
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

1992-01

Computer-Aided Prototyping for a

Command-and-Control System Using Caps

Luqi

IEEE

http://hdl.handle.net/10945/43625

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36735813?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This case study shows
the feasibility of using

com puter-aided
prototyping to validate

a C31 system s
requirements and

describes the enabling
technology.

LUQl
Naval Postgraduate School

COMMAND-AND-COWROL

FLAP 6 FLAP C

omputer-aided prototyping, which C seeks to automate early design phases,
is an important t e c h q u e for developing
complex embedded systems that have
strict time constraints. System analysts and
users need prototyping methods to ade-
quately fonnulate and assess the require-
ments for those systems. They can then
use computers to apply these methods
rapidly.

At the Naval Postgraduate School, my
colleagues and I have recently completed
an experiment to evaluate OUT rapid-pro-
totyping methods and computer-aided
design environment.

Our experiment was to prototype a ge-
neric command, control, communica-
tions, and intelligence station’ and gener-
ate the Ada code from the prototype’s
specifications automatically. The results
show that it is feasible to use computer-
aided prototyping for practical, real-time
Ada applications.

C31 applications are difficult to de-
velop, for the reasons outlined in the box
on p. 58. The C’l prototype we developed
had characteristics typical of embedded
software, including distributed process-
ing; hard real-time constraints; multiple,
predefined hardware interfaces; and com-

~
~

5 6 07407459/92/0100/0056/$03 00 D IEEE J A N U A R Y 1 9 9 2

plex requirements. We generated a color,
multiwindow executable Ada prototype
that can process tactical data from multiple
interfaces in real time.

We used the prototype to get feedback
about the proposed design's effectiveness,
performance, and structure and to evaluate
the soundness of our design decisions. The
feedback helped us improve and r e h e re-
quirements and evaluate the feasibility of the
functional specification. We iteratively re-
lined and vahdated requirements by m&-
ing an operational prototype until users were
sa&fiedwith its behavior.

embedded system or a local distributed
system with multiple processors. A sub-
goal of our research is to establish the fea-
sibility of a low-cost C31 system consisting
of a loosely coupled network of C'I sta-
tions installed in sites without substantial
C31 support, like noncombatant ships or
small combatant platforms.

Each station would be a generic C31
station, although individual configura-
tions could provide tailored subsets of
functionality. Steve Anderson's report
gives a detailed descritxion of the Peneric
?:'I station's requirem'ents.'

Y

We used the Prototype System De-
scription Language' and Computer-
Aided Prototyping System' in our experi-
ment. PSDL integrates the tools in CAPS,
whch help the designer create the design,
automatically construct a real-time sched-
ule, and automatically generate an execut-
able Ada model of the proposed system
from the PSDL specification. The Ada
model is a combination of CAPS-gener-
ated Ada programs and reusable atomic
Ada components.

CAPS also supports system manage-
ment and helps control a system's evolu-
tion.' Ths support helps designers give
timely responses to modification requests
and helps protect the system's integrity as
it evolves, extending its life.

SYSTEM REQUIREMENTS

A C'I system helpsmilitary officers un-
derstand tactical situations: It provides
communication among officers on differ-
ent platforms and external forces, and it
processes tactical data from various inter-
nal and external sources, such as radar and
sonar.

Structvre. The proposed C'I system is a
network of generic C'I stations, each of
which is a specialized instance of a com-
mon design. The network is a large, geo-
graphically distributed system that may
have many thousand nodes. Each station is
mounted on a platform whose location
typically is not fixed. Larger platforms can
have several stations serving officers with
different responsibilities.

Each station can be viewed as a single

Interfaces. Figure 1 shows a single-user
:'I station and its external interfaces to
ie user and to the weapon systems, plat-
3rm sensors, navigation system, and com-
iunication links. T h e information the
ser requires includes the platform's loca-
on, the status of its weapon systems, and
ie locations and charaderistics of other
llatforms in the area. The station receives
nd transmits track infomiation and com-
iand-and-control data via communica-

I local area network 1

....

tion links, receives trackinformation from
platform sensors, outputs a tactical display
to the user, provides a text editor for gen-
erating and sending messages, and pro-
vides a way to verify and maintain track-
data integrity. (A track is the system's
representation of an external object such
as a platform or a navigation hazard.
Tracks contain information about the lo-
cation and characteristics of the external
object.)

The user is an officer at some com-
mand level. The station is the officer's
communication channel to superiors,
subordinates, and other officers at the
same command level. The user communi-
cates with the station via a keyboard,
graphical display, and pointing device to
obtain information about selected tracks,
the status of the host platform and C'I
system, and messages from other officers.
The user may update track information,
control the status of the C31 system, and
originate messages.

The antennas, notch filters, and data-
terminal sets provide communication

Weapon systems yy,myi'
1 jinfFLo/ J

..

Generic t3I station

rq,/21V]F]
Platform sensors

'igure 1. Dzagam ofsingleemer genenr C'I ystmt and its extwnal riiterfaces

I E E E S O F T W A R E 5 7

NATURE OF c31 SYSTEMS
C31 systems help military officers understand tactical situations. They are difficult

to develop because
+ Their use in strategic defense applications makes correctness and reliability crit-

ical.
+ They are influenced by many people, by organizations, and by policies, so their

requirements are complex and difficult to determine.
+ Their design depends on techniques to guarantee that hard real-time con-

straints will be met both in large distributed systems connected by long-haul net-
works and in local distributed systems with many hardware structures. Current soft-
ware research has not solved many of these systems’ problems, like
real-time-database design, network-flow prediction, upper bounds for the actions of
real-time operating systems, hard real-time algorithms for general problems, and ro-
bust identification of processes in distributed systems.

