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ITII. TLONGITUDINAL MODELS

1. Introduction.

The cross—-sectional models discussed in Chapter II are useful becruse of
their simplicity and their reliance on available c:iross-sectional data. More
wiil be said about manpower data in a later Chapter. The cross-sectional model
has a serious structural fault when used to describe manpower flow, especially
when the flow fractions are interpreted probabilistically. Simply stated, this
assurption says that flow from one class to another is independent of the time
an individual has spent in a given class. Such an assumption is clearly not
valid in many manpower systems, where time in 1 given class is a critical
factor in determining availability for promotion or movement.

The models in this chapter do not require this restrictive assumption to
hold. They are much more general than the cross-sectional models, and attempt
to describe the flow of a group, or cohort, through che manpowe: system over
time. The models are based on the entire history of the group, and hence are
longitudinal models. As we shall see, the greater reulism in the model is
bought a price of a significant increase in data requirements.

Section 2 describes the basic longitudinal model and gives examples.
Section 3 looks at a simple special case and Section 4 analyses the concept of
equilibrium in a longitudinal model. Section 5 gives a probabilistic interpre-
tation of the model. Sections 6, 7, 8, and 9 describe some examples in student
forecasting, university planning, and military force structure planning. The
Chapterends with two advanced sections, 10 and 11, dealing with the concept

of longitudinal conservation, followed by notes and comments.
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2. The Assumption of Longitudinal Stability.

This section describes the general form of longitudinal models and gives several
examples. As in previous chapters, we assume the organization contains N classes
of manpower. The novel assumption in this chapter concerns the inflow into the
system. The inflow is partitioned into K different categories. ‘hese categories

are called either chains, cohorts, paths, or histories. For example, we could

classify the students entering a university simply by their year of entry.

In that case K=1. The students could also be classified according to
eventual status. Of course when the manpower inflow is partitioned according
to eventual status it is not possible to specify which individuals belong to
which class when they enter. Fortunately this specific type of acccunting

is not necessary to answer a host of interesting questions as we shall see.
Example 1: Each year at matriculation ceremonies at TIM engineering school
the dean speaks to the 600 new freshmen. To brace them for the hard work

of the next four years he asks them to "look at the person to your left

and to your right; only one of the three will graduate.”" The dean based

his remark on the observation that the school has taken in 600 students per
year for the past 20 years and has been awarding roughly 200 degrees per year
over the same period. Thus the 600 new freshmen can be classified according
to eventual status; 200 degree winners and 400 dropouts, even though it is
‘not known which individuals fall into each class. a

Let g(t) be a K-vector which gives the input of people in period t.

Thus gk(t) is the number of people who enter chain k in period t. The
fraction of people who enter chain k 1n period t who are counted in class

i at time t+u is pi (u). The NXK matrix P(u) describes the distribution

k
of individuals in the K chains over the N classes the uﬂl time they are

counted. If we assume M 1is the maximum number of times an individual is

encountered, (i.e., M is the maximum number of period in the system) then the
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M+ 1 matrices P(0), ?{(1),...,P(M) describe flow through the system. The
fraction Pik(u), is independent both of the entering period t and the
number of individuals, gk(t) that enter chain k (see the last paragraph
in this section).

The contribution tn stock in cless i at time t is due to the inflow
on chains k =1,2,...,K in periods t,t-1,...,t-M. Let si(t;u) be the
total stock in class i at time t that entered in period t-u. We say
ihiis group has Length of service equal to u, since they have been counted
at times t-u, t-u+1,...,t-1. When u = 0, the length of service is zero
since these individuals are being encountered for the first time.

The value of si(t;u) is made up of contributions from each of the K
chains

K
(1) s;(tsu) = ] pyy (wg (t-w)
k=1
The total stock in class 1 at time t is given by
M M K
(2) 5, (t) = “ZO s;(t;u) = UZO kzl pik(U)gk(t—Tl)
We can also partition the individuals in class 1 by the chain on which

they are flowing. Define s,, (t) to be the number of individvals in class i

ik
who are on chain k. Evidently

M
(3) 55, (1) = UZO Py (Wg, (t-u),

and by summing over k we again obtain equation (2) but with order of summation

reversed.

Equation (2) describes the longitudinal flow model. It can be expressed

in matrix notation as
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(4) s(t) = P(0)g(t) + P(Q)g(t-1) + ... + P(M)g(t-M).

If we establish the convention that periods t for t<0 are past periods,
pericds t>1 are future periods, and that period 1 is the cur:eat period, then

we can define the manpower fegacy at time t21 as the contribution of past

(prior to time 1) inputs [g(0),g(-1),...,7(1-M)] to the stock at future time t.

Let £2(t) (an N vector) be the legacy at time ¢t. Then

L(t) =(P(t)g(0) + P(t+D)g(-1) + ... + PM)g(t-M) if t <M,

0 if t>M
As usual the legacy is simply the sequence of stock levels that would be
observed if no additional individuals entered the system: i.e., if g(t) =0
for tz21.

Problem 1: Determine an expression for the legacy in class i at time ¢t that

entered in period t-u, and for the legacy in class i at time t of individuals

on chain k.
Example 2: Consider a two year junior college with two classes corresponding to
freshmen (F) and sophomores (S). Let G stand for graduation, and D for

dropout. We assume there are seven possible chains:

Chain History
1 FSG
2 FFSG
3 FSSG
4 F D
5 FFD
6 FSD
7 FFSD

NP mpn m iRt



Note that N =2 and K = 7,
Individuals on chains 1 through 3 eventually receive degrees; those on chains 4
through 7 eventually drop out. Individuals on chain 3, for example, repeat the

sophomore year before graduating. The matrices P(0). P(1l) and P(2) are

chain

P(0)

P(1)

P(2)

The matrices P(u), u>3 are all zero matrices.

We reemphasize that when a student enters it is not known which of the
seven chains he will follow. This is not determined until the student finally
graduates or drops out. However, the model can still be useful as we show in
later sections. It may be possible to estimate from past data the relative
flows on the seven chains. One can then estimate, for example, the effects
of instituting a policy of not allowing a freshman to repeat a year. Such a
policy would elimiInate chains 2, 5 and 7.

Problem 2: Given the flows below calculate s(t) for t =1,2,3. Use (L)

and (3) to calculate si(t;u) and s, (t) for t =1.

ik



Chain
1 2 3 4 5 6 7
g(-1) 7 1 4 1 é 0 ""I i
g(0) 6 1 3 1 1 0 2
g(l) 7 3 1 0 2 1 0
g(2) 6 1 2 1 1 1 1
g(3) 8 1 1 3 0 1 0

Problem 3: (Continuation)
Calculate the legacy at time t = 1,2,3.

Problem 4: (Continuation)

7
zk=4 Sik(t) for 1i=1,2, and t = 1,2,3. How would you

Calculate
interpret the fraction z;=4 sik(t)/si(t) ?
Example 3: Suppose that flows in chains 1, 2, and 3 (the cohorts that eventually
graduate) and flows in chains 4, 5, 6 and 7 (the cohorts that eventually drop-
out) are aggregated. In the graduate group (aggregate chain 1) we assume that
2/3 of the flow follows the path of the old chain 1 and that 1/6 follows the
flow of both chains 2 and 3. For the drop-out group (aggregate chain 2) we

assume that 1/4 of the flow follows the same path as chains 4, 5, 6 and 7.

Instead of seven chains feeding the system as depicted at the left

2/3 E (t)
5,0 /15 ©
g, (t) ———0 —0
2 \\\\ 1/6 g 1(
g,(t) ——0 =0
. 1/4 gz(t)
X;f 1/4 T 2(c)
1/4 gz(t)
gg(t) —0 =0
1/4 gz(t)

g, () ——0 >0



we have the input scheme shown at the right.

Under this aggregation, the new values of P become,

—l 1
P(0) =

0 0

Fl/6 1/2
P(1) =

5/6 1/4J

rb G |
P(2) =

1/3 l/ﬁj

Problem 5: (Based on Example 3)
Calculate si(t), Qi(t) and SiZ(t) for i =1,2 and t = 1,2,3 given

the following flow data:

Chain

1 2

i-1) | 12 | ;
£(0) 10 * 4
g(1) i1 |3
§(2) 9 { 4
£(3) 10 | 4 |
| s

E.ample 4: Consider the three class faculty example; nontenured (N), tenured
(T), and retired (R). Suppose there are only seven possible career paths.
We classify the paths according to the number of years individuals on that

path spend in each manpower category.



