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Abstract 
This paper introduces the concept of reusable software 
component retrieval using normalized formal 
specifications. Reusable Ada software components are 
stored in a software base that supports a rapid prototyping 
system called CAPS (Computer Aided Prototyping System). 
Each component in the software base has a corresponding 
formal specification. A query in the form of a formal 
specification is used to search for candidate components 
that will satisfy the requirements of the query. The 
specification languages used are the Prototype System 
Description Language (PSDL) and OBJ3. Each 
specification is normalized to facilitate component 
retrieval. This paper describes the software base model, 
syntactic and semantic normalization, and the component 
retrieval mechanisms. 

1: Introduction 
The rapidly growing demand for software has shifted 

toward larger and more complex systems. The inadequacy 
of current software development methods is evident in high 
software costs and low programmer productivity. Software 
engineers need software tools that will help them better 
manage the complexity of these systems. Rapid prototyping 
has become an accepted software development method to 
rapidly construct and adapt software, validate and refine 
requirements, and check the consistency of proposed 
designs. Using rapid prototyping and design tools, we have 
experimented with a software development technique to 
increase productivity, improve software quality and 
reliability, and provide savings in both time and money for 
software development. As a component of a rapid 
prototyping system, the tool described here aids in storing 
and retrieving reusable software components from a 
software base. 

This paper focuses on a technique for using specifica- 
tions as search keys for component retrieval. Given our 
software base of Ada components, each with a 

corresponding formal specification, and given a software 
base query in the form of a specification, we would like to 
search the database to find the component(s) whose 
specification(s) best match the query specification. 
Fundamental to our approach is normalization of 
specifications. Using normal forms for the specifications 
reduces the variability in the representation and diminishes 
the effort required for the search. 

Section 2 describes related work, rapid prototyping, 
CAPS, the form of our component specifications, and our 
process model for component storage and retrieval. In 
Section 3 we describe syntactic normalization and matching 
using PSDL specifications and in Section 4 we discuss 
semantic normalization and matching. We summarize in 
Section 5 and assess the progress of our system. 

2: Background 
2.1: Related work 

Runciman and Toyn have developed a method of 
retrieving software components by polymorphic type [ 141. 
A two phased approach to retrieving components via 
specifications developed at CMU [15] retrieves ML 
components (functions) with Lambda Prolog specifications 
by first matching on signature and then on function pre- and 
post-conditions. Another approach employing both syntax 
and semantics of a component but not necessarily its 
specification was developed by Wood and Sommerville 
[21]. They built a system that performs component retrieval 
using descriptor frames based on Schank’s theory of 
conceptual dependency. 

2.2: Rapid prototyping 
A prototype is an executable model of a proposed 

software system that accurately reflects chosen aspects of 
the system, such as display formats, the values computed, or 
response times. Rapid prototyping is an iterative approach 
to software development that uses prototypes to help both 
the developers and their customers visualize the proposed 
system and predict its properties. 
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prototypes: abstract data types and operators. Software 
systems are modeled as networks of operators 
communicating via data streams. The following is an 
example of a PSDL specification for an absttact data type 
component that implements a set and some of its operations. 

Rapid prototyping may be used in conjunction with or as 
an altemative to the traditional software lifecycle. It may be 
used to rapidly construct and adapt software, validate and 
refine user requirements, or check the consistency of 
proposed designs. Our approach to rapid prototyping 
combines the power of high level specifications with a data 
base of reusable software components to help an engineer 
quickly build a prototype which will help clarify 
requirements and eliminate the large amount of wasted 
effort currently spent on developing software to meet 
incorrect or inappropriate specifications [13,191. 

Prototyping has gained importance in recent years 
because new technologies have made computer-aided 
prototyping feasible. These technologies have reduced the 
time and cost involved in producing a prototype, thus 
widening the gap between a software prototype and the cost 
of the final software system and increasing the potential 
leverage of prototyping. The new technologies, often 
manifested in CASE tools, are based on reusable code, 
computer-aided design, and automatic generation of 
programs. 
23: The Computer Aided Prototyping System 

The computer aided prototyping system (CAPS) is an 
integrated environment aimed at rapidly prototyping hard 
real-time embedded systems [l l ,  131. This integrated set of 
software tools includes an execution support system, a 
rewrite system, a syntax directed editor with graphics 
capabilities, a software base, a design database, and a 
design management system. 

