

Calhoun: The NPS Institutional Archive

Theses and Dissertations

Thesis Collection

1994-06

Throughput analysis between high end workstations across an FDDI network

Schivley, Mark A.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/42915

Calhoun is a project of the Dudley Knox Library at NPS, furthering the precepts and goals of open government and government transparency. All information contained herein has been approved for release by the NPS Public Affairs Officer.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

NAVAL POSTGRADUATE SCHOOL Monterey, California

1

Throughput Analysis Between High End Workstations Across an **FDDI Network**

by

Mark A. Schivley

June 1994

Thesis Advisor:

G.M. Lundy

المحفي المستعدية بعد بالمستعدية المستعدية المستعدية المستعدية المستعدية المستعدية المستعدية المستعدية المستعدية

040

8 23

Approved for public release; distribution is unlimited.

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE							
Ia REPORT	SECURITY CLAS	SSIFICATION U	INCLASSIFIED	1 16. RESTRICTIVE	MARKINGS		
2a SECURI	Y CLASSIFICAT	ION AUTHORITY			AVAILABILITY OF		<u> </u>
26. DECLASSIFICATION/IXOWNGRADING SCHEDULE			Approved for distribution	or public release is unlimited	;		
4. PERFORM	IING ORGANIZA	TION REPORT NUMB	ER(S)	5. MONITORING	ORGANIZATION REP	ORT NUMBER(S)	
			•				
Compute	F PERFORMING r Science De	ORGANIZATION	6b. OFFICE SYMBOL (if applicable)		NITORING ORGANIZ		
	stgraduate S		· CS	Indval r	Usigiacuate Sch		
6c. ADDRES	S (City, State, and	ZIP Code)	L		y, State, and ZIP Code)		
Montere	y, CA 939	943-5000		Monterey, CA 93943-5000			
8a. NAME ()	F FUNDING/SPO	NSORING	8b. OFFICE SYMBOL (if applicable)	9. PROCUREMEN	T INSTRUMENT IDEN	THE ATION NUM	MBER
			(if afficiate)				
Sc. ADDRES	S (City, State, and	ZIP Code)			UNDING NUMBERS	1.4.02	
				PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT ACCESSION NO.
	nclude Security Cla					<u> </u>	
Through	put Analysis	Between High E	End Workstations A	cross an FDDI	Network (Uncla	assified)	
C. PERSON	AL AUTHOR(S) Mark Allen	СРТ	<u></u>	T :			
		1136. TIME CO	Vered		T (Ver Mouth Dru)	15. PAGE CO	DUNT
Master's		FROM 09/	<u>92 то 06/94</u>		T(Year, Month, Day) Inc, 16	15	9
policy c	or position of	the Department	expressed in this the of Defense or the U	sis are those of Inited States G	the author and overnment.	do not reflect	the official
17.	COSAT	T CODES	18.SUBJECT TERMS (Ca	ontinue on reverse if n	ecessary and identify by	block number)	
FIELD	GROUP	SUB-GROUP	FDDI, TCP/IP				
			4				
19 ABSTRA	CT (Continue on re	everse if necessary and is	dentify try block number)	<u> </u>	<u> </u>		
Recently developed high speed networks are capable of transmitting data at rates of 100 Mbps or more. One such network protocol is Fiber Distributed Data Interface (FDDI). This network has a physical transmission rate of 100 Mbps. Analytical and simulation studies have shown that the FDDI protocol should provide actual throughput of 80% to 95% of this physical rate. Can the end user expect to see this kind of performance? If not, then what kind of throughput can actually be expected and where are the bottle necks? In order to answer these and other related questions, two areas were studied: First, a performance comparison between a 40MHz SPARCstation 10 workstation and a 50MHz SPARCstation 10 workstation was conducted using the Neal Nelson commercial benchmark tool. Next, a well-known network measurement tool, <i>ncp</i> , was used to obtain data transfer rates while varying several tunable operating system and network parameters. The parameters varied were: Target Token Rotation Time, TCP/IP window size, NFS asynchronous threads. Logical Link buffer size and Maximum Transfer Unit size. The results from the commercial benchmark analysis were used to determine if there are any differences which can affect transfer rates between the two workstations. The results from the commercial benchmark tool clearly showed that the newer, higher speed processor is faster. The network tool <i>ncp</i> showed that the TCP/IP window size had the largest impact on throughput performance. Throughput more than doubles from a window size of 4k to a window size of 20k. This is followed by having more than one workstation transmitting data simultaneously. Having two workstations transmitting nearly halves throughput. This is followed by having a faster processor. A measurement of file transfers using <i>rcp</i> system calls showed that the largest impact on file transfer speed is the overhead of receiving the transferred file.							
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS UNCLASSIFIED							
Prof C.M	FRESPONSIBLE			226. TELEPHONE ((408) 656-20	Include Area Code) 94/2449	22c. DEFICE NY CS/Ln	MBOL

-,#

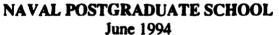
.

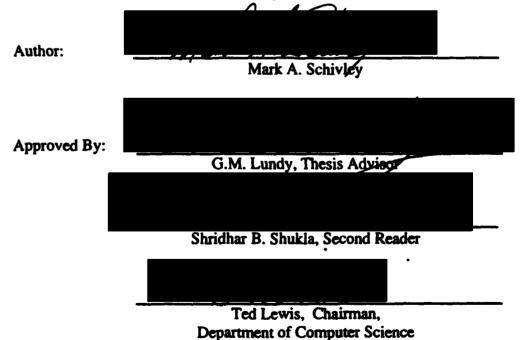
DD FORM 1473, #4 MAR

SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED

i

Approved for public release: distribution is unlimited


Throughput Analysis Between High End Workstations Across an FDDI Network


> by Mark A. Schivley Captain, United States Army

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF COMPUTER SCIENCE

from the

ABSTRACT

Recently developed high speed networks are capable of transmitting data at rates of 100 Mbps or more. One such network protocol is Fiber Distributed Data Interface (FDDI). This network has a physical transmission rate of 100 Mbps. Analytical and simulation studies have shown that the FDDI protocol should provide actual throughput of 80% to 95% of this physical rate. Can the end user expect to see this kind of performance? If not, then what kind of throughput can actually be expected and where are the bottle necks?

In order to answer these and other related questions, two areas were studied: First, a performance of parison between a 40MHz SPARCstation 10 workstation and a 50MHz SPARCstation. 10 workstation: was conducted using the Neal Nelson commercial benchmark tool. Next, a well-known network measurement tool, *ttcp*, was used to obtain data transfer rates while varying several tunable operating system and network parameters. The parameters varied were: Target Token Rotation Time, TCP/IP window size, NFS asynchronous threads, Logical Link buffer size and Maximum Transfer Unit size. The results from the commercial benchmark analysis were used to determine if there are any differences which can affect transfer rates between the two workstations.

The results from the commercial benchmark tool clearly showed that the newer, higher speed processor is faster. The network tool *ttcp* showed that the TCP/IP window size had the largest impact on throughput performance. Throughput more than doubles from a window size of 4k to a window size of 20k. This is followed by having more than one – workstation transmitting data simultaneously. Having two workstations transmitting nearly halves throughput. This is followed by having a faster processor. A measurement of file transfers using *rcp* system calls showed that the largest impact on file transfer speed is the overhead of receiving the transferred file.

