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Abstract

We consider a firm that uses two perishable resources to satisfy two demand types. Resources are flexible such that
each resource can be used to satisfy either demand type. Resources are also indivisible such that the entire resource must
be allocated to the same demand type. This type of resource flexibility can be found in different applications such as
movie theater complexes, cruise lines, and airlines. In our model, customers arrive according to independent Poisson pro-
cesses, but the arrival rates are uncertain. Thus, the manager can learn about customer arrival rates from earlier demand
figures and potentially increase the sales by postponing the resource allocation decision. We consider two settings, and
derive the optimal resource allocation policy for one setting and develop a heuristic policy for the other. Our analysis
provides managerial insights into the effectiveness of different resource allocation mechanisms for flexible and indivisible
resources.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we study the optimal capacity allo-
cation3 decision and the value of postponement for
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flexible and indivisible resources in the presence of
forecast uncertainty. Although indivisible and flexi-
ble resources are utilized in various service indus-
tries, issues dealing with the management of such
resources have not received much attention in the
operations management literature. Our objective is
to provide managerial implications and guidelines
on how to manage this type of resources.

Specifically, we consider a service system that uti-
lizes two capacitated and perishable resources to
satisfy two types of consumers (demand streams)
arriving stochastically and dynamically over a sell-
ing season. Each consumer type requires a different
type of service, to be provided at the end of the
.
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4 An example in the United States is www.fandango.com,
which sells movie tickets online.
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selling season. Resources are (i) flexible because
each resource can provide either type of service,
(ii) indivisible because each resource can only pro-
vide one type of service in its entirety, and (iii) per-
ishable because resource capacity cannot be stored
in the form of inventory. We assume resources are
identical except for their capacities. In order to max-
imize the expected revenue at the end of the selling
season, the revenue manager faces two opera-
tional-level questions: (i) whether or not to grant
the service request of each arriving consumer, and
(ii) how to allocate the resources to the demand
streams. Obviously, these two questions are closely
related: Once the capacity allocation decision is
given, the manager knows exactly up to how many
consumers of each type he can admit into the sys-
tem. What complicates this decision problem is the
fact that in most real-world applications, arrival
rates of the demand streams are not known, and
can only be estimated with uncertainty at the begin-
ning of the selling season.

To simplify the analysis, we assume there are no
cancelations (hence, no overbooking); that is, every
accepted consumer will show up at the time of ser-
vice and be granted service. In addition, we assume
that there is no consumer-driven substitution; that
is, a consumer will not switch to a different service
type if what she desires is unavailable. We will dis-
cuss the implications of these assumptions in detail
in Section 6.

One commonly used strategy is to allocate
resources to the demand streams at the beginning
of the selling season in a way that maximizes the
expected total revenue; we refer to this strategy as
the no postponement strategy. Although this strat-
egy is convenient and easy to implement, it is often
difficult to make the ‘‘right’’ allocation that early,
especially when the demand forecast is subject to
errors. By postponing the allocation decision, it is
possible for the manager to learn about the
demand pattern from early sales figures to make
a better allocation decision at a later time. In this
paper, we study this capacity allocation problem
and devise two postponement strategies. Our objec-
tive is to analyze the effectiveness of each postpone-
ment strategy, and the value of postponement in
general, for managing flexible and indivisible
resources.

The capacity allocation problem of flexible and
indivisible resources arises in many real-world
situations. For example, consider a multiplex movie
theater that has several screens of different seating
capacities. The manager starts selling movie tickets
on the Internet and over the phone well in advance.4

By scheduling different movies around the same
time, it is possible for the manager not to assign
movies to screens until close to the show time. The
screens in this example are the flexible, divisible,
and perishable resources. Because screens have dif-
ferent seating capacities, the manager would like
to allocate a screen of a larger seating capacity to
a more ‘‘popular’’ movie in order to increase sales.
However, before the ticket sale begins, the manager
need not have a good idea about each movie’s pop-
ularity. For another example, a transportation ser-
vice provider (a cruise company, a shuttle service
provider, or an airline) usually has vehicles of differ-
ent sizes that need to be assigned to different services
around the same time. Still another example can be
found in the manufacturing industry, where a pro-
duction facility has different production lines that
can be set up to produce one of many different
products.

As discussed above, resource flexibility allows the
manager to postpone the resource allocation deci-
sion to exploit benefits of learning through early
demand figures and hedge against demand and
capacity imbalances, thus providing a risk pooling

effect. While several strategies for risk pooling –
such as centralization of inventory, delayed product
differentiation, component commonality, and lat-
eral transshipments – have been analyzed exten-
sively in the literature (see de Kok and Graves,
2003; Tayur et al., 1999, and the references therein),
only recently have flexible resource management
issues been incorporated into operations manage-
ment models; see Van Mieghem (2003) for an excel-
lent review of research in this area. However, most
research concerning capacity allocation mechanisms
for flexible resources supposes that the capacity of a
flexible resource can be shared between multiple
products; that is, flexible resources are divisible.
This type of (divisible) resource flexibility – also
referred to as ‘‘process flexibility’’ or ‘‘product mix
flexibility’’ (Sethi and Sethi, 1990) – is commonly
encountered in flexible plants/assembly lines that
can produce multiple products at the same time
(see, for instance, Bish and Wang, 2004; Chod and
Rudi, 2005; Fine and Freund, 1990; Van Mieghem,
1998) as well as in environments where a higher

http://www.fandango.com
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value resource/inventory can also be used to satisfy
the demand for a lower level resource/inventory, so
that the total capacity of each resource can be split
between different demands; see, for instance, Netes-
sine et al. (2002).

