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Abstract

The issue of improving a Global Positioning System (GI’S), Precise Positioning
System (1’I’S) solution under dynamic conditions through averaging is investigated.
Static and Dynamic data from the Precision Lightweight GPS Receiver (PLGR) were
used 1o analyze the error characteristics and deign an averaging technique [or dynamic
condilions.

It was found that the errors in IPI’S solutions are dominated by the satellite broad-
cast ephemeris parameters. 'I'he solution errors are highly correlated for a given set of
satellites/ephemeris. The variation can be as low ag 0.1 m in dynamic conditions, but
a slowly changing “bias” of several meters ig also present,

For litting the location ol a road observed repeatedly with a PPS receiver a tech-
nique based on “space curves” was developed. Tlere the golulions are Lransformed [rom
functions of time to functions of space (location). These then are used. Curves could be
fit with a Bezier polynomial easily to the 0.4 m level. T'hese analytic curves were then
used to form an ensemble average. The bias vectors between the solutions were found
wilh least squares estimation. These veclors were averaged using several technigues.
This idea was applicd to a short rad segment. Using 9 independent measurcments
taken over 6 months, the road was surveyved at the submeter level.

DoD Key Technology Areas: Ground Vehicles, Computing and Software, Sensors.

Keywords: GPS, Global Positioning System, Dynamic Positioning,



1 Introduction

The accuracy of a (APS receiver in the Precise Positioning Spectrum (PPS) is on the order
ol 5 mn horizontal and 7 m spherical today {1999)[1]. While this may be adeguate lor some
applicalions, there are others thal need somewhal better positions, bul not as good as a sur-
vey position. In theory averaging independent PPS position estimates an do this, Tor static
positions this seems simple, but there are some complications hidden i the independence of
position estimales made with GPS. In addition i the needed nformalion 1s the track ol a
road, things are much more complex. This study has altempled to address the issue of how
to cffectively average GPS PPS positions to achieve better location estimates in both the
static and dynamic conditions. T'he emphasis will be on the dynamic case as it is the mare
difficult.

Here absolute, standalone, positions are considered as the raw input data for further
processing.  Clearly higher accuracy can be obtained through the use of differential GPS,
but the focus here 1s what can be done with the absolute positions that come from PPS
receivers. In particular the work will focus on the Precision Lightweight (PS5 Receiver
(PLGR) which is very common (over 100,000 delivered) in the US military. This receiver
uses 4 (GI’S range measurements to compute a position. It is a single frequency receiver,
which limits its height accuracy somewhat. These results will be a Hloor on what could be
achieved with betler PPS receivers with more channels and/or dual [requency tracking.

In the case ol the stalic receiver, the position solution can be significantly improved only
by averaging very long periods, ou the order of a day. The results ol both a long period
stalic resull and a stop and go experiment will be presented. Repealed revisits o a site
within an hour did not significantly add informatlion unless the satellite sel being tracked
had changed.

For dynamic cascs the route must he repeatable, at least at the 1 to 2 meter level in
order to successfully combine solutions. The averaging of dynamic solutions is achieved
by converting the tracks from time histories to tracks in space. In this study the tracks
arc computed in the two horizontal dimensions. T'he third dimension can be added later
through various methods. The procedure for gencrating the space tracks involves selecting
fairly short tracks and finding the corresponding data in multiple data sets. Each is converted
to a parametric polynomial in space. A Bezier representation is used. This is essentially
a plecewise cubic fit with continuous values and continuous first derivative. The latter is
important because the normal to the curve is used in the process of combining curves to find
an average track.

A system 1o locale a road using a database of PPS posilions 1s diagramed in Figue 1.
[Tere an operalor identifies the road or [ealure Lo be geolocaled. This could be a graphical
interface or an area delined by geographic coordinates. The program would select the {racks
ol dala that [it the operator’s criteria. These {racks are the inpul dala lo the technigues
described here. In the current study, the selection phase will not be addressed.

The first step in the process is the conversion of the tracks from functions of time to
a function of spatial coordinates. These are the “space curves” that are analyzed further.
The individual instances will be called track scements. The space curves chosen here are the
Bezier representation.

[t is assumed that the track segments differ from cach other by a constant bias vector.
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Figure 1: Diagram of Track Averaging

This is an assumption that is validated with experimental data in the study. The assumption
depends on the same set of satellites being tracked during the time that the track segment
is measured and that the time interval of he measnrement is short (a few minutes or less).

The biases between all track segments can be computed in a least squares process. These
biases can then be averaged directly or in a weighted manner. A method used in the analysis
of atomic clocks (N-Clornered-Hat) is used to find the effective noise in each track compared
to the ensemble. belore the ensemble is formed. This allows nol only correct weighting,
but the editing of outliers due to satellite changes or many other factors. The tracks can
be moved together using the bias vectors between one track and the others. This can be
averaged. The net hias of this ensemble is the negative of the average of the biases between
tracks.

The following scctions will describe in detail the underlying assumptions made in this
technigque. These were illustrated by previous data taken on a ship. Here new data is taken
with PLCR’s under both static and dynamic conditions. Dynamic data was taken repeatedly
over three of these areas. The dala [rom one was used to illustrate the process ol dynamic
track averaging.

After a general background laving out the assumptions in chapter 2, the mathematical
approach to the problem is developed in chapter 3. The test data is described in chapter 4.
A detailed mathematical description ol the analysis is presented in chapler 5. The data is
applied to space tracks in chapter 6, which is the heart of the analysis technique. Finally, a
specific dynamic exampleis analyzed with this technique in chapter 7. Submeter positioning



of short road 1s demnonstrated.

2 Background

2.1 FErrors in PPS Range Measurements

The error in a GI'S absolute position is roughly the Dilution of I’recession (DOI”) times
the range crror standard deviation. Therefore an understanding of the crrors in a range
measurcment is needed. A diagram of the components of a range error is shown in Figure
2. Here the range to the satellite will be on the order of 20,000 km. The recciver clock
error, while large, 18 estimated with each position and does nol have a dominani ellect on
the solution error. The errors that are important, included in the “other™ category on the
top line, are expanded on the second line.

: Other
Receiver Clock
— Range N\
N
==
| |
Orbit
: +
Selective lonosphere Atmosphere [
Availability) Sat. Clock
Multipath
Moise

Cancels nDGPS

Components of GPS
Range Measurement

I'igure 2: Componcnts of GPS Range Measurcments

For the military user in PP’S meode. the Sclective Availability (SA) error is removed in
the receiver. For dual [requency receivers the same 1s true [or the ionospheric error. While
the PLGR’s used here are single [requency and suller from this ervor, s ellects are mainly in
the vertical component. The small vertical bar indicates the minimum ionospheric error. Tor
reference the largest ionogpheric error shown here is about, 30 m. T'he sizes in this diagram
are only approximately to scale.

The atmospheric error also atfects mainly the vertical component. It can also be modeled
quite accurately with just knowledge of altitude, at least at the 25 cm level or better. The
last two components are dependent on the receiver and ils environment. They nsually vary
rapidly, especially in a moving receiver, and can he casily averaged down. They will not be
considered [urther here.



The other component. Orbit and Satellite Clock. is the most important for the PPS
user. In order to find a position from GPS ranges, the recciver must know the location of
the satellites at the time the signal was sent. This is done through a model of the satellite
position. 'The parameters for this model are broadeast along with the ranging information
by each satellite. In addition, the offset of the spacecraft clock from an absolute time system
is included in the parameters hroadeast. This is necessary because the G5 ranges are found
by subtracting the transmit time from the received time and multiplying by the speed of
light. This is about 30 cm (or a foot) per nanosecond (1/1000 microsecond or one billionth
of a second.) Clearly timing errors are important. This is why the receiver clock offset is
compuled as part ol each and every solution. The salellites have atomic oscillators, but even
these wander over the course ol a day by a [ew nanoseconds.

It is the inaccuracy in these parameters thal the satellites broadcast 1o the user {(com-
monly called the broadcast ephemmeris or broadcast message) [1] that dominates the military
users’ PPS solution error. It is [ell that the satellite clock parameters are dominant in this
parameler sel. These errors occur because the broadeast message numbers are projections
of what will he, not measurcmaents of what has hean.

