M k

etadata, citation and similar papers at core.ac.u

Provided by Calhoun, Institutional Archive of the Naval Postgraduate School

“Lalhoun

Institutional Archive of the Naval Pastgraduate School

Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

1991

CAPS as a requirements engineering tool

Lugi

http://hdl.handle.net/10945/43624

‘E DUDLEY C@lhounisaproject of the Dudley Knox Library at NPS, furthering the precepts and
“ﬁm goals of open government and government transparency. All information contained

m‘ KNOX herein has been approved for release by the NPS Public Affairs Officer.

LIBRARY Dudley Knox Library / MNaval Postgraduate School
411 Dyer Road / 1 University Circle
Monterey, California USA 93943

hitp://www.nps.edu/library


https://core.ac.uk/display/36735812?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CAPS AS A REQUIREMENTS ENGINEERING TOOL

Robert Steigerwald
Gary Hughes
Valdis Berzins

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Abstract.! The process of determining user requirements
for software systems is often plagued with uncertainty,
ambiguity, and inconsistency. Rapid prototyping offers an
iterative approach to requirements engineering to alleviate
the problems inherent in the process. CAPS (the Computer
Aided Prototyping System) has been built to help software
engineers rapidly construct software prototypes of proposed
software systems. We describe how CAPS as a prototyping
tool helps firm up software requirements through iterative
negotiations between customers and designers via
examination of executable prototypes.

1. Introduction. A major problem with the traditional
waterfall lifecycle approach is the lack of any guarantee that
the resulting product will meet the customer’s needs. In
most cases the blame falls on the requirements phase of the
lifecycle. Yourdon [Your89] cites studies that indicate 50%
of errors or changes required in a delivered software product
and 75% of the total cost of error removal are the results of
inadequate, incorrect, or unstated requirements
specifications. Often users will be able to indicate the true
requirements only by observing the operation of the system.
Unfortunately, the traditional life cycle yields executable
programs too late in the software engineering process, at a
point where major change is prohibitively expensive
[Boar84].

To alleviate the problems inherent in requirements
determination for large, parallel, distributed, real-time, or
knowledge-based systems, current research suggests a
revised software development life cycle based on rapid
prototyping [BL88, Berz90, TY89]. As a software

1. This research was supported in part by the DoD
Ada Joint Program Office under grant number
DWAMI10100 (Ada Technology Insertion Pro-
gram) and by the National Science Foundation un-
der grant number CCR-9058453.

1991 ACM 0-89791-445-7/91/1000-0075

methodology, rapid prototyping provides the user with
increasingly refined systems to test and the designer with
ever better user feedback between each refinement. The
result is more user involvement and ownership throughout
the development/specification process, and consequently
better engineered software [Ng90].

2. The Computer Aided Prototyping System (CAPS).

The problem with requirements engineering is amplified in
the case of hard real-time systems, where the potential for
inconsistencies is greater [Beam89, BA91, NGCR, SR88].
One of the major differences between a real-time system
and a conventional system is required precision and
accuracy of the application software. The response time of
each individual operation may be a significant aspect of the
associated requirements, especially for operations whose
purpose is to maintain the state of some external system
within a specified region. These response times, or
deadlines, must be met or the system will fail to function,
possibly with catastrophic  consequences. These
requirements are difficult for the user to provide and for the
analysts to determine. Toward this end, an integrated set of
software engineering tools, the Computer Aided
Prototyping System [LK88], has been designed to support
quick prototyping of such complex systems by using easy to
understand visual graphics [PDW89] mapped to a tight
specification language, which in turn automatically
generates executable Ada [Booc87, Gonz91, Ada83] code.
The main components of CAPS are the prototype system
description language (PSDL), user interface, software
database system, and execution support system (see Fig. 1).

2.1 Prototype System Description Language (PSDL).

The prototype system description language (PSDL)
[LBY88] is the key component of CAPS. It serves as an
executable prototyping language at a specification or design
level and has special features for real-time system design.
The PSDL model is based on data flow under real-time
constraints and uses an enhanced data flow diagram that
includes non-procedural control and timing constraints.