Embodied within the CAPS software development 
approach is a systematic design method for rapid prototype 
construction. System or subsystem descriptions are stated at 
a problem-oriented, abstract level and iteratively refined 
into a hierarchically structured prototype using a uniform 
decomposition method that combines the advantages of 
data flow and control flow. At each level of the hierarchy, 
the designer focuses only on the details important at that 
level. 

With respect to reusable component retrieval, the most 
important tool in CAPS is the software base management 
system (SBMS). As this paper describes in detail, the key to 
component storage and retrieval is the component's 
specification. 

2.4: Component specification 
The prototype system description language (PSDL) [12] 

forms the basis of CAPS. It serves as an executable 
prototyping language at a specification or design level and 
has special features for real-time system design. The PSDL 
model is based on data flow under real-time constraints and 
uses an enhanced data flow diagram that includes non- 
procedural control constraints and timing constraints. 

PSDL provides two kinds of building blocks for 

type SET specification 
operator EMPTY specification 

output S1: set end 

operator ADD specification 
input ELEMENT : integer 

output S2 : set end 

input ELEMENT : integer 

output RESULT : boolean end 

s1: set 

operator IN specification 

S1 : set 

oDerator SUBSET wecification 
input SI : set' 

output RESULT : boolean end 
s2:  set 

input SI : set' 

output RESULT : boolean end 
s2:  set 

operator EQUAL specification 
input S1: set 

S2 : set 
output RESULT : boolean end 

keywords SET, INTEGER 
description (Implements a set of integers) 
axioms 
(obj SET is sort Set . 

protecting INT . 
op empty : -> Set. 
op add : Int Set -> Set. 
op in : Int Set -> Bool . 
op subset : Set Set -> Bool . 
op equal : Set Set -> Bool . 
vars sl s2 : Set. 
vars e l  e2 : Int . 
eq $(el, empty) = false. 
eq m(e1, add(e2, sl)) = or(=(el, e2), in(e1, sl)) . 
eq subset(empty, sl) = true. 
eq subset(add(e1, sl), s2) = and(in(e1, s2), 

subset(s1, s2)) . 
eq equal(s1, s2) = and(subset(s1, s2), 

subset(s2, sl)) . 
endo) 

end 

The set package defines consmctors (Empty, Add) and 
accessors (In, Subset, Equal) for a set of integers. Each 
operator description includes a specification which may 
optionally include inputs, outputs, exceptions, generic 
parameters, states and timing information. It is these 
interface characteristics that form the basis of syntactic 
normalization and matching, the first phase of the retrieval 
process. 

One of the latter parts of a PSDL component 
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specification is the formal description of the component or 
axiom. PSDL uses axioms of several different forms. The 
axioms in this paper are written using ON3 163. The axioms 
express the semantics of the specification and will be the 
basis of semantic normalization and matching, the second 
phase of the retrieval process. Syntactic and semantic 
normalization and matching together provide the means for 
component storage and retrieval. 

2.5: Process model for component storage and 
retrieval 

Today there is much attention focussed on the nature of 
reusable software component databases. The most widely 
known Ada software bases are the Common Ada Missile 
Parts (CAIW)[22], the Ada Software Repository [3], and 
the Booch component collection [2]. There are many more 
besides these and all of their developers have given thought 
as to how to retrieve a desired component from the software 
base. Techniques that have been applied to the problem of 
component retrieval include browsers such as those found 
in object-oriented languages (e.g. Smalltalk, KEE and 
Eiffel), keyword search algorithms, multi-attribute search 
algorithms, and expert systems [ 181. 

Our general methodology is to store components in an 
OODBMS and use PSDL specifications as the basis for 
retrieval. Each stored component consists of a PSDL 
specification, an Ada specification, and an Ada body. The 
syntax and semantics of the PSDL specification is used to 
direct the search for a component. 

