
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

1992

A Tool for Reusable Software

Component Retrieval via Normalized Specifications

Steigerwald, Robert

IEEE

http://hdl.handle.net/10945/43619

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36735807?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Tool for Reusable Software Component Retrieval
via Normalized Specifications

Robert S teigerwald, Luqi, Valdis Berzins

Computer Science Department
Naval Postgraduate School

Monterey, CA 93943

Abstract
This paper introduces the concept of reusable software
component retrieval using normalized formal
specifications. Reusable Ada software components are
stored in a software base that supports a rapid prototyping
system called CAPS (Computer Aided Prototyping System).
Each component in the software base has a corresponding
formal specification. A query in the form of a formal
specification is used to search for candidate components
that will satisfy the requirements of the query. The
specification languages used are the Prototype System
Description Language (PSDL) and OBJ3. Each
specification is normalized to facilitate component
retrieval. This paper describes the software base model,
syntactic and semantic normalization, and the component
retrieval mechanisms.

1: Introduction
The rapidly growing demand for software has shifted

toward larger and more complex systems. The inadequacy
of current software development methods is evident in high
software costs and low programmer productivity. Software
engineers need software tools that will help them better
manage the complexity of these systems. Rapid prototyping
has become an accepted software development method to
rapidly construct and adapt software, validate and refine
requirements, and check the consistency of proposed
designs. Using rapid prototyping and design tools, we have
experimented with a software development technique to
increase productivity, improve software quality and
reliability, and provide savings in both time and money for
software development. As a component of a rapid
prototyping system, the tool described here aids in storing
and retrieving reusable software components from a
software base.

This paper focuses on a technique for using specifica-
tions as search keys for component retrieval. Given our
software base of Ada components, each with a

corresponding formal specification, and given a software
base query in the form of a specification, we would like to
search the database to find the component(s) whose
specification(s) best match the query specification.
Fundamental to our approach is normalization of
specifications. Using normal forms for the specifications
reduces the variability in the representation and diminishes
the effort required for the search.

Section 2 describes related work, rapid prototyping,
CAPS, the form of our component specifications, and our
process model for component storage and retrieval. In
Section 3 we describe syntactic normalization and matching
using PSDL specifications and in Section 4 we discuss
semantic normalization and matching. We summarize in
Section 5 and assess the progress of our system.

2: Background
2.1: Related work

Runciman and Toyn have developed a method of
retrieving software components by polymorphic type [141.
A two phased approach to retrieving components via
specifications developed at CMU [15] retrieves ML
components (functions) with Lambda Prolog specifications
by first matching on signature and then on function pre- and
post-conditions. Another approach employing both syntax
and semantics of a component but not necessarily its
specification was developed by Wood and Sommerville
[21]. They built a system that performs component retrieval
using descriptor frames based on Schank’s theory of
conceptual dependency.

2.2: Rapid prototyping
A prototype is an executable model of a proposed

software system that accurately reflects chosen aspects of
the system, such as display formats, the values computed, or
response times. Rapid prototyping is an iterative approach
to software development that uses prototypes to help both
the developers and their customers visualize the proposed
system and predict its properties.

0073-1 129-1/92 $3.00 0 1992 IEEE

prototypes: abstract data types and operators. Software
systems are modeled as networks of operators
communicating via data streams. The following is an
example of a PSDL specification for an absttact data type
component that implements a set and some of its operations.

Rapid prototyping may be used in conjunction with or as
an altemative to the traditional software lifecycle. It may be
used to rapidly construct and adapt software, validate and
refine user requirements, or check the consistency of
proposed designs. Our approach to rapid prototyping
combines the power of high level specifications with a data
base of reusable software components to help an engineer
quickly build a prototype which will help clarify
requirements and eliminate the large amount of wasted
effort currently spent on developing software to meet
incorrect or inappropriate specifications [13,191.

Prototyping has gained importance in recent years
because new technologies have made computer-aided
prototyping feasible. These technologies have reduced the
time and cost involved in producing a prototype, thus
widening the gap between a software prototype and the cost
of the final software system and increasing the potential
leverage of prototyping. The new technologies, often
manifested in CASE tools, are based on reusable code,
computer-aided design, and automatic generation of
programs.
23: The Computer Aided Prototyping System

The computer aided prototyping system (CAPS) is an
integrated environment aimed at rapidly prototyping hard
real-time embedded systems [l l , 131. This integrated set of
software tools includes an execution support system, a
rewrite system, a syntax directed editor with graphics
capabilities, a software base, a design database, and a
design management system.