2.2 User Interface. The graphic editor, in the User
Interface, is a tool which permits the user/software engineer

75



CAPS

Software Database
System

Execution Support
System

User Interface

Fig. 1 High Level Structure of CAPS

to construct a prototype for the intended system using
graphical objects to represent the system [LVC89, TAE].
The current version of the user interface uses TAE+ to
generate the windows and buttons in the user interface. The
graphical editor is implemented by augmenting the Idraw
editor provided by InterViews. The graphical objects
presented to the designer include operators, inputs, outputs,
data flows, and operator loops. The syntax directed editor is
used by the user/software engineer to enter additional
annotations to the graphics. A browser allows the analyst to
view reusable components in the software base. An expert
system provides the capability to generate English text
descriptions of PSDL specifications. Together, these tools
facilitate common understanding of PSDL components by
users and software engineers alike, thereby reducing design
errors.

2.3 Software Database System. The software database
system provides reusable software components for realizing
given functional (PSDL) specifications, and consists of a
design database, software base, and software design
management system.

The design database [Nest86] contains PSDL prototype
descriptions for all software projects developed using
CAPS. The software base contains PSDL descriptions and
implementations for all reusable software components
developed using CAPS. Prototyping with the software base
speeds up evolution by providing many different versions of
commonly used components [SLM91], making it easier to
try out alternative designs. The software design
management system manages and retrieves the versions,
refinements and alternatives of the prototypes in the design
database, as well as the reusable components in the software
base.

2.4 Execution Support System. The execution support

76

system [Bori89] consists of a translator, a static scheduler, a
dynamic scheduler, and a debugger. The translator generates
code that binds together the reusable components extracted
from the software base. Its main functions are to implement
data streams, control constraints, and timers. The static
scheduler allocates time slots for operators with real time
constraints before execution begins. If the allocator
succeeds, all operators are guaranteed to meet their
deadlines even with the worst case execution times. If the
static scheduler fails to find a valid schedule, it provides
diagnostic information useful for determining the cause of
the difficulty and whether or not the difficulty can be solved
by adding more processors. As execution proceeds, the
dynamic scheduler invokes operators without real-time
constraints in the time slots not used by operators with real-
time constraints [Mok85}. The debugger allows the designer
to interact with the execution support system. The debugger
has facilities for initiating the execution of a prototype,
displaying execution results or tracing information of the
execution, and gathering statistics about a prototype’s
behavior and performance.

3. CAPS as a Requirements Engineering Tool.

3.1 Prototyping. The Computer Aided Prototyping System
(CAPS) is used to create software prototypes, which are
mechanically processable and executable descriptions of
simplified models of proposed software systems. It is also
used to modify these models frequently in an iterative
prototype evolution process for the purpose of firming up
the requirements. Fig. 2 illustrates the prototyping process
which consists of two stages: prototype construction and
code generation [Lugi89].

Prototype construction is an iterative process that starts out
with the user defining the requirements for the critical
aspects of the envisioned system. Based on these
requirements, the designer then constructs a model or



R

Rapid Prototyping ;
Stage

Congtruct/Modif
onf’rr(?t%type s

Execute
Prototype

Code Generation

Translate/Transform
Prototype

Stage

PL PPy T

|

lowonovoooressonesd

Evolution

.........................................................................................

L T L T T T T T T Y LY Y T T P T PP

Fig. 2 Rapid Prototyping Process

prototype of the system in a high-level, prototype
description language and examines the execution of this
prototype with the user. If the prototype fails to execute
properly, the user then redefines the requirements and the
prototype is modified accordingly. This process continues
until the user determines that the prototype successfully
meets the critical aspects of the envisioned system.
Following this validation, the designer uses the validated
requirements as a basis for the design of the production
software.

The code generation stage focuses on transforming and
augmenting the prototype to generate the production code.
Prototypes are built to gain information to guide analysis
and design, and support automatic generation of the
production code.

To create production code from a prototype, it may be
necessary to clean up the decomposition, add missing
functions, and optimize performance. Prototypes go through
many changes in the prototype construction stage, so that
the structure of the final version may partially reflect past
versions of the requirements that were proposed and
rejected. Once the requirements and the desired behavior for
the prototype have stabilized, it is useful to transform the
structure of the prototype to simplify the decomposition and
to remove features that are no longer supported by the final
version of the requirements.