The GPS Operational Control Segment (OCS) measures the satellites” positions and clock
statc cvery 15 minutes from 5 ground monitor stations scattered throughout the world. (It
is planned to add the National Imagery and Mapping Agency (NIMA) 5 ground stations
to this network in the near future bringing the number of ground stations available to the
OCS to 10 or more [1].) While the OCS computation center may have a good idea of the
satellite parameters. this estimate is not what the user sees. Once or twice a dav a set of
model parameters for the future few davs is prepared and sent up to each satellite. These
are stored in an onhoard memory and are broadeast to the user. Normally these projections
never get more than 24 hours old. But that means that the information used in position
computation is based on measurements made an average ol 12 hours ago.
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2.2 Errors in PPS Real Time Positions

The difliculty in projeciing the satellite states, particularly the onboard atomic clock error,
is the principal cause ol the orbit and satellite clock error. {This is really the combined radial
and clock error, but will be called the clock error here.) This error will be effectively uncor-
related between satellites. It will also approximately be random between upload parametor
scts. However it will be a slowly varying function of time for cach satellite within a given
upload.

[f a recciver tracks the same set of satellites for several minutes, the crror in position
will be approximately constant. This is because the orhit and clock error from each of the
satellites tracked will be almost constant over that time frame. However if the receiver
changes the satellites it is using in its position computation it will be changing one of these
errors for another. Even for the substitution of one satellite this can cause the position to
jump by several meters. It will remain at that new level until another satellite change occurs.

An example of this behavior can be seen in Figure 3. Here the latitude and longitude
errors are plotied [rom PLGR solutions on a [ixed site over one day in mid 1997, The data
was laken every second. (learly these errors are not independent random variables on the
time scale of 1 second. The errors look like constants over time intervals ol a [ew minutes
and a straight line over some periods of an hour. Ou top ol this behavior is some noise, but
more signilicantly jumps., The linear segments occur during the tracking ol a [ixed set of
satellites. The errors are not constant because the contribution of cach satellite error to the
position errors changes as satellite gecometry changes. T'he jumps occur when satellite sets
changce.

Clearly some changes of satellites have larger effects than others. While the DOP is always
improved when these receivers chose to change satellites, sometimes the error increascs.
Examples of this in Figure 3 occur at about 9 hours and 18 hours. The difficulty is that
the receiver has no knowledge of the error on any particular satellite. The gize of individual
errors is believed to arise mainly from the age of the data used in the hroadcast ephemeris.
This is essentially the time since last upload.

3 Approach

For this study new data were collected on several roads near the Naval Postgraduate School.
These data were converted to a local cartesian coordinate system with the x-axis cast west
and the y-axis north south. The height was carried along as is. A kinematic reference
trajectory was gencrated in cach case. The cartesian data were then analyzed to generate
a curve in space, thus removing the dependence on the time the data was collected. These
space curves were then combined to generate average location for the roads.

The next subsection will outline the processing techniques. Addressing data acquisition
in general will follow this. Detailed analyses follow.



3.1 Mathematical Approach
3.1.1 Overview

In order to average approximale palhs, one has to lirst identily data [rom {rack segiments
ol inlerest. Al this {ime, the identilication process, including a check [or independence, is
done by hand, wilh some automaltion. We will discuss this in Seclion 6. Once independent
track segment dala sets are found, an analylic representation for each track is obtained using
some [orm ol approximalion. This step 1s discussed in the next subsection. This step will
create [or each {rack segment an analytic representation of the track segmeut or each data
sct. The averaging process for these approximations will be discussed in section 7.

3.1.2 Parameterization

In many computer-aided geometric design problems, one wishes to produce a smooth curve
from a given ordered st of data points. Here we are given a sct of points deseribing a curve
in space in parametric form. I'he natural parameter in this casc is time. With a paramaetric
fit, each of the coordinates is fit as a function of the parameter, with the path then heing
traced out as the parameter varies.

While the natural parameter in this case i1s time, with such a parameterization it is
ditficult to combine data from multiple trips along the same path. Some authors have
suggested the use of chord length spacing (Euclidean distance between points) hecause it
approximates the arc length of {or distance along) the curve [2]. A number of other possible
paramelerizations could be used [3]. There is 1o “best” parameterization since most known
methods can be deleated by a suilably chosen dala set.

The methods emploved by ihe two relerenced papers and most other authors involve
itting cubic splines to the data. This can be done in at least {wo ways: altempling o
minimize the distances from the data to the curve at [ixed parameter values (a linear problem
once the parameterization has been fixed), and attempting to minimize the distances from
the data points to the curve. In the latter case, the actual parameter values of the nearest
points on the curve must be discovered as part of the fitting process, and thus this is a
nonlincar problem. While the lincar problem is far casier to solve, the results cannot be as
good becanse of the necessity to agsume the parameterization a priori. Thercfore we have
chosen to fit curves to the data by minimizing the sum of the distances from the data points
to the curve. This is called *Orthogonal Distance Regression™, or ODR [4].

There are many possible forms that can be assumed for the fitting function. While
polynomials naturally come to mind, they often exhibit poor fitting properties and might
require excessively high degrees. Plecewise polynamials are usually a better choice, and there
15 a considerable literature on the topic. Cubic splines are the choice of most authors.

The use of cubic splines i1s desirable because splines are well known [or their superior
[itting properlies. The parameters thal deline the spline, however, must satisly a number of
consirainls (the continuity of value, slope, and curvatlure) making it dillicult 1o specily the
problem in such a way thal the delining paramelers are independent, a desirable {rait [or
optimization. In addition, because we are modeling roadways, the large values of curvature al
corners will pose a problem for curves with continuous curvature. ‘I'hercfore, in our approach
we have relaxed the smoothness conditions to require only continuity of the slope hetween



cubic pieces (usually; in fact the form adopted may automatically incorporate corners if
the data warrants it). A set of Bezier curves fitting a data set generate a curve that is
continuous and has continuous first derivatives even at the connecting points (called knots).
The description of Bezier curves typically takes a geometric flavor. Four control points define
a single Bezier cubic curve (in two dimensions) p; = (2;,v,),7 = 0,1,2,3, and the curve is
given by

z(t) = (1 —1)%xo+3(1 —t)%tey + 3(1 — )tPay + P23 0<t <1

y(t) = (1 —t)’yo+3(1 —)*ty1 + 3(1 — )Py +t7ys 0 <t < 1.

The three line segments connecting the control points, form an open polygon called
the control polygon. An example of a single Bezier curve is shown in Figure 4, and the
parameters are described in the sidebar. More information can be found concerning Bezier
curves in Gerald Farin [5]. Note that the curve starts and ends at the point p, tangent
to the first polygon side and ends at ps tangent to the last polygon side. The curves will
not ordinarily pass through the other two control points. The example demonstrates the
relationship between the control polygon and the curve, illustrates the tangency properties,
and the basic propensity of the curve to follow the control polygon.

P,
Py 4

P

Pg

Po

Figure 4: Bezier Segments Showing Notation. (a) One Segment Bezier, (b) Two Segment
Bezier



The paranmeters are shown for one cubic segiment in Figure 4 {left). The eight paramn-
eters [or this segment are

end points o = (20, Yo) 2 Parameters
Py = (T, ys) 2 Parameters
end directions ey = (cos(#y),sin(8y)) 1 Parameter
€3 = (cos(#y),sin(#y) 1 Parameter
distances to interior ¢ 1 Parameter
conlrol points £ 1 Parameler

Thus, py = p1 + f1e1 and py = py — Faeq.
L joiuing [ollowing seginents, ps and e5 becomne py and eq, respectively, of the [ollowing

seginent. Thus there are 5 paramelers [or each conlinuing segment.

With this control structure il is easy Lo concalenate lwo or more cubic segments joining
with continuous slope. Because of the tangency condition thatl is satislied, the curve may be
extended. The continuous slope provided the first control point of the next secgment coincides
with the last control point of the current scgment. The second control point of the sccond
scgment is on the line joining the last two control points of the current scgment. The right
part of figure 1 shows how a sccond cubie scgment joins with continuous slope at the point
3. The curve is casily extended to any number of scgments.

The initial work in implementing these ideas was by M. R. Holmes in his M.S. thesis [6].
He developed Matlab software to solve the problem in two dimensions. The algorithm was
further developed by E. Lane [7]. The independent parameters that determine the Bezier
curve are the locations of the knot points, the directions of the unit tangent vectors at the
knot points, and the location of the inner contral points. These inner control points, p; and
pa. are constrained {o lie on the line containing the unit tangeut vector at the adjacent kuol
and al specilied distances [rom the knot points, (see Figure 4). This ensures a curve with
continuous slope between adjoining cubic segments, called G continuity.