Embodied within the CAPS software development
approach is a systematic design method for rapid prototype
construction. System or subsystem descriptions are stated at
a problem-oriented, abstract level and iteratively refined
into a hierarchically structured prototype using a uniform
decomposition method that combines the advantages of
data flow and control flow. At each level of the hierarchy,
the designer focuses only on the details important at that
level.

With respect to reusable component retrieval, the most
important tool in CAPS is the software base management
system (SBMS). As this paper describes in detail, the key to
component storage and retrieval is the component's
specification.

2.4: Component specification
The prototype system description language (PSDL) [12]

forms the basis of CAPS. It serves as an executable
prototyping language at a specification or design level and
has special features for real-time system design. The PSDL
model is based on data flow under real-time constraints and
uses an enhanced data flow diagram that includes non-
procedural control constraints and timing constraints.

PSDL provides two kinds of building blocks for

type SET specification
operator EMPTY specification

output S1: set end

operator ADD specification
input ELEMENT : integer

output S2 : set end

input ELEMENT : integer

output RESULT : boolean end

s1: set

operator IN specification

S1 : set

oDerator SUBSET wecification
input SI : set'

output RESULT : boolean end
s2: set

input SI : set'

output RESULT : boolean end
s2: set

operator EQUAL specification
input S1: set

S2 : set
output RESULT : boolean end

keywords SET, INTEGER
description (Implements a set of integers)
axioms
(obj SET is sort Set .

protecting INT .
op empty : -> Set.
op add : Int Set -> Set.
op in : Int Set -> Bool .
op subset : Set Set -> Bool .
op equal : Set Set -> Bool .
vars sl s2 : Set.
vars e l e2 : Int .
eq $(el, empty) = false.
eq m(e1, add(e2, sl)) = or(=(el, e2), in(e1, sl)) .
eq subset(empty, sl) = true.
eq subset(add(e1, sl), s2) = and(in(e1, s2),

subset(s1, s2)) .
eq equal(s1, s2) = and(subset(s1, s2),

subset(s2, sl)) .
endo)

end

The set package defines consmctors (Empty, Add) and
accessors (In, Subset, Equal) for a set of integers. Each
operator description includes a specification which may
optionally include inputs, outputs, exceptions, generic
parameters, states and timing information. It is these
interface characteristics that form the basis of syntactic
normalization and matching, the first phase of the retrieval
process.

One of the latter parts of a PSDL component

19

specification is the formal description of the component or
axiom. PSDL uses axioms of several different forms. The
axioms in this paper are written using ON3 163. The axioms
express the semantics of the specification and will be the
basis of semantic normalization and matching, the second
phase of the retrieval process. Syntactic and semantic
normalization and matching together provide the means for
component storage and retrieval.

2.5: Process model for component storage and
retrieval

Today there is much attention focussed on the nature of
reusable software component databases. The most widely
known Ada software bases are the Common Ada Missile
Parts (CAIW)[22], the Ada Software Repository [3], and
the Booch component collection [2]. There are many more
besides these and all of their developers have given thought
as to how to retrieve a desired component from the software
base. Techniques that have been applied to the problem of
component retrieval include browsers such as those found
in object-oriented languages (e.g. Smalltalk, KEE and
Eiffel), keyword search algorithms, multi-attribute search
algorithms, and expert systems [181.

Our general methodology is to store components in an
OODBMS and use PSDL specifications as the basis for
retrieval. Each stored component consists of a PSDL
specification, an Ada specification, and an Ada body. The
syntax and semantics of the PSDL specification is used to
direct the search for a component.

Figures 1 and 2 summarize the steps necessary to store
components in the software base and to retrieve them using
a given query specification. Components to be stored must
fust pass through syntactic and semantic normalization (see
Figure 1). The normalization processes transform the
component's PSDL specification to facilitate later
matching.

U --
Fig. 1 Component Storage

Figure 2 shows the general process for component
retrieval. A query for a library component is a PSDL
specification. The query is syntactically and semantically
normalized and then matched against stored specifications.
Syntactic and semantic normalization may proceed in
parallel but syntactic matching must take place before
semantic matching. Syntactic matching is faster and
partitions the software base quickly in order to narrow the
list of possible candidates that the semantic matching

algorithm must consider. Semantic matching may be time
consuming and should be applied to as small a candidate list
as possible without excluding potential matches.