Figures 1 and 2 summarize the steps necessary to store 
components in the software base and to retrieve them using 
a given query specification. Components to be stored must 
fust pass through syntactic and semantic normalization (see 
Figure 1). The normalization processes transform the 
component's PSDL specification to facilitate later 
matching. 

U -- 
Fig. 1 Component Storage 

Figure 2 shows the general process for component 
retrieval. A query for a library component is a PSDL 
specification. The query is syntactically and semantically 
normalized and then matched against stored specifications. 
Syntactic and semantic normalization may proceed in 
parallel but syntactic matching must take place before 
semantic matching. Syntactic matching is faster and 
partitions the software base quickly in order to narrow the 
list of possible candidates that the semantic matching 

algorithm must consider. Semantic matching may be time 
consuming and should be applied to as small a candidate list 
as possible without excluding potential matches. 

PSDL Spec 

Candidate 
compoms -- 

Fig. 2 Component Retrieval 

Both syntactic and semantic normalization and matching 
are required to achieve the best performance from the 
system. The main benefit of syntactic matching is speed 
whereas the advantage of semantic matching is accuracy. 
We believe that accuracy is required in order to reduce the 
number of reusable components that a designer will have to 
evaluate before making a selection. Consider the example 
of trying to find an abstract data type for a set. The Booch 
component library [2] contains 34 different variations for 
implementing a set The specifications for these set 
packages are quite similar but the implementations are 
different. Clearly we Cannot rely on syntax alone to provide 
us a sufficiently fine grained search. Semantics are also 
required. The details of syntactic and semantic 
normalization and matching are addressed in sections 3 and 
4. 

3: Syntactic matching and normalization 
The purpose of syntactic normalization is to derive 

information from the PSDL specification to define an 
ordering for stored component specifications. It is called 
syntactic normalization because the information used 
comes from the interface specification of the component. 
This part of the specification contains information on the 
inputs, outputs, states, and exceptions but contains no 
implementation details. Syntactic normalization gathers 
statistics from a query for use in matching. 

Syntactic marching is the process of comparing the 
statistics derived from a query to those of stored 
components. The purpose of the matching process is to 
quickly eliminate those components that cannot possibly 
satisfy the requirement, leaving a candidate set of 
components for semantic matching. From an information 
retrieval perspective, syntactic matching provides high 
recall while semantic matching provides increased 
precision. Details of syntactic normalization and matching 
may be found in [16]. 
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4: Semantic normalization and matching 
As shown in the set example earlier, one of the attributes 

of a PSDL specification is an axiomatic description of the 
component. Both types of PSDL components (operators 
and abstract data types) may be described by algebraic 
axioms. It is likely, given a large software base, that a query 
based only on syntactic matching will find components that 
are not semantically relevant. We therefore perform 
normalization and matching on component semantics as 
well. The semantics of a component are described using 
OBJ3 [6,20], an executable specification language. 

This section describes our phased approach to 
specification matching and presents some of the details of 
OBJ3. Interface normalization and matching are then 
described, followed by explanations of query by 
consistency and normalization for theorem proving. 
4.1: Overview 

Our overall approach to reusable component retrieval is 
three-phased. The first phase, described above, focuses on 
the numbers and types of parameters within each operator 
in the PSDL portion of the query. 

The second phase, called query by consistency, relies on 
the formal OBJ3 specification for each component. Query 
by consistency formulates example terms from a query’s 
algebra and passes the terms as parameters to its operators. 
The set of outputs obtained is compared against the outputs 
from similar tests performed in the domain of a candidate 
component. This phase reduces further the set of candidate 
components, eliminating components which cannot 
possibly satisfy the query because of behavioral 
incompatibilities. Query by consistency requires a form of 
normalization we call interface normalization. 

The final phase of the search process, based on theorem 
proving, attempts to find candidates that can be shown to 
satisfy the query, or to order the ones that partially satisfy 
the query if none of the candidates is completely 
satisfactory. This phase requires axiom normalization. 