The problem of [inding an optimal sel of paramelers is noulinear, hence il is diflicult
to lind the actual global minimum. Ou the other hand, with good initial estimales ol the
solution, good approximalions can be [ound wilh a reasonable amount ol computation. The
current version uses a fixed number of knot points, decided a priori, although software is
available that allows the insertion of additional knots (exactly duplicating the existing curve)
and the deletion of knots (giving a new approximate curve). The final positions of the control
points arc found in an optimization process using these initial valucs.

[n the previously mentioned theses [6, 7], it was assumed the data was given as ordered.
This was important in that no assumption was made regarding whether a curve could cross
itself (and in fact, this happened in the examples given). Since the ordering was given. it
was then possible to determine which of two crossing segments of the curve a nearby data
point wag close to in the parametric sense. not just the geometric sense. While it may not
be possible to easily order the data a priori in this application, knowing that the curve does
not cross itsell will enable us 1o determine the ordering of the points [rom multiple passes
during the [itling process.

The process ol [itling the track segments with a Bezier curve takes place in three steps.
First an initial guess for the conlrol points is made, This currently is done in a semi-
automated lashion. The optlimization is carried oul in two phases, The [irst 1s a local

10
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Figure 5: Control Points of Bezier Curve at 3 Stages of Optimization. (a) Initial Guess, (b)
Local Optimization, (¢) Global Optimization

optimization for the location of the interior control points located on the lines tangent at the
knots. This is followed by a global optimization for all the parameters of the Bezier segments.
For the purpose of this study, the optimizer built into Matlab (version 5.2) via its FMINS
function. This uses a Nedler-Mead simplex (direct search) method. As an alternate the
Matlab optimization toolbox function FMINU was also investigated. This uses the BFGS
Quasi-Newton method. While the solutions were not identical, the produced essentially the
same space curve.

Figure 5 shows an application with two cubic segments. The data on which this example
is based was taken at the “beach lab”, and consists of 54 points. The left figure represents
the control polygon and the approximating curve after the user has input the initial guess
knot points. The program then determines tangent vectors at the knots and distances to the
interior knot points. The rms distance of the data points from the curve in Figure 5 is 5.14
m. The center figure shows the approximating curve and knot points after local optimization
for placement of the interior knot points, with no changes to the location of the knot points,
or the slopes at the knot points. The configuration of the right control polygon shows the
flexibility of the method to adapt to move complicated shapes. The rms distance to the

11
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Figure 6: F'T Ord Square Area Fit with Three Segment Bezier

curve for this case is about 0.64 m. The right figure shows the control polygon and the fit
after all parameters have been optimized. The rms distance to the resulting curve is about
0.42 m. The large reduction in error after the local optimization and the relatively small
error reduction after the global optimization reflects some skill by the user in proper initial
placement of the knot points.

Another example is shown in Figure 6. Here the data consists of 99 points that were fit
using a three segment curve. Recall that such a curve embodies a total of 13 parameters.
The rms of the distances from the data points to the curve in this approximation is 0.40 m.
The data was taken on a trip along the west and northern sides of the Ft. Ord square, which
includes the kink previously noted. The path essentially consists of 3 nearly straight-line
segments, joined by a sharp corner and by a transition (kink) from one line to another.
While the control polygons and knots are not shown, the interior knots are near the corner
and the midpoint of the kink. This example illustrates the capability of the fitting procedure
to model very different kinds of behavior, from small radius corners to smooth transitions
between essentially straight lines. To achieve the small radius corner the algorithm places
the adjacent interior control points close to the knot at the corner.

Thus in two cases, one fairly extreme, this approach fit the data at the 0.40 m level. This
is consistent with the differences in the zero baseline experiment on shipboard given in Table
1. It would probably not be useful to try and fit the raw data more accurately.

The Bezier curve fits discussed here assume random noise with zero mean. However the
true non-random nature of the noise will then be folded into the process. As we discuss later,
it 1s useful to separate segments with fixed satellite sets because these segments are likely to
have almost fixed biases.

3.2 Data Collection
3.2.1 Test Areas

In order to provide real data for analysis and experimentation several data collections were
made. These all occurred in the general area of the Naval Postgraduate School in Monterey
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CA (36.6 N 121.9 W). Data was collected over 3 tracks shown in Figure 7. This shows the
south end of Monterey Bay, which is about 150 km south of San Francisco.

The Naval Postgraduate School is on the southern edge of this map. It is labeled NPS
and is partially off the map. The static data was taken at NPS. The antenna is on top of
the highest building on campus and in a multipath free environment. The reference data for
the kinematic solutions was also taken at this site.

NPS has some beach property about 0.8 km from the reference site. This is called the
Beach Laboratory area and marked “Beach Lab Track” on Figure 7. There is a narrow paved
two-lane road on this property that was used as a test track. The road area used was about
150 m long with a large turnaround through gravel parking areas at each end. The Beach
Lab area was used on several occasions over about 9 months to get repeated statistics from
independent samples. Speeds were limited to about 35 km/hr (10 m/s).

Track Along Route 1

Figure 7: Three Test Areas on the Monterey Peninsula

In order to evaluate open road conditions, data was taken along California route 1 (the
Pacific coast highway) over a length of about 8 km. This is a divided highway with 2 and 3
lanes, in each direction, along this area. There are no cross streets, only one underpass and
no areas of limited visibility. There is limited visibility and an overpass on the cross street
at the south end used for a turnaround. In all but a few controlled tests, the route took the
right (slow) lane. Speeds of 100 km/hr (65 mph or 30 m/s) were common. The northern
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cnd of the route turned around at the main entrance to the old F'I" Ord. {T'his army base is
now closed and converted to civilian uses.)

The straight tracks commonly found in urban arcas were sampled using some strects in
the former F'1' Ord. A rectangular route 0.7 km by 0.5 km was used in an arca with little
tratfic. This "square” ig about 10 km from the NI’S reference station. It is shown in Figure
8. The visibility is good except for a few trees. In one area there are buildings that limit
the horizon to about 10 degrees. Figure 8 shows the rectangle as well as the location of 4
survey markers positioned for this study (small numbers 1 to 4 inside the square). These
were used in a stop and go test discussed later. It should bhe noted that the northern side
ol this roule is not straight., It consists of two straight segments thal join with a kink. The
ollset 1s about 25 m and occurs over a distance of aboul 100 m. They are also slightly ollset
i angle with respect 1o each other. This provides a nice test case [or the [itling algorithins.
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3.2.2 Experimental Configuration

The dynamic data was taken i all cases 10 a king cab truck shown m Figure 9. The receivers
and data logging equipmentl were placed i the rear seal. An Ashlech Z12 dual [requency
recciver was uscd to provide data for a reference trajectory. The data on this receiver was
logged internally in the reeciver. The reference recciver was an identical 212 located over a
surveyed mark on the NP3 campus. This mark was on top of the highest building on campus
in a multipath free environment. Data was taken at 1 Hz and the reference trajectory was
processed with the Ashtech PNAY program.

Antenna regre

Antenna Mounts

A
o o B

Range Pole St
= ~

[ — B A
y S
I |
/
Bench Mark\ | RS

Figure 9: Vehicle Used for Data Acquisition

The three PLGIIVs in each test had their antennas in one of two configurations. lor the
first few fests they had separate antennas mounted on a square on the truck roof. T'he square
15 aboul 1 m on cach side. The relerence systemn was on Lthe [ourth corner. This required
a lever arm correction to bring the cllective location ol all the receivers together. In later
experimnents, all the receivers shared the relerence receiver geodetic antenua throngh a 4 way
WR Inc. splitter / amplificr. This had 26 dB of gain. This common anteuna was mounted
on the truck rool [or some runs. In others it was monnted on a pole attached to the side of
the truck via a gquick release. This 1s the conliguration shown in Figure 9. This allowed Lhe
antenna and pole to he removed from the truck and placed over a survey mark. The pole
had a target bubble level and a point for insertion in the survey mark.

The data from the PLGR: were collected in laptop computers using a NPS written pro-
gram called VBPLOG. This program took data from the instrumentation port and converted
the solutions on the fly to ASCII and logged them. (The position solutions came from PLGR
data block 5040°s and the velocity [ron block 3%s.) The data were collected al 1 see mtervals.