History
Chain N T R
1 4 0 0
2 5 30 15
3 5 20 20
4 5 10 0
5 0 25 15
6 0 20 20
7 0 10 0

Chain 1 leaves after four years of nontenured service. Chains 5 through 7
depict career paths of tenured appointments. We assume that individuals in
chains 4 and 7 leave or die after ten years of tenured service. Those in

chains 3 and 6 retire early, while those in chains 2 and 5 retire at age 65.
Note that M = 49. Thus the 50 ‘matrices P(0),...,%(49) which contain

50 x 3 x 7 numbers are an inefficient way of storing the information summarized
in the table above.

Example 5: Consider a four year undergraduate college with classes "eventual
graduates' and "eventual dropouts' corresponding respectively to the indices

1 and 2. We assume there are four chains; eventual graduates and dropouts

who enter as freshmen and eventual graduates and dropouts who enter as juniors.
The four chains are listed below along with the average number of years a person

in that chain attends the college.

average number

chain of years attended
1 4.5
2 2.3
3 2.2
4 0.8




Here we can take M = 4, and construct the P matrices

1 2 3 4

[ 1 0 1 0
P(0) =
0O 0 0 0.8
| =
[ 1 0 1 0
P(1) =
0o 1 0 0
L d
1 0 0.2 O
P(2) =
0 0.3 0 0
1 0 0 0
P(3) =
0O 0 0 0
- -
P(4) =[0.5 0 O 0
0 o0 o 0 |

Notice that the selection of the matrices is arbitrary to some extent. A
more detailed specification of the model is necessary to fix correct values
of the P(u). For instance, if we assume people flow at a uniform rate (over
a period) into the chains, and that a person in chain 2 stays exactly 2.3 periods
then the model is correct.

If flow into the chains occurs on 15 September of each year and the inventory
date is 1 November, then the model is correct if we say that every person on
chain 2 stays more than 13.5 months, and that 30% stay more than 25.5 months
and poue stay 37.5 months. This gives an average of 2.3 years each. However,
if we say that only 90% stay more than 1.5 months, 60% more than 13.5 months,

50% more than 25.5 months, 30% more than 37.5 months and 0% more than 49.5
months, then the expected number of years is still 2.3. However the fractions

p22(u) change as indicated below.
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Py, ()
u=0 u=1 u=2 u=3 u=4
old 1.0 1.0 0.3 0 0
new 0.9 0.6 0.5 0.3 0

Problem 6: (Based on Example 5)

Given the flows below, determine s(t) and 2(t) for t = 1,2,3, and 4.

Chain
1 2 3 A
g(-3)| 10 4 3 1
g(-2)| 10 4 A 0
g(-1) | 11 3 2 2

g (0) 9 5 6 c

g (1) 11 | 3 5 1
g(2) 12 | 2 5 2
g(3) 14 | 4 A 1
g(4) 13 4 5 1

[ ]

This section has defined the longitudinal flow model, equation (4), and
presented several examples of longitudinal flow processes. Example 4 indicated
that longitudinal models may require a great deal of data, and in Example 5,
that several sets of data can be consistent with the specifications of the
model. The next section discusses a gpecial application, after which the
concept of equilibrium is investigated.

The reader might well question our basic assumption that pik(u) is

independent of the entering period t and the number of individuals gk(t)
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who enter chain k. We offer two sets of data, one supporting our assumption

and one which to some extent violates it.
The first set of data is given in tables II.15, II.16 and 1I1.17 in

Chapter II. A study of these tables will show that for freshman entering

R R s S e R T S o ol e

the Berkeley Campus at the University of California at Berkeley in the fall

of 1955 and the fall of 1960, the flowfractions of the two groups were essentially

garRUA P g

the same. Note that not only was there a five year time span between the groups,

but that the numbers in each group were significantly different (2067 to 3228).

The second set of cdata is given in table III.1l. ¥Five groups are shown, each

one a group of people who enlisted in the Marine Corps for an initial period of

two years in July and August 1967, and January, February and June 1968. The
table entries give the percentages of the groups remaining at the end of the
given month after entry. For example, in January 1968, 4117 people entered

the Marine Corps on a two year enlistment. After 12 meniths 89.6% of these were
still in the Corps. After 24 months the percentage remaining was 11.2.

A close look at this data shows that for the first 17 months the percentages
remaining are remarkedly similar between groups. Starting at 18 months however,
the percentages start to vary significantly. The reader might also be wondering
why, since all the people had enlisted for two years, less than 30% stayed in for
the full enlisted period. The reason for both the significant attrition starting
at about 18 months, and the instability between groups in the 18-30 month period,
can be found by studying manpower policies used in the Marine Corps in the
1968-9 period. In that period the Marine Corps had problems manning overseas
committments due to legal restrictions on personnel flows. To obtain feasible
flows of people to overseas billets they had to institute an "early-out" policy,
which meant that although some enlisted men had contracts covering 24 months,

many were forced out earlier than this.
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Percent Remaining at End of Month After

- AN

RV LY

M b e S T

WW‘?FW‘:‘-?‘ -

Entry Period (and Cohort Sizes)
Month After Jul 1967 Aug 1967 Jan 1968 Feb 1968 Jun 1968

Entry (1725) (1822) (4117) (3983) (4023)
0 100.0 100.0 100.0 100.0 100.0
1 97.9 98.1 98.2 97.9 97.2
2 96.8 97.0 96.8 $6.7 95.4
3 96.0 96.5 96.3 95.8 94.4
4 95.6 96.0 95.9 95.4 94.0
5 95.1 95.7 95.6 95.1 93.6
6 94.4 95.2 94.8 94.3 93.2
7 92.9 94.5 93.4 93.4 92.7
8 92.0 94.0 92.5 92.5 92.0
9 91.2 91.8 91.6 91.6 91.2
10 89.2 91.2 90.9 91.0 90.6
11 88.4 90.2 90.2 90.1 89.9
12 87.5 89.6 89.6 89.1 89.3
13 86.9 88.8 88.7 88.3 87.3
14 86.0 88.5 87.5 86.8 85.6
15 85.4 87.7 86.5 85.3 84.2
16 84.5 87.3 82.8 82.4 82.0
17 83.1 85.8 80.7 80.7 79.5
18 76.1 80.3 72.1 73.9 65.9
19 59.1 65.1 55.7 51.1 59.3
20 52.6 51.5 44.2 45.5 47.3
21 38.4 46.3 40.8 40.9 40.6
22 30.6 34.9 37.7 37.1 32.8
23 25.3 30.6 30.1 30.7 29.2
24 9.4 8.4 11.2 10.3 7.4
25 7.4 5.9 8.9 7.7 6.0
26 5.4 4.9 7.8 6.4 5.1
27 4.2 4,2 7.0 5.7 4.4
28 3.7 3.6 6.2 4.9 4.1
29 3.3 3.3 5.7 4.5 3.6
30 3.0 3.2 5.2 4.1 3.4

Table III.1 Cohort Data for Selected Groups of 2-year

enlisted Marines.
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The reason for including che data in table III.1 is to show not only
that the scability assumption can be viclated, but also that the fractions

{u) are in certain situations control variables. In the example given,

Pik
direct control of these fractions was used by the Marine Corps. Today, the
problem is not to remove people early, but to retain them in an environment

without a draft. To do this the fractions (u) are being controlled in-

Pik
directly through payment of selective bonuses to people with skills or attributes
which the Marine Corps requires. In later sections in this report the longitu-
dinal model is used in a number of ways. It is important for the reader te
recognize the difference between using the model to forecast using pik(u)
estimated from historical data, and using the model for planning, where either
(u) are

the effects of certain (u) values are analyzed, or the

Pik Pik
determined to meet some objectives. When using historical estimates in fore-
casting it is important that the estimates can Le expected to approximate actual

future behavior. The model user must therefore be aware of significant policy

changes which might affect the future values of pik(u)'

2 Mgk e R N S s e
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3. A Special Case: One Class, One Chain.

The special case of one manpower class and one chain allows us to examine
the longitudinal flow model more easily and closely. This section presents
several ways of visualizing the longitudinal stability of fiow in a one class,
one chain model.