4.2: Representation of specifications 
OBJ3 is the language we have chosen to augment PSDL 

to write our formal specifications. This section describes 
some of the important constructs of OBJ3. Figure 1 shows 
an example of an OBJ3 specification in the axioms portion 
of the PSDL specification. 

OBJ3 is a functional programming language rigorously 
based on order sorted logic. The dominant construct is the 
module. Modules can be objects or theories. An object 
completely determines the behavior of a type or 
parameterized set of types and a theory partially constrains 
the behavior of a set of types. Both objects and theories are 
executable, but theories cannot contain built-in equations. 
We focus here on objects which consist of a signature and a 

set of axioms. 
An OBJ3 definition of an abstract data type introduces a 

new set of values, which contains all the instances of the 
type. The principal sort (Order sorted logic uses the term 
“sort” rather than “type”) of the abstract data type is the 
name of this set of values. The form of the signature, which 
defines the syntax of the object’s interface, is a set of “op“ 
definitions defining the name, domain s m .  and range sort 
of each operator (since OBJ3 is a functional programming 
language, all operators are functions). The sorts of the 
object defined in Figure 1 are (Set, Int, Bool) . An operation 
whose range is the same as the principal sort is called a 
constructor. An operation whose range is a sort other than 
the principal sort is called an accessor. 

The axioms (or equations) portion of an object &fine the 
semantics of the object. Expressions are of the form 

eq <Expl> = <Exp2> or 
cq <Expl> = <Exp2> if <Bexp> 

where both sides of each equation are well f m e d  
expressions with respect to the signature and previously 
declared variables. The axioms are written declaratively 
and interpreted operationally as rewrite rules. 

Objects may import operations and sorts h m  other 
objects using the protecting statement. In the object defined 
in Figure 1, we import another object INT, which affords us 
the ability to use the operations defined on integers. 

In our approach to semantic matching, the OBJ3 portion 
of the PSDL query is compared to OBJ3 specifications of 
stored components to identify components that can possibly 
satisfy the query. Because of the infinite variety possible in 
writing specifications, normal forms become an important 
means to diminish the effort applied to finding a match. 

43: Interface normalization 
The signature of an OBJ3 specification is an interface 

description. One of the first tasks required in searching for 
candidate components is to find a correspndence or 
mapping between the query and a stored component by 
comparing their interfaces. In order to simplify the mapping 
process, we normalize the interface, transforming it to a 
suitable representation for performing the mapping. This 
kind of normalization involves expansion and 
transformations. 

Expansion in normalization was developed in the 
context of the Algebraic Specification Formalism (ASF) 
[l]. In this approach, a normal form is achieved when all 
imports to a specification have been eliminated and as many 
parameters as possible have been eliminated. ASF’s textual 
normalization expands a module by fully incorporating the 
sorts and functions of imports and by binding parameters to 
the greatest extent possible. The purpose of this 
normalization in ASF is to assign a semantics to the 
complete specification and to each module within the 
specification. ASF also performs a renaming of operators 



with the same name to avoid conflicts. 
In the process of normalizing an OBJ3 interface 

description, we also expand the module. The expansion is 
necessary because the module will be considered an atomic 
unit during the matching process. Contrary to ASF 
however, we allow overloading of operator names. A 
detailed example of our expansion method may be found in 
U71. 

Having performed expansion, the system constructs an 
altemative representation of the signature to simplify 
mapping. Since we use Prolog as the tool to find the 
mappings between a query and a candidate component, we 
transform each opedon definition in the signature into a 
set of Prolog predicate expressions. To guide this 
transformation, it is necessary to have more information 
about the operations than is provided in the specification. 
We must also know which of the operations the user wants 
considered in the matching process 

obj LIST-OF-BITUPLE is sort List . 
sort BiTuple . 
protecting NAT . 
protecting BOOL . 
op nil : -> List. 
op cons : BiTuple List -> List. 
op make : Nat Nat -> BiTuple . 
op length : List -> Nat . 
op head : List -> BiTuple . 
op tail : List -> List. 
op append : List List -> List . 
op reverse : List -> List . 
op member : BiTuple List -> Boo1 . 
op first : BiTuple -> Nat . 
op second : BiTuple -> Nat . 
... 