By Di_t.ibution /				
A	vailability	Codes		
Dist	Avail a Spe	nd or cial		
A-1				

8

TABLE OF CONTENTS

I.	INT	RODUCTION 1
	A .	BACKGROUND 1
	В.	OBJECTIVE
	С.	SCOPE, LIMITATIONS AND ASSUMPTIONS
	D.	ORGANIZATION OF THESIS
П.	NE	TWORK PROTOCOLS
	Α.	NETWORKING THEORY 4
	B .	OPEN SYSTEM INTERCONNCETION
	C .	TRANSMISSION CONTROL PROTOCOL/INTERNET PROTOCOL 6
		1. Link Layer
		2. Network Layer
		3. Transport Layer
		4. Application Layer
	D.	FIBER DISTRIBUTED DATA INTERFACE
		1. Fiber Distributed Data Interface Basics
		2. Fiber Distributed Data Interface Layers
		a. The Physical Medium Dependent Layer
		b. The Physical Layer
		c. The Media Access Control Layer
		d. The Station Management Layer
		3. Fiber Distributed Data Interface Framing
		4. Encoding Method 15
	E.	NETWORK OVERHEAD 15

		•	
	F.	FIBER DATA DISTRIBUTED INTERFACE PARAMETERS	17
III.	NET	WORK EQUIPMENT	19
	Α.	NETWORK OVERVIEW	19
		1. Fiber Optics Equipment	20
		2. Network Peripherals' Interface.	20
		3. Silicon Graphic's Interface	21
	B.	WORKSTATION OVERVIEW	22
		1. SUN SPARCstation 10 system	22
		a. Software Architecture	22
		b. Hardware Architecture	23
		2. Silicon Graphics IRIS Indigo	25
		a. Software Architecture	25
		b. Hardware Architecture	25
IV.	TES	T DESIGN PLAN	28
	Α.	TEST STRATEGY	28
	B.	NEAL NELSON BENCHMARK	28
	С.	NEW TEST TRANSMISSION CONTROL PROTOCOL	31
	D.	REMOTE COPY PROTOCOL TRANSFER	34
	E.	PARAMETERS WHICH AFFECT BOTH TEST	36
	F.	FILE SIZES FOR BOTH TRANSFERS	36
	G.	SYSTEM CONFIGURATIONS FOR ALL TESTS	37
	H.	PARAMETER BASELINE	39
V.	TES	T RESULTS AND ANALYSIS	41
	Α.	NEAL NELSON BENCHMARK	41
		1. Gold Versus White, Two Processors and Solaris 2.3	42
		2. Gold One Processor Versus Gold Two Processors and Solaris 2.3	43

		3.	Gold With One Processor, Solaris 2.3 Versus SunOS 4.1.3	44
	B .	NE	W TEST TRANSMISSION CONTROL PROTOCOL	45
		1.	Single Processor Results	47
		2.	Two Processor Results	51
		3.	One And Two Processor Results	53
	C.	RE	MOTE COPY PROTOCOL TRANSFERS	60
	D.	AN	ALYSIS SUMMARY	64
VI.	CON	NCL	USIONS AND TOPICS FOR FUTURE RESEARCH	67
	Α.	CO	NCLUSION	67
		1.	Workstation Conclusions	67
		2.	Throughput Conclusions	68
	B.	то	PICS FOR FUTURE RESEARCH	70
API	PEND	X X	A: NTTCP PROGRAM and TEST SCRIPTS	72
API	PEND	IX I	B: RCP PROGRAM	88
API	PEND) XI	C: NEAL NELSON BENCHMARK RESULTS	91
API	PEND	IX I	D: NTTCP SINGLE PROCESSOR RESULTS	106
APF	PEND	IX E	E: NTTCP TWO PROCESSORS RESULTS	119
APF	PEND	IX F	F: GLOSSARY OF TERMS	138
LIS	t of	REF	FERENCES	142
			TRIBUTION LIST	

LIST OF TABLES

TABLE 1: RCP FILE SIZES AND ASSOCIATED OVERHEAD	37
TABLE 2: FILES (DATA SIZES) FOR NTTCP TEST	37
TABLE 3: DEFAULT PARAMETERS USED FOR ALL THREE TEST	39
TABLE 4: TEST RESULTS IN SINGLE PROCESSOR MODE	40
TABLE 5: FILES (DATA SIZES) FOR NTTCP TEST	46
TABLE 6: RESULTS OF SAS PREDICTIONS	56
TABLE 7: RCP ONE PROCESSOR TRANSFER RESULTS	61
TABLE 8: RCP TWO PROCESSOR TRANSFER RESULTS	62
TABLE 9: CPU SUBSYSTEM	91
TABLE 10: DISK SUBSYSTEM	91
TABLE 11: CACHE INFORMATION	92
TABLE 12: GOLD2.SOL VRS WHITE2.SOL, TEST 1 & 2 & 3 & 4	94
TABLE 13: GOLD2.SOL VRS WHITE2.SOL, TEST 5 & 6 & 7 & 8	94
TABLE 14: GOLD2.SOL VRS WHITE2.SOL, TEST 9 & 10 & 11 & 12	95
TABLE 15: GOLD2.SOL VRS WHITE2.SOL, TEST 13 & 14 & 15 & 16	95
TABLE 16: GOLD2.SOL VRS WHITE2.SOL, TEST 17 & 18 & 19 & 20	96
TABLE 17: GOLD VRS WHITE2.SOL, TEST 21 & 22 & 23 & 24	96
TABLE 18: GOLD2.SOL VRS WHITE2.SOL, TEST 25 & 26 & 27 & 28	97
TABLE 19: GOLD2.SOL VRS WHITE2.SOL, TEST 29 & 30	97
TABLE 20: GOLD1.SOL VRS GOLD2.SOL, TEST 1 & 2 & 3 & 4	9 8
TABLE 21: GOLD1.SOL VRS GOLD2.SOL, TEST 5 & 6 & 7 & 8	98
TABLE 22: GOLD1.SOL VRS GOLD2.SOL, TEST 9 & 10 & 11 & 12	99
TABLE 23: GOLD1.SOL VRS GOLD2.SOL, TEST 13 & 14 & 15 & 16	9 9
TABLE 24: GOLD1.SOL VRS GOLD2.SOL, TEST 17 & 18 & 19 & 20 1	00
TABLE 25: GOLD1.SOL VRS GOLD2.SOL, TEST 21 & 22 & 23 & 24 1	00
TABLE 26: GOLD1.SOL VRS GOLD2.SOL, TEST 25 & 26 & 27 & 28 1	01

