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ABSTRACT 

The study of the First Passage Time (FPT) problem (also known 
as first passage problem, FPP) started more than a century ago, 
but its diverse applications in science and engineering mostly 
emerged in the last two to three decades.  Assuming that X(t) is a 
one-dimensional stochastic process, the First Passage Time is 
defined as the time (T) when X(t) first crosses a threshold. 
Engineering reliability is obviously a suitable application domain, 
and indeed applications such as optimal dam design in hydrology 
and analysis of structural failure in civil and mechanical 
engineering are typical examples.  Although we envision that the 
FPT problem has great potential in network and software 
reliability, it should be more useful for network security and 
survivability because the approaches developed for the FPT 
problem are mostly analytical. The assumption for this inference 
is that in reliability analysis, experimental or historical data are 
often more readily available, which makes statistical approaches 
such as survival analysis more convenient and likely more 
realistic. In contrast, data is generally more difficult to obtain in 
security and survivability analyses, and analytical approaches can 
be leveraged to play more important roles. Furthermore, security 
and survivability often have to deal with malicious actions that 
may be driven by sophisticated cognition and behavioral 
processes, which are highly variable over time and very difficult 
to detect with short term data. If the behavior of an intruder can 
be characterized with some stochastic process such as Brownian 
motion, then the FPT approach may be applied to find the closed-
form solution of the probability density function (PDF) of the first 
passage time, which can be the time when the system breaks 
down or when the hacker is successful in compromising a 
network. In addition, the solutions to FPT depend on boundary 
and initial conditions of the corresponding partial differential 
equations, and they also describe the evolution of PDF over time. 
This may suggest that it is possible to model the behavior changes 
of an intruder over time and circumstances. Another advantage of 
FPT analysis is that it may help solve some non-Markov 
stochastic process problems in reliability analysis and survival 
analysis. In this article, we first briefly introduce the FPT problem 
with Brownian motion as an example, and then suggest its 
potential applications in software reliability and network security.  
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1.  INTRODUCTION   
Given a stochastic process X(t) with X(0)=0, the first passage time 
(FPT) T to the point x=a>0 is specified with  

}.)(:inf{ atXtT ==   (1) 

In other words, FPT is the time when the stochastic process first 
crosses a threshold a. The FPT problem usually refers to finding 
the probability density function (PDF) of T (Grimmet & Stirzaker 
1994, Ding & Rangarajan 2004).  
 
The history of the FPT problem can be traced at least back to 
1900 (Bachelier 1900). It is a field that involves partial 
differential equations, stochastic differential equations, 
probability theory and stochastic processes.  The most important 
application fields have been statistical physics and structure 
analysis (in civil and mechanic engineering). In physical science, 
the FPT problem is extensively studied in statistical physics and 
physical chemistry, especially in the study of diffusion in 
fluctuating media such as random walks in dynamically 
disordered systems (Revelli et al. 2002, Kulkarni & Tzenova 
2002, Rangarajan & Ding 2000).  In civil and mechanical 
engineering, it has been applied to study structures subjected to 
dynamically stochastic loading, which is essentially the reliability 
and fault detection problem. In the last two to three decades, the 
applications have expanded to other fields, including 
neuroscience (e.g., Giorno et al 1997, Tuckwell 1988), 
biochemistry (e.g., Kruzynski & Chelminiak 2002), biomedicine 
(Tuckwell & Wan 2000), mathematical financing, image 
processing, and computer science.  
 
The FPT approach is particularly advantageous in the scenarios 
where the system behavior is determined by the drift or diffusion 
of special functional parameters over time. The functional 
parameters refer to the technical parameters that can alter the 
reliability of the system elements (Pieper et al. 1997). Consider a 
system subject to time-dependent damage, the system fails when 
at least one of the functional parameters drifts away from a given 
region (G) for the first time. Of course, the multiple functional 
parameters may be dependent with each other, which could cause 
significant complication.  To some extent, FPT is a typical 
mathematical physics problem, where the interactions between 



two fields have been bi-directional historically. In mathematics, 
the most relevant tools for studying FPT are stochastic processes 
and partial differential equations (PDE), since both are the most 
natural ways to model diffusion processes, either stochastically or 
deterministically.  However, only very limited number of FPT 
problems are analytically solvable with closed-form solutions. 
Currently, the FPT problem is exactly solvable only if the 
underlying stochastic process can be treated as a homogenous and 
diffusion process. Furthermore, known analytical solutions are 
limited to the one-dimensional case (Wu & Fang 2008). In 
engineering science, numerical approaches, such as Monte Carlo 
Simulation and Response Surface Method can be employed to 
deal with complex nonlinearities and higher dimension issues 
(Labou 2003).   
 