endo 

Fig. 3 interface Description for a List of BiTuple 

For example, if the specification shown in Figure 3 were 
used as query to the software base, the user might not want 
all of the operations that come with the List object. A more 
general query with fewer “op” definitions would certainly 
offer better recall from the software base. Also, the user 
may have defined hidden or local operations in his object 
which are not necessarily required by the stored component. 
We therefore leave it up to the user to specify the operations 
he wishes to have considered. A specification used for 
query may have only a few of the operations identified, 
whereas a specification accompanying a component to be 
stored may have all operations identified. Figure 4 shows an 
example of the LIST-OF-BITUPLE module used as a query 
and Figure 5 shows it used as part of a component to be 

stored. 

***(operations nil cons make append length) 
obj LIST-OF-BITUPLE is sort List. 

sort BiTuple . 
protecting NAT . 
protecting BOOL . 
... 

endo 

Fig.4 List of BiTuple as a Query 

***(operations nil cons tail append reverse 
make length head 6rst second member) 

obj LIST-OF-BITUPLE is sort List . 
sort BiTuple . 
protecting NAT . 
protecting BOOL . 
... 

endo 

Fig. 5 List of BiTuple for Storage 

The specifications in Figures 4 and 5 have been 
augmented with OBJ3 comment blocks, ***(comment), to 
indicate the operations the user wants considered. From this 
information and that contained in the signature, the 
necessary Prolog predicate expressions may be generated. 
For each operation specified in the signature we define a 
corresponding “operation” predicate, and for each input 
parameter in the operation we define an “argument” 
predicate. 

To find a matching candidate in Prolog, we combine the 
predicate expressions provided by the query to form a 
Prolog rule. To that rule, we also add additional predicate 
expressions to ensure that all bound operation names are 
unique and that for each operation, all parameter positions 
are unique. We use the predicate expressions provided by a 
candidate component as our database and then attempt to 
satisfy the query. A detailed example of our use of Prolog to 
perform the mapping task may be found in [17]. 

4.4: Query by consistency 
Given one or more mappings between a query and a 

candidate component, we use query by consistency to check 
the semantics of the query against the semantics of the 
stored component. 

Query by consistency creates a set of terms called a rest 
set from the constructors of the sorts used in the query and 
uses those terms to generate a list of input-output pairs 
called an I/O list. The input part of each pair in the I/O List 
is submitted to the axioms for reduction (term rewriting) 
and the result is stored as the output part of the pair. We 
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perform the reductions in both the query and the stored 
component and then compare corresponding outputs in the 
respective VO Lists. We use this comparison to compute a 
score of semantic similarity and rank-order the candidates. 
The idea of using a test set is bomwed from Kapur and 

Zhang [8,9] who developed a refinement to an inductionless 
induction procedure called proof by consistency [7]. In 
proof by consistency using test sets, a canonical algebraic 
theory is augmented by an axiom to be proven (a 
conjecture) and a new extended canonical theory is 
incrementally computed. Whenever a new rule is generated 
during the process, the rule is checked against a test set to 
see if it reduces any of the irreducible ground constructor 
terms contained in the set. If the new rule can reduce a term 
in the test set, then the conjecture is not a theorem. 

The test set is key to this method of proof by consistency. 
It is a finite set of terms that describes the equivalence 
classes of constructor ground terms. For example, the test 
set for integers with successor (suc) and predecessor @re) 
constructors would be (0, suc(O), suc(suc(x)), pre(O), 

We do not adhere strictly to Kapur and Zhang’s notion of 
a test set but ours is similar. In our system, the test set 
constructed for a given query consists of terms derived from 
all of the operations whose range sorts are defined in the 
module as well as some terms derived fiom system defined 
sorts. An example of query by consistency will help clarify 
these concepts. 

pre@re(y))) * 

Example: Consider the example of a list of bituple shown 
in Figure 4. If the user were to submit that specification as a 
query, the system would generate the following test set: 

Nat 0 
Nat succ(natconst1) 
List: nil 
List: cons(!!!, listconstl) 
List: append(listconstl.listconst2) 
BiTuple: make(!!!, !!!) 