We begin by simplifying notation, and write g(t) for gl(t) and p(u)

for pll(u). The basic formulae are, for stocks,

M
s(t) = ) pug(t-u) ,
u=0

and for legacies,

M
) =\ ¥ puweg(t-u) if tg M,
u=t

0 if t > M,

where s(t),p(u),g(t) and &(t) are all scalars. As usual u measures the
individual's length of service in the organization. The quantity p(u) 1is called

a survivor fraction. It 1is the fraction of those with length of service u that are
still in the organization. For example, the entries in table III.1 are survivor
fractions x 100. ’

Figure III.1 shows a graphical method of computing p(u)g(t). The graph

is for the case M = 4, and the particular values

p(u) 1.0 0.85 0.80 0.55 0.2

The input value g(t) is plotted on the horizontal axis and the various values

p(u)g(t) can be read from the vertical axis. For example, when g(t) = 70,
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Figure ITI.1:

Graphical Method of Calculating
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then we compute p(2)g(t) = 0.8 x 70 = 56 by following the dotted line in
Figure III.1.
Problem 7: Given the values of g(t) below, use Figure III.1 to compute ¢

p(u)g(t) for u=0,1,2,3,4.

t -7 -6 -5 -4 -3 -2 -1 0

g(t) 80 100 100 100 90 80 70 60

Figure III.2 shows how the stock at anytime is composed of groups according
to the time period in which they joined the system. The number in each bar
indicates the period in which they joined the system. 1In periods -3, -2, -1,
and 0 we have five groups present since M = 4. The legacy of these past
inputs at times 1, 2, 3, and 4 is also known. Notice the legacy at time ¢t is
made up from the inflow in period 0,-1,...,t-M.

Figure II11.3 presents a third way in which the longitudinal flow process
can be visualized. Reading across any row we have the size of the cohort as
time proceeds. Reading down any column for t £ 0 we have the contributicn of

| each cohort to the system., If t > 1 we have the legacy of inputs in period
0,-1,...
Example 6: The faculty of a university can be considered a one class system.
The one chain assumption is valid if all appointments are made in the lowest
ranks.
Example 7: The students at a two or four year college can be considered as a
one class-one chain system particularly if almost all students enter as freshmen.
Example 8: The enlisted personnel in a skill catogory (rating) of the U.S.
Navy can be treated as a one class—one :hain system since all inflow into this

system is from new Navy recruits.
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Example 9: The students at a four year college may either be admitted as
freshmen or juniors. We can construct two 1 class (students) and 1 chain models
that orerate in parallel. The total number of students is thus the sum of the
stocks in the two models. B
If we interpret the single chain and single class tc be simply '"'still in the
system," then p(u) takes on a special meaning. If after having left a person

cannot return to the syste., them p(u) must be non-increasing in u. If L

represents the lifetime of an individual jn the system then
p(u) = I[L>u]

From this and a well known result in probability theory vhat E[L] = E:=O P[L>u] ,
one can interpret the sum of the p(u)'s, i.e., Z§=O p(u) , as the average
lifetime in the system of an individui:l. Also from (1), if the input in each
period is equal to a constant g, then the stock at time t is given by

g E[L]. This interpretation can be extended to the multiclass, multichain

case, and this is done in the next section.
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4. Equilibrium.

This section examines the longitudinal models at equilibrium. The most
useful result is in the constant size system. In this case we find the data
requirements for specifying a longitudinal model are greatly simplified and a
more intuitive interpretation is given to the coefficients of the model. An
analysis of geometric and arithmetic growth reaffirms the general principle
that expansion allows for more flexibility 1n manpower systems while contrac-
tion restricts the range nf possible decisions.
If g(t) is a constant vector g then s(t) = (2§=0P(u))g. Define L = X§=OP(U),

an N X K matrix. The equilibrium cohort model 1is thus
(5) s = Lg .

In addition, we see that the coefficient Qik of L 1is the lifetime in

class i of an individual in chain k. Thus an equilibrium chain can be

] where £ is the number

specified by an N vector & = [R, ,2 el ik

k ik’ "2k’

of times an individual on chain k will be counted in class i. Note that

Nk

several nonstationary models, (P(0),P(1),...,P(M)) lead to the same stationary
model when these matrices add to the same matrix L.

Example 10: (M = 3)

Length of Service u

0 1 2 3
Case 1, pik(u) 1 1/2 | 1/2 0
Case 2, pik(u) 1 0 0 1
In both cases 4, = 2, however, in Case 2 the individual spends the first

ik

and last periods in class 1. 1In Case 1 *he individual spends the first and

one half of the second and third periods in 1.
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With this interpretation of the Qik it is possible to write down
equilibrium models directly without specifying the matrices P{u).
Example 11: Consider the three class, seven chain example presented in

Example 4. It is obvious that

Problem 7: Calculate L for the systems described in Examples 2 and 3. Then,

in the first case, calculate the equilibrium stock levels if the input is

If the input is changing geometrically in time g(t) = Otg, then the stock

levels will change at the same rate. From (4) we have s(t) = ZS=08t—uP(u)g.
Let

Mo
(6) L) = § 9 p(u).

u=0
The model becomes

t t

(7) 0°s = s(t) = 0 L(O)g.

Note that L(1) =7.
Example 12: (Continuation of 11)

If 9 = 0.98, then L(B) is
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4.124 5.208 5.208 5.208 0 0 0
0 45.17 26.99 12.14 32.2 24.4 10.97
0 35.18 40.43 0 28.74  36.54 0

Example 13: For 6 = 1.03, L(8) is

3.829 4.717 4.717 4.717 0 0 0
0 17.41 13.22 7.579 17.94  15.32 8.786
0 4.37 7.318 0 5.873 8.484 O

An individual's view of the organization is determined by the input g and
the matrices P(0),P(1),...,...,P(M). However, the total organization is
concerned with the matrix L(8) = z§=0 8 "P(u) and the input g. This discrepancy
between the organization's view and the individual's view is extremely important.
As we illustrate below it also seems to be sensitive to quite small changes
in growth rates.
Example 14: (Continuation of 11)

Let the stationary input per period to each chain be

k 1 2 3 4 5 6 7

15 20 ‘ 8 ' 5 L, 3 1 1

8y

Then, using the same values of L(8), the equilibrium s = L(B)g 1is

51 S) 3

6 = 0.98 234 1312 1150

]

D
0l

1.00 225 915 525

6 =1.03 213 570 172
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It is a more meaningful comparison to contrast the number in each class with
the number of active faculty, since the organizatiOnE;budget and ability to

génerate retirement funds will most likely be closely tied to the number of

active faculty,

Fraction in each class .

Nontenured Tenured Retired
8 =0.98 .151 | o.849 | 0.744
8 =1.00 197 | .803 0.461
8 =1.03 .272 L .728 0.220

A small (3%) growth rate can make a significant difference over no growth and

a very large difference over a 2% decay in input. Note first how larger values

of 8, i.e. growth, shift the distribution of faculty toward the junior ranks

and also keep the ratio of retired to working individuals low. There is a

third advantage of growth. The 53 new appointments represented by g, are

3.4% of the size of the declining faculty, 4.7% of the size of the constant

size faculty and 6.8% of the size of the growing faculty. The vercentage of

new faces in the growing faculty is twice as large as in the declining faculty.

The reader should compare these results with those in Table II.5 of Chapter IT

to see that the longitudinal and cross-sectional models consistently lead to

the same equilibrium behavior.

Example 15: Consider a university faculty with two chai.s. On chain one people
spend 8 years in the nontenure ranks and 36 years in tenure ranks. The jndividuals
on chain two spend 8 years in nontenure and then leave the system. If in each
period we have 1 person enter chain one and 2 people enter rhain two, then the
equilibrium stock vector i s = [24,36] which has 40% nontenured faculty. These

data are summed up below.
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Chains
1 2
nontenure 8 8
lifetime
Iiferine | 2| ©
flow 1 2

Now consider another university with 4% growth, i.e. 6 = 1.04. If the

chain flows are organized as follows

Chains
1 2
nontenure 6 6
lifetime
Iiferine | 38| 0
flow 1.5 1.5

then the organization will retain 407% nontenure faculty. However, the prospect
for an average appointee in the second university is much brighter: %0% of
new appointments will eventually be promoted to tenure in 6 years. In the no

growth case 337 attain tenure in 8 years.

The example above shows how growth gives the organization greater flexibility.