In computer science, the applications of FPT analysis include: 
estimation of bounds of success probability of Genetic algorithms 
(e.g., Aytug & Koehler 2000, Pr'ugel-Bennett 2004, Yuen & 
Cheung 2006), performance of artificial neural networks (e.g., 
Wang et al. 2008), ant colony optimization (e.g., Duan 2006), 
media access in wireless networks (e.g., Karamchandani et al. 
2006, Ma et al. 2008), and software reliability. We will discuss 
the software reliability in a later section in more detail. 
 
FPT and mean FPT are important characteristics of random walks 
in networks. Random walk in network is a very active research 
field and has been applied to fields such as transportation, 
communication, optimization search, etc (Argyrakisa & Weiss 
2006, Wang & Pei 2008).  Both single and multiple (k) walkers in 
a network have been studied, and the latter is more complex but 
more realistic in describing natural phenomena, such as the 
transport of metabolite molecules through membrane channels 
(Argyrakisa & Weiss 2006).  
 
The FPT problem can be considered as the stochastic 
generalization of the shortest path problem (Wakuta 2000).  The 
shortest path problem has been extended as a multi-objective 
decision problem by recasting it as a multi-cost optimization 
problem. Similarly, the FPT problem can be extended to consider 
multiple costs. The mean time to failure (MTTF) in reliability 
analysis may also be generalized as a FPT problem. However, 
mathematically, there is an essential difference between MTTF 
and FPT. The MTTF is a moment of the probability distribution 
that is used to describe the failure time random variable. The FPT 
is the time when a stochastic process crosses some threshold 
boundary, and the solution of the FPT problem is often in the 
form of a probability density function. More accurately, the 
solution of FPT is a family of functions, and it represents the 
evolution of PDF of FPT over time and space because it is the 
solution of PDE. The categorical form of FPT depends on 
boundary and initial conditions of the PDE.      
 
Compared with other similar fields, FPT analysis in computer 
science is still relatively little known, especially in software 
reliability, network security, and network survivability. This lack 
of applications, and more importantly, what we believe is the 
huge potential of this research area, motivated us to write this 
article. Due to space limitation, this article is of abstract nature, 
and detailed studies will be reported in the future elsewhere. The 
remainder of the paper is organized as follows: Section 2 briefly 
introduces the mathematical analysis of the FPT problem; Section 

3 analyzes two fields where FPT analysis has achieved significant 
success. This analysis is intended to inspire similar research in 
software reliability as well as network security and survivability. 
As it will become clear, the mathematical problems to be solved 
are essentially the same when abstracted into FPT problems. In 
Section 4, we discuss the potential of FPT analysis in software 
reliability as well as network security and survivability.   
 
2.  FOKKER-PLANCK APPROACH TO FPT 
 PROBLEM   
There are two major approaches for solving the FPT problem: 
analytic and simulation (numerical) approaches. The former 
depends on solving partial differential equations or stochastic 
differential equations. In particular, the Fokker-Planck diffusion 
equations are often used to describe FPT problems. The 
alternative simulation approach is often based on Monte Carlo 
simulation algorithms.  In this subsection, we briefly outline an 
analytic procedure to obtain the FPT solution by solving the 
Fokker-Planck partial differential equation.  This subsection 
draws on Ding and Rangarajan’s (2004) presentation. Pieper et al 
(1997) and several others also performed similar studies. 
Comprehensive mathematical treatments of the Fokker-Planck 
approach can be found in monographs such as Risken (1989), 
Grimmet & Stirzaker (1994), and Gardiner (1997). 
 