TABLE 27: GOLD1.SOL VRS GOLD2.SOL, TEST 29 & 30 101
TABLE 28: GOLD1.SOL VRS GOLD1.SUN, TEST 1 & 2 & 3 & 4 102
TABLE 29: GOLD1.SOL VRS GOLD1.SUN, TEST 5 & 6 & 7 & 8
TABLE 30: GOLD1.SOL VRS GOLD1.SUN, TEST 9 & 10 & 11 & 12 103
TABLE 31: GOLD1.SOL VRS GOLD1.SUN, TEST 13 & 14 & 15 & 16 103
TABLE 32: GOLD1.SOL VRS GOLD1.SUN, TEST 17 & 18 & 19 & 20 104
TABLE 33: GOLD1.SOL VRS GOLD1.SUN, TEST 21 & 22 & 23 & 24
TABLE 34: GOLD1.SOL VRS GOLD1.SUN, TEST 25 & 26 & 27 & 28 105
TABLE 35: GOLD1.SOL VRS GOLD1.SUN, TEST 29 & 30 105
TABLE 36: SINGLE PARAMETER TEST RESULTS 106
TABLE 37: SINGLE PROCESSOR, 1ST TEST RESULTS 107
TABLE 38: SINGLE PROCESSOR, 2ND TEST RESULTS 107
TABLE 39: SINGLE PROCESSOR, 3RD TEST RESULTS 107
TABLE 40: SINGLE PROCESSOR, 4TH TEST RESULTS 108
TABLE 41: SINGLE PROCESSOR, 5TH TEST RESULTS 108
TABLE 42: SINGLE PROCESSOR, 6TH TEST RESULTS 108
TABLE 43: SINGLE PROCESSOR, 7TH TEST RESULTS 109
TABLE 44: SINGLE PROCESSOR, 8TH TEST RESULTS
TABLE 45: SINGLE PROCESSOR, 9TH TEST RESULTS
TABLE 46: SINGLE PROCESSOR, 10TH TEST RESULTS 110
TA! E 47: SINGLE PROCESSOR, 11TH TEST RESULTS 110
TALLE 48: SINGLE PROCESSOR, 12TH TEST RESULTS 110
TABLE 49: SINGLE PROCESSOR, 13TH TEST RESULTS 111
TABLE 50: SINGLE PROCESSOR, 14TH TEST RESULTS 111
TABLE 51: SINGLE PROCESSOR, 15TH TEST RESULTS 111
TABLE 52: SINGLE PROCESSOR, 16TH TEST RESULTS 112
TABLE 53: SINGLE PROCESSOR, 17TH TEST RESULTS 112
TABLE 54: SINGLE PROCESSOR, 18TH TEST RESULTS 112
TABLE 55: SINGLE PROCESSOR, 19TH TEST RESULTS 1.13

.

•

TABLE 114:	TWO PROCESSORS, 43RD TEST RESULTS	134
TABLE 115:	TWO PROCESSORS, 44TH TEST RESULTS	135
TABLE 116:	TWO PROCESSORS, 45TH TEST RESULTS	135
TABLE 117:	TWO PROCESSORS, 46TH TEST RESULTS	135
TABLE 118:	TWO PROCESSORS, 47TH TEST RESULTS	136
TABLE 119:	TWO PROCESSORS, 48TH TEST RESULTS	136
TABLE 120:	TWO PROCESSORS, 49TH TEST RESULTS	136
TABLE 121:	TWO PROCESSORS, 50TH TEST RESULTS	137
TABLE 122:	TWO PROCESSORS, 51ST TEST RESULTS	137

LIST OF FIGURES

•

Figure 1: ISO-OSI Reference Model	5
Figure 2: The Four Layers of the TCP/IP Protocol Suite	7
Figure 3: IP Header	8
Figure 4: TCP Header	9
Figure 5: Relationship Between FDDI and ISO-OSI Layers	
Figure 6: Block Diagram of the FDDI Layers	12
Figure 7: FDDI Frame Format	14
Figure 8: Composition of FDDI Frames and Percentage of Overhead	16
Figure 9: Timers and Counters Used in Data Transmission	18
Figure 10: NPS's FDDI Research Network	19
Figure 11: Sun-4m Architecture Used in the SPARCstation 10 System	24
Figure 12: The IRIS Indigo CPU Board	26
Figure 13: Flow of Data Across the FDDI Network Using the RCP Command	29
Figure 14: Example of setsockopt and getsockopt System Calls	33
Figure 15: Implementation of RCP System Call	34
Figure 16: Gold Versus White, Two Processors	42
Figure 17: Gold One Processor Versus Gold Two Processors	43
Figure 18: Gold, One Processor, SunOS 4.1.3 Versus Solaris 2.3	45
Figure 19: NTTCP Output for File Size of 4194304 Bytes	46
Figure 20: SAS Analysis of Single Processor Transfers	49
Figure 21: Single Processor, File D Transfer From White to Gold	51
Figure 22: SAS Analysis of Two Processor Transfers	52
Figure 23: SAS Analysis of Single and Two Processor Transfers	54

Figure 24: White Single Processor vrs White Two Processors	55
Figure 25: SAS Throughput Prediction	56
Figure 26: Relative Importance of Each nttcp Parameter	58
Figure 27: Throughput Comparison Between White and Gold	60
Figure 28: RCP File Transfers From Gold To White	63

I. INTRODUCTION

A. BACKGROUND

Data communication networks are now an essential part of our society. Our technology base has given us workstations which can process data at speeds which makes mainframes from just a few years ago look slow in comparison. Now, not only must we process the data faster, but we also distribute the information to other locations at speeds which just a few years ago were impossible. We truly are in the information era.

In the 1960s and 1970s, the computer industry worked hard to develop new technologies which would give us faster, more powerful computers. The dramatic advances in integrated circuits technology made possible the wide availability of larger, more powerful super computers, low-cost workstations, and personal computers [ALBE94]. There were the companies which believed that the large, centralized processors were the solution to everyone's problems. At the same time, other companies developed smaller computers called minicomputers. These minicomputers, and their successors, desktop workstations, started filling the needs of small companies and universities which couldn't afford the cost of large mainframes and did not need the processing power provided by the large, all in one solution provided by the mainframe.

In the world of mainframes, the need to distribute data to other computers was not critical. The single mainframe would handle all of a company's processing needs. If there was a need to handle additional processing, the manufacturer of that mainframe provided a solution which would allow their mainframe to communicate with another of their mainframes. This of course ensured that the company or university continued to buy all or most of their computer equipment from the same computer manufacture.

With the growth of the minicomputers and the workstations came the need to connect these less expensive and less powerful machines. This provided the motivation and the driving force behind the development of Local Area Networks (LAN). There were the proprietary options provided by the computer manufactures. However, with the need to provide connectivity between systems came the desire to have connectivity between systems from different manufacturers. This was very difficult without some sort of agreed upon standards. In the late 1970s, the International Standards Organization (ISO) developed the Open Systems Interconnection (OSI) reference model to serve as the basis for future open networks. This model would provide the basis for computers from different with each other [ALBE94].

Now we have the beginnings of connectivity between computers and the beginnings of smaller, more powerful computers. In the 1980s, Sun Microsystems started producing their line of desktop workstations. Within a few years, these workstations were being based on new Reduced Instruction Set Computer (RISC) technology which allowed Sun Microsystems and other companies to produce faster, more powerful workstations. Now if we combine the advancements of the desktop workstations with the advancements made in networks, we have the true beginnings of the information era.

The question now becomes one of which technology is advancing faster. Are we producing workstations which can exceed the capability of the networks or are the networks staying ahead of the abilities of the workstations. Also, advancements in workstation technology isn't just limited to faster hardware. Is the operating system and its networking tools keeping pace with current demands?

It is clear that the workstations are faster and more powerful than in the past. It is also clear that the networks can handle more data at faster rates than in the past. But where do we stand if we compare a recently released product produced by Sun Microsystems with one of the current high speed networks such as Fiber Distributed Data Interface (FDDI)?

B. OBJECTIVE

The objective of this thesis will be to measure actual throughput between high performance workstations over an FDDI network to determine what bottlenecks, if any, exits between Sun Microsystem SPARCstationTM 10 multiprocessors running SolarisTM 2.3 and the Network PeripheralTM SBus FDDI Network Interface cards and to evaluate Transmission Control Protocol/Internet Protocol (TCP/IP) as a high speed transport protocol. This process will require an analysis of the workstations being used in this study. an understanding of current network operating system tools and measurements of data transfers across the network being tested.

This is not simply a matter of reading the vendor's promotional literature and seeing which aspect of the distributed processing environment is more capable. Vendors normally promote those aspects of their products which they can demonstrate as performing at or above some threshold. This threshold may or may not be value to the consumer.