PSDL Spec

Candidate
compoms --

Fig. 2 Component Retrieval

Both syntactic and semantic normalization and matching
are required to achieve the best performance from the
system. The main benefit of syntactic matching is speed
whereas the advantage of semantic matching is accuracy.
We believe that accuracy is required in order to reduce the
number of reusable components that a designer will have to
evaluate before making a selection. Consider the example
of trying to find an abstract data type for a set. The Booch
component library [2] contains 34 different variations for
implementing a set The specifications for these set
packages are quite similar but the implementations are
different. Clearly we Cannot rely on syntax alone to provide
us a sufficiently fine grained search. Semantics are also
required. The details of syntactic and semantic
normalization and matching are addressed in sections 3 and
4.

3: Syntactic matching and normalization
The purpose of syntactic normalization is to derive

information from the PSDL specification to define an
ordering for stored component specifications. It is called
syntactic normalization because the information used
comes from the interface specification of the component.
This part of the specification contains information on the
inputs, outputs, states, and exceptions but contains no
implementation details. Syntactic normalization gathers
statistics from a query for use in matching.

Syntactic marching is the process of comparing the
statistics derived from a query to those of stored
components. The purpose of the matching process is to
quickly eliminate those components that cannot possibly
satisfy the requirement, leaving a candidate set of
components for semantic matching. From an information
retrieval perspective, syntactic matching provides high
recall while semantic matching provides increased
precision. Details of syntactic normalization and matching
may be found in [16].

20

4: Semantic normalization and matching
As shown in the set example earlier, one of the attributes

of a PSDL specification is an axiomatic description of the
component. Both types of PSDL components (operators
and abstract data types) may be described by algebraic
axioms. It is likely, given a large software base, that a query
based only on syntactic matching will find components that
are not semantically relevant. We therefore perform
normalization and matching on component semantics as
well. The semantics of a component are described using
OBJ3 [6,20], an executable specification language.

This section describes our phased approach to
specification matching and presents some of the details of
OBJ3. Interface normalization and matching are then
described, followed by explanations of query by
consistency and normalization for theorem proving.
4.1: Overview

Our overall approach to reusable component retrieval is
three-phased. The first phase, described above, focuses on
the numbers and types of parameters within each operator
in the PSDL portion of the query.

The second phase, called query by consistency, relies on
the formal OBJ3 specification for each component. Query
by consistency formulates example terms from a query’s
algebra and passes the terms as parameters to its operators.
The set of outputs obtained is compared against the outputs
from similar tests performed in the domain of a candidate
component. This phase reduces further the set of candidate
components, eliminating components which cannot
possibly satisfy the query because of behavioral
incompatibilities. Query by consistency requires a form of
normalization we call interface normalization.

The final phase of the search process, based on theorem
proving, attempts to find candidates that can be shown to
satisfy the query, or to order the ones that partially satisfy
the query if none of the candidates is completely
satisfactory. This phase requires axiom normalization.

4.2: Representation of specifications
OBJ3 is the language we have chosen to augment PSDL

to write our formal specifications. This section describes
some of the important constructs of OBJ3. Figure 1 shows
an example of an OBJ3 specification in the axioms portion
of the PSDL specification.

OBJ3 is a functional programming language rigorously
based on order sorted logic. The dominant construct is the
module. Modules can be objects or theories. An object
completely determines the behavior of a type or
parameterized set of types and a theory partially constrains
the behavior of a set of types. Both objects and theories are
executable, but theories cannot contain built-in equations.
We focus here on objects which consist of a signature and a

set of axioms.
An OBJ3 definition of an abstract data type introduces a

new set of values, which contains all the instances of the
type. The principal sort (Order sorted logic uses the term
“sort” rather than “type”) of the abstract data type is the
name of this set of values. The form of the signature, which
defines the syntax of the object’s interface, is a set of “op“
definitions defining the name, domain s m . and range sort
of each operator (since OBJ3 is a functional programming
language, all operators are functions). The sorts of the
object defined in Figure 1 are (Set, Int, Bool) . An operation
whose range is the same as the principal sort is called a
constructor. An operation whose range is a sort other than
the principal sort is called an accessor.