Assuming a simple random walk with step Y for every τ units of 
time described in the following form: lY = or lY −=  with the 
equal probability of 0.5. A new random variable Xn is defined as:  
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which represents the position of the random walker at time t=nτ. 
Suppose that steps Yi are independent with each other. The mean 
squared displacement is denoted as  
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To simplify processing, one can take the diffusion limit: τ→0,  
l→0 such that l2/t =2Dt, where D is termed diffusion constant. 
With the simplification, one obtains: 

DttX 2)(2 =  (4) 

This is the equation that specifies Brownian motion (also known 
as the Wiener process). More generally, Xµ(t) is a Brownian 
motion with drift µ if  

)()( tXttX += μμ  (5) 
In many applications, including the FPT problem, it is easier to 
deal with the PDF than to deal with the stochastic process itself. 
Furthermore, the PDF indeed contains sufficient information for 
the application in the case of the FPT problem. The PDF for the 
above described Brownian motion satisfies the well-known 
Fokker-Planck partial differential equation.  
 
It can be verified that the Fokker-Planck PDE that describes the 
evolution of the PDF for Brownian motion is 
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where W(x, t) is the probability that the random walker is at 
location x at time t. The boundary conditions for the equation are 
W(x, t) = 0, at x=±¶, and the initial condition is W(x, 0) = d(x).  
 
For Brownian motion with drift a, the Fokker-Planck PDE is  
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According to the definition of FPT in Equation (1), the FPT 
problem with Brownian motion stochastic process is to find the 
solution of Fokker-Planck PDE represented with Equation (7) and 
the following boundary and initial conditions: W(0, t) = W(¶, t) = 
0;  W(x, 0) = d(x–a), where x=a is the new starting point of the 
Brownian motion.  Ding & Rangarajan (2004) demonstrated the 
PDF of the FPT as inverse Gaussian distribution: 
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When the PDF of the FPT is obtained, one can perform standard 
reliability analysis, similar to that performed using the 
Exponential or Weibull distribution models.  
 
In the case of the continuous time one-dimensional random walk 
that is described with the following Langevin equation,  
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The random walker begins at x=0 at time t0=0. Afterward, the 
walker waits at a given location xi for time ti–ti-1 before jumping 
Yi units. The jump size (y) may depend on the waiting time u>0, 
which itself could follow a probability distribution, such as  
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where f(y, u) is the joint PDF of jump size y and waiting time u. 
This continuous time random walk (CTRW) can be non-
Markovian. This is also known as Levy-type anomalous diffusion 
with zero drift. By using the fractional Fokker-Planck Equation 
(FFPE) approach and H-functions, Ding and Rangarajan (2004) 
derived the close-form PDF of the FPT. The form of the solution 
is very extensive and further introduction of the solution is 
beyond scope of this short article.  
 
Fokker-Planck PDEs have very rich solutions and can be used to 
generate flexible PDFs by choosing various boundary and initial 
conditions.  For example, in Equation (6), the boundary condition 
can be generalized to x = a, b, i.e., lower and upper bounds, which 
was mapped to the elastic barriers by Pieper et al. (1997) in 
structure reliability. The elastic barriers can be either absorbing or 
reflecting with some probability. In software reliability, the x=a, b 
may be mapped to the discovery of bugs in "unit test" and 
"system test".  
 
Another extension to Fokker-Planck PDE is to allow two drifting 
parameters µ1, µ2, or a vector of drifting parameters. This could 
be mapped to various levels of stress in structure reliability 
analysis. In software reliability, different drifting parameters may 
be mapped to different stages of testing, e.g., alpha or beta 
versions of software.  
 

The FPT problem in higher dimensions is much more complex, 
and currently the closed-form PDFs are generally not available 
except for some special boundary conditions and initial 
conditions. For example, the transition probability density p(x, t, 
y) of the process )(tX

r
can be solved from a Fokker-Planck PDE 

Equation in some special conditions. With multi-dimensional FPT 
problems, it is natural to consider elastic boundaries and different 
stress levels. The correlation and/or dependency between 
dimensions are of extreme significance, but they also cause 
significant complication. In general, the multidimensional FPT 
problem is a mixed blessing from the application perspective. On 
the one hand, the multidimensional or multivariate model is more 
realistic and flexible. On the other hand, the difficulty in 
obtaining analytic solutions and parameter estimation can make it 
impractical to apply. Ultimately, the curse of higher dimension 
may dictate that the parsimony principle should still be followed. 
Latest advances in Monte Carlo techniques such as Hiromoto 
(2007) and Blanchet & Liu (2007) should be very helpful for 
numerical simulation approach. Hiromoto (2007) advanced a new 
iterative, boundary propagation scheme that uses successive-
under-relaxation (SUR) to improve the convergence in Monte 
Carlo simulation. Blanchet & Liu (2007) proposed a simulation 
algorithm for estimating FPT probabilities in multidimensional 
random walks with t-distributed increments.  
 