+ Their complex, dynamic interfaces make it almost impossible to deal with
changes in requiremenE.

+ As with any large system, their development is costly, and the current low pro-
ductivity of soha re development aggravates the problem.

We use prototyping and computer-aided design techniques to address many of
these difficulties.

TY Pe Response time

Question and answer
Menu selection
Form filling
Function keys
Command language
NaturaVQuery language
Graphical interaction

0.5 to < 2.0 seconds
< 0.2 second
> 2.0 seconds
< 0.2 second
0.5 to > 2.Oseconds
0.2 to < 0.5 second
< 0.2 second

Message
precedence

lime between message
completion and transmission

l ime between message
reception and display

Flash < 1 second < 1 second
Immediate < 2 seconds < 2 seconds
Priority < 3 seconds < 3 seconds

e 4 seconds < 4 seconds

links to stations on other platforms. The
local area network connects to other sta-
tions on the same platform, if any.

The navigation system provides infor-
mation about the platform’s current loca-
tion and movement.

The sensors provide the location of
surrounding platforms.

The weapon systems provide inform-
tion about their status.

Requirements. The requirements for a
generic C31 station include hard real-time
constraints on system responses. Any de-
sign for such a station depends on assump-
tions about the timing characteristics of

the extemal systems with which it inter-
acts. Because accurate values for many of
the hard real-time constraints in a C31 sys-
tem are classified, we based the design of
our unclassified prototype on seven arbi-
trary assumptions:

+ It should be able to retrieve up to
1,000 tracks in less than one second.

+ It should enter the contents of a
track-data message into a track database in
less than two seconds.

+ It should conform to the dialogue-
response and message-delay times sum-
marized in Tables 1 and 2.

+ It has four sensors, four weapon sys-
tems, and four communication links.

+ Its navigation system updates veloc-
ity every 41 m, transmits velocity every
983 ms, and updates latitude and longi-
tude every 1.3 seconds.

+ Its platform sensors track a maxi-
mum of 100 tracks per sensor per second.

+ Its weapon systems update their sta-
tus once every second.

We did not consider networkdelay be-
cause the focus of this requirements anal-
ysis and prototyping effort was on timing
constraints w i h individual stations.

PROTOTYPE SLICE

The prototype includes a generic C31
station and its interacting external sys-
tems. We formulated the prototype as a
closed system because we must simulate
the extemal systems to demonstrate the
proposed behavior of the C31 station.
(Vedat Coskun and Cengiz Kesoglu6 pro-
vide complete details of the prototype.)

Figure 2 shows a representative slice of
the PSDL definition that contains a part of
the system related to message routing (see
the box on p. 62-63 for an overview of
PSDL). The slice takes a path from the
hierarchically structured prototype’s root
to its leaves. The root is a single PSDL
operator, c3iPsystem, which is decom-
posed into more primitive operators. The
designer defines the decomposition via a
PSDL graph hke that shown in Figure 2 .

Ti’g requirements. Figure 2 defines the
control constraints for the operators in its
graph. Each operator d e h t i o n includes

5 8 J A N U A R Y 1 9 9 2

its timing c o n s k t s , based on the re-
quirements o u h e d earlier. For example,
the minimum calling period for the sen-
sor-interface operator is 2,500 p, whch
was derived &om our assumption that the
maximum data rate from each of the four
sensors is 100 tracks per second, so the
minimum calling period is one second di-
vided by 400, or 2,500 p. T h s is the long-
est time the system can allow between
consecutive firings of the sensor-interface
operator in the static schedule.

The requirements state that the maxi-
mum delay between receivinga trackmes-
sage and entering it into the database is
two seconds. In the initial design of the
prototype we allocate this delay evenly be-
tween the sensor-interface and the
track-database-manager operators, lead-
ing to maximum response times of one
second each. We may reallocate these con-
straints later as we explore requirements in
more detail.

As Figure 2 shows, we don't specify the
timing requirements for the communica-
tion interface at tlus level because they are
influenced by two separate requirements:
the maximum delay of a communication
message (one second), and the maximum
delay of a track message (two seconds). Be-
cause each requirement is likely to affea
components on different dataflow paths, we
define the corresponding timing constraints
at the next decomposition level.

In the initial prototype version, we do
not distinguish timing requirements for
different message classes or different types
of user interaction. Instead, we design for
the worst case: All messages must be deliv-
ered within one second and all user-inter-
face functions must complete w i h 200
ms. We may relax these assumptions in
later iterations ifwe find it is not feasible to
meet these simplified requirements. At
present, we introduce distinctions only to
show the feasibility of the timing require-
ments.

The BY REQUIREMENTS clauses in Fig-
ure 2 document by keyword the require-
ments from whch we derived the timing
constraints.

Commlm'Klltion interhe. The commun-

DATA STREAMS
- Type declarations for the data streams in the graph go here.

CONTROL CONSTRAINTS
OPERATOR comms-interface
OPERATOR sensor-interface

MINIMUM CALLING PERIOD 2500 mcrosee BY REQUrREhENT? sensor-rate
MAXLMUM RESPONSE TIME 1 sec

MINIMUM CALLING PERIOD 1 ms
BY REQUIREMENTS track-retrieval-rate

MAXIMUM RESPONSE TIME 1 sec
BY REOUIREMENTS track delav

BY REQUIREMENTS track-delay
OPERATOR track-databasemanager

- i OPERATOR user-interface
MAXIMUM RESPONSE TIME 200 ms

BY REQUIREMENTS dialome-response-time
I .