The axioms (or equations) portion of an object &fine the
semantics of the object. Expressions are of the form

eq <Expl> = <Exp2> or
cq <Expl> = <Exp2> if <Bexp>

where both sides of each equation are well f m e d
expressions with respect to the signature and previously
declared variables. The axioms are written declaratively
and interpreted operationally as rewrite rules.

Objects may import operations and sorts h m other
objects using the protecting statement. In the object defined
in Figure 1, we import another object INT, which affords us
the ability to use the operations defined on integers.

In our approach to semantic matching, the OBJ3 portion
of the PSDL query is compared to OBJ3 specifications of
stored components to identify components that can possibly
satisfy the query. Because of the infinite variety possible in
writing specifications, normal forms become an important
means to diminish the effort applied to finding a match.

43: Interface normalization
The signature of an OBJ3 specification is an interface

description. One of the first tasks required in searching for
candidate components is to find a correspndence or
mapping between the query and a stored component by
comparing their interfaces. In order to simplify the mapping
process, we normalize the interface, transforming it to a
suitable representation for performing the mapping. This
kind of normalization involves expansion and
transformations.

Expansion in normalization was developed in the
context of the Algebraic Specification Formalism (ASF)
[l]. In this approach, a normal form is achieved when all
imports to a specification have been eliminated and as many
parameters as possible have been eliminated. ASF’s textual
normalization expands a module by fully incorporating the
sorts and functions of imports and by binding parameters to
the greatest extent possible. The purpose of this
normalization in ASF is to assign a semantics to the
complete specification and to each module within the
specification. ASF also performs a renaming of operators

with the same name to avoid conflicts.
In the process of normalizing an OBJ3 interface

description, we also expand the module. The expansion is
necessary because the module will be considered an atomic
unit during the matching process. Contrary to ASF
however, we allow overloading of operator names. A
detailed example of our expansion method may be found in
U71.

Having performed expansion, the system constructs an
altemative representation of the signature to simplify
mapping. Since we use Prolog as the tool to find the
mappings between a query and a candidate component, we
transform each opedon definition in the signature into a
set of Prolog predicate expressions. To guide this
transformation, it is necessary to have more information
about the operations than is provided in the specification.
We must also know which of the operations the user wants
considered in the matching process

obj LIST-OF-BITUPLE is sort List .
sort BiTuple .
protecting NAT .
protecting BOOL .
op nil : -> List.
op cons : BiTuple List -> List.
op make : Nat Nat -> BiTuple .
op length : List -> Nat .
op head : List -> BiTuple .
op tail : List -> List.
op append : List List -> List .
op reverse : List -> List .
op member : BiTuple List -> Boo1 .
op first : BiTuple -> Nat .
op second : BiTuple -> Nat .
...

endo

Fig. 3 interface Description for a List of BiTuple

For example, if the specification shown in Figure 3 were
used as query to the software base, the user might not want
all of the operations that come with the List object. A more
general query with fewer “op” definitions would certainly
offer better recall from the software base. Also, the user
may have defined hidden or local operations in his object
which are not necessarily required by the stored component.
We therefore leave it up to the user to specify the operations
he wishes to have considered. A specification used for
query may have only a few of the operations identified,
whereas a specification accompanying a component to be
stored may have all operations identified. Figure 4 shows an
example of the LIST-OF-BITUPLE module used as a query
and Figure 5 shows it used as part of a component to be

stored.

***(operations nil cons make append length)
obj LIST-OF-BITUPLE is sort List.

sort BiTuple .
protecting NAT .
protecting BOOL .
...

endo

Fig.4 List of BiTuple as a Query

***(operations nil cons tail append reverse
make length head 6rst second member)

obj LIST-OF-BITUPLE is sort List .
sort BiTuple .
protecting NAT .
protecting BOOL .
...

endo

Fig. 5 List of BiTuple for Storage

The specifications in Figures 4 and 5 have been
augmented with OBJ3 comment blocks, ***(comment), to
indicate the operations the user wants considered. From this
information and that contained in the signature, the
necessary Prolog predicate expressions may be generated.
For each operation specified in the signature we define a
corresponding “operation” predicate, and for each input
parameter in the operation we define an “argument”
predicate.

To find a matching candidate in Prolog, we combine the
predicate expressions provided by the query to form a
Prolog rule. To that rule, we also add additional predicate
expressions to ensure that all bound operation names are
unique and that for each operation, all parameter positions
are unique. We use the predicate expressions provided by a
candidate component as our database and then attempt to
satisfy the query. A detailed example of our use of Prolog to
perform the mapping task may be found in [17].

