
straints are feasible for a stand-alone Sun 
workstation of the type proposed for the 
final system (a Sun SparcStation), this 
hardware was not available to us. Our pro- 
totype was designed on an older Sun sys- 
tem, which is much slower than the pro- 
posed hardware. 

This forced us to use longer maximum 
execution times and periods to make the 
prototype run. We learned that the proto- 
type need not execute as fast as the re- 
quirements specify, but rather must meet 
the requirements relative to the speed of 
the proposed target hardware. 

This realization focused our research 
on better methods for evaluatingthe feasi- 
bility of real-time constraints when the 
target hardware for the proposed system 
differs from the prototype’s hardware4 and 
it has resulted in changes to the design of 
the CAPS system to support explicit re- 
source models for the target hardware. 

Global constmints. The prototype does not 
address global timing constraints because 
the version of CAPS we used did not support 
a multiprocessor model. We are working on 
ways to realize global timing constraints in 
distributed multiprocessor systems with 
bounded communication delays in point-to- 
point data transmissions. 

Any design that guarantees global mes- 
sage delivery witlun hard real-time con- 
straints depends on bounded delivery 
times for the long-haul network, at least 
for transmissions between nodes that are 
directly connected. However, such net- 
works are impossible to realize because in 
practice you must also guarantee accurate 
message delivery. If the underlying me- 
dium is noisy - which is likely in C31 
applications because of jamming - de- 
signs that guarantee bounded message de- 
lays must tolerate some message loss. 
That’s because error-correcting protocols 
can retransmit only a bounded number of 
times if the transmission delay is limited by 
hard real-time constraints. 

Retransmission can reduce the mes- 

age-loss rate, but if a message can get lost 
n a single transmission, it can also get lost 
n n consecutive transmissions. We should 
herefore bound message-delivery time by 
constant times the required retransmis- 

ions and limit the retransmissions that 
.an be attempted before a time-out error 
nust be reported. 

e capabilities C M S  provides are es- r sential to rapid prototyping. In partic- 
dar, automatic code generation and in- 
trumentation let us try design variations 
luickly without cutting comers because the 
liagnostics helped us 1ocAz.e and 6x bugs. 
iutomated schedule construction and diag- 
iostic information about timing con- 
traints helped us navigate the maze of 
nteracting resource constraints and eval- 
late the feasibility of the requirements. 

The experience we gained also suggests 
“any improvements to CAPS. For exam- 

ple, before our experiment the CAPS 
static scheduler required the designer to 
specify a maximum response time and a 
minimum calling period for each time- 
critical sporadic operator. We found that 
the designer often did not know these two 
attributes, so we modified the staticsched- 
d e r  to calculate default values based on 
heuristics that seek the fastest feasible re- 
sponses yet maintain a balanced use of re- 
sources. 

The C31 prototype is also serving as a 
testbed for ongoing research in computer- 
aided software design. Ahypothetical net- 
work of generic C31 stations is serving as a 
test case to investigate deadlock detection 
and prevention at the design level. The  
goal of this research is to develop a tool 
that takes as input a formal specification 
of a distributed system, determines if the 
design makes deadlock possible and if 
so, guides the designer in removing that 
possibility. + 
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