To our knowledge, there is very limited research
that studies flexible resources that are also indivisi-
ble, with a few exceptions that focus on the aircraft
swapping problem in the airline industry. In partic-
ular, most of this research studies algorithmic
approaches on how to swap a given pair of aircraft

initially assigned to a pair of flights, while conserv-
ing the flow balance in the flight network; see, for
instance, Talluri (1996) for the aircraft swapping
problem, and Sherali et al. (2006) and the references
cited therein for a comprehensive review on airline
fleeting and swapping approaches. From a different
perspective, Bish et al. (2004) study the benefits of
several demand driven aircraft swapping mecha-
nisms characterized in terms of their frequency
(how often the swapping decision should be
revised), but under the assumption that demand
parameters are known with certainty at the outset.
In summary, the existing research does not study
the issue of how to manage indivisible flexible
resources, which includes decisions regarding
whether to accept each arriving customer and which
resource to allocate to each demand stream. These
operational issues are the focus of this paper.

Our objective is to obtain managerial insights
and guidelines on how the capacity allocation deci-
sion should be managed. As such, our model is
rather stylized and generic, with only two resources
and two demand streams. We recognize that for
each application area, additional constraints need
to be imposed in order for the model to produce
practical results. For instance, in the case of a mul-
tiplex movie theater, there are typically more than
two screens, and the sizes of the screens and their
sound systems may be different. In addition, there
are logistics issues concerning switching the films
quickly between screens. Nevertheless, we hope that
our work demonstrates the value of allocation post-
ponement, and will spur interest from industries to
invest in technologies that make allocation post-
ponement possible for their respective areas.

The remainder of this paper is organized as fol-
lows. In Section 2, we present our assumptions
and the demand forecast framework. In Section 3,
we consider a single-decision setting, in which after
the manager rejects a customer, he has to reject all
future customers who request the same type of ser-
vice. In Section 4, we extend our analysis to a
repeated-decision setting, in which the manager can
accept any customer as long as the capacity allows.
In Section 5, we perform numerical experiments to
study the value of these two postponement strate-
gies. Finally in Section 6, we offer some discussion
on our model, the assumptions we make, and the
implications of these assumptions.

2. Assumptions and demand forecast framework

We consider a manager who uses two flexible
resources – with respective capacities of C1 and
C2, C1 < C2 – to satisfy two types of customers
(we use ‘‘customer’’ as the generic term for
‘‘demand’’) who arrive over the selling season
[0,T]. Type i, i = 1,2, customers arrive according
to a Poisson process whose rate can only be fore-
casted, with possible errors, at time 0. Denote the
arrival rate of type i customers by Ki, i = 1,2, and
assume they are independent random variables.

Resources are indivisible in the sense that the
entire capacity of each resource must be allocated
to the same type of customers. However, resources
are flexible in the sense that each resource can be
allocated to either type of customers. Furthermore,
resources are perishable because any resource capac-
ity not used at the end of the selling season is lost.
When a customer arrives, the manager needs to
decide immediately whether to accept or reject the
customer, with the constraint that at time T all

accepted customers must be satisfied with the service

type that they require. We assume that there is no
consumer-driven substitution, i.e., a consumer who
is not accepted for her service type will not switch
to the other service type. We also assume that there
is no cancelation, i.e., each accepted consumer will
show up for service at the end of the selling season;
hence, there is no need for overbooking. We discuss
the implications of these assumptions in Section 6.

The goal of the manager is to utilize the early sales
figures to better understand both demand arrival
rates and make decisions (i.e., whether to accept or
reject each arriving customer) in order to maximize
the expected revenue when the sale ends at time T.
While doing this, the manager may utilize the
resource flexibility in the system, which allows the
resource allocation decision (i.e., which resource is
assigned to which demand stream) to be postponed
to a later time during the selling season. Observe that
in practice, resource allocation decision may have to
be made by a certain time, T � s, for some 0 < s < T,



5 It is straightforward to compute the expected sales in Eq. (2)
because Ni(T), i = 1,2, follows a negative binomial distribution,
as will be shown in Eq. (5) below (its probability mass function
can be obtained by substituting j = 0 and t = 0 in Eq. (5)).
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although customer demands may continue to be
accepted in the interval (T � s,T]. The cutoff point,
T � s, depends on system constraints as well as man-
agerial decisions. For instance, in a multiplex, tech-
nological constraints dictate that the allocation
decision has to be made by a certain time to allow
for the set-up of the film to be shown. In our model,
we consider s = 0. It is possible to perform a similar
analysis for different values of s; obviously, the
expected revenue benefit of a postponed capacity
allocation policy should be nonincreasing in s. In
addition, each choice of s may have different costs,
such as the cost related to the loss of customer good-
will (due to the delayed resource allocation decision).
Such cost parameters will be industry specific; in
addition, the values of these cost parameters is a
question better answered empirically. In order to
keep our analysis free of such cost parameter estima-
tions, we consider the revenue side. The trade-off
between costs and revenues can then be analyzed
by an empirical study in the context of each possible
application. Furthermore, in order to simplify the
exposition, we assume that the prices are the same
for both service types (same-price policies are com-
mon in the movie theater business; moreover, our
analysis can be easily extended to the case where
prices are different), so that maximizing the expected
total revenue is equivalent to maximizing the
expected total number of sales.