The VBPLOG program could also control the tracking ol the receivers. In all bul the
[irst test, one PLGR was lell to choose its own satellites aud the other two were controlled.
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The tracking scenarios were generated with another NP5 program. The VBPLOG program
was also used to sct the configuration of the PLGR to ensure that it was on the correct
datum ete. The logging program also displayed the solution, DOP and tracking status. This
allowed problems to be identified in the ficld.

In arder to generate independent data sets, the data was separated into sets with different
satellites being used for the solution. Only sets with two or more satellites different were
considered as independent data sets if the data was taken at the same time. Data with one
satellite different were ignored.

4 Static Errors

4.1 24 hour data sets, characteristic of errors

The errors of two PPS receivers, tracking the same satellites, are remarkably similar. This
was dramatically observed during an at sea experiment conducted by NPS in 1996 on the
Research Vessel PT SUR [8]. During that experiment there were 4 PLGR’s used, two on the
ship and two al a static site on shore. Each pair had only one antenna, making this a dual
“zero haseline” experimaent.

When the receiver solutions were differenced within cach pair, the error was observed
to be cssentially zero over large time blocks and much larger in other blocks. 1t was found
that the times that corresponded to very small errors occurred when the two receivers were
tracking the same satellites. The tracking scenarios were available in the data, therefore
statistics of the differences in bhins according to the number of common satellites could he
generated.

The results of this analysis for both zero baseline pairs are shown in Table 1. Here the
RMS of the differences are shown for both the position and velocity. The values are in m
and m/s. Cases without a significant number of points have not been listed. This causes the
number in the *All Data” category to be slightly larger than the sum of the cases shown.

The cases of 41 common satellites represent the same satellites used in the solutions.
Here the difference in the horizontal componcents is 30 cm or under on land. The vertical
coordinate is about twice ag large. The same pattern is shown on the ship, with about a
doubling of the level.

However, when cven a single satellite s different, the error jumps to the 3 m level in
cach component for the land case. 1t does not get significantly worse with a larger number
of different satellites. Here the ship data is not worse, indicating that the substitution of
a single satellite dominates the error budget. This demonstrates that the broadcast orbit
model errors are the major error component of a PI’S solution.

To illustrate this, a day of data taken in 1997 has been analyzed. In this case there
was a Trimble 12 channel PI’S receiver on an antenna 2 m from the PLGR antenna. The
errors of bolh receivers as a [uncltion of {ime are shown in Figure 10. It is evident thal the
basic [orm ol the PPS errors is the same [or a solution based on the best 4 satellites and an
all-in-view solution. The Trimble unit has much lower random noise, but only occasionally a
much lower error value. (See the longitude error at between 08 and 10 UT.) The errors can,

12



AL Static L.and 1lata

A Position (m) A Velocity (m/s)
Common Sats. | Points | Lat | Lon | Height V., V. V.
1 881 | 3.08 | 4.00 | 6.83 0.0L1 | 0.007 | 0.031
2 9151 | 4.02 | 4.08 | 4.81 0.022 1 0.025 | 0.028
3 17989 | 3.70 | 3.13 | 4.45 0.041 | 0.027 | 0.031
4 246366 | 0.34 | 0.17 | 0.55 0.030 | 0.019 | 0.035
All Data 274447 | 1.25 | 113 | 1.58 0.031 | 0.020 | 0.035

B. At Sea Ship Data

A Position {m) A Velocity (m/s)
Common Sats. | Poiuls | Lal | Lon | Height | V, V. Vo
1 11208336 2.68 0.226 | 0.212 | 0.107
2 1702 | 4.04 | 2.82 | 4.15 0.191 | 0.128 | 0.115
3 11329 | 3.35 | 2.52 | 6.95 0.329 | 0.229 | 0.18%
4 241807 [ 0.57 | 0.34 | 0.90 0.172 | 0.122 | 0.131
All Data 254842 1 0,96 | 0.67 | 1.74 0.152 1 0.129 | 0.134

Table 1: Zero Baseline PLGIR PPS RRMS of Solution Dillerences By the Number of Cominon
Natellites

however, be large in both receivers at times. Sce for example the height between 041 and 07
L

Notice that the error, for either receiver, is often the same sign for a period of 3 to 6
hours. Clearly taking shorter than a day will not significantly reduce the errors.

To further document the characteristics of the PI’S error, the probability distributions of
the errors were computed. These are shown in Figure 11. Here it is clear that the longitude
is the hest determined component. The latitude has a slightly wider and more irregular
distribution. This was expected for a PLUR, but the similarity of the two in the horizontal
is striking. In the vertical the PLGR is much worse. But it is a single [requency receiver.
This probably accounts [or the slight bias. A summary ol the statlistics lor these dala is
given in Table 2.

PLGR Trimble 12 Channel
Avg. | o | Avg. o
[.atitude 0.13 | 3.70 | 0.21 1.81
Longitude | 0.64 | 240 | 0.31 1.39
Height -2.51 | 6.58 | 0.04 1.11

Table 2: Error Statistics for PPS Solutions Over a Day for PLGR and 12 Channel Trimble.
All Values are in meters
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4.2 Stop and Go

One possible technigue [or [inding a belter position al a point is Lo average the positions
obtalned in several short occupations of a pointl. I'rom the previous section it is clear thal the
time interval between occupations needs to he large. T'he main requirement is that satellites
change, but for a free running PLGR this often means a few hours between data sets.

[n order to evaluate the validity of these assumptions, a short test was made. In this
test four surveyed points were repeatedly occupied at intervals of about 10 minutes over an
hour. The PLGR PPS solutions and a kinematic GPS reference solution were evaluated.

4.2.1 Experiment

Four marks were surveyed on the former FT Ord around the 0.5 ki square used in this
study, One marker was placed near each corner. These marks are about 10 km from NI'S.
A map of the area is shown in Figure 8.

A truck that had a range pole attached to its side was used. This is a straight pole about
2.5 m long with the antenna on the top and a point to insert into a survey mark at the
bottom. A clamp allows quick release [tom the truck mount so an operator can walk the
anlenna (o a nearby mark. (See Figure 9) Three PLGR’s, NPS numbers 2, 5, and 10 and,
one Ashtech Z12 were used on the truck.

For about an hour, the truck was driven around the square. Al each mark, the truck
pulled up just past the mark, an operator gol out and sel the antenna/rauge pole over the
mark. When the pole was vertical {a bubble level is buill iuto the range pole) he told the
truck driver who recorded the time. The goal was to obtain 30 s of level data at the mark.
Often more were taken. 1t took about 10 minutes to make a circuit. Sceven circuits were
made with stops. At onc time a few circuits were made without stopping for other analysis.

4.2.2 Results

The data were converted to a local z-y (Fast, North) system for analysis. The reference point
used for this conversion was a point near the Beach Lab track. The = axis was essentially
a blased easting and the y axis a blased northing. Both the I’I'S data being evaluated and
the kinematic reference solutions were treated the same.

4.2.2.1 Kinematic solution "T'he errors in the kinematic solution can be evaluated from
this data because there is a static survey on the mark. In addition the errors in the averages
of the solutions while the antenna was over the mark can he obtained. These averages and
the standard deviation of the data are given in ‘lable 3. Here the crrors are grouped by the
mark occupied. The last column is the number of 1 second points used in cach average. In
general 30 to 40 seconds were taken at each site.