OPERATOR weapons-interface
TRIGGERED BY SOME weapon-statu-data
OUTPUT weapons-emrep IF
weapon-status-data.status = damaged OR
weapon-status-datasatus = service-required OR
weapon-status_data.status = out-of-ammunition

BY REQUIREMENTS weapons-status-rate

BY REQUIREMENTS weapons-status-rate

MINIMUM CALLING PERIOD 250 ms

MAXIMUM RESPONSE TIME 1 sec

OPERATOR comms links
OPERATOR sensors-
OPERATOR navigation-system

PERIOD 1300 ms BY REQUIREMENTS navigation-rate
OPERATOR WEAPONS-SYSTEMS

PERIOD 250 ms BY REQUIREMENTS weapons-status-rate
END

cation interface performs functions di- 1 F i p r e 2. S h e Of'PSDL dejinittonfor menage muting, including n decomposition graph

~ _ ~ _ _ _ _ .

I E E E S O F T W A R E 5 1

CONTROL CONSTRAINTS
OPERATOR incomingmessage-resolver

MINIMUM CALLING PERIOD 40 ms
BY REQUIREMENTS link-speed

MINIMUM CALLING PERIOD 7 1 ms

MAXIMUM RESPONSE TIME 800 ms

OPERATOR outgoing-message-resolver

BY REQUIREMENTS transmission-rate

BY REQUIREMENTS message-delay, dialogueresponse-time
OPERATOR track-report-generator

PERIOD 2 sec

TRIGGERED IF not terminate-trans
BY REQUIREMENTS track-reporting-rate

END

F i p e 3. PSDL dej~zitio7zfw the con~w~zmication interjace.

rectly related to message reception and
transmission. Because stations use differ-
ent communication equipment, this
module’s implementation will vary greatly
from one instantiation to another. How-
ever, all generic C31 stations are subject to

l a common set of behavioral and timing
requirements. The requirements dictated
that the implementation of th~s interface be
very modular, to isolate site dependencies.’

Figure 3 shows the PSDL definition
for the communication interface. T h ~ s in-

terface must monitor, relay, and transmit
messages on various networks witlun hard
real-time deadlines. It filters, routes, sorts,
and translates messages, and it analyzes
messages amving at the communication
interface to determine if they contain track
information, if they must be relayed to
other participants in the network, and if
they must be archived.

Condminls. At a network speed of 1,300 to
5,000 bps and assuming the shortest mes-
sage is about 100 characters (800 bits,
minus stadstop bits and redundant data),
the system will receive a maximum of 25
messages &om four links in one second.
Therefore, the minimum calling period of
the incoming-message-resolver is one
second divided by 25, or 40 ms. We leave
the specification of the maximum re-
sponse time to the next level because th~s
operator processes both messages con-
taining tracks (comms-add-track) and
messages containing communications
among officers (com-email).

We estimate the maximum number of
outgoing messages in one second as

+ one message every two seconds from
the track-report-generator (a periodic
operator) plus

+ 12.5 messages every second to relay
(assuming that half the messages received
should be relayed) plus

+ one message every second from the
user (an assumption)
for a maximum of 14 messages per second.
Thus, the minimum calling period for the
outgoing-message-resolver operator is
one second divided by 14, or 71 ms. Its
maximum response time is one second
minus 200 ms, or 800 ms, since we assume
messages must be transmitted within one
second of completion, and that the user
interface can have up to a 200-ms delay.

The requirements give no time con-
straint for track repom. The prototype is
designed to produce track reports every two
seconds when this feature is activated, based
on the analyst‘s assumption of a reasonable
reportingrate. Thisassmptionmustbeval-
idated and adjusted as necessary.

incoming mesoyes. T h e incoming-mes-
sage-resolver is still too complicated for

6 0 J A N U A R Y 1 9 9 2

direct implementation, so it is decom-
posed into four atomic operators, shown
in Figure 4.

The maximum time delay for a mes-
sage is one second. The user interface re-
quires 200 ms, and the remaining 800 ms
are initially allocated evenly between the
input-file-parser and the message-
type-decision.

The time delay for a track message can
be at most two seconds. T h e track
database manager requires one second,
and the input-file-parser and message-
typedecision have been allocated 400
ms each, leaving 200 ms for track-ex-
tractor.

The maximum response time allowed
for relaying-decision depends on the
maximum delay allowed between the re-
ceipt and transmission of a relayed mes-
sage. The requirements do not contain
&IS information, so the analyst makes an
arbitrary assumption that this delay should
be no more than 1.5 seconds. Because the
outgoing-message-resolver takes 800 ms
and the input-file-parser takes 400 ms,
t h~s leaves 300 ms for relaying-decision.

T h e analyst annotates each atomic
component in the graph in Figure 4 with
these execution-time estimates. T h e
CAPS tools use these annotations to find
reusable components from the software
base.

Triggering conditions are designated
as BY ALL because they must execute for
every incoming data value. This implies
input-text-record and corn-text- file
must be dataflow streams, and the execu-
tion rates of the operators input-file-
parser, message-type-decision, track-ex-
tractor, and relaying-decision must be
synchronized. The output guards on
message-type-decision suppress output
when the incoming message is neither
email nor track information.