At time 0, the manager can estimate the first two
moments of the arrival rates K1 and K2. We use a
gamma distribution to describe the prior of the cus-
tomer arrival rate, because gamma distribution has
a flexible form and can represent a wide variety of
functional forms depending on the values of its
two parameters (ki,ai) (e.g., for ki = 1, it reduces
to the exponential distribution, and for ki integer,
it is the Erlang distribution), and it has positive sup-
port, which is appropriate for an arrival rate distri-
bution. Specifically, we assume that before the sale
begins, the arrival rate of type i customers follows
a gamma distribution with parameters (ki,ai) with
the probability density function

fKiðkÞ ¼
aie
�aikðaikÞki�1

CðkiÞ
for k P 0;

where ai > 0 and ki > 0, for i = 1,2. With a gamma
distribution, the first two moments of Ki, i = 1,2,
are given by

E½Ki� ¼
ki

ai
and VarðKiÞ ¼

ki

a2
i
: ð1Þ
Let {Ni (t), 0 6 t 6 T} denote the arrival process of
type i customers, with Ni (t) denoting the number
of type i customers arriving up to time t.

As discussed above, under the no postponement
policy the manager makes the capacity allocation
decision at time 0 in order to maximize the expected
sales, whose expression is given by5

maxfE½minfN 1ðT Þ;C1g
þminfN 2ðT Þ;C2g�;E½minfN 1ðT Þ;C2g
þminfN 2ðT Þ;C1g�g: ð2Þ

Next, we discuss how demand forecasts are updated
in a postponement setting. If j type i customers ar-
rive in [0, t], we can use Bayes’ rule to determine
the posterior density function of Ki, i = 1,2, as
follows:

fKijNiðtÞ¼jðkÞ ¼
fKiðkÞe�kt ðktÞj

j!R1
0 fKiðkÞe�kt ðktÞj

j! dk
: ð3Þ

The denominator of the preceding can further be
computed as follows:Z 1

0

fKiðkÞe�kt ðktÞj

j!
dk

¼ aki
i tj

j!CðkiÞ

Z 1

0

kkiþj�1 e�kðaiþtÞ dk

¼ aki
i tj

j!CðkiÞ
Cðki þ jÞ
ðai þ tÞkiþj ;

where the last equality follows from the definition of
the gamma function, given by CðaÞ ¼

R1
0

e�xxa�1 dx,
for a > 0. Substituting the preceding into Eq. (3)
yields

fKijNiðtÞ¼jðkÞ ¼
ðai þ tÞe�ðaiþtÞkððai þ tÞkÞkiþj�1

Cðki þ jÞ ; ð4Þ

which is a gamma density function with parameters
(ki + j,ai + t). For i = 1,2, define

Miðt; jÞ � N iðT Þ � NiðtÞjNiðtÞ ¼ j

as the additional number of type i customers that
will arrive in (t,T] conditional on that j type i cus-
tomers have arrived in [0, t]. Using Eq. (4), we can
calculate the probability distribution of Mi(t, j).
For n = 0,1, . . .,
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PrfMiðt;jÞ¼ ng¼ PrfNiðT Þ�NiðtÞ¼ njNiðtÞ¼ jg

¼
Z 1

0

PrfNiðT Þ�NiðtÞ

¼ njNiðtÞ¼ j;Ki¼ kgfKijNiðtÞ¼jðkÞdk

¼
Z 1

0

e�ðT�tÞkððT � tÞkÞn

n!

�ðaiþ tÞe�ðaiþtÞkððaiþ tÞkÞkiþj�1

Cðkiþ jÞ dk

¼Cðnþ kiþ jÞ
n!Cðkiþ jÞ

aiþ t
aiþT

� �kiþj T � t
aiþT

� �n

;

ð5Þ

where the last equality follows by the definition of a
gamma function. In other words, Mi(t, j) follows a
negative binomial distribution having parameters
ki + j and (ai + t)/(ai + T).
3. Single-decision setting

A single-decision policy is a policy under which
the manager must make a capacity allocation deci-
sion when max{N1(t),N2(t)} reaches (C1 + 1) for
the first time (as long as this event occurs before
time T), and cannot reverse this decision later.
(Observe that as long as N1(t) and N2(t), t 2 [0,T],
are both smaller than or equal to C1, it is clearly
optimal to accept any arriving customer without
having to commit a resource type to a customer
type.) In this case, the manager either accepts this
arriving customer and assigns type 2 resource
(C2 > C1) to this type of customers, or rejects the
arriving customer and assigns type 2 resource to
the other type of customers. In either case, no fur-
ther decision needs to be made, and the manager
simply accepts all subsequent customers of each
type until the assigned capacity limit is reached.
That is, the single-decision class of policies are sub-
ject to the constraint:

(A1) Once a customer is rejected, no future cus-
tomers of the same type can be accepted.

Theorem 1 shows that we can find the optimal
policy in this class of policies, which we call the sin-

gle-decision optimal (SDO) policy.
A single-decision policy is suitable when custom-

ers line up in front of the store to purchase their ser-
vices, and thus, are aware of the status of the sale. A
typical example for this situation is the movie the-
ater business. While early sales may take place over
the phone or on the Internet, as the show times
approach, people will line up and buy their tickets
from the box office. In this setting, a rejected cus-
tomer may feel being unfairly treated if the manager
accepts a later customer of the same type. Obvi-
ously, there are systems where the relaxation of this
assumption is appropriate, and we will discuss such
systems in detail in Section 4.

If E [K1] P E [K2], then a seemingly intuitive pol-
icy is to assign type 2 resource (C2 > C1) to type 1
customers if, for some t < T, N1(t) reaches C1 + 1
before N2(t) does. However, the next example shows
that this is not necessarily optimal, as the variability
of the arrival rate also plays an important role in the
optimal policy.