C. SCOPE, LIMITATIONS AND ASSUMPTIONS

The scope of this investigation is limited to performing testing and tuning at the level available to any system administrator. No modifications are made to any hardware or changes made to the workstation kernel which are not considered tunable parameters. From this investigation, a determination will be made as to whether or not there are any bottlenecks.

It is assumed that the changes made and the results observed on the SPARC 10 multiprocessors running Solaris 2.3 can be extrapolated to other vendor's hardware and software. If we note that changing the TCP/IP window size on our workstations results in a 10 fold increase in throughput, then we assume comparable results would be observed on other vendor's workstations.

D. ORGANIZATION OF THESIS

This thesis is organized into seven chapters. This chapter provides the introduction and scope of work to be performed. Chapters II and III provide a background on networks in general, FDDI specifically and the specifics on the workstations involved in this investigation. Chapters IV and V cover the methodology, test results and analysis of results. Chapter VI covers what conclusions can be derived from these results.

II. NETWORK PROTOCOLS

A. NETWORKING THEORY

The primary focus behind the development of network protocols has been the organization of the protocol into a series of layers. This has allowed the design of the protocols to be simplified by focusing attention at each layer upon that layer's function and its interaction with the layers above and below. The purpose of each layer is to offer certain services to the layer above without the higher layer needing to know how those services were provided.

When designing a network protocol the network designer must determine how many layers the protocol will have, what those layers will do and how the layers will communicate with each other. This last decision, deciding how the layers will communicate, is one of the more important considerations. A clean-cut interface must be defined which will minimize the amount of information that must be passed between layers.

The set of layers and protocols is know as the network architecture. Enough specification must be given for each layer of the protocols so that vendors can write their versions of the protocol for their computer architecture. This is what makes the network architectures beneficial to everyone accessing a network. By having an agreed upon network architecture that everyone is willing to use, we can have distributed processing over heterogeneous processors [MINO91].

B. OPEN SYSTEM INTERCONNCETION

The Open System Interconnection (OSI) reference model, Figure 1, was proposed in 1978 to promote compatibility between network designs. This model was approved as a standard [ALBE94] in 1983 by the International Standards Organization (ISO). The reference model is not a protocol or set of rules but a layering of required functions, or services, that provides a framework with which to define protocols. In practical terms. OSI is seen as a means of developing communications networks which are not restricted by the need to conform to a rigid set of manufactures' proprietary standards and protocols.

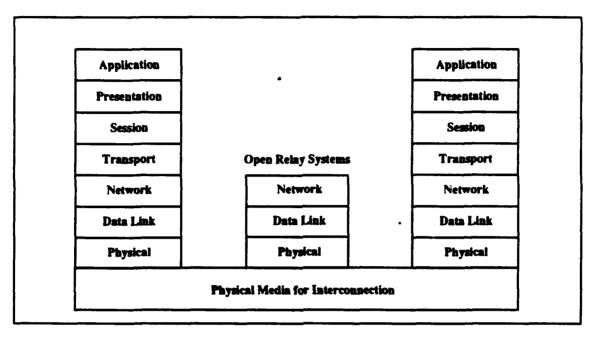


Figure 1: ISO-OSI Reference Model

The purpose of these seven layers is to define the various functions that must be carried out when two machines communicate. Each of the seven layers is architecturally independent, so that the relevant protocols and service functions of each layer can be developed independently. The seven layers of the model can be roughly divided into two parts; the first four layers, physical to transport, provide the telecommunications functions and operate on a node-to-node basis. The top three layers, session to application, are concerned mainly with carrying out processing functions and creating a meaningful dialog between the user and the application.

Below are the seven layers of the OSI model [STAL91]:

- Layer 1: Physical Layer
- Layer 2: Data Link Layer
- Layer 3: Network Layer

- Layer 4: Transport Layer
- Layer 5: Session Layer
- Layer 6: Presentation Layer
- Layer 7: Application Layer

C. TRANSMISSION CONTROL PROTOCOL/INTERNET PROTOCOL

The Transmission Control Protocol/Internet Protocol (TCP/IP) protocol is also structured as a series of layers. Each layer is designed for a specific purpose. They are designed so that a specific layer on one machine sends or receives exactly the same object sent or received by its twin on another machine. This is done without regard to what is going on in layers above or below the layer under consideration.

The advantage of layering is that it simplifies protocol design. The designer can concentrate on a specific layer without regard to the design of other layers. For example, when designing the transport layer of the protocol, the engineer need be concerned only with assuring that a packet received by one machine is identical to the packet sent by another. The message contained in the packet is of no concern. The integrity of the message is of concern only to the designer of the application layer.

Members of the TCP/IP family include the Internet Protocol (IP), Transmission Control Protocol (TCP), User Datagram Protocol (UDP), Address Resolution Protocol (ARP), Reverse Address Resolution Protocol (RARP), and the Internet Control Message Protocol (ICMP). The entire family may be referred to as TCP/IP, reflecting the names of the two main protocols.

The OSI model describes an idealized network communications model. TCP/IP does not correspond to this model at every level, but instead either combines the functions of several OSI layers into a single layer, or finds no need to make use of certain layers. In consequence, TCP/IP can be described by a simpler model as shown in Figure 2 [STEV94].

1. Link Layer

The Link layer is the hardware level of the protocol model. It specifies the physical connections between hosts and networks, and the procedures used to transfer packets between machines.

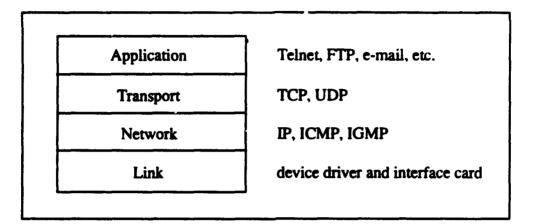


Figure 2: The Four Layers of the TCP/IP Protocol Suite

2. Network Layer

This layer is responsible for machine-to-machine communications. It determines the path a transmission must take, based on the receiving machine's IP address. The network layer also provides transmission formatting services; it assembles data for transmission into an internet datagram. If the datagram is outgoing (received from the higher layer protocols), the network layer attaches an IP header (Figure 3) to it. This header contains a number of parameters, most significantly the IP addresses of the sending and receiving host. Other parameters include datagram length and identifying information, in case the datagram exceeds the allowable byte size for network packets and must be fragmented.

3. Transport Layer

The transport layer protocols enable communications between application programs running on separate machines. The transport layer assures that data arrives in sequence, and without error. It does so by swapping acknowledgments of data reception. and the retransmission of lost packets. This type of communication is known as "end-toend". Protocols at this level are TCP, UDP, and ICMP.

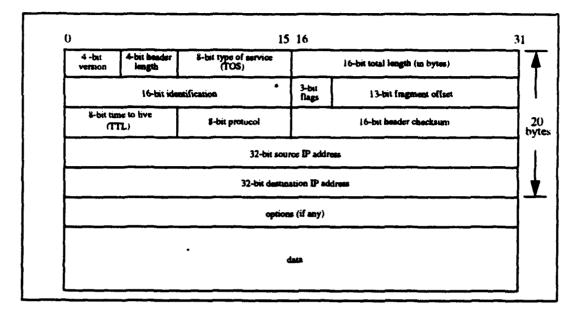


Figure 3: IP Header

TCP attaches a header onto the transmitted data. This header contains a large number of parameters, see Figure 4, which help processes on the sending machine connect to peer processes on the receiving machine. TCP uses 16 bit port numbers as its addressing method. Servers are normally know by their well-known port number. For example, every TCP/IP implementation that provides an FTP server provides that service on TCP port 21. Every Telnet server is on TCP port 23 [STEV94].