A prototype may not implement all of the functions of the
proposed system, since the prototyping effort is focused in
the aspects of the requirements that are unknown or
uncertain, After the requirements have stabilized, the design
and the structure of the prototype must be augmented to

77

account for these additional functions. These augmentations
can be expressed in the prototyping language to provide an
early check on the adequacy of the final version of the
system structure.

A prototype may not meet all of the performance
requirements, or may not operate in the same hardware and
software environments as the proposed system. The
structure of the prototype may have to be transformed to
optimize its performance and to account for differences
between the host environment for the prototype and the
operating environment for the proposed system. It is
desirable to record the desired transformations as
annotations on the prototype, and to generatc the
transformed decomposition automatically based on the
annotations. Such an approach preserves the structure of the
prototype prior to optimization, so that a version of the
prototype with this structure can help to evaluate system
changes that are proposed after the system is placed in
production. The unoptimized version of the prototype is
better suited for modification because the optimization
transformations generally complicate the structure of the
design and destroy the independence of its parts, thus
making future modifications more difficult. This approach
may provide the benefits of rapid prototyping in both the
requirements analysis and system maintenance activities.

An example showing how to use a prototype to test
requirements for future “maintenance” modifications can be
found in [Luqi89). In the example, a later modification to
the requirements was evaluated using the original prototype.
An on-line CAPS tool supports the idea and provides robust
syntactic and semantic help for such activities.



3.2 Domain Specificity and Requirements Traceability.

Using CAPS to engineer requirements offers clear
advantages over determining requirements manually. The
prototype system description language is focussed on the
domain of hard real-time systems and as such offers a
common baseline from which users and software engineers
describe requirements. Defining requirements in a domain
specific language results in more efficiency and fewer errors
because it constrains the way users and engineers can
describe a particular requirement. In addition, the
interpretations of requirements stated in a domain specific
language such as PSDL are unambiguous, whereas
requirements stated in English are often misunderstood.The
discipline imposed on analysts by uvsing a domain-specific
requirements language is analogous to the discipline
imposed on software designers and implementors by using
Ada. In both cases, the use of formal notations helps to
expose incompletely thought-out ideas and missing aspects
of the documents under development.

In most software engineering efforts requirements are
volatile, changing often over the course of the software
development. Requirements traceability is essential to
accurately map changed requirements into the
implementation. CAPS offers basic requirements
traceability through the “by requirements” statement in the
PSDL grammar. This statement allows software engineers
to associate actual requirements with the definitions of
module interfaces and constraints by annotating the
interface or constraint definition with an identifier. This
method allows engineers using the design database to
readily locate the modules and the portions of each interface
that implement a particular requirement and make the
appropriate changes during the evolution of the prototype.
This feature offers substantial savings over manual methods
of requirements tracing.

3.3 Requirements Engineering. The requirements for a
software system are expressed at different levels of
abstraction and with different degrees of formality. The
highest level requirements are usually informal and
imprecise, but they are understood best by the customers.
The lower levels are more technical and more precise, are
better suited for the needs of the system analysts and
designers, but they are further removed from the users’
experiences and less well understood by the customers.
Because of the differences in the kinds of descriptions
needed by customers and developers, it is not likely that any
single representation for requirements can be the “best” one
for supporting the entire prototyping process.

During the process of stabilizing the requirements via
prototyping, it is necessary to repeatedly move from high-
level requirements to details of system behavior, and from

78

system behavior back to high-level requirements. The
prototype designers must guess the intentions of the
customers based on their informal statements, and embody
their vision in a prototype design that can be demonstrated
to the users. This process is imperfect, and the demonstrated
behavior will help the customers identify differences
between what they need and how the analysts interpreted
their requests. When a bug in the system behavior is
discovered, it must be traced back to the requirements to
identify the specific guesses proposed by the analysts that
are inaccurate. After the faulty decisions have been
identified and new versions have been proposed, it is
necessary to trace the effects of the change back down the
refinement structure to find the parts of the prototype design
that are affected, so that they can be adjusted and the next
approximation to the requirements can be demonstrated.