The difference between FPT and mean FPT (MFPT) is somewhat 
subtle. According to Kurzyn´ski & Chełminiak (2003), by 
definition, the MFPT is obtained by observing the FPT in an 
ensemble of systems represented with a given stochastic process 
and averaging those FPTs demonstrated by members of the 
ensemble. An alternative is to observe some equivalent infinite 
process for a single system by assuming that the system will 
return to the initial state after crossing the threshold.    
 
3.  TWO APPLICATION FIELDS: STRUCTURAL 
 ANALYSIS AND BIOCHEMICAL PROCESS 
3.1. Structure Analysis and Statistical Physics  
The reliability analysis of structures can be readily formulated as 
a FPT problem. Assuming a structure is exposed to stochastic 
dynamic loading characterized by a stochastic process (e.g., 
Brownian motion or Poisson process), X(t), the first passage time 
(T) can be considered as the lifetime of the system (Labou 2003): 

 ],0,0))((:inf[ ≥≤= ttXgtT    (11) 

where g is called limit state function, and it can be used to define 
the boundary separating different system states. For example, g(x) 
=0 can be used to separate reliable and unreliable states.  
 
The probability of the first excursion (random walk) Pf(t) within 
the time interval t is defined by  

  ],[)( tTPtPf ≤=    (12) 

Obviously, 1–Pf(t) is the reliability function. But the focus here is 
on specifying the evolution of failure probability with time.  
 
Indeed, some of the most complex reliability analyses have been 
performed for structures (such as bridges and dams) that are 
subject to stochastic loading in civil and mechanical engineering. 
FPT is known as first-passage failure (or first excursion) in 



structure mechanics. It is a major failure model of mechanical or 
structural systems under random excitation, but its difficulty is 
also well-known in the theory of stochastic structural dynamics 
(Zhu et al. 2003). In such analysis, two failure mechanisms are 
often assumed: namely the first exceedance failure, and the failure 
due to damage accumulation (Pichler & Pradlwarter 2008). In the 
first mechanism, a single crossing of the threshold causes failure. 
In the second mechanism, the failure is dependent on the number 
of crossings within a particular duration. Obviously, the first 
mechanism can be described with FPT problem. For example, 
Ching & Beck (2007) studied the probability that any particular 
unobserved response of the structure exceeds a prescribed 
threshold by applying FPT approach, given incomplete output 
data from a structure excited by uncertain dynamic loading. 
Madhavan & Prasad (2008) established the fatigue reliability 
degradation curve of offshore production and drilling platform 
with the FPT approach. The curve may be used for planning in-
service inspection of offshore platforms. 
 
3.2. Application in Biochemistry   
The application of the FPT problem in the study of biochemical 
processes is particularly inspiring to computer scientists since the 
problem is transformed into a graph optimization problem, similar 
to the stochastic shortest path problem.  
 
A challenge in the theory of biochemical processes becomes clear 
by the 1980s. Traditional chemical kinetics failed to explain the 
steady state kinetics of the biochemical process involving protein 
enzymes. One of the initial simple assumptions with conventional 
kinetics was the constant reaction rate, which is similar to the 
constant failure rate in a reliability function. Even with variable 
reaction rates, the ordinary differential equations were found 
insufficient. During the same period, the revealing of the 
transitions between a multitude of conformational sub-states in 
native proteins prompted the development of the stochastic 
dynamics theory. One of the stochastic dynamics theories is 
formulated as an FPT problem (Kruzynski & Chelminiak 2002). 
This theory considers a biochemical reaction between two 
chemical species M1 and M2 involving protein enzyme, 
e.g., 21 MM ↔ , as controlled and gated by the intramolecular 
dynamics of conformational transitions. The process could be 
abstracted as a graph model represented as a diagram (Fig. 1). 
 