4.4: Query by consistency
Given one or more mappings between a query and a

candidate component, we use query by consistency to check
the semantics of the query against the semantics of the
stored component.

Query by consistency creates a set of terms called a rest
set from the constructors of the sorts used in the query and
uses those terms to generate a list of input-output pairs
called an I/O list. The input part of each pair in the I/O List
is submitted to the axioms for reduction (term rewriting)
and the result is stored as the output part of the pair. We

22

perform the reductions in both the query and the stored
component and then compare corresponding outputs in the
respective VO Lists. We use this comparison to compute a
score of semantic similarity and rank-order the candidates.
The idea of using a test set is bomwed from Kapur and

Zhang [8,9] who developed a refinement to an inductionless
induction procedure called proof by consistency [7]. In
proof by consistency using test sets, a canonical algebraic
theory is augmented by an axiom to be proven (a
conjecture) and a new extended canonical theory is
incrementally computed. Whenever a new rule is generated
during the process, the rule is checked against a test set to
see if it reduces any of the irreducible ground constructor
terms contained in the set. If the new rule can reduce a term
in the test set, then the conjecture is not a theorem.

The test set is key to this method of proof by consistency.
It is a finite set of terms that describes the equivalence
classes of constructor ground terms. For example, the test
set for integers with successor (suc) and predecessor @re)
constructors would be (0, suc(O), suc(suc(x)), pre(O),

We do not adhere strictly to Kapur and Zhang’s notion of
a test set but ours is similar. In our system, the test set
constructed for a given query consists of terms derived from
all of the operations whose range sorts are defined in the
module as well as some terms derived fiom system defined
sorts. An example of query by consistency will help clarify
these concepts.

pre@re(y))) *

Example: Consider the example of a list of bituple shown
in Figure 4. If the user were to submit that specification as a
query, the system would generate the following test set:

Nat 0
Nat succ(natconst1)
List: nil
List: cons(!!!, listconstl)
List: append(listconstl.listconst2)
BiTuple: make(!!!, !!!)

The exclamation points in some of the test set terms are
placeholders. They represent arguments that must be filled
when using the term to build an I/O list input. A placeholder
will be filled with a term having the appropriate sort.
As stated previously, these terms represent the

equivalence classes of all terms that can be generated from
the algebra defined in the module, limited by the user
selected operations (nil cons make append length) and the
predefined constructors for sort Nat. These terms will be
used to build input terms in the following manner. We
generate an initial VO list consisting of a template for each
user selected operation. The inputs in the initial 40 list are:

nil
cons(!!!, !!!)
make(!!!, !!!)
append(! ! ! , ! ! !)
length(!!!)

We then expand the I/O list by checking each term for
placeholders. If a placeholder is encountered, we delete that
term and replace it with a new set of terms, each containing
a substitution for the placeholder taken from the test set.
Care must be taken to avoid circularities. Expansion of the
above initial VO list resulted in 68 terms. Each term is
comprised solely of operations or constant constructors
(OBJ3 cannot perform reductions on tenns containing
variables). A sample of the terms generated follows:

nil
cons(make(0, 0), nil)
cons(make(0, 0). append(1istconst l,listconst2))
cons(make(0, succ(natconst 1)). nil)
make(0,O)
make(0, succ(natconst1))
make(succ(natconstl), 0)
make(succ(natconstl), succ(natconst1))
append(ni1, nil)
append(ni1, append(Iistconstl.listconst2))
append(append(listconstl,listconst2). nil)
append(append(listconst1 ,listconst2),

append(listconstl,listconst2))
length(ni1)
length(append(listconstl,listconst2))
length(cons(make(natconst1, natconst l), listconstl))

Having created the input half of the YO list, we submit
the terms to the axioms of the query using the OBJ3
environment to determine output results. OBJ3 uses term
rewriting to reduce the inputs to a normal furm, that is, a
form where no further reductions are possible.