4. Application Layer

The application layer lets you use various TCP/IP standard internet services. These services work with the next lowest level of protocols (transport) to send and receive data. These services include *telnet*, *ftp*, *rcp*, and the Domain Name Service (DNS).

telnet. The Telnet protocol enables terminals and terminal oriented processes to communicate on a network running TCP/IP.

8

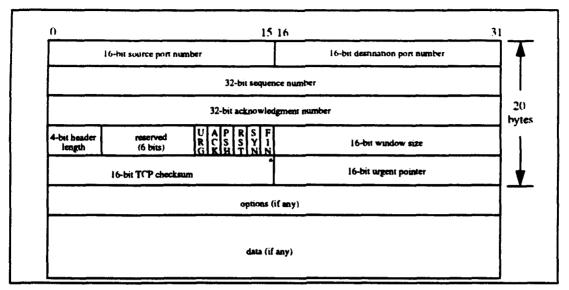


Figure 4: TCP Header

ftp. ftp transfers files to and from a remote network. Unlike rcp, ftp works even when the remote computer is running a non-UNIX operating system. A user must "log in" to the remote computer to make an ftp connection unless a system administrator has set up the computer to allow "anonymous ftp".

rep. rcp copies one or more files or hierarchies to and from a remote computer. The remote computer must be running UNIX. One must be an accepted user of the remote computer (i.e., the user's name must be in the remote computer's password database, and the user's machine name must be listed in the remote .*rhost* file). If this is not the case, a user cannot copy anything to or from the remote machine. The user must know the complete pathname of the file or directory to be copied.

DNS. DNS provides host names to the IP address service. It is a distributed database that is used by TCP/IP applications to map between hostnames and IP addresses. The DNS provides the protocol that allows clients and servers to communicate with each other and to provide electronic mail routing information.

D. FIBER DISTRIBUTED DATA INTERFACE

1. Fiber Distributed Data Interface Basics

Fiber Distributed Data Interface (FDDI) is a 100 Mbps high speed LAN standard developed under the auspices of American National Standards Institute (ANSI) X3T9.5 committee. FDDI was developed to create a reliable fault-tolerant, high-speed network connecting numerous stations over greater distances than existing standards. Although FDDI is somewhat similar to the IEEE 802 standards, it is not part of that family of standards [MINO91].

The ANSI X3T9.5 committee developed specifications for a network based on a dual counter-rotating fiber optic ring using a timed-token protocol, which is capable of transmitting data at 100 Mbps in each ring and which can extend to 500 stations over total fiber length of 200 km with full system performance. The dual counter-rotating ring can support connections up to 2 km with multimode fiber and connections up to 60 km using single-mode fiber.

The FDDI standard allows for two types of traffic: synchronous and asynchronous. Synchronous traffic should consist of data which is time sensitive such as voice or interactive video. Any delay in the throughput of this traffic has an adverse affect of the quality of the data being transferred. Asynchronous traffic should consist of more routine data transfers such as email, file transfers and Network File System (NFS) or Network Information Service (NIS) traffic. These packets of data can sustain some reasonable delays in transmission without any adverse affects on the applications.

2. Fiber Distributed Data Interface Layers

The standard for FDDI developed by the X3T9.5 committee included four layers shown in Figure 5. They are the Media Access control (MAC) layer, the Physical (PHY) layer, the Physical Medium Dependent (PMD) layer, and the Station Management (SMT) document [ALBE94].

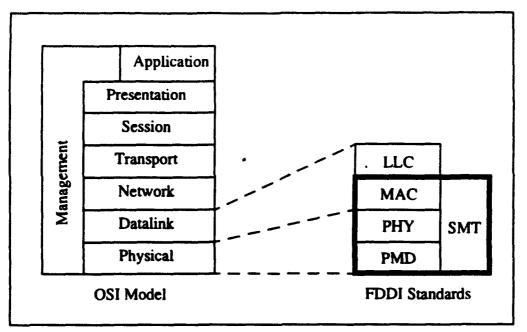


Figure 5: Relationship Between FDDI and ISO-OSI Layers

The four layers of FDDI fall under the first two layers of the OSI Model. The physical layer of FDDI is specified in two documents: the FDDI PMD which defines the optical interconnecting components used to form links and the FDDI PHY which defines the encoding scheme used to represent data and control symbols. The DLL is also divided into two sublayers: A MAC and LLC layer. The MAC portion provides access to the medium, address recognition, and generation and verification of frame check sequences. The LLC specification is not part of the FDDI standard [MINO91].

Below in Figure 6 is an additional graphical representation of the interaction between the FDDI standards as described in [POWE93].

a. The Physical Medium Dependent Layer

This layer defines all transmitters, receivers, cables, connectors and other physical media and hardware. There are currently 6 media options provided for the PMD layer:

- Multimode fiber (PMD)
- Single-mode fiber (SMF-PMD)
- Low-cost fiber (LCF-PMD)
- Shielded twisted pair (STP-PMD)
- Unshielded twisted pair (UTP-PMD)
- FDDI on Synchronous Optical Network (SONET)

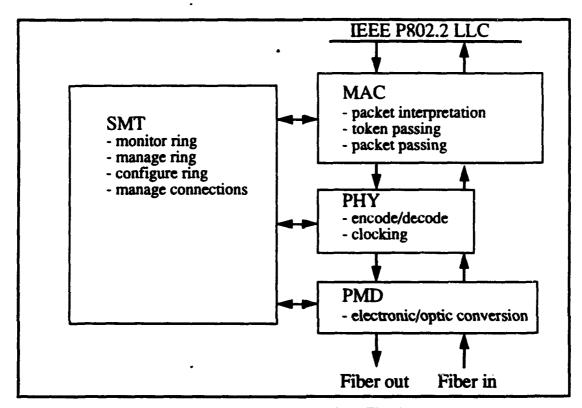


Figure 6: Block Diagram of the FDDI Layers

The first three options are published or soon to be published standards. The last three options are under development [ALBE94].

The PMD layer provides the PHY layer all the services required to transport a coded bit stream from one node to the next node. It converts the encoded data requests from the PHY layer into either optical or electrical signals depending on the media being used. It also provides SMT with the needed services required for proper ring management. The PMD layer informs both the SMT and PHY layers whenever it detects a signal on the medium [ALBE94].

b. The Physical Layer

This layer provides media independent functions associated with the OSI physical layer. The PHY layer decodes incoming bit stream into a symbol stream for use by the MAC layer and it encodes the data and control symbols provided by the MAC layer for transmission via the PMD layer. The PHY layer continuously monitors the ring status by listening to incoming signals and passes this information onto the SMT layer [ALBE94].

c. The Media Access Control Layer

This layer provides fair and deterministic access to the network. The access is fair because a workstation's physical location does not give it any advantage in accessing the medium over another workstation's location. The service is deterministic implies that the time the workstation has to wait for the token can be predicted under error free conditions.

In FDDI, medium access is controlled by a token. The workstation which possesses the token can transmit frames. The other workstations on the network repeat the frame, and the destination workstation copies the frame in addition to repeating it. The MAC layer of the workstation which generated the frame is responsible for removing the frame and passing the token downstream to the next workstation when it's Token Holding Time (THT) has expired [ALBE94].

d. The Station Management Layer

The SMT layer provides services such as node initialization, bypassing faulty nodes, coordination of node insertion and removal, fault isolation and recovery and collection of statistics. The SMT layer provides these functions using services provided by the PMD, PHY and MAC layers.