To complete this top-down slice, Fig-
ure 5 shows the PSDL specification for
one atomic operator in the prototype,
message-type-decision, which decides if
the input-text-record contains track in-
formation. The CAPS graphical editor
derives this operator’s maximum execu-
tion time and its I/O interface mechani-
cally from the implementation graph of its

parent operator. The specification serves
as the basis for the retrieval of a reusable
component or for a manual implementi-

tion effort. As indicated in the PSDL de-
scription, this operator is implemented in
Ada.

DATA STREAMS

CONTROL CONSTRAINTS
input-text-record,comm-text-file : text-record

OPERATOR input-ae-parser
MAXIMUM RESPONSE TIME 400 ms
TRIGGERED BY ALL input-link-message

MAXIMUM RESPONSE TIME 3 0 0 ms
BY REQUIREMENTS relaying-delay

TRIGGERED BY ALL input-text-record
OUTPUT tcd-transnu-command IF

OPERATOR relaying-decision

lnuut-text record.relaved
I - -

OPERKTOR message-type-decisikn
MAXIMUM RESPONSE TIME 400 ms
TRIGGERED BY ALL input-text-record
OUTPUT comms-text-file IF comms-text-file.is-track
OUTPUT comms-eniail IF N O T comms-text-file.is-track

MAXLMUM RESPONSE TIME 200 ms
TRIGGERED IF comms-text-fileis-track

OPERATOR track-extractor

END

Figure 4. Fmir atomic operatun fw iizcomhrg-message-resolv~.

I E E E S O F T W A R E 6 1

OPERATOR message-type-decision
SPECIFICATION
INPUTinput-text-record : text-record,
tdd-archive-setup : archive-setup
OUTPUTco"s_text_file : text_record,
c0mm.s-email : filename
MAXIMUM EXECUTIONTIME 100 ms
DESCRIPTION { Sets the is-track field of a m - t e x - f i l e if
input-text-record contains track information. }

END
IMPLEMENTATlON Ada message-type-decision
END

Figure 5. PSDL definition for message-type-derision.

OVERVIEW OF PSDL
PSDL provides the de-

signer with a uniform concep-
tual h e w o r k and a high-
level system description. PSDL
components are either opera-
tors or types, realized by de-
composing PSDL or by remev-

Figure A. Sample PSDL graph.

USING CAPS

To generate the prototype's Ada
code, we used CAPS and the Transport-
able Applications Environment Plus, a
windowing package developed at the
Na t iona l Aeronautics and Space
Administration's Goddard Space Flight
Center.' TAE Plus provides either Ada
or C code to create the user-interface
modules, but we had to modify the gen-
erated code to make it fit the CAPS cod-
ing conventions.

The prototype was developed and runs
on a Sun 3 and is directly transferable to a
ruggedized Genisco computer.

CAPS sttudue. Figure 6 shows the three
main components of CAPS: a user inter-

ing or writing code in an under-
lying language.

As Figure Ashom, PSDL
decompositions are augmented
computation graphs. The verti-
ces (&des) are operators and the
edges (h e s) are data streams.

Operamrs are state machines
and their intemal states are
modeled by variable sets. Oper-
ators with an empty variable set
behave like functions.

values kom one operator to an-
other. All the data values in a
stream are instances of an ab-
stract data type associated with
the stream. Data types can be
defined either in PSDL or the
underlying language.

Data streams can be either
dataflow streams or sampled
streams. In PSDL, dataflow
streams act as FIFO buffers of
capacity one and synchronize

Data streams transmit data

wrote Adbated to r d

Figtux B. Diagram of maximum response time (MRV and minimum calling
period ("VICP) fw a time-critical sporadic operator.

data-driven computations.
Dataflow streams guarantee
that each data value written
into the stream is read exactly
once. Data values are removed
fi-om dataflow streams when
they are read.

Sampled streams act as
atomic memory cells and con-
nect operators that fire at unco-
ordinated rates. Sampled
streams model data sources for

which only the most recent in-
brmation k meaningful. Data
values are removed fi-om sam-
pled streams when they are
overwritten.

bmtrahts. Each vertex is
augmented with a set of timing
and control constraints.

liming amstah& As Figure A
shows, each vertex is labeled
with a maximum execution
time. The maximum execution
time is the longest time be-
tween the instant an operator
begins execution and the in-
stant it completes execution.
For example, in Figure A the
message-translator operator
takes as input a message and
outputs a translated message in
no more than 20 ms. Other
timing and control constraints
are expressed in text

Operators can be triggered
by data streams or periodic tim-
ing constraints. Operators trig-
gered by data streams are called
sporadic operators. In addition

-

6 2 J A N U A R Y 1 9 9 2

face, software database, and execution-
support system.

User inledore. T h e user interface, which
sup~orts concurrent tools, is implemented

1 .

usinEInterviews,8 which was developed at
’

StanTord University and is based i n X
Windows(asisTAEPlus), soitis portable.

The user interface includes a graphics
editor, a syntax-directed editor, and a tool
interface. T h e graphics editor lets the de-
signer edit a graphcal representation of
the prototype and automatically produces
a PSDL representation that other CAPS
tools can use.

T h e designer can specify parts of a pro-
totype using graphical objects to represent
PSDL computational structures like oper-
ators and data streams. The designer en-

to a maximum execution time,
each time-critical sporadic op-
erator has a maximum response
time and a minimum calling pe-
riod, as Figure B shows.