The corresponding outputs to the above list of inputs are:

nil
cons(make(0, 0), nil)
cons(make(0, 0), append(listconst l,listconst2))
cons(make(0, succ(natconstl)), nil)
make(0,O)
make(0, succ(natconst1))
make(succ(natconstl), 0)
make(succ(natconstl), succ(natconst1))
nil
append(listconstl,listconst2)
append(listconstl,listconst2)
append(append(listconst 1 ,listconst2),

append(listconstl,listconst2))

23

0
length(append(listconstl.listconst2))
sum(1 , length(1istconst 1))

Note that many of the outputs are identical to the inputs.
This will be the case when the input term is composed
solely of constructor operations having no corresponding
axioms, such as:

nil and
cons(make(0,O). nil).

This is also the case when the term contains constants that
cannot be reduced by axioms, such as:

length(listconst1).

We now have a complete I/O list in the domain of the
query and can proceed with semantic matching.

Matching: Given a complete VO list in the domain of the
query, the system can proceed to check each of the
candidates whose signature maps to the query signature. For
each possible mapping for a candidate, the system
transforms the inputs in the query VO list to inputs in the
domain of the candidate. The transformation process
changes the names of operations and the order of
parameters where necessary. The inputs are submitted to the
candidate’s axioms for reduction resulting in a
corresponding list of outputs.

The final step is to compare the list of outputs in the
query domain to the list of outputs in the candidate domain.
Once again, a transformation must be made, this time on the
outputs of the query, changing them to the domain of the
candidate. At this point, a meaningful comparison can be
made between the query outputs and the candidate
component outputs.

The method used to compare the outputs is an
inductionless induction proof method provided by OBJ3
151. Two terms consisting of operations on operations and
constants can be checked for equality by submitting them to
OBJ3 as follows:

tend= term2

OBJ3 will reduce each of the terms and make
transformations on the terms based on operation attributes
(such as commutativity, associativity, etc.) to try to prove
their equivalence. If it can prove they are equivalent, the
result is true, otherwise the result is false. We use these true
and false results to find the best map for a particular
candidate and to ultimately rank-order a set of candidates.
We may also use a threshold value to eliminate candidates

with low scores.
4.5: Theorem proving and axiom normalization

The objective of the second phase of the component
retrieval process, query by consistency, is to rank d e r and
reduce further the set of candidate components that would
have to be considered in phase three. Phase three involves
theorem proving, a process that is potentially open-ended,
so we would like as small a set of candidates as possible to
check in this phase. In this phase, we focus on the axioms of
the specification. To diminish the effort applied in theorem
proving, a normal form for the axioms is warranted.

The form of theorem proving we use is inductionless
induction, described in [5]. Because each formal
specification consists of a set of axioms, the axioms may be
treated as a theory. Given a set of axioms from a query and
a set of axioms from a candidate stored component, we find
the set of mappings between the query and the stored
component specification. We use each possible mapping to
express the axioms of the query in terms of the signature of
the stored component specification. We then treat the
axioms of the stored component specification as a theory
and hy to prove that each axiom from the query is satisfied
in the theory.

The chosen proof technique treats the axioms of the
stored component as rewrite rules, which are used to reduce
both sides of each query axiom (equation) to normal form.
If both sides of the equation reduce to the same term, then
the query axiom is satisfied in the theory of the stored
component. This proof procedure is sound and fast, but not
complete. We plan to evaluate the effectiveness of such a
weak procedure via experimental benchmarks when the
implementation of phase three is complete.

If all axioms in the query are satisfied in the theory of the
stored component specification, then we have proven that
the stored component specification semantically matches
the query. If some but not all of the axioms of the query are
satisfied in the theory of the stored component, then the
number of query axioms that are satisfied becomes a basis
for ranking partial matches.

In the context of prototyping, it is feasible to combine the
results of several components that partially satisfy a query
to synthesize a component that completely satisfies the
query. If we can find several components such that every
component provides all of the constructor operations and
each accessor operation is provided by at least one of the
components, then we can satisfy the query using a record
containing an instance of each representation, where
different components are used to realize different accessors.
This is acceptable in the context of prototyping because
efficiency is not an overriding concern.

If the set of axioms in the theory is canonical, the
chances for success in theorem proving are improved. A
canonical set of axioms is both Church-Rosser and

24

terminating. We therefore normalize the axioms of a theory
by performing Knuth-Bendix completion on the axioms to
obtain the desired properties. This normalization is done
just once for each component, at the time it is added to the
software base.
4.6: Issues

Transformation of signatures to Prolog predicates is
necessary to map a query signature to a candidate
component signature. With some combinations, many
mappings will be possible, but only one might be
meaningful. This complicates the task of the overall query
by consistency algorithm. For each candidate component,
the algorithm must check every possible mapping. In the
worst caw, this task is exponential based on the number of
operations with identical domain and range sorts. If we
allow variables in stored components, which is the case
when we store generic components, the problem is
exacerbated. In practice, we hope that this will be a rare
problem. We defer our judgement until we have performed
more tests on this portion of the system.