Example. Suppose C1 = 1, C2 = 100, and T = 10.
Let k1 = 101, a1 = 100, k2 = a2 = 1 so that E[K1] =
1.01 > 1 = E[K2]. On the other hand, Var[K1] =
0.0101 < 1 = Var[K2]. Suppose that the second type
1 customer arrives at time t = 0.1 – by which only
one type 2 customer has arrived. According to Eq.
(5), M1(0.1,2) follows a negative binomial distribu-
tion with parameters ð103; 100:1

110
Þ, whose expectation

is equal to E[M1(0.1,2)] = 103(110/100.1 � 1) �
10.19. Similarly, M2(0.1,1) follows a negative bino-
mial distribution with parameters (2, 0.1), with
E[M2(0.1,1)] = 2(1/0.1 � 1) = 18. Therefore, it is
better for the manager to reject the second type 1
customer and assign type 2 resource to type 2 cus-
tomers. Because the variance of K2 is much larger
than that of K1, assigning type 2 resource (C2 =
100) to type 2 customers gives the manager a better
chance to use more of type 2 resource.

This example illustrates how variability in the
arrival rate (in addition to its expected value) plays
an important role in determining an optimal
resource allocation. The optimal allocation is deter-
mined by considering the trade-off between the risk
of unsatisfied demand versus underutilized capacity,
both of which depend on the mean and the variance
of the arrival rate. Thus, a greedy approach that
assigns capacities based on an ordering of means
is not necessarily optimal. Nevertheless, we can still
characterize the structure of an optimal solution
and show that it is of a threshold type. For this pur-
pose, we briefly review the definition of stochastic
orders; see, for instance, pages 404–405 in Ross
(1996). For two random variables X and Y, we
say X is stochastically larger than Y, written
X P stY, if
PrfX > tgP PrfY > tg for all t:
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It is straightforward to check that a negative bino-
mial random variable increases stochastically in its
first parameter, and decreases stochastically in its
second parameter. Then, from Eq. (5), it follows
that Mi(t, j) increases stochastically in j and de-
creases stochastically in t.

Theorem 1. Let {Ni(t), 0 6 t 6 T} denote the arrival

process of type i customers, with arrival rate Ki,
i = 1,2, and assume that each Ki, i = 1,2, follows an

independent gamma distribution with parameters

ki > 0 and ai > 0. In the single-decision setting, a

threshold-type policy suffices to be optimal. That is, if

the (C1 + 1)st type 1 (or 2) customer arrives before

the (C1 + 1)st type 2 (or 1) customer, say at time t,

then it is optimal to accept the arriving customer if

N2(t) 6 h2(t) (or N1(t) 6 h1(t)), where hi(t), i = 1,2,
are the threshold functions.
Proof. Suppose that the (C1 + 1)st customer of type
1 arrives at time t, at which point the number of
type 2 customers, denoted by b2, is smaller than or
equal to C1. The expected total number of sales if
the manager accepts the arriving type 1 customer
and allocates the larger capacity C2 to type 1 cus-
tomers is equal to

C1 þ 1þ E½minðM1ðt;C1 þ 1Þ;C2 � C1 � 1Þ� þ b2

þ E½minðM2ðt; b2Þ;C1 � b2Þ�; ð6Þ

while the expected total number of sales if the man-
ager rejects the arriving type 1 customer and allo-
cates the larger capacity C2 to type 2 customers is
equal to

C1 þ b2 þ E½minðM2ðt; b2Þ;C2 � b2Þ�: ð7Þ

The optimal expected sales in the single-decision set-
ting is given by the maximum of Eqs. (6) and (7). To
show that the optimal policy is of a threshold type,
it is sufficient to show that the difference in expected
number of sales between rejecting and accepting in-
creases in b2. In other words, we need to show that
the difference between Eqs. (7) and (6)

E½minðM2ðt; b2Þ;C2 � b2Þ�

� E½minð1þM1ðt;C1 þ 1Þ;C2 � C1Þ�

� E½minðM2ðt; b2Þ;C1 � b2Þ� ð8Þ

increases in b2. To do so, consider a sequence of
inequalities
E½minðM2ðt; b2Þ;C2 � b2Þ �minðM2ðt; b2Þ;C1 � b2Þ�
6 E½minðM2ðt; b2 þ 1Þ;C2 � b2Þ
�minðM2ðt; b2 þ 1Þ;C1 � b2Þ�
6 E½minðM2ðt; b2 þ 1Þ;C2 � b2 � 1Þ
�minðM2ðt; b2 þ 1Þ;C1 � b2 � 1Þ�:

The first inequality follows because for y > z, min-
(x,y) � min(x,z) increases in x and that M2(t,
b2 + 1) is stochastically larger than M2(t,b2). The
second inequality follows because for y > z, min-
(x,y) � min(x,z) 6 min(x,y � 1) � min(x,z � 1).
Therefore, Eq. (8) increases in b2 and the proof is
completed. h

Because Mi(Æ, Æ), i = 1,2, are negative binomial
random variables whose probability mass functions
can be calculated according to Eq. (5), Eqs. (6) and
(7) can be straightforwardly evaluated. Conse-
quently, the optimal policy in the single-decision set-
ting can be calculated explicitly, as will be done
numerically in Section 5.

Proposition 1. Let {Ni(t), 0 6 t 6 T} denote the

arrival process of type i customers, with arrival rate

Ki, i = 1,2, and assume that each Ki, i = 1,2, follows an

independent gamma distribution with parameters

ki > 0 and ai > 0. If k1 P k2 and a1 6 a2, then it is

always optimal to accept the (C1 + 1)st type 1 customer
as long as type 2 resource has not been assigned to type

2 customers. In other words, h2(t) = C1 for t 2 [0,T].

Proof. Suppose that the (C1 + 1)st customer of type
1 arrives at time t, at which point the number of
type 2 customers, denoted by b2, is smaller than or
equal to C1. Because a negative binomial distribu-
tion increases stochastically in its first parameter
and decreases stochastically in its second parameter,
we have that

M1ðt;C1 þ 1ÞPst M1ðt; b2ÞPst M2ðt; b2Þ;
where the first inequality follows because C1 + 1 >
b2, and the second follows because k1 P k2 and
a1 6 a2.