The maximum response time
is the longest time that may
elapse between the instant an op-
emtor is activated to read its input
streams and the instant it writes
an event. The minimum calling
period is the shortest time be-
tween two successive activations.

You can view the maximum
response time as the operator’s
window of opportunity, the max-
imum execution time as the used
portion of the window, and the
n l i n i ” calling period as the
“um 6ring rate the system
must support The minimum
alling period determines the
amount of CPU time the system
must allocate to the operator.

Operators triggered by peri-
odic timing constraints are
called periodic operators. Peri-
odic operators are triggered by
temporal events that must
occur at regularly scheduled i r -

r 5 Translator Debugger interface

I I --

ters text annotations with the syntax-&-
rected editor. The tool interface hides the
details of the interfaces among CAPS tools
from the designer.

Dotobose. The software database, which

holds reusable components and manages
the configuration.

CAPS was not integrated with the soft-
ware database when we conducted our ex-
periment, so we used a simulated database
of reusable Ada cormonents to cenerate

includes a design and software database, 1 the C31 protootype.

tervds. Figure c ausn-ates how
the scheduling interval and
deadlines are specified.

A periodic operator’s execu-
tion must fit entirely within the
scheduling interval, which is
analogous to the maximum re-
sponse time of a sporadic opera-
tor. You can view scheduling in-
tervals as sliding windows
whose position on the time axis
relative to each other is fixed by
a specified period and whose
absolute position is fixed by the
time the first read occurs, as
Figure D illustrates. The first
read must be scheduled less
than one period after the sys-
tem starts: operation.

b d e You use conaol
constraints to adapt reusable
code to particvlar designs. Con-
trol constraints can express con-
ditional execution and output
and control exceptions and tim-
ers. Triggering conditions and
output guards are predicates.

If an operator is guarded by
a triggering condition, the sys-

tem discards input data that
does not satisfy the condition
without firing the operator.
Output guards associated with

an operator prevent computed
output data from being written
into the guarded streams ifthe
condition is not satisfied.

I I I I _ I

Activated to rend Attivoted to read

Figure C. Diagram ofhm temporal avntsoccurat regilarscheduling intervals
to h-igeYperiod operatom.

I E E E S O F T W A R E 63

package TL is
procedure MESSAGE-TYPE-DECISION-DRIVER;
- Declarations of other driver procedures go here.

end TL;

with SB; use SB;
with PSDL-STREAMS; use PSDL-STREAMS;
with DS-DebugPKG; use DS-DebugPKG;
with PSDL-TIMER-PKG;

type PSDL-EXCEPTION is

package C3I-SYSTEM-SPEC is

package body TL is

(UNDECLARED-ADA-EXCEPTION);

package DS-COMMS-EMAIL is new
FIFO-BUFFER(FnFNAME);

package DS-COMMS-TEXT-FILE is new
FIFO_BUFFER(TEXT-RECORD);

package DS-TDD-ARCHIVE-SETUP is new
FIFO_BUFFER(ARCHlVF-SETUP~

package DSINPUTTEXT-RECORD is new
F E O - B U F F E R ~ - R E C O R D) ;

- Other data stream declarations go here.
end C3I-SYSTEM-SPEC;

procedure MESSAGE-TYPE-DECISION-DRIVER is
LV-INPUT-TEm-RECORD: TEXT-RECORD;
LV-TDD-ARCHWE-SETUP: ARCHWE-SETUP;
LV-COMMS-TEXT-FILE: TEXT-ECORD;
LV-COMMS-EMAIL: FILENAME;
EXCEPTION-HAS-OCCURRED: boolean := false;
EXCEPTION-ID: PSDL-EXCEPTION;

if C3I-SYSTEM-SPEC.DS-INPUT-TEXT'
begin

RECORDNEW-DATA then
begin
~3I-SYSTEM-SPEC.DS-INPUT-TEXI-

RECORD.BUFFER.READ
(LV-INPUT-TEXT-RECORD);

exception
when BUFFER-UNDERFLOW =>

DS-Debug.Buffer-Underflow
(TNPLJT-TEXT-RECORD",

"MESSAGE-TYPE-DECISION");
end;

~ ~ - s Y s ~ - S P E C . D s - T D D - A R c ~ -
SETUP.BUFFER.READ

(LV-TDD-ARCHIVE-SETUP);
exception

when BUFFER-UNDERFLOW =>
DS-Debug Buffer-Underflow

("TDD-ARCHWE-SETUP",
"MESSAGE-TYPE-DECISION");

end;

if true then
begin

MESSAGE-TYPE-DECISION
(Lv-INPUT-TEm-RECORD,

LV-TDD-ARCHWE-Sm,LV-COMMS-TEXF-
FILE, LV-COMMS-EMAIL);

exception
when others =>

DS-Debug Undeclared-Exception

EXCEFCTON-M-OCCURRED := true;
(WESSAGE-TYPE-DECISION')

EXCEPTION-ID := UNDECLARED-ADA-
EXCEPTION;

end;
if not LV-COMMSTEXT-FTLE.IS-TRACK
then

begin
C3I-SYSTEM-SPEC.DS-COMMS-EMAIL.