 
 
   
 
 
 
Fig. 1. The intramolecular dynamics underlying the uni-molecular 
reaction 21 MM ↔ . Chemical states M1 and M2 of a macromolecule 
consist of many conformational sub-states (red and green circles, or pink 
and sky blue circles). The intramolecular dynamics is determined by 
purely stochastic conformational transitions (the arrows).  The chemical 
reaction occurs through the transition between the sub-states. (Redraw 
after Kruzynski & Chelminiak 2002). 
 
The transition between M1 and M2 can be described with a system 
of stochastic differential equations (so-called Master equations): 
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The quantity pl(t) is the probability of the macromolecule being in 
a conformational sub-state l at time t. The coefficients (w) are the 
transitional probabilities per unit time satisfying the detailed 
balance condition, which is too extensive to further explain in this 
short article but was fully documented in Kruzynski & 
Chelminiak 2002.  Obviously, there can be many sub-states 
within either M1 or M2, and there can be multiple chemical species 
Mi in a biochemical process. Kruzynski & Chelminiak (2002) 
adopted Hill's algorithm (Hill 1998) to compute the mean first-
passage time by 'summing up' the stochastic dynamics.  
 
Now, if we envision the species M1 and M2 in Fig 1 as states of a 
network (e.g., healthy network vs. compromised network), the 
sub-states as the network nodes, the arrows within the 'species' as 
the network links, and the arrow between species as 'virtual 
transition,' then the original biochemical reaction can be 
transformed into a network security or survivability problem. That 
is, the transition between healthy and compromised network. The 
mean first passage time may be mapped to network lifetime.  
 
4. APPLICATION IN SOFTWARE RELIABILITY, 
 NETWORK SECURITY AND SURVIVABILITY    
4.1 Software Reliability  
Software reliability uses stochastic modeling extensively, and it is 
estimated that over 200 software reliability models have been 
proposed (Rinsaka et al. 2006). According to Rinsaka et al. 
(2006), the classical and perhaps the most important software 
reliability model is the non-homogeneous Poisson process 
(NHPP) model, which characterizes the number of faults detected 
in the software testing phase and can be used to predict software 
reliability. The traditional approach in this venue of software 
reliability has been focused on studying the stochastic process 
itself. However, the direct approach to stochastic process can be 
very complex, and analytical solutions may be difficult to obtain. 
We conjecture that this difficulty may explain why the NHPP has 
been dominantly used in software reliability, since the Poisson 
process is the simplest stochastic process, although its non-
homogenous version brings in more flexibility and power. An 
exception to the above general trend is the study by Rinsaka & 
Dohi (2004). They assumed that the software fault detection 
process follows Markovian birth process, and they adopted an 
FPT model available in literature to obtain the optimal software 
release time. What we emphasize here is that FPT analysis can be 
used as a general approach for software reliability modeling, and 
it is expected that many of the existing reliability models are the 
special cases of the FPT analysis.  
 
Another dominant research area in software reliability is to study 
the relationship between software quality (reliability) and various 
software metrics. In general, there are four categories of software 
metrics: product metrics, development metrics, deployment and 
usage metrics, and software-hardware configurations metrics 
(Rinsaka et al. 2006). It is hoped that the analysis of the 
relationship between software reliability and metrics will provide 
better predictions of software reliability. In this venue, it is 
obvious that survival analysis can play a critical role. Currently, 



only univariate survival analysis is applied occasionally, and 
multivariate survival analysis, even competing risks analysis, can 
provide more powerful and flexible approaches (Ma 2008). Of 
course, the above two areas (stochastic modeling and metrics) can 
be integrated (e.g., Shibata et al. 2006).  In addition, survival 
analysis and FPT approach can also be integrated to study 
reliability. Zhao & Elsayed (2004) already reported such an 
example. They integrated FPT with competing risks analysis for 
studying system performance degradation. In their study, they 
treated performance degradation as a Brownian motion process, 
and then, the FPT to a boundary can be considered a soft failure. 
They described hard (catastrophic) failure with the traditional 
Weibull distribution. Consequently, both hard failure and soft 
failure are competing risks, and competing risks analysis is used 
to naturally integrate two modeling threads.   What we suggest 
here is that survival analysis can be integrated with the FPT 
approach to take advantages from both approaches, with FPT 
focusing on failure mechanisms with its analytic solutions and 
survival analysis focusing on modeling of metrics data.  
 