The expected number of sales if the manager
accepts the (C1 + 1)st type 1 customer is equal to

C1 þ E½minð1þM1ðt;C1 þ 1Þ;C2 � C1Þ� þ b2

þ E½minðM2ðt; b2Þ;C1 � b2Þ�
P C1 þ E½minðM2ðt; b2Þ;C2 � C1Þ� þ b2

þ E½minðM2ðt; b2Þ;C1 � b2Þ
P C1 þ b2 þ E½minðM2ðt; b2Þ;C2 � b2Þ�;
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where the first inequality follows because
M1(t,C1 + 1) is stochastically larger than M2(t,b2),
and the second follows from the identity that
min(x,y) + min(x,z) P min(x,y + z) for any three
numbers x, y, and z. The proposition then follows
because the last equation represents the expected
number of sales if the manager rejects the arriving
type 1 customer and assigns the larger capacity C2

to type 2 customers. h

Corollary 1. Let {Ni(t), 0 6 t 6 T} denote the arrival

process of type i customers, with arrival rate Ki,

i = 1,2, and assume that each Ki, i = 1,2, follows an
independent gamma distribution with parameters

ki > 0 and ai > 0. Suppose that K1 and K2 have the

same coefficient of variation, then if E[K1] P E[K2],

it is always optimal to accept the (C1 + 1)st type 1

customer as long as type 2 resource has not been

assigned to type 2 customers.

Proof. The condition is equivalent toffiffiffiffiffiffiffiffiffiffiffi
k1=a2

1

p
k1=a1

¼
ffiffiffiffiffiffiffiffiffiffiffi
k2=a2

2

p
k2=a2

and
k1

a1

P
k2

a2

;

which is equivalent to k1 = k2 and a1 6 a2. The re-
sult then follows from Proposition 1. h

While our numerical example demonstrates that,
when E[K1] > E[K2], it is not always optimal to
assign the larger capacity to type 1 customers even
if its number reaches C1 + 1 first, Proposition 1
establishes a dominance relationship between K1

and K2 when the preceding is indeed the case. In
practice, coefficients of variation of the arrival rate
measure the quality of the demand forecast, so it
is often reasonable to assume that they are the same
(or close) for different demand types. In this case,
Corollary 1 guarantees that if E[K1] > E[K2], then
it is always optimal to accept the (C1 + 1)st type 1
customer as long as the larger capacity has not been
assigned to type 2 customers.
4. Repeated-decision setting

In this section, we consider a setting in which an
earlier rejection of a customer does not prevent the
manager from accepting a later customer of the
same type (i.e., we relax Assumption A1). Conse-
quently, this setting allows the manager to postpone
the capacity commitment time beyond that in the
single-decision setting (which happens if the man-
ager chooses to reject the first (C1 + 1)st customer
of either type). Observe that the allocation decision
can no longer be postponed when (C1 + 1) custom-
ers of a type is admitted. This policy is suitable when
the sale takes place exclusively over the phone or on
the Internet, because a rejected customer will not
learn about whether a later customer of the same
type is accepted for service.

Because the manager can postpone the commit-
ment decision when he rejects a customer, it seems
suitable to use continuous-time dynamic program-
ming to formulate the problem. However, such a
dynamic programming formulation is not mathe-
matically tractable because customer arrival
processes do not have independent increments –
customer arrival rates K1 and K2 are random vari-
ables whose posterior probability distributions
depend not only on the number of customers
arrived but also on the time elapsed. For that rea-
son, the state transition density function becomes
too complicated, and it is not likely that we can
derive the optimal policy from the optimality equa-
tion. Hence, we develop a heuristic policy in which
the manager repeatedly applies the capacity alloca-
tion rule of the single-decision setting (given in The-
orem 1) until he admits the (C1 + 1)st customer of
either type (hence determining the capacity alloca-
tion decision).

More specifically, as in the single-decision set-
ting, if both N1(t) and N2(t) are smaller than or
equal to C1, then it is obviously optimal to accept
either type of customer. The manager needs to make
a nontrivial decision for a type i customer arriving
at time t only if the current number of bookings
of type i customers is equal to C1, while that of
the other type is smaller than or equal to C1, for
i = 1,2. As stated above, at these decision epochs,
we propose the following heuristic policy, which
accepts an arriving type i customer, if assigning
the larger capacity to type i customers yields a
higher expected total sales than assigning it to the
other type of customers. In other words, with this
heuristic policy, the manager accepts the arriving
type i,i = 1,2, customer at time t if

1þ E½minðMiðt;NiðtÞÞ;C2 � C1 � 1Þ�
þ E½minðM3�iðt;N 3�iðtÞÞ;C1 � N 3�iðtÞÞ�
P E½minðM3�iðt;N 3�iðtÞÞ;C2 � N 3�iðtÞÞ�;
otherwise, the manager rejects the arriving type i

customer. In practice, the manager may need to ap-
ply this comparison several times before finally
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accepting a new customer to complete the capacity
allocation decision.

In what follows, we refer to this heuristic policy
as the repeated-decision heuristic (RDH) policy. To
evaluate the performance of the RDH policy, which
we will do numerically in Section 5, we next derive
an upper bound on the expected total number of
sales in any policy.