The benefits of growth were passed on to the employees. Now suppose the organi-
zation is growing with 6 = 1.04, and the promotion rules implicit in the first
university are followed; i.e., 8 years to a decision, and 1/3 are

promoted. In this case the growing university will have 58.57% nontenure faculty.
The benefits of growth have been assumed by the organization. The prospects

for individuals in the growing university are the same as those in the constant

size university.
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As a third (intermediate) case, assume the university and employees share

the benefits of growth. Let the chain flow be

Chains
1 2
nontenure 7 7
lifetime
vitetine | ¥ | O
flow 1.2 1.8

In this case 5/12 of the appointees are promoted in 7 years. The nontenure/
faculty ratio will be 0.488.
Example 16: Continuation of Example 15.

Four policies from example 15 are examined: 8 and 6 year nontenure
periods with 6 =1 and 6 = 1.4 . Tn each casc we wish to determine the
equilibrium ratio of new appointments to total faculty size. If g =(gl)

82
is the appointment policy, then this ratio is (using equation (7))

eL(8)g

In Figure III.4 the new appointments, as a percentage of the total faculty
size, are plotted against the percentage promoted to tenure for each of the
four policies.

Points G and H on this graph represent a faculty with 40% nontenured.
Point G corresponds to an 8 year nontenure period with a 337% promotion rate,
while point H corresponds to a 6 year nontenure period with a 50% promotion

rate. Clearly the employers are better off at point H. There is an additional
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6 years without tenure, growth tactor 1.04

8 years without tenure, growth factor 1.04

6 years without tenure, no growth

8 years without tenure, no growth

Q® G 40% faculty without tenure,

8 years without tenure, no
growth. ijgg

O H 40% faculty withorf/lenure
6 years without t ure, growth
factor 1.04.
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benefit to the organization at H in the form nf 7.2% new appointments per
period. This should be contrasted with the 5% new appointments at point G,

Problem 8: If g(t) = g+ th for t 20 (g(t) grows arithmetically at rate h),

then when t > M show that

M
s(t) = tLh + Lg - z uP(u)h
u=0
Problem 9: (Based on Example 11)
M
Show that the second and fifth columns of 2 uP(u) are given correctly
=0

“in the table below

Column
2 5 :
10 047

585| 300
630 441 |
J
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5. Probabilistic Interpretation of the Longitudinal Model.

To this point in this Chapter we have avoided discussing models which depend
on the detalled movement of individuals. In this respect, sections 1-8 of Chapter
IT and sections 1-4 of this Chapter are similar. But if one wishes to describe
or explain unpredictable variations in personnel flow one must somehow introduce
randomness into the model. This can be done in a number 2f ways. The method
described In this section follows that used in section 9 of Chapter II, and it
allows us to use the longitudinal model already discussed.

Consider the path that an individual takes as he moves through the system.
Assume he enters in period u on chain k. In what class will he be at time

(t+u)? Let (u) be the probability that this individual is in class i

Pik
at (t+u). Then pk(u) = [plk(u),ka(u),...,ka(u)] is a vector of proba-

bilities which must be non-negative and sum to a number no bigger than 1. Note

YN
Li=1 Pix

system u perilods after entrance. Since, by definition, once a person leaves

that epk(u) = (u) 1is the probability an individual is still in the
the system he cannot return, epk(u) must be nonincreasing in u, and epk(O) =1,
Let Si(t;u) be the number of people in class i at ¢t who entered the
system in period (t-u); this is now a random variable. Recall that gk(t)
is the number of people who enter the system on chain k at any time t . Then
K
(8) E[s;(t;0)] = kzl P (W (t-0)

Also, if Sj(t) is the total in class i at time t, then
M
E[S, (t) s, (t;u),u=0,1,...,M] = ] S (t;u).
1 i !

By unconditioning and using (8) we have

=

K
(9) E[s . (t)] = ) ) p, (Wg (t-u).
i 4=0 k=1 ik k
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These are precisely the same equations as (1) and (2) in section 2, and if
s(t) represents the vector of expected values si(t) = E[Si(t)], equation
(4) holds. Thus our probabilistic interpretation of the fractions pik(u) is
consistent with the earlier model.

This probabilistic model has a simple and logical interpretation in the one
class, one chain case of section 3. Let A be the (random) lifetime of sa indi-

vidual in the system. Then A > u if an only if an individual stays in the

system at least u periods. Thus
p(u) = Prob [A > u].

The expected lifetime (in the system) of an individual is

M
E[Al = ) p(u).
u=0

From equation (9) above, if g(t-u) is the input flow in period (t-u)

the expected stock level at time t is

M
E[S(t)] = s(t) = ) p(u)g(t-u) .
u=0

In the equilibrium case where g(t) =g for all t, then
(10) ¢ = E[Alg for all t.

Equation (10) simply says that the expected stock levels are given
by the input per period time the expected number of periods an individual

stays in the system.

Problem 10: Show that element Qik of the matrix L in section 4 can

be interpreted as the expected lifetime in class i of an individual on

chain k. g
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N
i=1 Pix

it is possible to determine the variance of system lifetime for individuals on

In a single class model, or in an aggregate model where pk(u) = Z

any chain. If the random variable Ak represents system life on chain k,

then

Prob [/\k >ul] = pk(u) , u=20,1,2,...,M,.

It follows from this that

M

2 (2u+l)pk(u).
u=0

M
Bl = ] ), and E[A]

These imply that the variance in system lifetime on chain k 1is

7w ) ) 1) 2
2 u p,, (u) + Py, (W) - p,, (u) .
u=0  i=1 1k u=0 i=]1 o3 u=0 i=1 ik
Example 17: Suppose the matrices
P(0) = 1 0 ’ P(1) = .9 0
0 1 0 .951
r) =1 Of, py = |0 O
65 2 ] - 65 05}
P(4) = 0 0 ’ p(5) = 0 0
.2 0] .05 0 ’

describe the flow in a 2 class (lower and upper division) undergraduate college,
and the two chains are admission to lower and upper division. Using this

data, the mean and variance of system life (years in college) in each chain is

Mean Variance Standard Div
Chain 1 3.55 1.745 1.29
Chain 2 2.2 0.36 0.6

where the standard deviation is the square root of the variance.

(u),
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6. A Student Enrollment Forecasting Model.

This section presents an actual example of real cohort flow data for under-
graduate students entering the Berkeley campus of the University of California
in the fall (beginning of the academic year). After we present and analyze
the data wé discuss several institutional and behavioral problems that made it
difficult to implement these models in a straight forward manner. Throughout
the section the notation FXX refers to the fall quarter of year XX. Thus F09
refers to the fall quarter in 1969.

We assune there are four classes of manpower: freshmen, sophomore, juniowv,
and senior; and four chains: those entering as freshmen, sophomores, juniors
or seniors. The time pericds are teken to be 1 year and the entry data is
given in Table III1.2. Although students enter in other quarters in the academic
year, by far the majority enter in the fall, and we concentrate on these cohorts.
The matrices P(u) for u = 0,1,...,6 are given in Table III.3.

3iven the data above we can calculate the stocks in F69 and the legacy
of F03-F69 entrants in F70-F74. These results are shown in Table III.4.

If we wish to keep the stock level of fall entrants at a constant level,
then it is possible to calculate the new admissions necessary in F70~F74 in
é order to mailntain F69 stock levels. These are shown in Table ITII.5.

The steady state admission levels can be found by solving s = Lg, where

1.283 0 0 0 |

| L. | 0.835  1.157 0 0
0.790  0.842  1.413 0
0.525  0.554 741 1.501

The system 1s obviously quite cloce to equilibrium in F69. (See Table 111.5).
As we remarked earlier, this data treats only those cohorts that entercd in

fall. Although this is the largest source of new students a sizeable number enter




g(t)
—
F63 F64 F65 F66 F67 F68 F69
Freshman 1883 2239 3303 3053 2579 3427 3620
Sophonores | 258 542 843 733 390 602 728
Juniors 817 1366 1662 1418 1042 1442 1569
Seniors 48 124 175 205 125 202 199
Table II11.2. Student Enrollment Input in Fall Quarters
| F69 ! F70 | F71 | F12 | F13 | 4 | 75
| 4 ; e
| Freshmen | 4570 | 1010 96 55 l 32 21 11
Sophomores| 3470 | 3040 906 147 50 22 12
i ..
Juniors 4780 i 3668 3120 1200 176 52 18
Seniors 3160 | 2980 2410 2020 753 187 64
Table III.4. Legacies of Entrant up to F69
F70 F71 F72 F73 Steady State
Freshman 3560 3570 3569 3560 3560
Sophomores 431 437 439 439 44Q
Juniors 1110 1060 1140 1130 1130
Seniors 183 118 160 140 143
Table III1.5. Future Fall Admissions Required

3

to Maintain F69 Stock Levels

32
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.254
.584
.009

.012
.210
454
.009

. 007
.027
.281
.318

. 004
.008
.033
.152

.003
.003
.009
.031

.003
.003
.004
.015

Table I1I1.3:

P(u)

.118
.622
.039

.013
.189
.337

.003
.022
.130

.003
.005
.031

.004
.010

.001
.007

The Matrices P(u) Up to Six Years

.265
.493

.138
.192

.033
.042

.005
.008

.001
.003

.001
.003

.395__J

.04?J

.029

.016

33
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in winter, spring and summer. If the yearly accounting point is the fall, then
the total jinventory in, say, F75 would be made of winter, spring and summer
cohorts entering in calendar years 70 through 75. The matrices P(u) that
apply to fall cohorts would not be applicable to cohorts that enter in other
quarters, thus the data requirements ~re roughly four times as large as is shown
in Tables III.2 and III.3.