In the context of prototyping, the requirements are used as a
means for bridging between the informal terms in which
users and customers communicate and the formal structures
comprising a prototype. We believe that a useful
representation for this information is a hierarchical goal
structure, where informal customer goals are refined and
defined by several levels of increasingly formal and precise
subgoals, with different notations used at different levels.
We expect natural language to be used at the highest levels,
and the protoyping language to be used at the most detailed
levels, with mixtures and possibly several additional
notations appearing in the intermediate levels.

The subgoals of a goal in the hierarchy are proposed
interpretations for the informal parent goals. We adopt the
convention that a parent goal is met whenever all of its
subgoals are met. The layers of the subgoal structure
correspond to decisions about proposed system behavior
and how it can be packaged and presented to users. The
most specific subgoals at the leaf nodes of the hierarchy are
tied directly to elements of the prototype design.

We are currently exploring guidelines for organizing such a
subgoal hierarchy and design database structures to provide
automated support for maintaining and traversing this
hierarchy, for recording past configurations of the
requirements and prototype, for keeping track of the change
history and the rationale for the requirements evolution that
occurs during the prototyping process, and for finding the
parts of this structure that are relevant for each of the tasks
performed by the designers and analysts.These tools are
analogous to library browsers and syntax-directed editors
for Ada, which exploit the DIANA tree structure to help
designers navigate through and maintain the consistency of
complex software structures.

4. Example. To illustrate the concepts described above, we



describe a small sample application generated in CAPS. The
purpose of the exercise is to verify the requirements for a
tobot control system by creating a prototype software
system using CAPS. By performing the exercise, the
prototype should help us answer the following questions:

a. Are the real-time constraints specified feasible?

b. Is the specified response time sufficient to provide
adequate control?

C. Are the user interface mechanisms sufficient from a
usability standpoint?

4.1 Informal Specification. The following is an informal
specification of the system to be developed.

1. System inputs

1.1 The system shall use a Keypad (actual or
simulated) to input changes in robot velocity.

1.1.1 Changes to velocity shall be input via a
keypad of four directional arrow keys. UP and DOWN shall
control the robot’s velocity in the Y direction—positive and
negative respectively. LEFT and RIGHT shall control the
robot’s X velocity in the same way (LEFT being negative,
RIGHT positive).

1.1.2 Time from a key-press to a corresponding
change in robot velocity should be no more than 0.25
seconds (250 ms).
1.2 The Navigation Unit shall measure the robot’s
current velocity via an Accelerometer.,

121 The accelerometer shall report current
velocity via an analog-to-digital converter.

1.2.2 Velocity shall be reported in X, Y
coordinates relative to a fixed location (0.0,0.0).

1.2.3 Velocity coordinates shall be real numbers
with at least six decimal digits precision.

1.24 Velocity values shall be sampled at precisely
0.25 second intervals.

1.2.5 The velocity reported by the Accelerometer
shall be accurate to within 0.05 meters/sec of actual velocity
in any direction.

II. Navigation.

2.1 The Navigation Unit shall monitor the robot’s
status (position and velocity) in two dimensions, in real time.
2.1.1 Both position and velocity will be
represented by two dimensional vectors with X, Y
coordinates as stated in paragraphs 1.2.2 and 1.2.3.

2.1.2 Units of position will be meters, velocity
will be meters per second.

2.2. The robot’s position shall be calculated by an

79

inertial navigation system.

2.2.1 Change in position shall be calculated with a
standard inertial navigation algorithm for integrating over a
sample of five velocity readings for the past 1.0 second
interval,

222 A new position must be calculated when
required with a 0.05 second response time (S0 ms).

III. System outputs

3.1 The robot’s velocity is controlled by a set of four
Thrusters as illustrated in Fig. 3.

Ay ]
‘/thruters

> X

Fig. 3 Schematic of the Robot

3.1.1 Velocity change requests result in thruster
pulses which have a direct effect on robot velocity.

3.1.2 Each unit of velocity change requested shall
result in 0.05 seconds of thruster pulse which will resultin a
velocity change of 0.5 meters per second.