In software reliability, multidimensional FPT can be very useful. 
For example, in a client-server software system, the functionality 
of the system depends on both client and server. The reliability of 
the client-server system may be formulated as a two-dimensional 
FPT problem or a three-dimensional FTP problem (with network 
linking as the third dimension). In a distributed system, the 
reliability of local vs. remote nodes may also be formulated as a 
two-dimensional random walk.  
 
4.2. Network Security and Survivability  
Nwankpa (1992) suggested the connection between FPT and 
security in the context of security of power systems. This was 
prior to that when network security became a major issue, and his 
work seems to be the first application of FPT to security field.  He 
proposed to use mean FPT as the dynamic security index for 
power system, which measures the average time a power system 
will eventually take to reach its dynamic security limits when 
affected by a contingency. Nwankpa's (1992) work was 
formulated more like a survivability analysis. Of course, the 
paradigm of survivability was advanced a few years after his 
work. We consider Nwankpa's (1992) arguments are valid for 
both network security and survivability.   
 
In subsection 3.2, we proposed the analogical study of 
biochemical process with network security. Besides, the FPT 
approach may be used for modeling other security events, such as 
denial of service attack, or the behaviors of hackers or terrorists. 
In the case of denial of service, the FPT can be mapped to the 
point when the network ceases to provide useful service to its 
legitimate users.  Similarly, FPT may be used to model the first 

strike time of a hacker by assuming his behaviors conform to 
some stochastic processes.  
 
Similar to the study of software reliability discussed in Subsection 
4.1, we suggest that FTP and survival analysis can be integrated 
to model network security and survivability. For example, FPT 
can be introduced into the three-layer survivability analysis and 
dynamic hybrid fault models (Ma 2008, and Ma & Krings 2008), 
either as an analytical alternative to survival analysis or as being 
integrated with survival analysis. The advantages from the 
integration should be more flexible and realistic modeling of 
reliability, fault tolerance, security and survivability in a 
comprehensive manner. Certainly, the introduction of FPT into 
the three-layer survivability analysis, dynamic hybrid fault 
models, or even the standard-alone applications to software 
reliability, network security and survivability is a complex 
procedure. In the following Figure 2, we summarize the major 
steps in applying FPT analysis to reliability, security and 
survivability in a diagram.  
 
 
 
 
 
  
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
       

Figure 2. A diagram showing the major steps involved in the 
application of FPT approach to software reliability,  

network security and survivability.  
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What is First Passage Time 
(FPT) Problem?

● Informally, The FPT is the time (T) when a 
stochastic process crosses some threshold boundary.

● Mathematically, given a stochastic process X(t) with 
X(0)=0, the FPT T to the point x=a>0 is specified 
with: 

● The FPT problem usually refers to finding the 
probability density function (PDF) of T.

}.)(:inf{ atXtT ==
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Applications of FPT Problem

● Study of FPT as early as 1900. 
● Probability theory
● Statistical Physics
● Civil and Mechanical Engineering
● Hydrology
● Chemical Physics
● Financial Engineering
● Image Processing
● Neuroscience
● Biochemistry
● Computer Science  
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Applications of FPT Problem in 
Computer Science

● Bounds of success probability of Genetic 
algorithms, and Ant Colony optimization. 

● Channel access in wireless networks.
● Stochastic generalization of the shortest path

problem.
● Software reliability modeling.

6

FPT Problem and Mean Time to 
Failure (MTTF)

● The mean time to failure (MTTF) in reliability analysis may 
also be generalized as a FPT problem. However, there is an 
essential difference between MTTF and FPT. 

● The MTTF is a moment of the probability distribution that 
describe the failure time random variable. 

● The FPT is the time (T) when a stochastic process crosses 
some threshold boundary, and the solution of the FPT is in 
the form of a probability density function (PDF). 

● More accurately, the solution of FPT is a family of functions,
and it represents the evolution of PDF of FPT over time and 
space because it is the solution of Partial Differential Equation 
(PDE). The categorical form of FPT depends on the boundary 
and initial conditions of the PDE. 
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FPT Problem and Random Walks on 
Networks

● FPT is a very important characteristic of random 
walks on network (graph). Single walker can be 
characterized with FPT. k-walkers can be 
characterized with Mean FPT. 