We conclude this section with a discussion of the institutional difficulties

involved in using the longitudinal model for the Berkeley campus. In F66 this campus

switched from a semester system to a quarter system with year-round, 4 quarter
operation. This caused problems in determining how to use data collected from
a semester system, to predict emnrollment in a quarter system.

The Berkeley campus operated on a semester system until the fall of 1966.
It is reasonable to assume that students entering in the fall or spring would
behave similarly under a semnester or quarter system. However, the first
winter and summer quarters ever to be offered were in 1967. The fractions
of students who entered in these quarters and were enrolled in Fé9 are now
applied to cohorts entering in the winter and summer of 1968 when forecasting
for F70. It would certainly be expected that some students from the winter
and summer quarters of 1967 would also be enrolled in F70, but how many?
We have no fractions for winter or summer 1966 since there were no such quarters.
These fractions have to be estimated in some reasonable way. An average was
taken of the fractions from F65 and Sp66, (here W, Sp, Su, refer to Winter,
Spring and Summer of the given year) for the winter quarter and from Sp66 and
F66 from the summer quarter.

Another problem arose when, in 1970, the summer quarter was discontinued.
This was in deciding what fractions to apply to the students who entered in Su69.

These students had available only the winter and spring quarters of 1970 before
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F70. The students who entered in Su68 could attend winter, spring and summer
quarters before F69. It was felt that larger fractions of Su69 entrants would
attend the fall of 1970 than the fractions of Su68 students attending F69. But
how much larger? To estimate attendance of Su69 entrants it was assumed that
the same fraction of these would attend F69 as did Su68 entrants in F68. Of
these that enrolled in F69, they were then assumed to behave in the same way as
new entrants in F69.

Besides these particular and rather confusing problems, caused by institu-
tional operational changes, the stationarity of most of the fractions since the
start of the summer quarter can be questioned. With such a major change in
campus operations one might expect that it would take a number of years for the
system to settle down, even if there were no changes between 3-quarter and
4-quarter operations. In light of this observation the results in Table III.5

are somewhat surprising.
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This sectiun describes a university planning model that is based on an

equilibrium manpower flow model.
tion to the flows of students and faculty.
is central to the model.

sown in Table III.6.

letter

Class

O 00 N O 0 W N

—
o

11
12
13
14
15

17
18
19

The model relates the technology of the institu-
The student faculty flow process

We have a system containing nineteen classes of manpower

Notice that all abbreviations for stocks start with the

Abbreviation

SLA
SLS
SLD
SUA
sus
SuG
SUD
SMA
SMS
SMT
SMG
SMD
SDA
SDS
SDT
SDG
SDD
SFN
SFT

Description

Lower division Admission
Lower division Student
Lower division Dropout
Upper division Admission
Upper division Student
Upper division Graduate
Upper division Dropout
Masters Admission

Masters Student

Masters Teaching Assistant
Masters Graduate

Masters Dropout

Doctoral Admission
Doctoral Student

Doctoral Teaching Assistant
Doctoral Graduate

Doctoral Dropout

Faculty Nontenure

Faculty Tenure

Table III.6. Stock Classification Scheme

The model makes a distinction between students who are teaching assistants and

students who are not.

Thus the entire class of masters program students is actually

the sum of classes 9 and 10.
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This is an equilibrium model, thus we have the advantage of being able to

rearrange the actual schedule of persons in a cohort in order to make a model that

is easy to deal with. We illustrate this point with three examples.
Example 18: Harry enters the lower division in September 1975. After one year
as a lower division student, Harry drops out.

Suppose our account period is one year, and the accounting date is April 1.

Then Harry's history is summarized below:

Time Class
19/5 SLA
1976 SLS
1977 SLD

Example 19: Tom enters lower division in September 1976 and graduates from

upper division in June 1980. Tom's history is:

1976 SLA
1977 SLS
1978 SLS
1979 SuUS
1980 SUS
1981 SUG

Example 20: Dick is admitted to the Ph.D. program and enrolls in September 1976.
Dick spends two years as a student. In one of those years he is a half-time
teaching assistant. After two years Dick drops out of the Ph.D. program, takes

a masters degree and leaves the University. Dick's history is:

1 we Class
1976 SDA
1977 SDS
1978 SDS (1/2) and SDT (1/2)

1979 SMG g
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We assume our equilibrium flow model has 10 chains. The chains and description

are given in Table III.7.

Chain Abbreviation Description
1 FLD Lower division Dropouts
2 FLG Lower division Graduates
3 FUD Upper division Dropouts
4 FUG Upper division Graduates
5 FMD Masters Dropouts
6 FMG Masters Graduates
7 FDD Doctors Dropouts
8 FDG Doctors Graduates
9 FFN Faculty Nontenure

10 FFT Faculty Tenure

Table III.7. Chain Definitions and Descriptions

We assume that all lower division graduates enter the upper division, and that

a certain fraction, see example 20, of the doctoral dropouts receive a masters
degree. In addition, we assume that a certain fraction of the masters graduate
chain enter the Ph.D. program.

The L matrix is given in Table III.8, where the entry in row i, colummn j,
gives the number of time periods a person on chain j spends in class i. For example
consider chain 3. The chain is FUD (upper division dropouts). The students on
*his chain spend one year in SUA (upper division admission), one year in SUS (upper

division student) and one year in SUD (upper division dropout).
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Stoc
Class

=

Flow Chain

10

0.8

0.2

10

11

12

~—

1.1

1.8

0.05

0.2

13

14

15

16

17

0.16

0.05

0.05

1.5

0.25

0.8

3

.2

18

19

25

Table "II.S8.

The L matrix for the University Planning Model.
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Nineteen conservation relations between the nineteen variables s, and the 10

variables g, are giver by

(11) s = Lg.

Example 21: Note that one simple use of the model is to choose the flows g, and

calculate the stocks sg. Three such calculations are presented below.

For the first calculation, let the chain flows be given by:

Chain 1 2 3 4 5 6 7 8 9 10
g 200 600 100 400 75 200 50 200 40 5 é
Using L in Table III.8, the resulting equilibrium stocks are:
Lower Upper Masters Ph.D.
800 500 275 250 admission
1440 2100 442.5 747 students
200 220 75 40 dropouts
- 880 210 210 graduates
| - - 10 222.5 teaching assistants
Nontenure Terure
200 405 faculty

To see if these figures are reasonable we can check some meaningful ratios.
First, the ratio of teaching assistants to undergraduates, (s10 + 515)/(52 + SS)
is 0.066. The ratio of undergraduates to total students 0.71, the ratio of upper
division to undergraduates is 0.59, and the ratlo of students to faculty is 8.2.

These ratios are reasonable except the student/faculty ratio. Currently the
input flow of facuity (g9 and glO) is 40 into non-tenure and 5 into tenure. For
the second calculation we change 8g and 810 to be 15 and 2. The same student

results are obtained, but the faculty becomes:
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Nontenure Tenure
75 155
and the student faculty ratio is 21.6.

Finally, for the third calculation, we shorten the lifetime of lower division
dropouts in student status from 1.2 to 0.6 years, we lower the stock of lower
division students to 1320. Thus if we change 8 and gy to new values 218 and
654, we would have the same student stocks.

Example 22: An alternate use of the equilibrium model is to specify the

stocks s and then calculate the flows g necessary *o maintain these stocks.