Proposition 2. Let {Ni(t),0 6 t 6 T} denote the

arrival process of type i customers, with arrival rate

Ki, i = 1,2, and assume that each Ki, i = 1,2, follows

an independent gamma distribution with parameters

ki > 0 and ai > 0. An upper bound on the expected

sales in any policy is given by
E½minfminfN 1ðT Þ;N 2ðT Þg;C1g
þminfmaxfN 1ðT Þ;N 2ðT Þg;C2g�

¼
X1
j¼0

X1
k¼0

fðminðC1;minðj; kÞÞ

þminðC2;maxðj; kÞÞÞPrðN 1ðT Þ ¼ jÞ
� PrðN 2ðT Þ ¼ kÞg:

Proof. The above expression is an upper bound on
the expected sales, because it is what can be
achieved if the capacity allocation can be decided
after the realization of the random demands. h
5. Numerical experiments

In this section, we present the numerical experi-
ments. For each numerical experiment, we deter-
mine the average number of sales in four
strategies: (1) no decision postponement, (2) the
SDO policy in the single-decision setting, (3) the
RDH policy in the repeated-decision setting, and
(4) the upper bound in Proposition 2. Our numerical
experiments are designed to answer the following
questions.

1. What is the value of postponing the capacity allo-
cation decision?

2. How effective is the heuristic policy in the
repeated-decision setting?

3. What is the additional value of moving from the
single-decision setting to the repeated-decision
setting?

In our numerical experiments, we consider C1 =
50, a1 = a2 = 1, k1 = 10, T = 5, and vary the values
of k2 and C2, over 10–20 and 60–150, respectively.
Recall that for a given a2, as k2 increases, both the
expected value and variance of K2 increase (see
Eq. (1)). In each setting, we simulate 10,000 replica-
tions so that the standard errors are within
±0.001% of the estimators. Specifically, for each
problem instance, we generate a sample path of
demand arrival times and dynamically update the
arrival rate forecasts based on the demand realized
over time. When considering the single-decision set-
ting, upon arrival of the first (C1 + 1)st customer of
either type, we calculate the required threshold
function, hi(t), i = 1 or 2, t 2 [0, . . . ,T], and use the
optimal policy in Theorem 1 to decide whether or
not to accept the current arriving customer. Our
numerical results are reported in Tables 1–3 and
Figs. 1–4; all tables and figures are relegated to
the Appendix.

Our numerical study leads to the following
insights.

1. The value of postponement. We compare the aver-
age sales of no decision postponement and
postponement in the single-decision setting (see
Table 1). The benefit of the single-decision setting
varies depending on the parameters, and reaches
its highest when K1 and K2 have the same distri-
bution and when C2� C1. Intuitively, when K1

and K2 have the same distribution, the manager
who makes the allocation decision at time 0 will
make the ‘‘right’’ decision only half of the time.
Allowing the allocation decision to be postponed
can significantly increase this probability. If K1

and K2 have much different distributions, say
E[K1]� E[K2], then assigning the larger capacity
to type 1 customers at time 0 may turn out to be
the right decision most of the time, so postponing
does not provide much benefit. Similarly, when
C1 and C2 are close, it does not make much dif-
ference to postpone the decision. In our numeri-
cal experiments, the decision postponement can
bring as much as 5% increase in the number of
sales. In industries where profit margins are thin,
an increase of even 1% in revenue can translate
into a large increase in profit.

2. The effectiveness of the RDH policy in the

repeated-decision setting. In all numerical experi-
ments tested, we find that the expected sales from
the RDH policy is at least 99.88% of the upper
bound (see Table 2). Not only does this observa-
tion imply that our heuristic policy is very effec-
tive, it also suggests that the optimal policy in



E.K. Bish et al. / European Journal of Operational Research 187 (2008) 429–441 437
the repeated-decision setting – even if we could
determine it – would not improve much beyond
our heuristic policy.

3. The difference between the single- and repeated-
decision settings. Our numerical experiments sug-
gest that the performance of the SDO policy and
the RDH policy are very similar. In all cases
tested, the SDO policy generates at least 99.97%
of the revenue of the RDH policy (see Table 3).
This observation suggests that the simple single-
decision rule contains most of the benefits from
decision postponement, and can be very effective
to hedge against forecast error and demand
variability.

In addition, our numerical study indicates the
following.

• For a given capacity C2, the average sales for all
policies is concave increasing in k2 (see Fig. 1).
This is because as k2 increases, not only the
expected value of K2 increases, but also its vari-
ability increases. In addition, since capacity is
fixed, demand in excess of capacity cannot be
accepted and does not affect sales. As a result,
the average sales function exhibits diminishing
returns as k2 increases.

• For a given k2, the average sales for all policies is
concave increasing in C2 (see Fig. 2). Intuitively,
a very high C2 (compared to expected demands)
does not necessarily translate into a higher sales,
since it will not find enough demand to satisfy.

• For a given capacity C2, the percent increase in
average sales in both the single- and repeated-
decision settings and the upper bound (over no
postponement) is convex decreasing in k2 (see
Fig. 3). As k2 increases, the expected values of
the two demand streams become more different
(i.e., E[K2] � E[K1] increases). However, this
comes at the expense of an increased variability
(Var(K2) > Var(K1)), which explains the convex
decreasing part.

• For a given k2, the percent increase in average
sales in both the single- and repeated-decision
settings and the upper bound (over no postpone-
ment) is concave increasing in C2 (see Fig. 4).
This again is because a very high C2 does not nec-
essarily translate into a higher sales. In addition,
as C2 increases, the average sales in the no post-
ponement policy increases further, and the same
deviation from it will give a smaller percent
change, and hence the concavity.
6. Discussion, conclusions, and future research

directions

In this paper, we study the benefit of an indivisi-
ble resource flexibility structure under demand fore-
cast uncertainty and demand variability. Resource
flexibility allows the revenue manager to delay the
resource allocation decision to a time when more
information on the demand distributions is gathered
and demand uncertainty is reduced. Considering a
simple two-resource two-demand-type model with
forecast error, we characterize the structure of the
optimal delayed resource allocation policy. Our
findings suggest that a simple threshold policy,
which consists of at most one decision epoch, can
be quite effective in hedging against demand fore-
cast error and variability. Its revenue benefit can
be significant, especially when demand rate fore-
casts are close and resource capacities are much
different.