●Random walks on networks have wide applications, 
e.g., optimization problem, transportation of 
metabolites between cell membrane. 

●Similarly, FPT problem exists in Percolation systems 
and Random Cluster. Therefore, FPT problem is 
important for the study of critical phenomenon, 
including the connectivity in communication 
networks.  
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Two Approaches for Solving the 
FPT Problem
Two major approaches for solving FPT problem: 

● Simulation (often based on Monte Carlo simulation 
algorithms) approaches. 

● Analytic Approaches: depends on solving partial 
differential equations. In particular, the Fokker-
Planck diffusion equations are often used to describe 
FPT problems. 

10

Fokker-Planck Approach to FPT 
Problem.  
● Step 1. Find the stochastic process that describes the 

problem (govern the process), e.g., the dynamic 
loading a bridge experiences, the usage pattern of a 
software feature, the activities of hackers, etc, may 
follow a stochastic process (e.g., Brownian motion)  

● Step 2. Formulate the Fokker-Planck partial 
differential equation and set boundary and initial 
conditions. 

● Step 3. Solve the Fokker-Planck equation and the 
solutions are the PDF of the FPT. 
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Fokker-Planck Approach to FPT: an 
example with Brownian motion
● Step 1. Assume a process follows Brownian motion, 

X (t). The direct analysis of the process is usually 
very difficult. 

● Step 2. The corresponding F-P equation is:

● Step 3. The solution or the PDF of the FPT is: 
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(1) Structural Analysis in Mechanical 
and Civil Engineering   

Assuming a structure is exposed to stochastic 
dynamic loading characterized by a stochastic 
process (e.g., Brownian motion or Poisson process), 
X(t), the first passage time (T) can be considered as 
the lifetime of the system (Labou 2003):

g is limit state function, and it can be used to define the 
boundary separating different system states, e.g., g(x) =0 
can be used to separate reliable and unreliable states. 

],0,0))((:inf[ ≥≤= ttXgtT
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(1) Structural Analysis in Mechanical 
and Civil Engineering   

The probability of first passage failure 
(excursion) Pf(t) within the time interval t is 
defined by

Obviously, 1–Pf(t) is the reliability function. 
But the focus here is on specifying the 
evolution of failure probability with time. 

],[)( tTPtP f ≤=
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(2) Biochemical Process: It is transformed into a 
graph optimization problem, similar to the stochastic 
shortest path problem.
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Software Reliability: First venue
−Stochastic Process Modeling. 

Rinsaka et al (2006): It is estimated that over 200 software 
reliability models have been proposed with this approach 
The classical and perhaps the most important model is the 
non-homogeneous Poisson process (NHPP) model, which 
characterizes the number of faults detected in the software 
testing phase and can be used to predict software reliability. 
The traditional approach in software reliability has been 
focused on studying the stochastic process itself. However, 
the direct approach to stochastic process can be very 
complex, and analytical solutions may be difficult to obtain.
FPT analysis with focus on PDF allows the study of more 
complex stochastic processes such as Brownian motion.    

18

Software Reliability: Second Venue 
−Relationship between software reliability & metrics.

Various statistical modeling approaches have been used. 
We believe that Survival Analysis should be a major approach. 
However, it seems largely unknown in software reliability field.
FPT can help develop new theoretical models of survival analysis,
Hougaard (2000)
Population hazard: 
Multidimensional FPT: e.g., in a client-server software system. The 
reliability of the client-server system may be formulated as a two-
dimensional FPT problem or a three-dimensional FTP problem (with 
network linking failure). In a distributed system, the reliability of local 
vs. remote nodes may be formulated as a two-dimensional problem.

,)()( ttt dWcdtZtbdttadZ +−= 2
tt ZY =

])()()[()( 22 ttmtt σλω +=



10

19

Network Security and Survivability

● Nwankpa (1992) suggested the connection between FPT and 
security of power systems. He proposed to use mean FPT as 
the dynamic security index for power system, which measures 
the average time a power system will eventually take to reach 
its dynamic security limits when affected by a contingency. 

● Prior to that when computer network security became a major 
issue. His work  is more like survivability we talk today. 

● Computer networks are much more complex. More complex 
modeling such as developed in biochemistry application may 
be needed. 
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