In general, there does not exist a g such that Lg = s. However, we can calculate

the g that gives stocks closest to s, in the sense of minimizing the inner

1
product (s - Lg) (s -~ Lg). Here indicates the transpose operation. The g

which minimizes this function is denoted g%, and
(12) L'Lg* = L's,

where L' 1is the transpose of L. If a weight.ed measure is desired, then define
W as a 19 x 19 diagonal matrix. Then(12) will still hold with s replaced by
Ws and L replaced by WL, g* minimizes (s - Lg)'W'W(s - Lg). Two numerical

calculations are shown below. Suppose the desired stocks are given by

Lower Upper Masters Ph.D.
1000 500 200 100 admissions
17060 3400 350 350 students
400 400 50 80 dropouts
600 2500 150 220 graduates
- - 25 50 teacning assistant
Nontenure Tenure

85 240 faculty



g*,

The best flcw approximations,
Lower Upper
1010 847
1850 3586
210 -133
800 1780

Suppose that on seeing

stock plan to

the

resulting input flows we decide

Lower Upper
1000 500
1750 2000

300 400
700 1200

Masters Ph.D.
209 115
339 362

52 15

160 104

8 109
Nontenure Tenure

85 240

Masters Ph.D.
200 100
550 350

50 30
150 120
10 100

Nontenure  Tenure

85 240

42

(when W is an identity matrix) give stocks

admissions
students
dropouts
graduates

teaching assistant

faculty

to revise our desired

admissiouns
students
dropouts
graduates

teaching assistant

faculty



Wi
Bt

T

o
R ARG

WS,

43
Now the best flow approximations, g*, give stocks
Lower Upper Masters Ph.D.
996 480 209 110 admissions
1726 2165 340 351 students
333 254 52 12 dropouts
663 889 160 102 graduates
- - 8 106 teaching assistants
Nontenure Tenure
85 240 faculty

Note that this approximation is relatively close to the desired one. The largest

error appears in the undergraduate degree category. B

We can also use the basi~ flow model (10) in conjunction with other restrictions
on the education process. We list several possibilities.

(i) Let A, be the desired total student body size. Then

1
SZ+SS+S9+SIO+314+SIS=>\1'
(ii) Let Xz be the desired total faculty size. Then
s18 * 819 7 Ay

(iii) Let al be the desired ratio of undergraduate students to teaching
assistants. Then

s, + s = . (s

10185 + 8g) .

2

(iv) Let Oy and 0y be the desired ratios of nontenure and tenure faculty

to student. Then

Sig = a2 (s, +s.+s,. +s + s14 + s

sS.. =0, (s, +s. + Sg + s, +s5., +s5,_).

19 3
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(v) Different categories of students present different workloads to faculty,
and it is common to weigh the different categories to correct for this
anomaly. Let Wy W,y W and v, be the weiguts assigned Lower division,

Upper division, Masters and Ph.D. students respectively, and let %,

be the desired ratio of total ruaculty to weighted students. Then
(s)g + 519 = & [wysy + wysg +uylsy + 5,5) +w, (s, + s15)]
(vi) Let A3,A4 and AS be the desired annual output of bachelor, masters

and doctors degrees. Then

= A

Sg = A3, $y1 = Aé’ S16 5 -

(vii) Let as,a6,a7,a8 be the desired fractions of lower division, upper division,

masters, and doctoral students respectively who dropout. Then

(gl + gz)aS

(g3 + ga)u6 = 85>

(g5 + gé)a7

(viii) Let ag be the desired ratio of lower division to total undergradnuate

students. Then

s, = Qg (32 + SS)'
Let alO be the desired ratio of undergraduates to total studeuts. Then
(52 + 55) = alo(s2 + Sg + Sg + 510 + S14 + SlS)'
Let a4 be the desired ratio of nontenured to total faculty. Then

= + .
18 = %1 18+ 8p9)
We see that there are a great many possibilities and that all rhe relations are
linear in s and g. Suppose some restrictions are selected from the list. This

leads to a system of equations
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(13)

where H and F are coefficient matrices for the restrictions in question. These
equations may have one, zero or an infinite number of solutions, and we are interested,
in finding a single solution of (13). 1In this case we would try to build a 29 x 29
System of equations. TIf there is an inconsistancy in the requirements put on the
System or if some of the parameters (w,A) are unrealistic, then we will obtain
unrealistic solutions of (13); for example, some valuesg of stocks g and the

flows g might be negative.

Example 23: we specify the following parameters A, u, and w.

Al = 26500 al = 0.06 W, = 1
A3 = 4251 a, = 1/29 W, = 1.5
A4 = 2370 Gg = 0.3 Wy = 2.5
AS = 634 % = 0.3 w, = 3.5
o, = 0.2
A = 0.35
Under these conditions we obtain stocks
Lower Upper Masters Ph.D.
3840 3000 2672 1700 admissions
6761 10478 4436 3789 students
1172 1433 534 421 dropouts
- 4251 2373 634 graduates
- - 106 927 teaching assistant
Nontenure Tenure
607 1128 faculty

The faculty input flows are 121 to nontenure, 11 to tenure.
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If we change the weights used in the student faculty equation to

= 1.5, w, =2

=1, w 4

w, =1, w

1 2 3

then the student stocks and flows remain unchanged; however the faculty stocks and
flows become
Nontenure Tenure Nontenure Tenure

80 7 404 750 faculty
Flows Stocks

Examnle 24: Let Al’ Aps Oy as, Ags Qs all’ and w have the values originally

presented in example 23. In addition let

o, = 0.4, o,,=0.681, and a, = 0.3.

9 10

We will not specify degree output.

We obtain the stocks

Lower Upper Masters Ph.D.
4106 2995 2375 1153 admissions
7226 10839 3945 3406 students
1232 1473 475 277 dropouts
- 4395 1970 902 graduates
= = 95 989 teachir,; assistant

Nontenure Tenure

397 738 faculty

If the lifetime of dropouts is shortened, we observe an increase in admissions.

Let

22 = 0.6, & 0.7, & = 0.7, 114’7 =1.0.

1 5,3 9,5

Then we obtain the stocks
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Lower Upper Masters Ph.D.
4573 2755 2628 1127 admissions
7226 10839 4152 3200 students
1372 1467 526 271 dropouts
- 4490 2170 894 graduates
- - 105 979 teaching assistant
Nontenure Tenure
396 733 faculty
Example 25: Consider a university which is currently operating with stocks
Lower Upper Masters Ph.D.
4261 3108 2466 1197 admissions
7498 11248 4094 3535 students
1278 1529 493 287 dropouts
- - 2045 936 graduates
- - 99 1026 teaching assistants
Nontenure Tenure
412 766 faculty

and faculty flows of FFN 82, and FFT 8. The current constraints maintain 407%
of all undergraduates in lower division.

We relax this constraint -hat 407 of undergraduates are in lower division and
instead set S, = 0. The university then runs without a lower division, and the

stocks become



Lower

Upper

11027

18746

3308

Masters Ph.D.

2466 1197
4094 3535
493 287
2045 936
99 1026

Nontenure Tenure

412 766

48

admissions
students
dropouts
graduates

teaching assistant

faculty
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8. Applications of the One Class, One Chain Model.

This section describes applications of the zincle, class single chain model
presented in Section 3. A flexible package of interactive computer programs
based on that model has been developed and used by manpower planners in the Navy
and Marine Corps. This section describes a wide range of applications for these
models. We assume that the organizations can be broken down into separate single
class systems. For example, the enlisted force of thec ..S. Navy can be classified
by skill rating. There are approximately 90 of these skill ratings and, with
the exception of recruits, each enlisted person is identified with a skill rating.
In general, the models in this paper are used by treating each skill rating
independently. However, we shall indicate how interactions between categories
can be handled. These must frequently involve the transfer of either responsibility,
(jobs, assignments) or people t tween the different categories. A second organization
we shall examine is a particular subset of the Navy - the group of Navy captains.
Within this group we can classify individuals according to year of entry in the
Navy. Thus we partition the group of Navy captains into approximately 10 subgroups
according to year of entry.

The single class,single chain model is extremely flexible and leads to simple
calculations. 1In special cases when we are sure that the model's assumptions are
not quite correct, the flexibility of the simple model can usually be used to modify
the assumptions.

We first discuss the data requirements of our model, and then show several
examples.