3. Fiber Distributed Data Interface Framing

Most communications within FDDI is done on frames (Except Physical Connection Management (PCM) signaling). Within the MAC layer there are three frame types:

- Tokens
- Management frames
- Data frames

Each frame is made up of three parts. The first part is the start of the frame sequence. The next part is the data or information part of the frame. The last part is the end of the frame sequence. The data frame is shown in Figure 7 along with the size of each field in symbols [ALBE94].

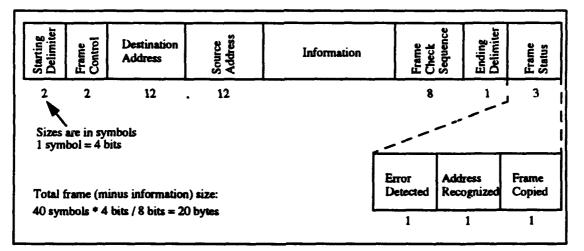


Figure 7: FDDI Frame Format

The start part of the frame is 28 symbols in length. Each symbol is a 4 bit unit. This means the start portion of the FDDI frame is 28 symbols * 4 bits / 8 bits = 14 bytes long. The end portion of the FDDI frame is 12 symbols or 6 bytes long. Since the maximum frame length is 9,000 symbols or 4,500 bytes, this leaves 4,480 bytes available for data or information. This remaining portion of 4,480 bytes, is also know as the FDDI Maximum Transfer Unit (MTU) value [ALBE94].

4. Encoding Method

Digital data needs to be encoded for proper transmission. The type of encoding used is determined by the type of media being used, the desired data rate, noise present on the transmission media and other factors. Since FDDI was originally intended for use over fiber optics, the encoding method selected needed to provide a digital-to-analog capability.

FDDI uses a two-stage encoding scheme; 4B/5B group encoding along with the digital signal encoding method known as Non-Return to Zero Inverted (NRZI). NRZI is an example of differential encoding. The signal is decoded by comparing the polarity of adjacent signal elements rather than determining the absolute value of a signal element. In 4B/5B, the encoding is done 4 bits at a time resulting 5 encoded bits. Then, each element of the 4B/5B stream is treated as a binary value and encoded using NRZI.

The result is that FDDI is able to achieve a 100 Mbps throughput using a 125-MHz rate. As mentioned earlier, the PHY layer is responsible for decoding the 4B/5B NRZI signal from the network into symbols that can be recognized by the station. The synchronization is derived from the incoming signal and the data are then retimed to an internal clock through an elasticity buffer.

E. NETWORK OVERHEAD

The process of transferring data from one workstation to another involves all the layers of protocols described previously. Even though the protocols are broken into layers to distribute functionality, the result is increased overhead. As discussed earlier, for each layer of protocol, there is an associated overhead at that layer as shown in Figure 8.

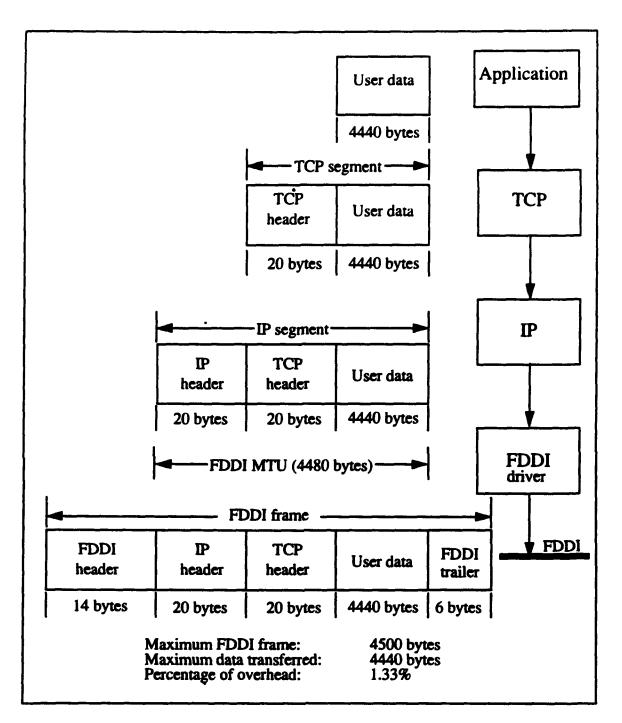


Figure 8: Composition of FDDI Frames and Percentage of Overhead

The amount of overhead involved in transferring data is dependent upon the protocols used and the network media being used as the transfer agent. For FDDI, the overhead is calculated as follows:

Data	Overhead	Level	Total Overhead
4,440 bytes	0	Application	0 bytes
4,440 bytes	20 bytes	TCP .	20 bytes
4,440 bytes	20 bytes	IP	40 bytes
4,440 bytes	20 bytes	FDDI	60 bytes

In this example, the frame of data being sent is 4,500 bytes: total amount of data being transferred is 4,440 bytes and total amount of overhead is 60 bytes. Therefore, the percentage of overhead is the amount of overhead (60 bytes) divided by the total frame size (4,500 bytes). Overhead = 60 bytes / 4,500 bytes = 1.33%. If we were to only send 11 bytes of data, then the overhead would be 60 bytes / 71 bytes = 84.5%. It is clear that the more data sent in each FDDI frame, the lower the percentage of overhead associated with that frame. Note that in this example the overhead from the application layer was not included.

F. FIBER DATA DISTRIBUTED INTERFACE PARAMETERS

This section will give a brief explanation of FDDI parameters as covered in the ANSI standards. The MAC layer must implement a number of these parameters as timers and counters. The three main goals of these timers and counters are to [ALBE94]:

- Allow the initialization of the token rotation timer
- Permit fast recovery from ring errors
- Aid in the collection of ring statistics for SMT

Below in Figure 9 are a list of the important timer values and variables used in the data transmission process. According to the FDDI standards, every time a node releases a token, it loads the value of T_Opr into Token Rotation Timer (TRT). This timer then decrements until it reaches zero. If it reaches zero before a valid token is received, the token is said to be late and the late counter (*Late_Ct*) is incremented. If TRT expires a second time before a valid token is received, an error condition exists and recovery procedures are initiated.

The token holding timer (THT) is used to control asynchronous transmission in a dynamic manner. When a valid token is received and the Late_Ct is not set, the token is said to be early and the node may transmit asynchronous data. In this case, THT is set to T_Opr minus TRT and the node may transmit until THT expiries. TVX is a hardware backup timer that is used to prevent nodes from blabbering on the network due to some error or miscalculation of THT [ALBE94].

Parameter	Description
TTRT	Target token rotation time
TRT	Token rotation timer
T_Opr	Operative TTRT negotiated during claim process
Late Ci	Late counter
тнт	Token holding timer
TVX	Transmission valid timer

Figure 9: Timers and Counters Used in Data Transmission

III. NETWORK EQUIPMENT

A. NETWORK OVERVIEW

The Naval Postgraduate School (NPS) FDDI research network consist of the three machines operating on a ring. The names of the three machines on the FDDI LAN are "Black", "White" and "Gold". Gold is the server on the network. The network is setup as shown in Figure 10.