BUFFER.WRITE
(LV.-COMiiS-EMAIL);

exception
when BUFFER-OVERFLOW =>

DS-Debug. Buffer-Overflow
("COMMS-EMAIL" ,
"MESSAGE-TYPE-DECISION");

end;
end if;
if LV-COMMS-TEXT-FILEIS-TRACK
then

begin
C3I-SYSTEN-SPEC.DS-COMMS-TEXT-

FILE.BUFFERWRITE
(LV-COMMS-TEXT-FILE);

exception
when BUFFER-OVERFLOW =>

DS-Debug. Buffer-0vedow
(" COMMS-TEXT-FILE' ,

"MESSAGE-TYPE-DECISION");
end;

end i t
if EXCEPTION-HAS-OCCURRED then

(WESAGE-TYPE-DECISION' ,
DS-Debug.Unhandled-Exception

PSDL-EXCEPTION'
image(EXCEPTI0N-ID));

end if;
end if;

end if;
end MESSAGE-TYPE-DECISION-DRIVER;
- Other driver procedure declarations go here.

end TL;

Figure 7. Ada driver fm the message-type-decision operator in Figure S .

We are now building the software
database system, using existing object-ori-
ented databases and formal models for
prototyping design databases and software
databases.'

Execulion w p f . The execution-support

64

system includes a translator, static sched-
uler, dynamic scheduler, and debugger.

+ The translator generates code that
binds the reusable components extracted
from the software database. Its main h c -
tions are to implement data streams, con-
trol constraints, and timers.

+ The static scheduler uses several al-
gorithms to allocate time slots for opera-
tors with real-time constraints before exe-
cution begins." Ifthis allocation succeeds,
all the operators are guaranteed to meet
their deadlines even in the worst case. If
the static scheduler can't find a valid

J A N U A R Y 1 9 9 2

schedule, it provides diagnosticinformation
about the cause of the problem and if it can
be solved by addmg more processors.

+ T h e dynamic scheduler allocates
time slots for operators that are not time
critical.

+ The debugger monitors timing con-
straints and various aspects of design in-
tegrity as the prototype runs, reports fail-
ures, and letsthe designer adjust deadlines.

CAPS is being developed as an ongo-
ing research effort, and some of the func-
tions just listed were not ready when we
started our experiment.

When we started decomposing the
modules for the C31 station, the graphics
and syntax-directed editors were not ready
to use for a multilevel PSDL example, so
we used Frame Technology Corp.'s
Framemaker to draw the graphs and write
the PSDL code.

After completing the multilevel de-
composition, we prepared a PSDL file
that included only the atomic operators in
the bottom level of the decomposition.
We did the constraint propagation and
consistency checking among levels and
modules manually.

Protoiypg steps. Generating a proto-
type in CAPS has 11 general steps:

1 . The designer draws the computa-
tion graphs with the graphics editor.

2. The graphics editor provides the
skeleton PSDL code and propagates in-
herited constraints.

3 . The designer uses the syntax-di-
rected editor to modify the skeleton code,
and the system produces a file with the
prototype's PSDL description.

4. The translator produces an Ada
package that instantiates the data streams,
reads data from and writes data to the data
streams, and executes atomic operators. The
translator uses PSDL descriptions to gener-

with GLOBAL-DECLARATIONS; use GLOBAL-DECLARATIONS;
with DS-DEBUG-PKG; use DSDEBUG-PKG;
with TL; use TL;
with DS-PACKAGE; use DS-PACKAGE;
with PRIORIm-DEFINITIONS; use PRIORITY-DEFINITIONS;
with CALENDAR; use CALENDAR;
with TEXT-IO; use TEX7-IO;
procedure STATIC-SCHEDULE is

MESSAGE-TYPE-DECISION-TIMING-ERROR : exception;
- Other exception declarations go here.
task type SCHEDULE-TYPE is

pragma priority (STATIC-SCHEDULE-PRIORITY);
end SCHEDULE-TYPE;
for SCHEDULE-TYPE'STORAGE-SIZE use 200-000;
SCHEDULE : SCHEDULE-TYPE;
task body SCHEDULE-TYPE is

PERIOD : duration := duration(5.00oooOoooOoooOE+01);
MESSAGE-TYPE-DECISION~STOP-TIME3 : duration :=

- Other declarations of scheduled stopping times go here.
SLACK-TIME : duration;
S T m - O F P E R I O D : time := clock;
CURRENT-TIME : duration;

duration(2.20000000000E+OO) - Deadline for message-type-decision.

begin

begin
- Calls on other driver procedures go here.
MESSAGE_TYPE-DECISION-DRIVER;
SLACK-TIME :=

STm-OF-PERIOD + MEsSAGE-TYPE-DECISION_STOP-~3 -
CLOCK:

if SLAcK-TniE >= 0.0 then
delay (SLACK-TIME);

raise MESSAGE_rYPE-DECISION-TMING~ERRO~
else

end if;
- Calls on other driver procedures go here.

delay (ST2WT-OF-PERIOD - clock);

when MESSAGE-TYPE-DECISION-TIMJNG-EWOR =>

STAITT_OFPERIOD := STAHT_OF-PERZOD + PERIOD,

exception

PUT-LINE("timing error from operator MESSAGE-TYPE-DECISION");

- Other exception handlers go here.
S T m - O F P E R I O D := clock;

end;
end loop;

end SCHEDULE-WE;

begin
null; - Initializations are not needed for this example.

end STATIC-SCHEDULE;

ate dnver tx-ocedures for atomic oDerators. Figure 8. Ada static schedrile tusk generatedfbr the n r e s . ~ a ~ e - ~ p e - d e c i s i ~ operutor in Figure 5.
For example, Figure 7 shows ;he Ada
driver procedure for the PSDL message-
type-decision operator in Figure 5.