It is clear that the kinematic solution is very good. Only one case shows an anomaly,
and this is probably due to operator problems or identifying the correct stationary data set.
(There was always a stationary set with the antenna on the truck before and after each mark
observation.) The errars are generally in the 1 to 2 em level. This is extremely good for a
solution that 1s advertised to be good al the 5 1o 10 cm level,
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FError Standard Doeviation
Mark | Fast | North Up | East | North Lp | Npt
0.00 | -0.01 1] 0.03 | 0.02 0.01 ] 0.00 IR

1 i );
0.00 0.00 1 0.02 | 0.01 0.00 | 0.01 44
0.3s5 | -0.32-0.92 ] 0.20 0.19 | 0.50 | 37
0.03 | -0.03 | -0.02 ] 0.06 0.07 | 0.03 ] 36

0.00 0.00 | 0.00 | 0.00 0.01 | 0.01 32
0.00 | -0.01 | 0.00 | 0.01 0.01 | 0.00 | 147
0.01 | -0.02 | -0.03 | 0.00 0.00 | 0.00 ] 62
0.01 | -0.01 [-0.02] 0.01 0.01 | 0.01 ] 117
0.02 | -0.02 | -0.02 ] 0.00 0.00 | 0.01 38
0.00 | -0.01 [-0.03 | 0.01 0.01 | 0.01 39
0.01 | -0.01 [-0.02 ] 0.00 0.01 | 0.00 | 42
0.00 | -0.01 | 0.00 | 0.00 0.01 | 0.00] 40
0.00 0.01 | 0.01 | 0.01 0.01 | 0.00 | 44
0.00 0.00 | 0.00 | 0.01 0.01 | 0.00 ] 38
0.00 0.00 | -0.01 | 0.01 0.01 | 0.00 | 29
-0.01 0.02 1 0.02 | 0.00 0.01 | 0.01 30
0.01 0.00 1 -0.02 | 0.01 0.01 | 0.00 | 37
0.00 | -0.01 | 0.01] 0.01 0.01 | 0.01 33
0.00 0.00 | 0.03 | 0.00 0.01 ] 0.00| 34
0.01 0.01 | 0.01 | 0.01 0.01 | 0.01 36
0.00 0.01 1 0.01 | 0.01 0.01 | 0.01 30
0.00 0.00 1 -0.01 | 0.01 0.02 1 0,00 25

W s e e | T Tl L T Qo Q| DD DD DD DS D N — — e

Table 3: Kinematic Reference Solution Errors. All values are in meters.

4.2.2.2 PLGR PPS Absolute Positions A similar analysis was done on the PLGR
solutions. In this case the data were first separated by receiver and then by the location.
There is a table for the error of each receiver. These are given as Tables 4 - 6. In these
Tables, a scenario number is also listed. This is because the satellites heing tracked are
much more important than the receiver being used. The satellites tracked in each scenario
are given in Table T.

The horizontal errors [rom scenarios 1 and 2 are shown in Tigure 12, The same plot [or
all the data is given in Figure 13, The standard deviations of the data in the set are plotted
as crror bars. It is very clear that the internal consistency of the data as secen in the standard
deviations is usually much smaller than the true errors. [t is also clear that the “hias™ is
slowly walking.

There s a significant difference in the standard deviations of the data in the two major
scenarios. [n part this is due to the higher DOP for scenario 2. For scenario 1 the DOP is
in the range 2.5 to 4 while for scenario 2 the range iz 2.9 to 6. Other factors may also be
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Frror Standard Deviation
Mark | East | North LUp | Fast | North Up | Sen | Npt
1 3.20 0.61 | 046 | 0.12 0.68 | 0.39 1 36
1 4.43 1.94 1 0.23 ] 0.14 0.13 | 0.34 1 42
1 4.27 295 | 0.72 | 0.26 0.20 | 0.43 1 36
1 4.76 4,30 | 2.30 | (.31 0.33 | 0.42 1 20
1 -0.76 | =232 -9.12 | 0.37 0.19 | 1.12 7| 27
2 2.91 0.51 | 0.35] 0.38 0.67 | 0.79 1 144
2 3.00 0.64 | 0.06 | 0.22 0.23 | 0.38 1 nY
2 3.86 1.94 | 1.24 | .17 0.41 | 0.05 1| 114
2 4.72 2.03 | -0.06 | 0.13 0.31 | 0.25 1 39
2 5.40 4.6 | 2.60 | 0.31 0.20 | 0.86 1 34
3 2.52 0.50 | -0.67 | 0.10 0.42 | 0.41 1 41
3 3.90 1.45 | 0.83] 0.20 0.20 | 0.52 1 39
3 4.88 255 | 0.53 ] 0.15 0.23 | 0.86 1 37
3 5.7 2.81 | -0.69 | 0.10 0.22 | 0.40 1 26
3 -0.50 | -1.99 | 8,15 | 2.34 1.25 | 4,18 3 28
4 3.07 0.60 | 0.03 | 0.23 0.17 | 0.10 1 34
4 3.44 1.64 | 1.04 | 0.20 0.31 | 0.38 1 32
4 4. 11 2.00 | 247 | 0.14 0.14 | 0.35 1 34
4 4.70 338 | -1.35 | 0.27 0.24 | 0.64 1 10
4 4.43 3.00 | -2.47 | 0.07 0.10 | 0.14 1 14

Table 4: PPS LErrors [or PLGR 2 al Survey Markers, All values are in meters.

at work here. The very large error barg in the “one of” cases may be influenced by recent
satellite changes that have not vet caused the solution to stabilize at a new hias.
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Error Sltandard Deviation
Mark | LEast | North Up | East | North | TUp | Scu | Npt
3.29 0.46 | 0.57 | 0.81 0.56 | 0.51 ;
4.33 .73 0.3 (.13 0.06 | 0.22
4.37 2.74 | 0.80 | 0.17 0.12 | 0.4%8
5.00 4.39 | 2,98 | 0.10 0.09 | 0.36
4.66 541 | 3.77 | 0.08 0.23 | 0.57
-0.26 0.57 | 4.26 | 3.98 3.69 | 2.33
2.89 0.38 | 0.60 | 0.09 0.25 | 013
2.82 0.77 | 0.65 | 0.14 0.13 | 0.35
4.05 1.86 | 1.27 | 0.10 0.17 | 0.15
3.49 1.90 | 1.41 | 0.09 0.33 | 0.38
455 231 [-0.53 | 0.10 0.15 | 0.20
5.35 443 | 268 | 0.22 0.09 | 0.85
3.61 1.39 | 1.148 | 0.08 011 0.13
1.26 | 049 | 0.17 0.09 | 0.10
240 | 0.26 | 0.14 0.16 | 0.67
284 | -0.03 | 0.09 0.13 | 0.24
454 | -0.38 | 0.12 0.14 | 0.57
4.76 | 2.86 | 0.19 0.12 | 1.38
5.80 | 7.90 | 0.05 0.16 | 0.42
149 | 1.19 | 0.21 0.27 | 0.36
1.84 | 2.58 | 0.10 0.10 | 0.34
2.93 | -2.12 | 0.27 0.26 | 0.71
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Table 5: PPS Errors [or PLGIR 5 al Survey Markers, All values are in meters.
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Frror Standard Deviation
Mark | East | North | Up | East | North | Up [ Sen | Npt
278 | -2.68|-1.32 | 0.54 0.57 | 0.26 ' 36
3.92 | -3.46 | -2.538 | 0.16 0.14 | 0.46 28
265 -4.99|-0.41 | 0.12 0.50 | 0.69 26
3.01 | -4.54 | -5.31 | 0.29 0.23 | 0.40 34
2.81 8.49 | -5.63 | 0.34 0.04 | 0.74 10
260 | -1.70 | -1.24 | 0.36 0.57 | 0.78 128
256 | -2.84 | -1.20 | 0.85 0.20 | 0.37 56
3.38 | -3.89 [-1.64 | 2.40 0.46 | 0.93 95
1.99 | -5.90 |-1.08 | 0.52 0.23 | 1.30 36
215 -2.32 [ -248 | 0.31 0.38 | 0.1 I
3.38 | -3.38 [-1.78 | 0.09 0.20 | 0411 37
157 | -1.21 | -3.37 | 0.37 011 | 0.1 17
261 | 235 [-1.72 | 0.19 0.12 ] 0.I8 36
294 | -3.69 [ -1.61 | 0.39 0.25 | 0.28 32
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Table 6: PPS Frrors for PLGR 10 at Survey Markers. All values are in moters.

Number
Scenario | Satellites Prn’s Stops
1 I 811525 20)
I 81151 3 17
1] 8115]25

3

1

3

I O

201 8115
29 (14 |15 |2
29 [23 |15 |

1
1
1
: 1
25|14 (15|21 1

- &

Table 7: Track Scenarios Tor PLGRs

25



Error in ¥ or North (m)

-1.0

-2.0

-30

4.0

FT Ord Scenario |

20T
40
30
20
1.0

0.0

i la g

5.0 40 30

-2.0

-1.0 00

1.0 20 30 40 50

Error in ¥ or North (m)

-1.0

-2.0

-30

4.0

-5.0

FT Ord Scenario |l

50 T
40
30
2.0
1.0

0.0

5.0 40 30

-2.0

-1.0 00

1.0 20 30 40 50

Error in X or East (m)

Error in X or East (m)

Iigure 12: Errors at 1”1 Ord Stops (a) Scenario 1 {h) Scenario 2

Error in North or ¥ (m)

FT Ord All Stops

-1.0

-2.0

-30

4.0

-5.0

Sl I L L L B
4.0
30
20

1.0

(ER]

&

1 \hf'

5.0 40 3.0 20 -1.0 00

1.0 20 30 40 5

Error in X or East (m)

o

Figure 13: Errors at FT Ord Stops, All Data



4.2.3 Stop and Go Summary

The noise level due to the inherent variation in a PLGR solution is at the 0.2 m level in
mosl cases. There may be some receiver Lo receiver varialion. This is [or a DOP of 3.