Our model is rather stylized and generic, with
only two resources and two demand streams, and
our results come with some limitations, as we make
some simplifying assumptions such as no cancel-
ation, no consumer-driven substitution, and exoge-
nous pricing. Below we discuss the implications of
these three main assumptions.

1. No cancelation. We assume that all customers
who have purchased their tickets will show up
at the time of service. In reality, cancelations do
occur occasionally over time, and canceling cus-
tomers may either get no refund, partial refund,
or full refund, depending on when they cancel.
In any case, including cancelations in our model
will only increase the value of capacity postpone-
ment, because the firm can switch its capacity
allocation back and forth based on the real-time
demand taking into account cancelations.

2. No consumer-driven substitution. We assume that
a consumer does not switch to a different service
type if her desired service type is unavailable. In
reality, this assumption need not always be true.
For instance, a person may be willing to see
another movie if her top choice is sold out. With
consumer-driven substitution, the no postpone-
ment strategy would be able to recapture more
demand (that would have been lost otherwise)
than the two postponement strategies, because
the postponement strategies are designed to
recapture some lost demand in the first place.
The postponement strategies would still generate
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more revenue, but the difference would be less.
Nevertheless, the postponement strategies would
allow more customers to receive their most pre-
ferred service than the no postponement strate-
gies, whose value is more difficult to quantify.

3. Exogenous pricing. In our model, we assume that
the prices are exogenously determined. In reality,
the firm may have some control over the price,
and can use it to its advantage to better fit
demands to capacities. If the demand is not elastic
in its price, then our model can be a good approx-
imation; otherwise, the relation between price and
demand needs to be specifically modeled, which is
beyond the scope of this paper. Another interest-
ing extension is to allow a firm to change its prod-
uct in real time. Such practice has the potential to
increase the revenue even more.

As a future research direction, it would be inter-
esting to relax the above three assumptions as well
as analyze the case with multiple (>2) resources
and demand streams.

We next discuss the implications of our findings
to other service industries that have different types
of resource flexibility structure. For example, con-
sider the assignment of tourist guides to tour
groups, nurses to patients, lawyers or consultants
to clients, operating rooms in a hospital to patients
requiring surgery, etc. In all these examples,
resources (tourist guides, nurses, etc.) have different
specialties, and each customer (tour groups,
patients, etc.) has different requirements for
resources. For instance, a Japanese tour group
may require a tourist guide who is fluent in Japa-
Table 1
Average percent deviation of the upper bound, the RDH policy, and th
decimal-point accuracy)

E[K2] 10 11 12 14
C2|k2 10 11 12 14

60 2.51, 2.49, 2.49 2.06, 2.04, 2.04 1.55, 1.54, 1.54 0.86, 0.84
70 4.10, 4.05 , 4.04 3.41, 3.37, 3.36 2.70, 2.65, 2.65 1.53, 1.48
80 4.86, 4.81, 4.79 4.11, 4.06, 4.04 3.34, 3.29, 3.26 1.97, 1.89
90 5.19, 5.13, 5.12 4.44, 4.36, 4.36 3.63, 3.58, 3.54 2.19, 2.09

100 5.35, 5.28, 5.27 4.58, 4.51, 4.49 3.74, 3.66, 3.64 2.28, 2.16
110 5.41, 5.35, 5.33 4.63, 4.54, 4.54 3.77, 3.68, 3.68 2.31, 2.19
120 5.43, 5.35, 5.35 4.64, 4.56, 4.56 3.79, 3.69, 3.69 2.32, 2.20
130 5.44, 5.36, 5.36 4.65, 4.56, 4.56 3.79, 3.69, 3.69 2.32, 2.21
140 5.44, 5.36, 5.36 4.66, 4.57, 4.57 3.79, 3.69, 3.69 2.32, 2.21
150 5.44, 5.36, 5.36 4.66, 4.57, 4.57 3.79, 3.69, 3.69 2.32, 2.21

C1 = 50, a1 = a2 = 1, k1 = 10, T = 5.
nese. Thus, some resources may be flexible in that
they may possess skills required by different types
of customers. However, resources are not indivisible

as discussed here, since all tour guides of a given
type (e.g., who are fluent in Japanese) need not be
assigned to the same tour group. These situations
have been studied in the literature as discussed in
Section 1, and are different from our model. Our
approach provides a different perspective on
resource flexibility and contributes to this research
area in a broad sense.

Finally, in this paper, we consider only the reve-
nue side of the decision postponement. In practice,
however, there are several costs associated with
postponing the allocation decision, such as the loss
of goodwill, the monetary cost of changing the cur-
rent assignment, and the risk of not completing the
swap on time. Taking into account these costs
would provide a comprehensive cost-benefit analy-
sis. However, these costs are difficult to quantify
in practice, and additional research is needed to
understand these issues.
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Appendix

The appendix contains all tables and figures (see
Tables 1–3 and Figs. 1–4).
e SDO policy over the no decision postponement case (with two