3.1.3 Pulse commands to any one thruster may
only be in increments of 0.05 seconds.

3.14 Concurrent pulse commands to opposing
thrusters are not allowed, but commands to adjacent thrusters
are.

3.1.5 Giving a single command representing
multiple pulse requests uses less fuel and is more desirable
than multiple commands of one pulse each. Thus, pulses
shall be combined whenever possible.

3.2 The robot’s current status (position and velocity)
shall be displayed on a CRT display in a fixed location on
the screen.

3.2.1 Position and velocity should be labeled, and
shown to within 0.1 meters.

3.2.2 The status display shall be automatically
updated at least once each second.

3.2.3 The robot’s position and velocity shall be
initialized at 0.0.



4.2 Graphic Editor. Given the requirements for the robot,
the CAPS graphic editor is used to model the system and
generate an initial PSDL specification. Figure 4 shows the
CAPS graphic editor and the model for the robot
application. The circles model operators and the arrows
represent data flows. Also note that each operator has a
corresponding maximum execution time above it.

4.3 PSDL Code. After the model in the graphic editor is
complete, a partial PSDL specification is automatically
generated. The PSDL code corresponding to the robot
application is shown below. The part of the PSDL code
generated by the graphic editor is boxed below. The
particular characteristics of each operator such as period
and triggered by information, must be supplied by the user
within the PSDL editor.

........................

L S S T S N R N L R Y Y N

‘END
\IMPLEMENTATION
GRAPH
VERTEX Get_Keys : 100 ms
VERTEX Update_Thrust_Req : 10 ms
VERTEX Fire_Thrusters : 50 ms
VERTEX Accelerometer : 10 ms
VERTEX Update_Acceleration : 10 ms
VERTEX Update_Display : 50 ms
VERTEX Calculate_Position : 10 ms
EDGE keys Get_Keys -> Update_Thrust_Req
EDGE thrust_queue_ptr Update_Thrust_Req >
Fire_Thrusters
EDGE vel_chg Fire_Thrusters -> Accelerometer
EDGE velocity Accelerometer -> Update_Acceleration
EDGE accel Update_Acceleration ->
Calculate_Position
EDGE status Calculate_Position -> Update_Display
\"'.'DATA' STREAM """"""""""""""""""""""""""

-----------------

s‘th‘r‘lfs‘f ‘(‘ﬁlé‘ﬁé‘ pE
=3§r:§h'g“vnm1a
{veloc OCIf

-------

.--
---------

............................

.CONTROL CONSTRAINTS 1
E OPERATOR Get_Keys E

....................................

TRIGGERED BY SOME keys
PERIOD 50 ms

................................

.................................

TRIGGERED BY SOME thrust_queue_ptr
PERIOD 50 ms

80

{OPERATOR Accelerometer |

.......................................

...................................

TRIGGERED BY SOME accel
PERIOD 100 ms

..................................

....................

PERIOD 100 ms

-----

The PSDL code above describes the requirements of the
robot. Additional PSDL is required to define the specific
parameters of each operator within the robot application.
Most of this code is also generated automatically from the
graphic editor, but the user must fill in details such as data
types and descriptions. As an example, the PSDL
description for the accelerometer operator is:

................................
R i - 4 4
: OUTPUT \
1]
...................................

...................................

.............................................

......................................

..................

4.4 Static Scheduler. The next step is to ensure that the
specification is feasible with respect to the timing
constraints given in the PSDL. The CAPS static scheduler
performs an analysis of the constraints and reports when a
schedule is not feasible. The static scheduler uses a variety
of algorithms [Lev9l] to construct an Ada program
representing a schedule. This Ada program encodes the
starting and ending times of the execution intervals reserved
for each operator with hard real-time constraints. The
execution pattern encoded in the static schedule is repeated
indefinitely. Operators without hard real-time constraints
can be executed only in the time slots that are not used by
the static schedule. In the case of the robot application, the
timing requirements as given are feasible.