The driver procedures provide a stan-
dard interface between the Ada compo-
nents and the generated scheduling soft-
ware. They include exception handlers for
stream overflow and underflow conditions

I E E E S O F T W A R E

and for undeclared exceptions that might
be raised by faulty implementations of
atomic Ada components. The exception
handlers interface to the PSDL debugger
to produce diagnostic messages.

5 . The static scheduler mes to find a

schedule for the time-critical operators
and - if it finds a feasible schedule -
produces an Ada package that contains the
schedule, represented as an Ada task that
calls the driver procedures. Figure 8 shows
the part of the static schedule task gener-

65

with TL; use TL;
with PRIOIUTY-DEFINITIONS; use PRIORITY-DEFINITIONS;
package DS-PACKAGE is

task type DYNAMIC-SCHEDULE-TYPE is

end DYNAMIC-SCHEDULE-TYPE;
for DYNAMICSCHEDULE-TYPE‘STORAGE-SIZE use 100-000;
DYNAMIC-SCHEDULE : DYNAMICSCHEDULE_TYPE;

pragma priority (DYNAMIC-SCHEDULE-PRIORIW;

end DS-PACKAGE;

package body DS-PACKAGE is
task body DYNAMIC-SCHEDULE-TYPE is
begin

delay (1 .O);
loop

STATUS-SCREEN-D WR;
MESSAGE-EDITOR-DEWER;
- Invocations of other non-critical operators go here.

end loop;
end DYNAMIC-SCHEDULE-TYPE;

end DS-PACKAGE;

Figure 9. A d a tnsk to invoke nonmtzra l operatmx

and begins executing the prototype.
9. Potential users observe the

prototype’s behavior, paymg particular at-
tention to the consequences of arbitrary
assumptions.

10. The designer modifies the proto-
type in response to user feedback.

1 1. When users accept the prototype’s
demonstrated behavior, the designer adds
any required noncritical functions, opti-
mizes the prototype, and ports it to the
target hardware and operating system.

LESSONS LEARNED

We used CAPS to successfully gener-
ate an Ada C31 prototype quickly and at
low cost. The prototype was constructed
with about one man-month of effort, not
counting time spent in formulating the re-
quirements and fixing problems with the
tools.

The resulting Ada prototype executes
in a color, graphical, multiwindow user in-
terface; provides all essential functions de-
fined in the prototype spedfication; and

ated for the PSDL description in Figure 5. ’ the execution of a time-critical operator proves that all the. hard real-time con-
The static schedule contains time allo- 1 for a subset of all the notential activations. I straints nlaced on the station’s comm-

cations for the time-critical operators in a
fixed pattem that can be repeated indefi-
nitely. The static scheduler determines the
length of& pattern, which is represented
by the Ada constant Period. The schedule
also includes a control structure that mon-
itors time-critical components and reports
missed deadlines, which are determined
by the static scheduler and are represented
by Ada constants like message-type-deci-
sion-stop-time3. The static scheduler re-
covers from mised deadlines by resetting
its time reference and skipping to the next
iteration of the static schedule.

6. Once the static schedule is found,
the dynamic scheduler produces an Ada
package that contains a dynamic schedule
for nonc~itical operators. This task, shown
in Figure 9, invokes noncritical operators
during time slots not being used by the
static-schedule task. Unused time slots can
arise because of either scheduled waiting
periods or an operator’s early completion.
Relatively large vacant slots can be created
when PSDL control constraints suppress

The dynamic schedule is represented
as an Ada task with a priority less than that
of the static schedule task, so it can be exe-
cuted whenever there is nothing more im-
portant to do. This decouples the analysis
of the time-critical operator’s resource re-
quirements from the design and imple-
mentation of the prototype’s noncritical
parts, thus sitnplifylng the analysis and
speeding prototyping.

Context switching is handled by the
scheduling mechanism provided by the
Ada runtime system and does not require
any special code to be generated, other
than the pragmas that declare the priori-
ties of the schedule tasks.

7. CAPS provides the designer with
matching reusable Ada coinponetits for
the atomic operators. Ifa reusable cotnpo-
nent cannot be found, the designer either
writes the code for that operator or de-
composes it in an effort to find reusable
components. (We are now designing a tool
that can generate Ada code from equations
describing the desired behavior.)

lien& are met completely.

I BUS errors. During prototype execution,
the system continuously gave bus errors at 1

a certain point. After a long debugging
effort, we noticed that the error occurred
only for the data stream defined by the last
stream declaration in the Ada package in
Figure 8. ”e solved t h s error by adding
an extra stream that the program did not
use. Although we could not find any rea-
son for it, we suspect the problem was
caused by a compiler fault.

Another problem during execution in-
volved the schedulers. Because the proto-
type uses so many variables, the default
storage for the static and dynamic sclied-
ule tasks was not large enough. So we
modified the static and dynarnic schedul-
ers to generate Ada code that explicitly
allocates more storage via representation
clauses. During the experiment, we used a
constant for the storage size. To reduce
portability problems, we are investigating
the design of an enhancement that will

calculate the required storage based on ac-
tual variable use and the size attribute pro-
vided by Ada.

Relative speeds. %le the timing con-
straints are feasible for a stand-alone Sun
workstation of the type proposed for the
final system (a Sun SparcStation), this
hardware was not available to us. Our pro-
totype was designed on an older Sun sys-
tem, which is much slower than the pro-
posed hardware.