Recall that the index u measures periods of completed service or length
of service (L0S), and that p(u) 1is a survivor fraction, the fraction of those

who entered u periods ago, and are still in the organization.
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(i) Data

For each of the separate categories of manpower we need three blocks of data:
the current stocks by length of service s(oj;u), the future requirements z(t)
at some time t > O and the survivor fractions p(u). In the motivating example
of the 90 skill category Nav, enlisted force with a five year planning period, we
would require 6,030 items of data. For each skill category M = 30. Thus
s(0;u) and p(u) tcgether contain 62 elements. In addition we must know z(t)
for t = 1,2,...,5; this gives 67 elements for each category or 67 x 90 = 6,030
in all.

We shall, in general, only consider one skill category at any time so the
variables s, p, and z will not be indexed to indicate to which category they
apply.

The number s(oju; and z(t) are reasonably easy to obtain with some accuracy.
The difficult problem is determining the survivor fractions, p(u). The problem
of estimating p(u) from past data will be treated in Chapter 7.

Example 26: In what follows we present several numerical e .mples. Many of these
will be based on the illustrative data shown below. We indicate the current stocks
by length of service (LOS), survivor fractions, and future requirements for 3

skill ratings; SM - signalman, QM - quartermaster, and BM - boatswain's mate, in

the U.S. Navy
Current Stocks by LOS, s(oju)

u 0 1 2 3 4 5 6

SM 2000 2200 1700 800 600 225 200
o)1 1200 1600 1400 1200 600 150 300
BM 800 640 800 960 600 600 600




Example 27:

Survivor Fractions p(u)
u 0 1 2 3 4 5 6
ngg_f 1.0 0.95 0.85 | 0'€_P_9l3_¢"3f5 0.1
QM 1.0 0.90 0.90 ! 0.6 0.3 0.1 0.1
BM 1.0 0.8 0.8 i 0.8 0.6 0.6 0.5
Requirements z(t).

t 1 2 3 4 5

SM 6000 5500 5000 4500 I 4500

oM 6500 7000 7500 8000 l 8000‘

BM 4700 4700 4700 4700 4700

51

The manpower category Navy Captain can be considered as an aggregate

of 10 manpower classifications, Navy Captains by year of entry in the Navy. Each

separate year of entry group will have a known inventory in the rank captain--

and it is possible to break down that inventory by length of service in rank

captain.

Entry
year
1942
1943
1944
1945
1946
1947
1943
1949
1950
1951
1952

Some typical stocks are shown below.

Length of Service as Captain

0 1 2 3 4 5 6 7 8 9 10
g 2
35| 150 A
14 30 | 170 12
18 | 225 10
14 | 200 20
11 | 185 10
17 | 120 ;| 19
165 20
22 | 190 4
32 209 35
215 18 5
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The survivor fractions are assumed tc be the same for each entry year group.

Survivor Fractions

8 x 9

10

u 0 1 2 3 6 s 6 7

|
i '
p(u) |1.0 0.985 | 0.97 |0.956 | 0.941 |0.927 | 0.881 | 0.749 ' 0.625 | 0.225
| i

0.054]
|

The future requirements are for the aggregate of all entry year groups.

Requirements z(t)

t 1 2 3 4 5

1600

Captains 2000 1800 ‘ 1700 i 1600

T
!
i
i

In general the gross requirements data is not actively stored. It is more

convenient to calculate the legacy of the current manpower stock and to store net

requirements data.

(ii) Future Legacies

Our first application of this model is to calculate the future legacy of

our current stock of manpower. This is accomplished by solving
M
2(e) = [ pwglt-u).
u=t

The values of g(t-u), the input flows in period (t-u), are not explicitly known.

However, s(o;j) = p(j)g(-j) for j > 0. Thus

M-t M-t (t+1)
5,2 pleride-i) = ] B soip,  are o om,
o(r) =/ 30 j=0
l 0 if t > M.

This calculation is in terms of the required data s(oj;u) and p(u) -

Example 28: The future legacies of the three enlisted ratings are given by:

. < pert R i
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t 1 2 3 4 5
—
SM 5668 3626 1763 947 531
QM i 4563 @ 3013 1608 693 297
BM i 3940 ‘ 3180 2360 1460 880
Example 29: The future legacies of the Captains are given by:
t 1 2 3 4 5
1942 0
1943 46 3
1944 100 32 6 1.0
1945 210 81 20 1.0
1946 200 161 62 14.0 1
1947 195 166 138 53 13
1948 153 144 124 99 41
1949 182 178 167 142 114
1950 252 248 243 227 195
1951 271 267 263 258 243
1952 234 230 227 223 219
Total | 1845 1515 1252 i 1021 I 827

(iii) Net Requirements

1t is only necessary to compute future legacies once and then store net
requirements. Let y(t) = z{(t) - 2(t) be the net requirements.

Example 30: Four our three enlisted ratings the net requirements are:

t 1 2 3 4 5

SM 331 1873 3236 3552 3968
QM 1936 3986 5891 7306 7702
BM 760 1520 2320 3240 3820

53
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Example 31: For the Navy Capt .ins the net requirements are:

t 1 2 3 4 5
T T
t

447 578 |

-~
)
N

Capt. 154 284

Problem 1l: Assume there is a lower bound g on accessions. Show that net

requirements are given by

]

y(t) = z(t) - (t) —(
u=0

p(u))é :

Example 32: Assume that lower bounds of 700, 1000, 500 are imposed on the ratings

SM, QM, and BM. The net requirements become:

£ 1 2 3 4 5

s | -368 508 | 1276 1312 | 1588
| — |

Q 936 | 2086 . 3091 3906 | 4002

BM 260 620 1040 1640 . 1920
H | f .

Note that a negative entry implies that the legacy plus the future guaranteed
accessions will more than satisfy requirements.
Example 33: If we assume a lower bound of 150 captains per year then the net

requirements for captains become

t 1 2 3 4 5

Capt. 4 -13 4 -8 44

(iv) Future Accessions

It is straightforward to calculate future accessions necessary to meet future
requirements. If y(t) represents net requirements and g(t) accessions (with

no lower bound on accessions), then

p(0)g(l) = y(1)
(14) p(1)g(l) + p(0)g(2) = y(2)
p(j)g(l) + + ' MgG) = y()



In general,

or

Example 34:

categories are:

ji=1

t-1

u=0

t
J o op(e-idg(d)

7 pwg(t-u)

y(t),

y(t) ,

t

t

LoZgoaag

Lolgooog

Future Accessions g(t) .
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The future accessions that exactly meet requirements for the three skill

t 1 2 3 4 5 o

SM 331 1558 1474 694 1365 i i 1233
QM 1936 2243 2128 2209 1870 E 2051
BM 760 912 1002 1252 i 1012 ! : 959

The final column gives the equilibrium accessions if requircments remain at the

5th period level.

Example 35:

For Navy Captains future accessions are:

Future Accessions g(t) .

t 1 2 3 4 5 o
Capt. 154 132 167 137 202 192
|
The accession level that meets requirements exactly can be negative. Typically

this occurs when requirements are decreasirg more rapidly than can be accounted

for by natural attrition from the system.

is nonnegative, we solve the recursive difference equation

(15)

g(t) = Max

y(t) -
0,

t

i

i=1

p(t-3)g(3)

p(0)

To find a simple accession policy that
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This accession policy guarantees that future requirements will be met. They
may be exceeded in certain time periods. If s(t) = zg=0 s(t;u) is the total
stock level, then s(t) - z(t) measures the number of redunldant personnel.
Example 36: Consider the net requirements for the three enlisted ratings when
there are lower bounds on the accession levels. From our last calculation we
see that accessions for Q¥ and BM never drop below 1000 and 500 respectively.
Thus the solution of (2) will agree with the equality solution of (1}. However
in periods 1 and 4 the accessions for SM drop below 700. The accession, stock,

and redundancy levels for SM are shown below.

¢ 1 2 3 4 5
accession ; 700 ; 1208 1493 }7 826 ; 1290
stock [ 6368 i 5500 5000 E 4500 4500
requirements ' 6000 | ss00 5000 | 4500 4500
surplus f 368 0 ; 0 i 0 0 ‘

We see there are 368 extra SM's in the first period, and also that the
accessions in periods 2 through 5 are all above lower bound and are different
from those calculated in example 34.

Example 37: A similar calculation can be made for Captains with a lower bound of

150 per year.

CAPTAINS
1 2 3 4 5
accessions 154 150 ! 150 | 150 190
stock 2000 1817 ' 1700 1612 1600
requirements 2000 1800 1700 1600 1600
surplus i 0 ! 17 ; 0 12 ’ Ow
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(v) Transfers of Jobs

A transfer of jobs simply is a change in the net requirements.