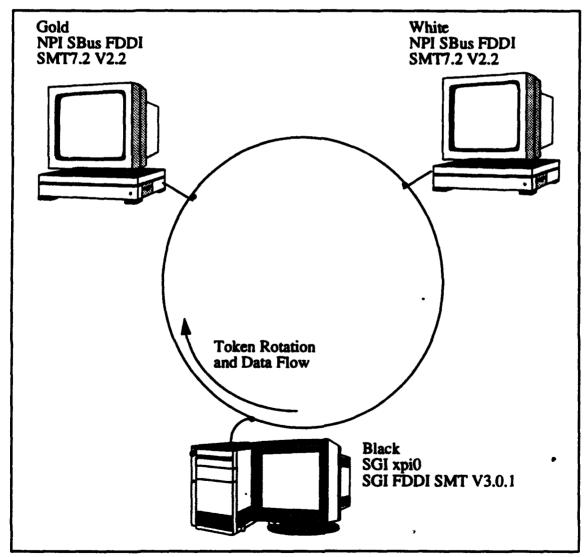


Figure 10: NPS's FDDI Research Network

1. Fiber Optics Equipment

The specifications for the fiber optics equipment can be found in the PMD standards. Originally, only optical fiber was specified as a physical media for FDDI. Now it is possible to also use shielded twisted-wire for short-distance transmissions. The requirements for twisted-wire can be found in the STP-PMD standards.

The recommended fiber size for FDDI is $62.5/125 \mu$ m. The operating wavelength is specified as 1300 nm and the minimum allowable power for the transmitter is -16 dBm. Pin diodes are to be used in the link. Pin diodes were chosen over avalanche photodiodes since pin diodes are a more mature technology and would result in a lower cost receiver. The bit-error rate (BER) of the network is 4×10^{-11} and the maximum number of nodes is 500 [POWE93].

2. Network Peripherals' Interface.

The Network Peripherals Inc. (NPI) SBus FDDI Network Interface conforms to Sun Microsystems' requirements for an SBus adapter. It mounts in a SBus slot and implements burst mode Direct Memory Access (DMA) for the highest system performance [NPI93].

As stated earlier, FDDI is designed to provide the capability for both synchronous and asynchronous data transfer. This is not the case with NPI's SBus FDDI Interface card. Furthermore, it is not the case for all known current implementations of FDDI. This makes the relationship of the timers and counters described earlier not as well defined. Without synchronous and asynchronous transfers, there is no need for *Late_Ct* and THT. Below is a list of parameters which NPI list as its tunable parameters. Note that there is not a parameter listed here which specifies how long a node can maintain the token.

sbf_num_llc_rx	/* For LLC network traffic: /* number of 4k receive buffers, maximum is 64 4k buffers /* Default is 48 4k buffers per NP-SB adapter
sbf num smt rx	/* For SMT network traffic:

	/* number of 4k receive buffers, maximum is 64 4k buffers /* Default is 4 4k buffers per NP-SB adapter	
sbf_mtu	/* Maximum protocol packet size, default is 4352 bytes	
sbf_T_Notify	/* SMT Neighbor Notification Timer, default is 30 seconds	
sbf_num_mcast	/* number of multicast entries, default is 16	

These parameters can be tuned by entering the appropriate line below in / etc/system for each parameter.

1. To change number of receive buffers to 64:

set sbf:sbf_num_llc_rx = 64

2. To change MTU size to 4192 bytes:

set sbf:sbf_mtu = 4192

3. To change T_Notify timer to 10 seconds:

set $sbf:sbf_T$ Notify = 10

After contacting NPI it was learned that there is another parameter which is not advertised called t_{req} . This parameter determines how long the node is allowed to ho¹⁻⁴ the token.

3. Silicon Graphic's Interface

FDDIXPressTM 3.0.1 is a network interface controller (board and software) providing FDDI connectivity for Silicon Graphics workstations and servers. For the IRIS Indigo, FDDIXPress has two configurations of the FDDI board: FDDIXPI and FDDIXPID. The FDDIXPI board allows one single-attachment FDDI connection to an FDDI concentrator; the FDDIXPID board provides a dual-attachment FDDI connection directly to the dual ring, or one or two connections to an FDDI concentrator. An Indigo can accommodate one of these boards.

When FDDIXPress is installed, an Indigo can also use its built-in Ethernet network interface, thus having two network interfaces. FDDIXPress for IRIS Indigo has been designed for customer installation.

B. WORKSTATION OVERVIEW

1. SUN SPARCstation 10 system

The SPARCstation 10 systems used in this test were the new multiprocessing systems running Solaris 2.3: We had two SPARCstation 10 systems, Gold and White, available for our FDDI research. Both systems have two processors, two internal hard disk drives and 224 Dynamic Random Access Memory (DRAM). Gold has two 50MHz processors and 2 - 1 GB internal drives. White has two 40MHz processors, 1 -1 GB internal drive.

a. Software Architecture

Solaris 2.3 is a multilayered operating system that includes SunOS 5.3, Open Network Computing (ONC), Open Windows, and the DeskSet. At the core of Solaris is SunOS, the collection of programs that actually manages the system, which includes the kernel, the file system, and the shells.

SunOS is a collection of UNIX programs that control the Sun workstation and provide a link between the user, the workstation, and its resources. It has its roots firmly placed in the two most popular UNIX families: Berkeley UNIX (BSD) and AT&T's UNIX. Early versions of SunOS blended some of AT&T's UNIX with Berkeley UNIX and offered additional enhancements.

AT&T and Sun Microsystems later worked together to create a new industry standard, AT&T UNIX System V Release 4, commonly known as SVR4. SunOS 5.3 merges SunOS 4.1 and SVR4. Most of the new changes in SunOS come from SVR4. As a result, Solaris 2.3 is based on SVR4 but contains a few additional BSD/SunOS features [HESL93].

b. Hardware Architecture

The SPARCstation 10 architecture is shown in Figure 11 [SUNM90]:

SuperSPARC microprocessor This is a high-performance CPU chip that has the following features:

- A single chip with integer, floating point, memory management, and caches.
- Superscalar pipeline with up to three instructions launched per clock cycle.
- 20-Kbyte instruction cache and 16-Kbyte data cache.
- 64 entry TLB with hardware page-table walking.
- Integral support for cache-coherent multiprocessing.

The SuperSPARC processor has a companion chip, the SuperCache controller, which provides for a 1-Mbyte external cache. Additionally, SPARC modules with SuperCache controllers can operate asynchronous to the system clock.

MBus. The MBus is a high performance memory bus which was first introduced in Sun's SPARCserver 600MP family. It is a synchronous, 40-MHz 64-bit bus that is capable of a peak transfer rate of 320 Mbytes/second. Typically, the MBus can sustain a rate of 100 Mbytes/second.

This bus provides support for symmetric multiprocessing by means of a "snooping" protocol. Whenever a processor puts an address onto the MBus, all other processors "snoop" the bus, checking to see if data at the snooped address is in their cache.

Main memory architecture: The Sun-4m architecture uses a 144 bit wide memory data path (128 bits of data and 16 bits of error detection and correction). The use of a 128-bit wide memory data has two advantages. First, the 32-byte cache fill can be accomplished quickly. Second, error corrections can be performed on each 64-bit word. Single bit errors can be corrected and double-bit (4-bit) errors can be detected.