The “biases” walk. T'he typical velocities are 5 m / hour. Thercfore one should not use
scgments of data longer than about 10 minutes in a system trying to define positions at the
I m level.

5 Dynamic Approach

5.1 Model Assumptions

In the analysis of data from PP’S GPS receivers it will be assumed that the Clock and Orbit
errors inherent in the use of the broadcast ephemeris dominate the error. This means that
for the present analysis, we are ignoring environmental effects such as multipath. It will also
be assumed that the random noise contribution is much smaller than the Clock and Orbit
errors.

In particular it is assumed thal the error in a position will have two major components:

1. A small random componeut, here assumed 1o be aboul 25 cin per axis in the horizontal
plane,
2, A larger error that changes only slowly while a [ixed set ol satelliles 1s used in the

solulion. (In reality the assumption is that a [ixed set ol satelliles with broadcasl
ephemeris [romn the same upload. Within thal upload, epochs or IODE/IOD( s can
change. )

This larger error:
{a) Can be modeled as a constant or linear lunction ol time. Over a time scale of 10
to L5 minutes it can be considered a constant.
{(b) Will change discontinuously when satellites used iu the solution change.
These data will be converted to space tracks, removing the time as an independent
variable. It is assumed that space tracks over the same short scgment of road will have an
crror that is a hias with respect to the “truth”™. [t will he assumed that these hias vectors

arc independent for different satellite sets or on different uploads. It is assumed that the
crror in these bias vectors is random and has a zero mean.

5.2 Mathematical Overview

5.2.1 Tracks from Biases

Let the true track segment be T'{s), where s 1s some measure ol the distance along the track.
There will be n sets of measured locations over this same physical track scgment. Based on
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the assumptions, these will be the true track segment plus a bias vector plus some random
component.

The first step will be to take the diserete, time ordered, GPS locations and fit them to an
analytic curve in space. One benetfit of this process is to average out the random component.
Also some of the driving errors will be removed. We will denote the fit to a measured track
segment by Ty(s), i = 0.1,...,n — 1. Then the basic assumption is made that

T(é‘) = T?(é‘) + ,3?;_,

for all n track segments.

In the real world, the true track segment is unknown and only 7;(s) are available. The
approach is to choose ane track segment as a reference track. Here track segment zero will
be chosen. The ollset between each ol the track segmeunts and track segment zero will then
be estimalted,

A = <1 -1y >,
= 4=

Here < ... >, denotes the average over the distance measure s.
Now the average of the As over track scgments will he taken

<A > o= <z =i

= = ﬁ[}

Ol course this average does not include the relerence {rack segment because Aq is always
identically zero. Ilere il is assumed thal the bias veclors are random and will average 1o
zero given a sullicient number of samples, Thus

T = To+ 5
R~z [“]* << !F,g - [“il -

The average over the track segments can he done as a simple average. However it is more
appropriate to do a weighted average using some measure of track quality. Two estimates
have been studied here. The first is the post-fit rms from the offset vector solution process.
A second method is to use the N-Corner Hat method of Barnes [9] popularized in the precise
timing commuuity by Allan [L0]. This method takes the above rins values [rom solutions
between all pairs of tracks segments and estimates the most likely variance ol each bias
vector. In both cases the reciprocal of the varlance or rms sguared is used as the weight,

In the cases studied here the track segmens are vectors in two dimensions and the F°s
are two-dimensional vectors, It is unportant lo note that the 3, and heuce the A can only
be estimated i there is significanmt varialion of the track in the two components of the
scgment studicd. If the track segment is straight, only the eross track component of the A’s
can he resolved. This will manifest itself in a singular covariance matrix hetween two track
scgments. In this case a solution for only the cross track component of the offset vector will
he found.

An example using nine independent track segments following the same path will be given
in Section 7.1. It is important to mention that for a straight line, the solution for 73 is
singular, one can only find cross track coordinate, not along track component. This is why
we discuss 1-d fit in section 6.4.
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5.2.2 N-Cornered Hat Test and Variance Calculations

The N-cornered hat calculation was designed (o estimate the variance in a sequence ol time
estimates ol N independent clocks [9]. The basic equalions are obtained in the lollowing
way. Lot 1% represent the time sequence from the i clock, with unknown variance o2, and 7'
the true time sequence. The the matrix of variances of the differences between the observed
sequences can be computed

Si; = wvar(T'=1Y) _
= var(T=T") 4 var(T = T17)
= al+o7

can be computed. The function “var” is the variance of its argument. Here it is assumed that
the scquences are zero mean and uncorrelated. This relates the computable quantity, 5;;, to
the variances of the individual clocks. We then have 5 foria=1,.... N, j=74+1,..., N,

NN —L

providing e cquations in the & unknown variances. If ¥ > 2 there arc at least as

many cquations as unknowns, and the approximate value of the variances can be found by
least squares methods. For ease in writing the equations, assume that 5; = 5;; for all )
with 5; = 0. The least squares estimate results in the solution

N I N N

fo = ﬁ Zbu—mz Zbkj ,221:...:;\’_

J=I A { k=1 j=I

This calculation may result in negative variances under certain conditions, and that is
observed to occur when the true variance of the clocks ig significantly larger than that of the
others. In thal case the calculation can be used 1o determine a clock with a large variance,
eliminate 1t [rom the sel and repeat the calculalion.

We have used this procedure in a slightly dillerent selting, When the bias calculation is
done (see section 7), the mean-squared-error from the calculation of the oflset vector between
Lwo curves replaces the variance calculation above. We are then able Lo estimale the variance
of the error between the true frack segment and the given test track segment. When we
performed this calculation for the nine track scgments, it was found that the variance for
onc was relatively large while the variance for another was negative. T'his unphysical result
was corrected by removing the track scgment with the very large variance from the set and
the caleulation repeated. T'his gave good estimates of the variance of cach track scgments’
errors.

5.2.3 Generating 3 Dimensional Space Tracks

For a single track of data, two methods of fitting the data in 3-d scem apparent. The first,
and most difficult, is to extend the Bezier cubic fits, discussed carlier, to 3-d. Knot points
would have three components, the tangents at the knot points would have two degrees of
freedom, while the distances would be the same (two per cubic segment). This is relatively
straightforward to implement and results in 7+ & — 2 parameters for a & knot Bezier cubie.
Of course, the errors in the z-component would be weighted differently than those in the
and y-components.



A sccond, and casicr method is a two step procedure. Fit the & — i data first. The
paramcter value for cach point is then available {or casily computed). The distance along
the curve could also be cagily computed. T'he z-component could then be fit as a function
of cither parameter value or distance along the curve (it’s suggested the latter is a better
idea) using the 1-d analogue of Bezier curves, Bessel cubics. Since the z-component has
much larger error than the horizontal component. this approach seems attractive because it
decouples the problem into two simpler problems.

It a single path in horizontal coordinates is generated through “averaging” the data from
several paths. the method of then estimating the height along the resulting curve from the
z-component data is not so clear-cul. The problem is attempling Lo identily a parameter (or
distance) value of each poiut with the z-value. Since dilferent paths have differeni biases,
this could only be done by taking into account the bias between the “averaged” curve and
the individual curve that the z-component datumn came (rom. This could be done, but it is
not clear that the z-data should be treated this dillerently.

Instead, it seems reasonable to “average” z-components [rom several paths using an
algorithm similar to that used for the horizontal coordinates.

6 Dynamic Space Tracks

6.1 Considerations - linear/2-d, point spacing

We have developed Mallab codes [or data seginentation and track averaging. In this seclion,
we discuss the dala segmentalion to pick independent tracks and to choose pieces thal should
he fit by a straight line (sce scetion 6.1). The latter is required sinee in this case onc can
onlv find the cross track error.

6.2 Data segmentation

For the purpose ol this study the dala segmentation was done in a semni-aulomated [ashion.

13

One program finds the segments of tracks which are monotone in “27. It also finds times at
which satellite groups change. Plots are made of cach segment, along with a timcline plot of
the various path scgments and satellite groups.