The exclamation points in some of the test set terms are 
placeholders. They represent arguments that must be filled 
when using the term to build an I/O list input. A placeholder 
will be filled with a term having the appropriate sort. 
As stated previously, these terms represent the 

equivalence classes of all  terms that can be generated from 
the algebra defined in the module, limited by the user 
selected operations (nil cons make append length) and the 
predefined constructors for sort Nat. These terms will be 
used to build input terms in the following manner. We 
generate an initial VO list consisting of a template for each 
user selected operation. The inputs in the initial 40 list are: 

nil 
cons(!!!, !!!) 
make(!!!, !!!) 
append(! ! ! , ! ! !) 
length(!!!) 

We then expand the I/O list by checking each term for 
placeholders. If a placeholder is encountered, we delete that 
term and replace it with a new set of terms, each containing 
a substitution for the placeholder taken from the test set. 
Care must be taken to avoid circularities. Expansion of the 
above initial VO list resulted in 68 terms. Each term is 
comprised solely of operations or constant constructors 
(OBJ3 cannot perform reductions on tenns containing 
variables). A sample of the terms generated follows: 

nil 
cons(make(0, 0), nil) 
cons(make(0, 0). append(1istconst l,listconst2)) 
cons(make(0, succ(natconst 1)). nil) 
make(0,O) 
make(0, succ(natconst1)) 
make(succ(natconstl), 0) 
make(succ(natconstl), succ(natconst1)) 
append(ni1, nil) 
append(ni1, append(Iistconstl.listconst2)) 
append(append(listconstl,listconst2). nil) 
append(append(listconst1 ,listconst2), 

append(listconstl,listconst2)) 
length(ni1) 
length(append(listconstl,listconst2)) 
length(cons(make(natconst1, natconst l), listconstl)) 

Having created the input half of the YO list, we submit 
the terms to the axioms of the query using the OBJ3 
environment to determine output results. OBJ3 uses term 
rewriting to reduce the inputs to a normal furm, that is, a 
form where no further reductions are possible. 

The corresponding outputs to the above list of inputs are: 

nil 
cons(make(0, 0), nil) 
cons(make(0, 0), append(listconst l,listconst2)) 
cons(make(0, succ(natconstl)), nil) 
make(0,O) 
make(0, succ(natconst1)) 
make(succ(natconstl), 0) 
make(succ(natconstl), succ(natconst1)) 
nil 
append(listconstl,listconst2) 
append(listconstl,listconst2) 
append(append(listconst 1 ,listconst2), 

append(listconstl,listconst2)) 
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0 
length(append(listconstl.listconst2)) 
sum( 1 , length(1istconst 1)) 

Note that many of the outputs are identical to the inputs. 
This will be the case when the input term is composed 
solely of constructor operations having no corresponding 
axioms, such as: 

nil and 
cons(make(0,O). nil). 

This is also the case when the term contains constants that 
cannot be reduced by axioms, such as: 

length(listconst1). 

We now have a complete I/O list in the domain of the 
query and can proceed with semantic matching. 

Matching: Given a complete VO list in the domain of the 
query, the system can proceed to check each of the 
candidates whose signature maps to the query signature. For 
each possible mapping for a candidate, the system 
transforms the inputs in the query VO list to inputs in the 
domain of the candidate. The transformation process 
changes the names of operations and the order of 
parameters where necessary. The inputs are submitted to the 
candidate’s axioms for reduction resulting in a 
corresponding list of outputs. 

The final step is to compare the list of outputs in the 
query domain to the list of outputs in the candidate domain. 
Once again, a transformation must be made, this time on the 
outputs of the query, changing them to the domain of the 
candidate. At this point, a meaningful comparison can be 
made between the query outputs and the candidate 
component outputs. 