Query by consistency has some limits. When an I/O list
input is reduced in the query and component, the result is
two terms that must be compared for equality, a problem
known to be undecidable in the general case [lo]. The
inductionless induction method we are using is sound and
fast, but not complete. We plan to evaluate the effectiveness
of such a weak procedure via experimental benchmarks.

Another disadvantage is that the modules need to be well
defined for term rewriting. Ideally, this means that they are
Church-Rosser and terminating, that is, canonical.
Experiments will indicate whether this is actually
necessary. If so, an automatic Knuth-Bendix completion
procedure may help. Goguen has stated, however, that users
nearly always write specifications “that are easily seen to be
canonical, because they just define primitive recursive
functions over free constructors” [5]. We hope to use this
observation to our advantage.

A third disadvantage, related to the second, is that there
will be unusual situations that must be dealt with, such as
rewriting that does not terminate, rewriting that results in
errors, and terms whose comparison for equality is time
consuming. Again, further experimentation will indicate the
extent to which these problems will arise.

A final issue raises the question of practicality. Use of
query by consistency requires that a user write a formal
specification for the object sought. This may be beyond the
capabilities of some users. With little training, however, the
user could generate a signature for the object and proffer
example terms rather than axioms (see Figure 6).

This obviates the need for a test set. In this case, we
simply find a mapping using the signature and then use the
left and right hand sides of the given “axioms” as the inputs
and outputs in an YO list. We perform the same

transformations on the inputs to the domain of the candidate
and perform the Same check for equivalence on the
corresponding outputs. This variation of query by
consistency is a promising altemative when one does not
have or cannot write a full formal specification. Eichmann
[4] has also researched this idea, combining it with a faceted
classification methodology.

...
axioms
(obj SET is sort Set .

protecting INT .
op empty : -> Set.
op add : Int Set -> Set.
op in : Int Set -> Bool .
op subset : Set Set -> Bool .
op equal : Set Set -> Bool .
eq in(1, empty) = false.
eq in(1, add(1, empty)) = true .
eq subset(empty, empty) = true.
eq subset(add(1, empty),

eq equal(empty, empty) = true.
eq equal(empty, add(1, empty)) = false .

Fig. 6 Formal Specification for a Set
with Example Axioms

add(1, add(2, empty))) = true .

endo)

5: Conclusion
We believe that retrieval of reusable components based

on their formal specifications is both useful and feasible.
Manual approaches do not scale up to large software bases,
because the effort to find a component tends to increase with
the number of components in the software base. Informal
approaches to automatic retrieval, such as keyword search,
can help to mitigate the size problem somewhat, but they
are also limited in scale because the precision of a query is
not very good: only a small fraction of the retrieved
components is usually relevant to the problem, requiring a
manual search in the final phase. In contrast, formal
specification enables queries to achieve very high precision.

Query by specification does require the designer to
formulate a formal specification of the properties of the
desired software component, and this does requh some
effort. However, in the context of rapid prototyping and
high-precision software development, such specifications
must be developed anyway for purposes of documenting the
required properties of proposed designs, and to support
computer-aided verification, either via pmfs or via
automated testing. We believe that producing the
specifications early in the project, rather than as an
afterthought, has a low marginal cost, and may reduce the
overall effort required for development.

Since theorem proving is known to be slow, many people

25

have held the opinion that retrieval based on formal
specifications cannot be done within practical resource
limits. In this paper we outline our approach to overcome
this problem, based on a layered set of techniques for
reducing the size of the set of candidate components.

Our layered approach can be summarized as follows.
First, we partition the software base using an indexing
structure based on signatures. This ensures that
components whose types are not compatible with the query
are not even considered. Second, we use test cases to
quickly rule out the majority of the remaining components
based on behavioral considerations. This leaves us with a
set of plausible components that should be relatively small.
Finally, we use a limited but fast method for theorem
proving to attempt to conclusively and automatically
demonstrate that one of the plausible components will in
fact meet all of the requirements in the theory.