robot.bw.ps

nag 1x |

File Edit Structure Font Brush Pattern FgColor BgColor Align Option

Move
m 100 ms

Scale .
]

Stretch

Rotate K

Reshape
i q

Magnify

T

®
»
(1)

t

000~~~/

o
ow

current_position

thrust_requests

status

Accelero

Fig. 4 CAPS Graphic Editor

4.5 Ada Code Generation. After the user has filled in the
additional details into the PSDL specification, Ada code is
automatically generated 10 meet the specification.
Obviously, the code generator cannot predict the coding
details of each individual operator, so the percentage of
code automatically generated with respect to the total lines
of code in the application depends on the complexity of the
operators. In the case of this exercise, about 40% of the final
code was automatically generated by CAPS and another
35% came from reusable software components. The code
generated for the robot example is too long to include with

81

this paper, but samples of generated Ada code for a C3I
System can be found in [Lugi91].

Each operator of the robot application was tested
independently before integrating them. It was clear from
these tests that the maximum execution times specified for
the operators were too restrictive and consequently, the
period of each operator was not feasible. This discovery
prompted changes in the informal specification which led to
a more realistic requirements definition.

5. Conclusion. Rapid prototyping offers an iterative



approach to requirements engineering to alleviate the
problems of uncertainty, ambiguity, and inconsistency
inherent in the process. CAPS (the Computer Aided
Prototyping System) has been built to help software
engineers rapidly construct software prototypes of proposed
software systems. CAPS helps firm up software
requirements through iterative negotiations between
customers and designers via examination of executable
prototypes. Using a prototype system description language
enables engineers and users to quickly focus on the
pertinent requirements of their system resulting in increased
efficiency and fewer requirement errors.The CAPS system
is currently in the process of extension and redesign.
Versions suitable for release will be available next year.

ACKNOWLEDGEMENTS

‘We would like to thank Capt. Patrick Barnes (USAF) for his
courage to use CAPS for the robot example used in this
paper. We also thank his students for their diligent efforts on
the robot project.

REFERENCES

[Ada83] ANSI/MIL-STD-1815A-1983, Reference Manual
for the Ada Programming Language, DoD,
American National Standards Institute, Feb 17,

1983.

[BA91] Boyes, J. and Andriole, S., Principles of
Command_& Control, AFCEA Intemnational
Press, 1987.

[Beam89] Beam, W. R., Command, Control. and

Communications Engineering, McGraw-Hill,
1989.

[Berz90] Berztiss, A., “The Specification and Prototyping
Language SF”, Report 78, Systems Development
and  Arificial  Intelligence  Laboratory,
Department of Computer and Systems Science,
Stockholm University, 1990.

[BL88] Berzins, V., and Lugqi, “Rapidly Prototyping Real-
Time Systems”, IEEE Software, September 1988.

[BL91] Berzins, V., and Luqi, Software Engineering with
Abstractions, Addison-Wesley, 1991.
[Boar84] Boar, B. H., Application Prototyping: A

Requirements Definition Strategy for the 80’s,
John Wiley and Sons, Inc., 1984,

82

[Booc87] Booch, G., Software Engineering With Ada,
Benjamin/Cummings Publishing Company, Inc.,
1987.

[Bori89] Borison, E., “Program Changes and Cost of

Selective Recompilation”, Technical Report

CMU-CS-89-205, Computer Science
Department, Carnegie-Mellon University, July
1989.

[Gonz91] Gonzalez, D. W., Ada Pr mer’s H k
and Language Reference Manual, Benjamin-
Cummings, 1991.

[LBY88] Lugqi, Berzins, V., and Yeh, R., “A Prototyping
Language for Real-Time Software”, IEEE
Transactions on Software Engineering, October
1988.

[Lev9l] Levine, J., “Efficient Static Schedulers for the

CAPS System”. MS Thesis, Naval Postgraduate

School, Computer Science Department, Sep.

1991,

[LK88] Luqi, and Ketabchi, M., “A Computer-Aided

Prototyping System”, IEEE Transactions on

Software Engineering, October 1988.