The method used to compare the outputs is an 
inductionless induction proof method provided by OBJ3 
151. Two terms consisting of operations on operations and 
constants can be checked for equality by submitting them to 
OBJ3 as follows: 

tend= term2 

OBJ3 will reduce each of the terms and make 
transformations on the terms based on operation attributes 
(such as commutativity, associativity, etc.) to try to prove 
their equivalence. If it can prove they are equivalent, the 
result is true, otherwise the result is false. We use these true 
and false results to find the best map for a particular 
candidate and to ultimately rank-order a set of candidates. 
We may also use a threshold value to eliminate candidates 

with low scores. 
4.5: Theorem proving and axiom normalization 

The objective of the second phase of the component 
retrieval process, query by consistency, is to rank d e r  and 
reduce further the set of candidate components that would 
have to be considered in phase three. Phase three involves 
theorem proving, a process that is potentially open-ended, 
so we would like as small a set of candidates as possible to 
check in this phase. In this phase, we focus on the axioms of 
the specification. To diminish the effort applied in theorem 
proving, a normal form for the axioms is warranted. 

The form of theorem proving we use is inductionless 
induction, described in [5]. Because each formal 
specification consists of a set of axioms, the axioms may be 
treated as a theory. Given a set of axioms from a query and 
a set of axioms from a candidate stored component, we find 
the set of mappings between the query and the stored 
component specification. We use each possible mapping to 
express the axioms of the query in terms of the signature of 
the stored component specification. We then treat the 
axioms of the stored component specification as a theory 
and hy to prove that each axiom from the query is satisfied 
in the theory. 

The chosen proof technique treats the axioms of the 
stored component as rewrite rules, which are used to reduce 
both sides of each query axiom (equation) to normal form. 
If both sides of the equation reduce to the same term, then 
the query axiom is satisfied in the theory of the stored 
component. This proof procedure is sound and fast, but not 
complete. We plan to evaluate the effectiveness of such a 
weak procedure via experimental benchmarks when the 
implementation of phase three is complete. 

If all axioms in the query are satisfied in the theory of the 
stored component specification, then we have proven that 
the stored component specification semantically matches 
the query. If some but not all of the axioms of the query are 
satisfied in the theory of the stored component, then the 
number of query axioms that are satisfied becomes a basis 
for ranking partial matches. 

In the context of prototyping, it is feasible to combine the 
results of several components that partially satisfy a query 
to synthesize a component that completely satisfies the 
query. If we can find several components such that every 
component provides all of the constructor operations and 
each accessor operation is provided by at least one of the 
components, then we can satisfy the query using a record 
containing an instance of each representation, where 
different components are used to realize different accessors. 
This is acceptable in the context of prototyping because 
efficiency is not an overriding concern. 

If the set of axioms in the theory is canonical, the 
chances for success in theorem proving are improved. A 
canonical set of axioms is both Church-Rosser and 
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terminating. We therefore normalize the axioms of a theory 
by performing Knuth-Bendix completion on the axioms to 
obtain the desired properties. This normalization is done 
just once for each component, at the time it is added to the 
software base. 
4.6: Issues 

Transformation of signatures to Prolog predicates is 
necessary to map a query signature to a candidate 
component signature. With some combinations, many 
mappings will be possible, but only one might be 
meaningful. This complicates the task of the overall query 
by consistency algorithm. For each candidate component, 
the algorithm must check every possible mapping. In the 
worst caw, this task is exponential based on the number of 
operations with identical domain and range sorts. If we 
allow variables in stored components, which is the case 
when we store generic components, the problem is 
exacerbated. In practice, we hope that this will be a rare 
problem. We defer our judgement until we have performed 
more tests on this portion of the system. 

Query by consistency has some limits. When an I/O list 
input is reduced in the query and component, the result is 
two terms that must be compared for equality, a problem 
known to be undecidable in the general case [lo]. The 
inductionless induction method we are using is sound and 
fast, but not complete. We plan to evaluate the effectiveness 
of such a weak procedure via experimental benchmarks. 