Example 38: The rating QM has increasing requirements while the rating SM has

decreasing requirements. Suppose some of the functions traditionally performed

by the rating QM could be transferred to SM. This transfer of responsi-

bility might increase SM requirements by 500 per period and decrease QM requirements
by 500. The future accessions needed to meet requirements after the change are:

Future Accessions g(t).

t 1 2 3 4 5
SM 832 1584 1526 | 925 1494
QM 1437 2194 2124 ! 2059 1691
BM 760 912 1002 1 1253 1013

(vi) Transfers of Personnel.

Let r(t;u) be the number of people with length of service u who are

transferred ouf of the system at time t . We must have

- p(ws(u - t;0)
p(u - t)

r(t;u) g s(t;u)

If r(tj;u) £ 0, then people are effectively trausferred into the system. The

increase in net requirements at time t + k 1is given by

p(u + kK)r(t;u)
p(u) )

Example 39: &s pointed out above, the requirements for the QM rating are increasing,
while those for SM are decreasing. It is possible to retrain individuals in the

SM group and transfer them to QM. A typical ietraining schedule is given below

Time t 1 1 1 2 2 2 3 3 3

LOS 0 1 2 1 2 32, 3 . 4

Number 150 150 150 100 100 100 50 50 ¢ 50
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We will eventually transfer 300 people {tum cach o! the three youngest cohorts.
The transfers are phased over time to provide some stability. The new legacies
for SM and QM are:
Legacy £(t) .

t 1 2 J 4 5

3046 % 1286 | 644 ! 401

SM i 5218

|
| QM ; 5013

H

3638, 2083 . 960 . 383

The future accessions become:

Accessions g (t)

t 1 2 ! u 5
| sM 781 1711 L4337 : 1146

[ e e P i e | P
QM | 186 2023 zase 2095 | ousss

L - . SO = U . —

Example 40: The number of future accessions (promotions) to the rank of captain is
limited by the decreasing future requirements and the larpe legacy that is a result
of large requirements in the past. One way to deal with this problem is an "early

retirement" program. This would allow for a smooth input into rhe rank of captain.

A sample retirement schedule is shown below.

: | , T
| Time t 1 : |2 03 ) ) 6| s

SR e --41 e _4'.-.___ ]‘

TIG 8 9 50 9 s 6 5 5J
YRGR 45 145 |46 | oae toar s 51 ' 52
Number 35 30 300 402080 50 30

In this table TIG stand for time in grade, i.c., the unumber of years as a captain,
and YRGR is for year group, i.e., the ycar the individual started his career.

With these changes the future legacies becomc:
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42 0 0 a0

43 46 2 |9 g 0
4 | 100 32 5 !

[
45 174 i

=3 —
46 | 200 f;> c kLo (03

5

0

0

0

0

0
yReR 47 | 195 | 166 019 (15 (:E)

=4 l \ B K-//

f—

48 | 153 | 144 124 99 41

49 ¢ 182 | 178

50 252 | a4 a3 097 | (@71
510 271 | 267 | 263 1@5;9 196
— PR — _..T_A .z

52 234 2130 A ) 189

Total 1810 1447 BRI g 893 716

The circled numbers show the changes dio Lo our early retirement policy.
The new future accessions are
Accession. (L)
t 1 " ) 4 5

P -"I
Capt. |189 | 170 | I7b | 186 | 187

(vii) Changes in Continuation Rates

Let q(0) = p(0) and for u = 1,....M, q(u) = p(u)/p(u-1) . The numbers q(u)
are the continuation rates, the fracticn ot people with LOS equal t» u - 1 that
continue in the system and appear one period later with LOS equal to u. Changes

in continuation rates imply changes in the survivor fractions. For example, if

‘p(u) it <k,

ﬁ(u) =
I qik)plud

GO )

we change q(k) to q(k), then

s
=

u 2
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The changed survivor fractions can apply to either the current stock of
manpower or to the future inflows of manpower, or to both.
Example 41: To accelerate the release of SM we change q(3) from 8/17 to 4/17.
The new survivor fractions are:
Survivor Fraction p(u) .

u 0 1 4 5 6

2 3
I ] !
SM 1 41.95 .85 Lﬁ.Z ‘ .1 1.075 i .05}

To increase the retention of our current stock of QM's we change q(u) from
.5 to .8. The new Survivor Fractions for QM are
Survivor Fraction p(u) .

u 0 1 2 3 4 5 6

.16

48 1 .16

QM| 1 ‘ .9 l .9 .6

If these changes apply to the current stock of manpower we obtain a new legacy.

Legacy 2(t)

. 1 2 3 4 5
T . 1

sM 5268 2963 . 981 473 | 265

QM 4923 3413 2142 ; 1109 | 476
]

Now assume the changed survivor fractions do #n.f/ apply to future entrauts.

The future accessions become

Accessions g(t)

t 1 2 3 4 5

T T
SM 731 1841 1646 603 1377
QM 1576 2167 1987 2204 1976

If the alternate survivor fractions apply to the future accessions and the

cutrent stock, then cur required accession schedule is
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Accessions g(t)

¢ 1 2 3 4 5
. sM 731 1841 1646 749 1680
M 1576 2167 1987 2204 1692

Example 42: Instead of an early retirement program for captains, we can change the
survivor fractions by instituting a mid-captain review. The value of q(5) 1is

currently 0.918. 1If this is changed to 0.5 the legacies become,

t ] 2 3 4 5
42 0 0 0 0 0 !
43 46 3 0 0 0
44 | 100 32 6 0 0
45 | 209 81 19 1 i 0
46 | 200 161 62 14 E 1
; 47 195 166 138 53 | 13 |
% 48 94 80 69 52 . 21 j
? 49 | 182 90 85 72 i 58 ;
50 | 252 1 227 133 115 ; 99 '
51 | 271 ] 267 247 w6, 123
52 234 | 230 225 213 111

TOTAL 1772 1338 982 665 426

The legacies in the bordered section have changed (compared with the table in example
29). With these legacies and the new survivor fractions applied to future accessions
we get the following accession schedule.

Accessions g(t)

t 3 2 3 4 5 ©

T '
262 } 227 | 254 241 |
|

!

Capt. 227 237
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9, A One Class, Many Chain Model.

In the one class, one chain model it is assumed that all individuals enter
the system with zero periods of completed service. In the context of the Navy
enlisted skill ratings discussed in scction 8, this would mean that there are
no significant flows between skill ratings, and that all accessions to the skill
rating have zero length of completed gservice (LOS is 0). This assumption is
not always valid. There is a pool of non-rated enlisted manpower that is not
assigned to any particular gkill rating. Individuals do move from the non-
rated pool to the skill ratings with 1, 2 or more periods of completed service
in the Navy. These movements are called "lateral accessions'" to the skill rating.

In general it is difficult to handle lateral accessions because of the large
qumber of degrees of freedom created by a’lowing such movements. However, we
show how, under certain restrictions, lateral accessions can be treated as a one
class, many chain model, and how this model can be reduced to a one class, one
chain model similar to that in section 8.

We say that individuals who enter the "gystem' (say a Navy enlisted skill
category) with Kk periods of completed service are on chain k. Thus we have
{ + 1 possible chains kK =0,1,2,...,M. Let gk(t) be the number of accessions

in period t with LOS equal k. Then the total accessions in period t dJre

M
(16) £(t) = ) g, (t) = eg (L),
k=0 -

where g(t) = [go(t),gl(t),-.-,gM(t)]-
Recall that in the one class, one chain model in section 8 that p(u+l)/p(u)
is the fraction of those with LOS u in the skill rating who remain and complete

(u+l) periods of service. We generalize this slightly and define

(17 p (w) = p(k+u) /p(K) .
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In the one class, one chain model pk(u) is the fraction of those with LOS
equal k who remain in service at least u more periods. 1In the (41)
chain model we assume that this fraction remains the same f[or individuals who
enter with LOS less than k, and for those who enter with LOS equal k. Thus
we assume that behavior affecting retention is the same for an individual with
LOS k, independent of how he came to have LOS k.
Let s(t) be the total stoacks at time t (in the single class). From the

basic equation (2),

M M
(18) s(t) = [ ) p (weg (t-u).

u=0 k=0
This equation shows that there are (M+l)2 input flow variables g. To reduce

this number we introduce the concept of a proportional input policy. Let

(19) r(k) = g ()/E(r),

independent of t. Then r(k) is the fraction of total input flow each period

which enters on chain k, and this is assumed constant from period to period.
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