[LVC89] Linton, M. A, Vlissides, J. M., and Calder P. R,,

“Composing User Interfaces with InterViews”,

IEEE Computer, February 1989.

[Luqi89] Luqi, “Software Evolution Through Rapid

Prototyping”, IEEE Computer, May 1989.

[Luqi91] Luqi, “Rapid Prototyping of Command and

Control Software Using CAPS”, to appear in

IEEE Software, 1991.

[Mok85] Mok, A., “A Graph Based Computational Model

for Real-Time Systems”, Proceedings of the IEEE

International Conference on Parallel Processing,

Pennsylvania State University, 1985.

[Nest86] Nestor, J., “Toward a Persistent Object Base”, in

Advanced Programming Environments, vol. 244,

Lecture Notes in Computer Science, Springer-

Verlag, 1986, p.372-394.

[Ng90] Ng,P.and Yeh, R., Modem Software Enginecring

Foundations and Current Perspectives, Van
Nostrand Reinhold, 1990.



[NGCR] Naval Research Advisory Committee, Next
Generation Computer Resources, Committee
Report, February 1989,

[PDW89] PDW 120-S-00533(Rev.B, Change 4), Over-the-
Horizon Targeting (OTH-T) Gold Reporting
Format, Naval Tactical Interoperability Support
Activity, 30 June 1989.

[SLM91] Steigerwald, R., Lugi, and McDowell, J., “A

CASE Tool for Reusable Component Storage and

Retrieval in Rapid Prototyping”, Proceedings of

ird In tio nference on W.

Engineering and Knowledge Engineering (SEKE
91), Skokie, IL, June, 1991.

[SR88] Stankovic, J. and Ramamritham, K., Hard Real-

Time Systems Tutorial, Computer Society Press,
1988.

[TAE] Transportable Applications Environment (TAE)
Plus, National Aeronautics and Space
Administration, Goddard Space Flight Center,
January 1990.

[TY88] Tyszberowicz, s, and Yehudai, A., “OBSERV
Object-Oriented Specification, Execution, and
Rapid Verification System”, 3rd Isracli
Conference on Computer Systems and Software
Engineering, Tel-Aviv, Isracl, June 1988.

[TY89] Tanik, M. and Yeh, R., “The Role of Rapid
Prototyping in Software Development”, IEEE
Computer, v. 22, n. 5,pp. 9-10, May 1989.
{VL88] Vlissides, J. M., and Linton, M. A., “Applying
Object-Oriented Design to Structured Graphics”,
Proceedings of the 1988 USENIX C++
Conference, October 1988,

[Your89] Yourdon, E., Modern Structured _Analysis,

YOURDON Press, 1989.

BIOGRAPHIES

Lugi is an Associate Professor of computer science at the
Naval Postgraduate School, Monterey, California. She has
been involved with research in rapid prototyping,
specification languages, software interfaces, design
methodology, real-time systems, software tool integration,
and software reusability with Ada. Lugi received a Ph.D., in
computer science from the University of Minnesota in 1986.

Robert A. Steigerwald is a Ph.D. student at the Naval

83

Postgraduate School, Monterey, California, currently doing
rescarch in the area of reusable software component
retrieval. Steigerwald received his bachelor’s degree in
computer science in 1981 from the US Air Force Academy,
Colorado Springs, Colorado and his master’s degree in
computer science in 1985 from the University of Illinois,
Urbana, llinois.

CDR Gary Hughes, USN, Associate Chairman of
Computer Science at the Naval Postgraduate School. He has
managed data centers that include large software
development sections. His current research interests include
software engineering and computer-aided design and ADP
security. Hughes received his master’s degree from the
Naval Postgraduate School in 1982.

Valdis Berzins, Associate Chairman of Computer Science
at the Naval Postgraduate School. His research interests
include software engineering and computer-aided design.
His recent work includes papers on software merging,
specification languages, VLSI design, and engineering
databases. He received B.S., M.S., E.E., and Ph.D. degrees
from MIT, served as an Assistant Professor at the University
of Texas, and as an Associate Professor the University of
Minnesota. He has developed a number of specification
languages and software tools. His current address is NPS
052, Monterey, CA 93943,