16 18 20
16 18 20

, 0.84 0.39, 0.38, 0.38 0.16, 0.15, 0.15 0.05, 0.05, 0.05
, 1.48 0.78, 0.74, 0.74 0.36, 0.33, 0.33 0.14, 0.12, 0.12
, 1.89 1.06, 0.97, 0.97 0.55, 0.49, 0.48 0.24, 0.20, 0.20
, 2.08 1.22, 1.11, 1.11 0.66, 0.58, 0.58 0.30, 0.24, 0.24
, 2.16 1.28, 1.17, 1.17 0.71, 0.64, 0.62 0.33, 0.27, 0.26
, 2.19 1.30, 1.19, 1.18 0.73, 0.66, 0.63 0.34, 0.29, 0.27
, 2.20 1.31, 1.19, 1.18 0.73, 0.66, 0.64 0.34, 0.29, 0.27
, 2.21 1.31, 1.19, 1.19 0.73, 0.67, 0.64 0.34, 0.29, 0.27
, 2.21 1.31, 1.19, 1.19 0.73, 0.67, 0.64 0.34, 0.29, 0.27
, 2.21 1.31, 1.19, 1.19 0.73, 0.67, 0.64 0.34, 0.29, 0.27



Table 2
Ratios of the average sales of (i) the RDH policy to the upper bound, and (ii) the SDO policy to the upper bound (with four decimal-point
accuracy)

E[K2] 10 11 12 14 16 18 20
C2|k2 10 11 12 14 16 18 20

60 0.9998 0.9998 0.9998 0.9998 0.9999 0.9999 1.0000
70 0.9995 0.9995 0.9995 0.9995 0.9995 0.9997 0.9998
80 0.9993 0.9993 0.9992 0.9991 0.9991 0.9994 0.9996
90 0.9993 0.9992 0.9991 0.9990 0.9989 0.9992/0.9991 0.9994

100 0.9992 0.9992 0.9991 0.9989 0.9988 0.9992/0.9991 0.9993
110 0.9992 0.9992 0.9991 0.9989 0.9988 0.9993/0.9991 0.9994/0.9993
120 0.9992 0.9991 0.9990 0.9989 0.9988 0.9993/0.9991 0.9995/0.9993
130 0.9992 0.9991 0.9991 0.9989 0.9988 0.9994/0.9991 0.9995/0.9993
140 0.9992 0.9991 0.9990 0.9989 0.9988 0.9994/0.9991 0.9995/0.9993
150 0.9992 0.9991 0.9990 0.9989 0.9988 0.9994/0.9991 0.9995/0.9993

When the two ratios are the same, they are reported by one number; when they are different, they are reported in the form of x/y, where x

corresponds to the first ratio, and y to the second ratio; C1 = 50, a1 = a2 = 1, k1 = 10, T = 5.

Table 3
Ratio of the average sales of the SDO policy to that of the RDH policy (with four decimal-point accuracy)

E[K2] 10 11 12 14 16 18 20
C2|k2 10 11 12 14 16 18 20

60 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
70 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
80 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
90 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 1.0000

100 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999
110 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9998
120 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9998
130 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9998
140 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9998
150 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9998

C1 = 50, a1 = a2 = 1, k1 = 10, T = 5.
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Fig. 1. Average sales under different values of C2: (a) C2 = 60; (b) C2 = 100.
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Fig. 2. Average sales under different values of k2: (a) k2 = 10; (b) k2 = 20.
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Fig. 3. Percent deviation of the SDO policy, the RDH policy, and the upper bound from no postponement under different values of C2: (a)
C2 = 60; (b) C2 = 100.
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Fig. 4. Percent deviation of the SDO policy, the RDH policy, and the upper bound from no postponement under different values of k2: (a)
k2 = 10; (b) k2 = 20.

440 E.K. Bish et al. / European Journal of Operational Research 187 (2008) 429–441



E.K. Bish et al. / European Journal of Operational Research 187 (2008) 429–441 441
References

Bish, E.K., Suwandechochai, R., Bish, D.R., 2004. Strategies for
managing the flexible capacity in the airline industry. Naval
Research Logistics 51, 654–685.

Bish, E.K., Wang, Q., 2004. Optimal investment strategies for
flexible resources, considering pricing and correlated
demands. Operations Research 52 (6), 954–964.

Chod, J., Rudi, N., 2005. Resource flexibility with responsive
pricing. Operations Research 53, 532–548.

de Kok, A.G., Graves, S.C. (Eds.), 2003. Supply chain manage-
ment: design, coordination and operation. Handbooks in
Operations Research and Management Science 11.

Fine, C.H., Freund, R.M., 1990. Optimal investment in product-
flexible manufacturing capacity. Management Science 36,
449–466.

Netessine, S., Dobson, G., Shumsky, R.A., 2002. Flexible service
capacity: Optimal investment and the impact of demand
correlation. Operations Research 50, 375–388.
Ross, S.M., 1996. Stochastic Processes, second ed. Wiley, New
York, NY.

Sethi, A.K., Sethi, S.P., 1990. Flexibility in manufacturing: A
survey. The International Journal of Flexible Manufacturing
Systems 2, 289–328.

Sherali, H.D., Bish, E.K., Zhu, X., 2006. Airline fleet assignment
concepts, models, and algorithms. European Journal of
Operational Research 172 (1), 1–30.

Talluri, T.K., 1996. Swapping applications in a daily airline fleet
assignment. Transportation Science 30, 237–248.

Tayur, S., Ganeshan, R., Magazine, M., 1999. Quantitative
Models for Supply Chain Management. Kluwer Academic
Publishers, Boston.

Van Mieghem, J.A., 1998. Investment strategies for flexible
resources. Management Science 44, 1071–1078.

Van Mieghem, J.A., 2003. Capacity management, investment and
hedging: Review and recent developments. Manufacturing &
Service Operations Management 5, 269–302.


	Allocation of flexible and indivisible resources with decision postponement and demand learning
	Introduction
	Assumptions and demand forecast framework
	Single-decision setting
	Repeated-decision setting
	Numerical experiments
	Discussion, conclusions, and future research directions
	Acknowledgments
	Appendix
	References