The program then interrogates the user for a time interval or segment to be “picked off”.
One or more segments are then saved in .mat files specified by the user {the name is the
same as the input file with an index to distinguish hetween the segments). Some of these
may then be further reduced to track segment data sets that can be fit by piecewise cubics

or a straight line.

6.3 2-d fit mathematics goodness of fit (rms of fit vs. rms errors)

The initial guess for the knot locations is given to the fitting program graphically. The data
is digplayed with labels indicating the order. Using the mouse, the user indicates the desired
location of the knots for the cubic pieces. All data before the data point closest to the first
knot and after the data point closest to the last knot is discarded. Kept and discarded
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points arc indicated on the graph and the user is given the option of accepting the input, or
restarting the knot selection process. 'The approximating curve is then computed. Graphical
output is supplicd. I'his data is then saved.

The placement of and number of knot points plays a crucial role in how well the initial
curve and ultimately how well the optimized curve fits the data. Fxperience is the best
teacher of how to do this, but there are some hints that can be given. Recall that the curve
starts at one end (knot) and ends at the other (the second knot). and is tangent to the
corresponding polveonal segments. In between there are two control points, the vertices of
the polygon segments whose placement is determined by the program. The Bezier curve will
rarely pass through either of these control points.

The initial guess algorithin is dependent on an ordering of the inpul points, and is taken
as the inpul order, with every lenth poinl annotated. The user then indicates (wilh the
same orientation) a sel of knol points [or the initial guess, using the mouse to place a cursor.
All points preceding the first indicated knot, and subsequent to the last indicated knot point
are discarded [romn the data set.

The shape of the data curve will determine the number of knot points required for the
complete curve. While it is possible to fit data with an infleetion point in the interior
of a single paramctric cubic segment, it is probably a good idea to insert a knot point
at the approximate location of the infleetion point. Other knot points should be inserted
commensurate with the shapes that are possibly gencrated by a single paramctric cubic
curve.

Cenerally, it is felt to be a good idea to use no more than 3 or 4 cubic segments (4 or 5
knots). If suitably small errors are not obtained in a particular case. it is necessary either to
increase the number of knots, or to decrease the extent of the data being fit. As the present
time, no software for automatic placement of additional knots, nor refinement of them after
an unsuccesslul approximation 1z avallable,

With a liltle experience the user can select seginents of the data and supply initial guesses
that result in the approximation having rms errors (of the distance of the dala points [rom
the [itling curve) that are on the order ol 0.5 meter and sometimes less. Such errors are in
line with the errors shown in [Migure 3 for the “random” component and excluding the larger
hias crrors that appear to be approximately lincar in time. For a mathematical discussion of
these errors, see Section 3. For a short time interval the fitted curve is primarily in error due
to the hias crror since the random error is greatly diminished by the curve fitting process.

6.4 1-d fit mathematics goodness of fit

When data is collected along a straight road, it is desivable to fit this data using a straight-
line scgment. This is accomplished using a “total least squarcs”™ fit by a straight linc. This
process determines the coefficients in the approximation by minimizing the distance from the
data points to the line. Our algorithm attempts to find significant scgments of cssentially
lincar data collection by scquentially fitting subscts of the data using this process. If the rms
error of the fit is greater than a specified value, the algorithm decreases the amount of data
considered. and attempts the process again. If less than a specified number of points remain,
it is assumed the data was not collected from an approximately straight-line segment. By
using the rms tolerance of the fit, one can find straight-line segments with error that is

31



test
reference

\ displaced global offset vector

Figure 14: Local Offset Vectors

commensurate with the random error in the data, leaving the bias error as in the case of
curve fits. The straight-line data can be converted to the more general curve form if this is
desirable.

7 Track Averaging

The first step in track averaging is to estimate the bias between two curves that represent
(approximately) the same track segment. It is assumed that there is a current estimate of
the track segment, represented by a curve, here called the “reference” curve. The second
curve will be called the “test” curve. First, a set of equally spaced points is generated on
the reference curve. For each of these, the closest point on the test curve is found, and the
vectors resulting from joining the corresponding points, from reference curve to test curve
are found (see Figure 14). Call the vectors from the test curve to the reference curve local
offset vectors. We now find a fixed vector (the global offset vector) so that the length of the
projection of the global offset vector onto the local offset vectors is equal to the length of the
local offset vector. This is an overdetermined problem, and the solution is by least squares,
yielding the single offset vector from the reference curve to the test curve. This vector would
be the negative of the bias vector if the reference curve is considered to be accurate. The
standard deviations and the correlations between the errors in the two components are also
computed. An example of the two curves and every fifth local offset vector is shown in Figure
14, along with the (displaced) computed global offset vector.

7.1 Results

We have available nine statistically independent runs (at least two satellites different) on the
eastbound portion of the beach lab road. In addition, we have the “truth”, a high resolution
set of data for one of the track segments. Using this data we computed the offset vectors for
each of the nine data sets relative to the “truth” data.

Figure 15 (left) shows the nine track segments (the eight runs plus the reference track).
The right figure shows the eight test tracks translated by the relative offset vectors(A’s) to
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Run Real Errors | Run 0 Differences | Fit RMS | N-Cornered-hat
Fast | North | Hast North o8

] L39 | 0.7 | 0.00 (.00 0.25 Sl

1 3.45 | -2.95 | -2.06 2,38 0.38 30

2 -0.93 1 0.30 | 2.32 -0.87 (0.5H A6

3 048 | 1.3 | 091 -2.440) 057 .39

1 -1.64 | 5539 | 3.03 -6.16 2.50 omitted

5 -0.20 | 2.83 | 1.68 -3.12 0.16 .50

6 0.27 | 1.44 1.12 -2.01 0.60 AT

7 0.33 | h.66 | 0.86 -6.23 0.13 .25

3 -0.62 | =243 | 2.01 1.87 0.30 A7
Mean | 0.29 | 1.30 | 1.23 -211

a 140 | 2,92 | 1.43 3.02

Table 8: Error Vectors and Relative Offset Vectors for 9 ‘Irack segments at Beach Lab Test

Areca

be aligned with track segment (1. The offset vectors, and the true error vectors {#'s) for
these 9 {rack segments are listed in Table 8. Wilh the exceplion of oue track over parl of
the curve, the sel 1s very consistent cousidering the data were taken by driving the path nine
dillereni times. In addition this Table also lists the post [il root-mean-square error and the

estimale ol the standard deviation oblained [rom {he N-cornered-hal procedure.

The estimates of the variances [rom {his N-cornered-hat computalion are given in Table
9. In the [irst estimale using all 9 runs the variance of run 4 was very large and there is one
negative variance. Clearly a negative variance is not meaningful. This 1s caused by the very
large value of run 4. When that run is omitted the values are all positive and reasonable.

For comparison the mean square of the errors in cach track are also listed.

Table 9: Vatriance Estimates from N-Cornered-Hat Procedure. All values are in m?

Mean Square

Frror vs. ‘I'ruth

=

Run | All Runs | Omitting 41
0 0.224 0.099
1 0.190 0.090
2 0.115 0.213
3 0.005 0.155
1 5.686
5 0.308 0.252
6 0.089 0.224
7 -0.019 0.063
8 0.321 0.137

0.063
0.145
0.293
0.329
6.252
0.211
0.362
0.184
(.092
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Figure 15: Nine Independent Tracks over Beach Lab Track. (a) Raw PPS Solutions, (b)

After Removal of Intertrack Biases

Their average error was now computed five ways. First it was computed without weights
using all 9 tracks and then omitting track 4, the one that does not appear to be a member
of the ensemble. Then the same computation was done using the rms of fit in the weighting.
Finally the estimates of standard deviation from the N-cornered-hat procedure were used.
In this case only the data set omitting track 4 was used. In each case the weights were one
over the variance (or 1 for the unweighted cases). The results are shown in Table 10.

Data Set Weight Type East North
Avg| o | Avg | o
All Data Unweighted 0.29 | 1.40 | 1.30 | 2.92
Omit Run 4 | Unweighted 0.54 | 1.30 | 0.77 | 2.64
All Data Fit RMS 0.74 1 0.59 | -0.02 | 1.23
Omit Run 4 | Fit RMS 0.75 1 0.55 | -0.03 | 1.12
Omit Run 4 | N-Cornered Hat | 0.86 | 0.51 | 1.02 | 1.04

Table 10: Average Offset Vector for Different Weights and Data Sets. All values are in
meters

We expect the average offset of the test track segments from the true track segment,
given in the left two columns of Table 8, to be approximately (0,0). The average value of the
offset vector is (0.29, 1.30). Because the sample size is nine, the standard deviation of the
average (1.40, 2.92) is decreased by a factor of v/9 to get (0.46, 0.97) to get an estimate of the
uncertainty in the average. In addition, the results from the more sophisticated procedures
are listed in Table 10. In all cases, the average error is under a meter. The formal errors
give a good idea of the size of the error, although they overestimate the accuracy a little.
Part of this may be due to driving errors.