This forced us to use longer maximum
execution times and periods to make the
prototype run. We learned that the proto-
type need not execute as fast as the re-
quirements specify, but rather must meet
the requirements relative to the speed of
the proposed target hardware.

This realization focused our research
on better methods for evaluatingthe feasi-
bility of real-time constraints when the
target hardware for the proposed system
differs from the prototype’s hardware4 and
it has resulted in changes to the design of
the CAPS system to support explicit re-
source models for the target hardware.

Global constmints. The prototype does not
address global timing constraints because
the version of CAPS we used did not support
a multiprocessor model. We are working on
ways to realize global timing constraints in
distributed multiprocessor systems with
bounded communication delays in point-to-
point data transmissions.

Any design that guarantees global mes-
sage delivery witlun hard real-time con-
straints depends on bounded delivery
times for the long-haul network, at least
for transmissions between nodes that are
directly connected. However, such net-
works are impossible to realize because in
practice you must also guarantee accurate
message delivery. If the underlying me-
dium is noisy - which is likely in C31
applications because of jamming - de-
signs that guarantee bounded message de-
lays must tolerate some message loss.
That’s because error-correcting protocols
can retransmit only a bounded number of
times if the transmission delay is limited by
hard real-time constraints.

Retransmission can reduce the mes-

age-loss rate, but if a message can get lost
n a single transmission, it can also get lost
n n consecutive transmissions. We should
herefore bound message-delivery time by
constant times the required retransmis-

ions and limit the retransmissions that
.an be attempted before a time-out error
nust be reported.

e capabilities C M S provides are es- r sential to rapid prototyping. In partic-
dar, automatic code generation and in-
trumentation let us try design variations
luickly without cutting comers because the
liagnostics helped us 1ocAz.e and 6x bugs.
iutomated schedule construction and diag-
iostic information about timing con-
traints helped us navigate the maze of
nteracting resource constraints and eval-
late the feasibility of the requirements.

The experience we gained also suggests
“any improvements to CAPS. For exam-

ple, before our experiment the CAPS
static scheduler required the designer to
specify a maximum response time and a
minimum calling period for each time-
critical sporadic operator. We found that
the designer often did not know these two
attributes, so we modified the staticsched-
d e r to calculate default values based on
heuristics that seek the fastest feasible re-
sponses yet maintain a balanced use of re-
sources.

The C31 prototype is also serving as a
testbed for ongoing research in computer-
aided software design. Ahypothetical net-
work of generic C31 stations is serving as a
test case to investigate deadlock detection
and prevention at the design level. The
goal of this research is to develop a tool
that takes as input a formal specification
of a distributed system, determines if the
design makes deadlock possible and if
so, guides the designer in removing that
possibility. +

Luqi I\ dii asocidtc protcssor d t the “ a 1 Postgraduate S c h d Her research interests m-
~ l u d ~ rapid prototping, real hinc \>\reins, and software-development tools

She received a BS from Jilin Unner\ity, China, and an MS and a PhD in computer
science from the University ofMinnesota

Address quesoons dhout h s dmck to Luql at Ndvd Postgraduate school, N P S OS2,
Montcrct, CA 93943, Internet luqi@cs np5 nay, mil

ACKNOWLEDGMENTS
I thank Jeff Schwciger, (;dry Hughes, Valdis Berzins, Steve Andenon, Cengiz Kesoglu, and Vedat C o s h

for their cmbihutinn to this research dnd the anonynous referees who helped me improve this article.

REFERENCES
1. \$‘.U. Beam, hnmmd, Contra/, and Cr”u?iKutim E/igiriemng, Mcikdw-Hill, New York, 1989.
2. Luqi, V. Berzins, and U. Ych, ‘‘A Prototyping Language for Real-Time Software,” IEEE Trum Soffware

3. Luqi and M. Ketabchi, “A Computer-Aided Prototyping System,” IEEE Soffwure, March 1988, pp. 66-72.
4. Luqi, “Software Evolution Through Rapid Prototyping,” Computpr, May 1989, pp. 13-25.

Eii‘q., Oct. 1088, pp. 1409-1423.

denon, FziivtionirlSpecifictlon F w u Genprir C31 Stutim, master’s thesis, Computer Science Dept.,
Naval Postgrddudte School, Monterey, Calif., 1990.

6. V Coskun and C. Kesoglu, A Soffd’aw Pmtotypeforu Cmand, Control, Cmunica t im , and “digenre
(Cif) Workstarim, master’s thesis, Chmputer Science Dept., Naval Postgraduate School, Montercy,
Calif., 1990.

7 . 7j.~~/,po,tir(7~e‘~pf/;ru~ioi?.r E?ivi?oirmnit Plus, Nat’l Aeronautics and Space Admin., Goddard Space Flight
(:enter, Greenbelt, Md., 1990.

8. M.A. Linton, J..\I. Uissides, and P.K. Calder, “Cnmposing User Interhces with Interviews,” Cmpurpr,
Fell. 1089, pp. 8-22.

0. E. Borison, “Progrdni Changes and Cost of Selective Recompilation,” Tech. Report CMU-CS-89-20S,
Computer Science Dept., (:drnege-MeUon University, Pittsburgh, 1989.

10. J. Stdnkovic and K. Ramarnnthdm, Hurd Real-Tinre .SY,trms 7?itorial, IEEE CS Press, Los Mamitns, Calif.,
1988.

~-

I E E E S O F T W A R E 6 7