Another disadvantage is that the modules need to be well 
defined for term rewriting. Ideally, this means that they are 
Church-Rosser and terminating, that is, canonical. 
Experiments will indicate whether this is actually 
necessary. If so, an automatic Knuth-Bendix completion 
procedure may help. Goguen has stated, however, that users 
nearly always write specifications “that are easily seen to be 
canonical, because they just define primitive recursive 
functions over free constructors” [5]. We hope to use this 
observation to our advantage. 

A third disadvantage, related to the second, is that there 
will be unusual situations that must be dealt with, such as 
rewriting that does not terminate, rewriting that results in 
errors, and terms whose comparison for equality is time 
consuming. Again, further experimentation will indicate the 
extent to which these problems will arise. 

A final issue raises the question of practicality. Use of 
query by consistency requires that a user write a formal 
specification for the object sought. This may be beyond the 
capabilities of some users. With little training, however, the 
user could generate a signature for the object and proffer 
example terms rather than axioms (see Figure 6). 

This obviates the need for a test set. In this case, we 
simply find a mapping using the signature and then use the 
left and right hand sides of the given “axioms” as the inputs 
and outputs in an YO list. We perform the same 

transformations on the inputs to the domain of the candidate 
and perform the Same check for equivalence on the 
corresponding outputs. This variation of query by 
consistency is a promising altemative when one does not 
have or cannot write a full formal specification. Eichmann 
[4] has also researched this idea, combining it with a faceted 
classification methodology. 

... 
axioms 
(obj SET is sort Set . 

protecting INT . 
op empty : -> Set. 
op add : Int Set -> Set. 
op in : Int Set -> Bool . 
op subset : Set Set -> Bool . 
op equal : Set Set -> Bool . 
eq in(1, empty) = false. 
eq in( 1, add( 1, empty)) = true . 
eq subset(empty, empty) = true. 
eq subset(add( 1, empty), 

eq equal(empty, empty) = true. 
eq equal(empty, add( 1, empty)) = false . 

Fig. 6 Formal Specification for a Set 
with Example Axioms 

add( 1, add(2, empty))) = true . 

endo) 

5: Conclusion 
We believe that retrieval of reusable components based 

on their formal specifications is both useful and feasible. 
Manual approaches do not scale up to large software bases, 
because the effort to find a component tends to increase with 
the number of components in the software base. Informal 
approaches to automatic retrieval, such as keyword search, 
can help to mitigate the size problem somewhat, but they 
are also limited in scale because the precision of a query is 
not very good: only a small fraction of the retrieved 
components is usually relevant to the problem, requiring a 
manual search in the final phase. In contrast, formal 
specification enables queries to achieve very high precision. 

Query by specification does require the designer to 
formulate a formal specification of the properties of the 
desired software component, and this does requh some 
effort. However, in the context of rapid prototyping and 
high-precision software development, such specifications 
must be developed anyway for purposes of documenting the 
required properties of proposed designs, and to support 
computer-aided verification, either via pmfs  or via 
automated testing. We believe that producing the 
specifications early in the project, rather than as an 
afterthought, has a low marginal cost, and may reduce the 
overall effort required for development. 

Since theorem proving is known to be slow, many people 
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have held the opinion that retrieval based on formal 
specifications cannot be done within practical resource 
limits. In this paper we outline our approach to overcome 
this problem, based on a layered set of techniques for 
reducing the size of the set of candidate components. 

Our layered approach can be summarized as follows. 
First, we partition the software base using an indexing 
structure based on signatures. This ensures that 
components whose types are not compatible with the query 
are not even considered. Second, we use test cases to 
quickly rule out the majority of the remaining components 
based on behavioral considerations. This leaves us with a 
set of plausible components that should be relatively small. 
Finally, we use a limited but fast method for theorem 
proving to attempt to conclusively and automatically 
demonstrate that one of the plausible components will in 
fact meet all of the requirements in the theory. 

Final and conclusive demonstrations of the practical 
feasibility of this approach depend on experimental 
evaluations. We have implemented syntactic matching and 
query by consistency but have not yet implemented the 
theorem proving for phase 3 or query by consistency using 
examples. We plan to carry out experimental evaluations of 
our system over the next year. 
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