There are three places where estimates of errors come into this process. The first is the
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accuracy of fitting the raw positions to the space curves. I'hat process has an error cstimate
of 0.1 m. The second is the fitting of the A’s. This process is dependent on the geometry of
the track and especially if there is variation in both directions. Here the variation was mainly
in the cast-west direction, meaning that the cast-west component was less well determined
than the north-south one. In fact the covariance matrices from that process predicted the
error to be about 2.5 times as large in the east-west direction. However. when we examined
the variations of the average A’s, the east-west component has about half the scatter as the
north-south. This must be due to an inherent bias in the PI’S positions at mid-latitude.

7.2 Convergence

Using the biases computed from the true curve, a test was administered to the coordinates
(individually) of the biases to determine whether they are consistent with the hypothesis
that they are from a normal distribution. Because there are only nine points, a Chi Squared
Test cannot be administered. It was decided to use a variation of the Kolmogorov-Smirov
Test called the Lilliefors Test [11].

The null hypothesis is that the sample is [rom a normal distribution with unspecilied
mean and variance. The test compares an empirical cummulative distribution having zero
mean and variance one that is derived [rom the data, with a normal cumulative distribution
with mean zero and variance one, The test statislic is the maximum dillerence belween the
empirical and normal cdls, and a table determines whether the lest rejecls or accepls the
hypotlhesis at a given level of siguilicance.

For the given data, the test statistic yields acceptance of the hypothesis at all levels
of significance below about 25%. This holds for the components of the bias in the two
directions, independently. T'his means the sample of biases are consistent with being from a
normal distribution. The alternative conclusion would result in rejecting more than 25% of
samples from a normal distribution.

Thus this limited data set is consistent with the results converging to the true track as a
normal distribution. Therefore convergence as 1/ VN is expected.

8 Summary and Conclusions

The assumption that the errors in the broadeast message dominates the error in a Precise
Positioning System GPS system has been investigated. Tests in both static and dynamic
conditions were carried out. A method of adjusting dyvnamic tracks to allow their averaging
wasg demonstrated.

The major conclusions of this study follow. The first few are essentially the assumptions
that were made going into the study, which have now heen validated with experimental data.
The latter conclusions come from a particular implementation of “track averaging”.

1. The error in PPS solutions is a slowly varying [unclion of tiine given the same satelliles
are used wilh the same broadcast ephemeris, These errors are dominated by the
broadcasl ephemeris errors.

2. If the set of satellites or ephermeris changes there is a step change in this error.
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6.

Given the same satellites and ephemeris, the error can be treated as a bias vector over
periods of 10 to 15 minutes at the 1T m level.

“Biascs” in measurements with two different satellites/ecphemerisin a 4 channel reeciver
can he treated as independent measurements.

The tracks of a road measured multiple times with PPS receivers can bhe averaged
through the use of “space curves™. These are functions of the position paramcterized
bascd on the spatial variation rather than hased on the times of ohservation. Curves
that fit the data to 0.1 m were casily achieved.

A piccewise Bezier parameterization is well suited to represent these space curves.
It can fit road data to under 0.5 m with an cconomy of paramecters. It can casily
accommodate corners and sharp curves as well as straight scgments.

Solutions for the biascs hefween different tracks in the horizontal can rteselve two
paramcters if the tracks vary in two dimensions. [f the track is cssentially lincar, only
the cross track diffcrence 1s resalvable.

An example of 9 tracks was found to have statistically random bias veetors.

In an implementation based on Bezier space curves, a small road scgment was fit to
under a meter with 9 measurements. A method identifying tracks poorly fitting the
cnsemble was demonstrated for this case.
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Appendix A

The [ollowing [uncltions were also developed for the project.
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hezcuh.m
cpplt.an

clrpis.an
distpls.m

espovil.m

gpsfit2.m
iktgd.m

initg.m

knotgues,n

kigd.m
localopt.m

mat2asc.m

objdist.m

offcurv.m

evaluates Bezier cubic at input parameter values.

plots curve and points, given input parameter array and
(optional) points.

calculates  conirol poinls [rom knots, angles, and
distances.

calculates the rns of distances [rom input data points to
curve described by array ol paramelers.

takes as input the data [rom two [its. It compules quasi-
cqually-spaced points on the reference curve. Then the
ncarest points to cach of these on the test curve are com-
puted. Finally, ofsctvec is called to compute the vector
offset between the two curves along with the variance and
the correlation matrix for the fit.

main driver for Least Squares Approximation By G
Piecewise Parametric Cubics for the gps data.
forms curve deseription vector from knots, angles,
distances

computes the initial curve description array from initial
knot points and data.

interrogates user for initial guess knot poiutls, given dala.
Clalled by gpslit2.

extracts knol poiuts, angles, and distances [rom curve
description array.

compules sum ol distances [rom points Lo curve [or local
optimization. Called by fmins.

extracts from a .mat file the information about the data
points. the fit, and the closcst points and outputs this as
an ascii file.

computes sum of squares of distances from data points
to given Bezier curve, plus penalties for start and end.
(Called by fmins.

computes distance between two curves as a function of
distance along the reference curve, and plots it.

Tahle 11: Matlab Functions and Their Purposc



offsetv.m computes offset vector between two curves - called by
cspovi and cspovil.

optscg.m computes optimized distances for single Bezier cubic.
Called by gpsfit2, and uses localopt.

plepsp.m plots control points and knots of Bezier curve from input
description array.

plhash.m plats hash marks on Bezier curve to separate cubic
segiments.

psegsat.m plot the trip segments and satellite groups for arbitrary
input data files.

relcomlb.m  compares input dala with relerence (truth) data lor July
16,

sepl.an lakes the oulput of sepseg.m and [inds a piece ol thal
dala which is linear using total least squares

tlsl.m computes total leasl squares [it line [or Input data.

Table 12: Mallab I'unctions and Their Purpose - continued
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Appendix B: Optimization routines

The program gpsfit2 uses fmins.m first in the local optimization (considering each piece
ol cubic separately) and then in the global optimization. We have experimented also with
another minimization routine called fminu.m. The [irst is based ou the Nelder-Mead sim-
plex (direct search) method and the latter on the BI'GS Quasi-Newton method with a mixed
quadratic and cubic line search procedure. Ilere we compare the cpu and number of [unc-
tion evaluations in gpsfit2 using fming.m (called gpsfit2s.m) versus that using fminu.m
(gpsfit2u.m):

The results for gpsfit2s.m are given in the following tables, first for the local optimization

part (‘lable 13) and then for the global eptimization (‘lable 14):

Data file Number of function | Function value
name evalualions
p2sepl.mat 108 00044097

45 00176556

39 000438411
plOjul162.mat 31 00091

61 00131
alpllcY.mat 30 00049

58 00026

Table 13: Local Optimization Using gpsfit2s.m

For the global optimization part gpsfit2s.m requires 1201 sec using data file p2sepl.mat.

Dala [ile name: p2sepl.mat | plOjull62 | alplled
Number of [unction evaluations: 1204 259 25l
TMunction value: 000693999 00057 060
RMS J1057 AT A762

Table 11: Glohal Optimization Using gpstit2s.m



Now to gpsfit2u. For the local optimization part we summarize the result in Table 15:

Data [ile name | Number of [unction | Function value
evalualions

p2sepl.mat 14 000441091

26 0176124

10 00448282
pljul162.mat 15 00091

26 00131
alplled.mat 9 L0049

26 00026

Table 15: Local Optimization Using gpstit2u.m

For the glohal optimization (sce lable 16) gpsfit2u.m requires 170 sec for the global
optimization part using data file p2sepl.mat (compare to 1201 scc for gpsfit2s)

Dala lile name: p2sepl.mat | plOjull62.mat | alpllcY.mat
Nunber of [unction evaluations: 169 129 04
TMunction value: 00111341 00055 00067
RMS 40676 A621 2011

Table 16: Global Optimization Using gpsfit2u.m
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