Final and conclusive demonstrations of the practical
feasibility of this approach depend on experimental
evaluations. We have implemented syntactic matching and
query by consistency but have not yet implemented the
theorem proving for phase 3 or query by consistency using
examples. We plan to carry out experimental evaluations of
our system over the next year.

REFERENCES
JA. Bergstra. J. Heering, and P. Klint, The Algebraic
Specification Formalism ASF, Addison-Wesley. New

Grady Booch, Library of Reusable Ada Components,
Wizard Software, Lakewood. CO, 1990, (303) 987-1874.

Richard Conn, ‘The Ada Software Repository and Software
Reusability”, Proceedings of the F@h Annual Joint
Conference on Ada Technology and Washington Ada
Symposium, 1987, pp. 45-53, (also in [8]).

David Eichmann, “Selecting Reusable Components Using
Algebraic Specifications”, Second Intemational Conference
on Algebraic Methodology and Software Technology, Iowa
City, IA, May 22-25.1991. pp. 37-40.

J. A. Goguen, “OBJ as a Theorem Prover with Applications
to Hardware Verification”, SRI Intemational Report SRI-

J. A. Goguen, and Timothy Winkler, “Introducing OBJ3”,

Deepak Kapur and D. Musser, “Proof by Consistency”,
Artificial Intelligence. v. 31. February 1987, pp. 125-157.

Deepak Kapur, and Hantao Zhang. “An Overview of
Rewrite Rule Laboratory”, in Rewritinn Techniaues and
A licati , ed. b N. Dershowitz, Springer-Verlag, New
Y % , 1 9 z p p . 55J-562.

Deepak Kapur and Hantao Zhang, “RRL Rewrite Rule
User’s Manual”, Department of Computer EZTtate University of New York at Albany, May

1989.

orkJ989.

CSL-884R2. August 1988.

SRI International Report SRI-CSL-88-9, August 1988.

[lo] Donald E. Knuth and Peter B. Bmdix. “Simple Word
Problems in Universal Algebras”, in Computational
Problems in Abstract Algebras. John Leech, ed., Pergamon
Press, 1967.

[111 Luqi, and Valdis Berzins. “Rapidly Prototyping Real Time
Systems”, IEEESofrware, September 1988. pp. 25-36.

[121 Luqi, Val& Benins, and Ra ond T. Yeh, “A Prototyping
Language for Real-Time Sogive’: IEEE Trmactwns on
Software Engineering, Vol. 14, No. 10, October 1988, pp.

[131 Luqi, and M. A. Ketabchi, “A Computer Aided Prototyping
System”, IEEE Sojiware, March 1988, pp. 66-72.

[141 Colin Runciman, and Ian T o p “Reeieving re-usab!e soft-

the Intemational Conferene on Functional Programming
and Computer Architecture (FPCA’89). New Orleans. 1989.

[151 Eugene J. Rollins, and Jeanette M. Win “Specifications as
Search Keys for SW Libraries: A Case kkdy using Lambda
Prolog”, Camegie Mellon University, CMU-CS-90-159.26
September 90.

[16] Robert Steigerwald, Luqi. and John K. McDowell, “A
CASE Tool for Reusable Software Component Storage and
Retrieval in Rapid Prototyping”, Information and Software
Technology, November 199 1.

[171 Robert Steigenvald and Valdis Berzins. “Normal Forms for
Algebraic Specifications of Reusable Ada Packages”,
Proceedings of Tri-Ada ’91, ACM Press, San Jose,

[181 Will Tracz, Software Reuse: Emeraing Technolo~u, IEEE
Computer Society Press, Washington D.C., 1988.

[181 Raymond T. Yeh, “Software Engineering”, IEEE Spectrum,
November 1983, pp. 91-94.

[20] Timothy Winkler, “Introducing OBJ3’s New Features”, SRI
International Report (preliminary version provided by the
author), March 199 1.

[21] Murray Wood, and Ian Sommerville, “An Information
Retrieval System for Software Components”, SIGIR Forum,
22,3&4, Spring/Summer, 1988, pp. 11-28.

[22] Air Force Armament Laboratory, Contract F08635-88-C-
0002, CDRL No. A m , CAMP Parts Engineering System
Catalog User’s Guide, McDonnell Douglas Missile Systems
Company, 30 November 1989.

1409-1423.

ware components by polymorphic type”, in P” gs of

pp. 166-173.

California, October 21-25,1991.

26