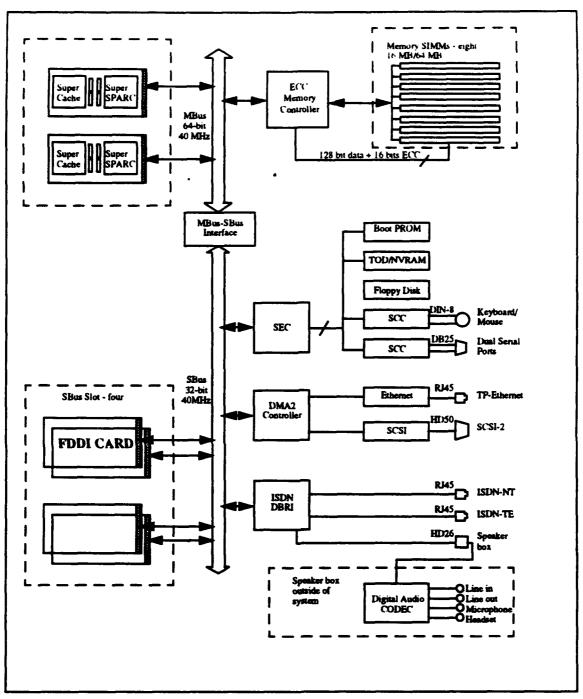


Figure 11: Sun-4m Architecture Used in the SPARCstation 10 System

I/O architecture: A single Application-Specific Integrated Circuit (ASIC) serves as the interface between the MBus and the SBus. The MBus is used as the processor memory interconnect, while the SBus is used only for I/O. The SPARCstation 10 system

supports four SBus slots. They provide the means to interface a variety of I/O options, including network interfaces such as FDDI, graphics adapters and laser printer interfaces.

2. Silicon Graphics IRIS Indigo

The Silicon Graphics IRIS Indigo used in this test was an IRIS-4DTM, model 4D/ RPC. The IRIS Indigo uses the R3000A CPU RISC processor from MIPS Computer Systems Inc. It is assisted by a 32 Kbyte tlata and instruction cache and a MIPS R3010A floating-point unit. To speed up data transfers, IRIS Indigo uses custom ASICs designed by Silicon Graphics. These chips manage memory and processor interrupts, handle I/O and control the bus, often without CPU intervention [SILIC91].

We had one IRIS Indigo, Black, available for our FDDI research. This system has one 33 MHz processor, one 1 GB internal hard disk drive and 32 Mbytes of RAM. The workstation has the following features:

- A single 33 MHz chip with integer, floating point, memory management, and caches.
- 32-Kbyte instruction cache and 32-Kbyte data cache.
- Integral support for cache-coherent multiprocessing

a. Software Architecture.

The IRIS Indigo uses IRIX 4.0 which is Silicon Graphics' implementation of the UNIX operating system. IRIX 4.0 is based on AT&T UNIX System V.3, but also includes numerous 4.3 BSD extensions, such as TCP/IP network protocols and NFS, which provide transparent access to files across a heterogeneous network

b. Hardware Architecture.

This IRIS Indigo CPU board, Figure 12 [SILIC91], contains four functional sections:

- The processor core, which contains the CPU and FPU.
- Main memory, which contains DRAM and supporting circuitry
- The I/O system, which contains peripheral ports and hardware designed to read incoming data, manage incoming and outgoing data
- The audio system, which contains audio ports and digital signal processing hardware.

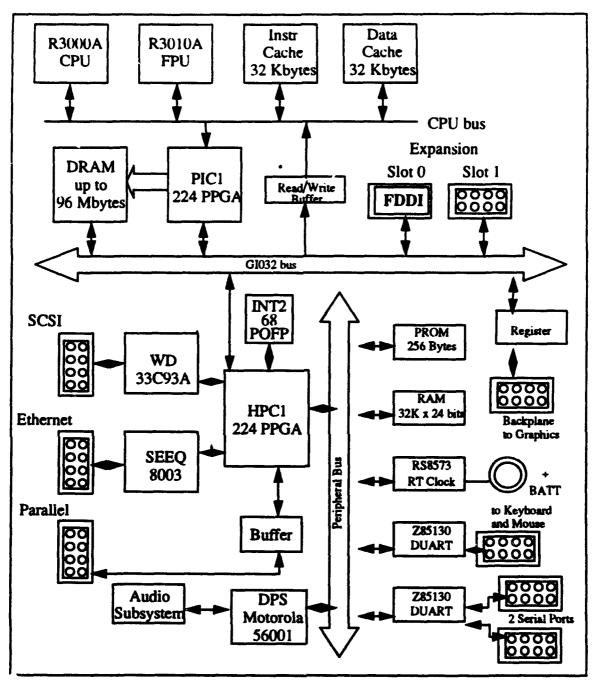


Figure 12: The IRIS Indigo CPU Board

Three busses connect parts of the CPU board:

- The CPU bus, which connects the CPU, FPU, cache control, and bus control hardware.
- The GIO32 bus, which is the main system bus connecting the processor core,

main memory, I/O system, expansion slots, and graphics board.

• The Peripheral bus, which connects the peripheral ports, audio system, and other I/O components.

The CPU bus and the GI032 bus have separate clocks and run at different speeds so that each part runs at maximum capability. The CPU and other chips can be upgraded independently as technology improves.

Instruction and Data Caches. Each cache is a 32 Kbyte cache. The instruction cache holds frequently used instructions and the data cache holds frequently used data. The IRIS Indigo uses a write-through scheme in the data cache to ensure that writes made to the cache are also written to the corresponding page in main memory.

The GI032 Bus. This bus is the IRIS Indigo's main system bus, and is designed for high speed data transfer. It connects the main systems of IRIS Indigo; the processor core, main memory, the I/O systems, the graphics system, and any systems plugged into the expansion slots. This bus is a synchronous, multiplexed address/data, burst mode bus that operates at 33.3 MHz, clocked independently of the CPU. The bus protocol supports data transfers at a maximum sustained rate of one word per clock.

The I/O System. The I/O system ties together a variety of I/O ports and the chips that drive them, a system clock, system Programmable Read-Only Memory (PROM) for booting up, an static RAM.

The HPC1 ASIC. The HPC1 is a custom Silicon Graphics chip that connects to the GI032 bus, the peripheral bus, and directly to several of the I/O ports. It is the heart of the I/O system, and quickly transfers data between main memory and a rich collection of peripheral devices.

Expansion Slots. The two expansion slots, connected directly to the GI032 bus, provide direct access to the system for Silicon Graphics and third party plug-in boards for such applications as high-speed networking, image compression, video deck control, and additional I/O. Slot 0 is used for our FDDI connection.

IV. TEST DESIGN PLAN

A. TEST STRATEGY

The objective is to find the upper limit of throughput by measuring actual throughput between high performance workstations over an FDDI network and to determine what bottlenecks, if any, exits between Sun Microsystem SPARC 10 multiprocessors running the Solaris 2.3 and NPI's FDDI network interface cards. This process will include identifying the various parameters which affect throughput and testing these parameters in enough detail to determine their impact on network performance. As explained in Chapter II, there are various levels of software that are involved in transferring data. As shown in Figure 13, as data is transferred from White to Gold, there are several impacts on the data transfer rate.

The key to this test design plan will be gathering the appropriate data to determine what impact these various parameters have on the transfer rate, and how to measure them. Three different methods will be used to measure the performance of data being transferred between workstations across the FDDI network. First, a commercial benchmarking tool will be used to provide performance results on the workstations. Second, a public domain networking benchmark tool will be used to show the transfer rate of the network. Third, a simple program which issues an *rcp* command and measures the time of the file transfer will be used.

B. NEAL NELSON BENCHMARK

The primary benchmarking tool to be used for providing the performance results on the workstations will be the Neal Nelson Business BenchmarkTM. This benchmark tool has been around for over 9 years and has been used as a tool for verifying vendor compliance during government contract awards. The Business Benchmark differs from other popular benchmarks in that its primary focus is not to provide a single number speed rating for a system, nor is its primary purpose to emulate a particular user group or duplicate the load created by certain task mix. The Business Benchmark was designed to incrementally stress various parts of a computer system and record how the system performs. The benchmark was intended to uncover both the strengths and the weaknesses of a computer architecture and report them separately so that they can be understood and analyzed [GRAY91].

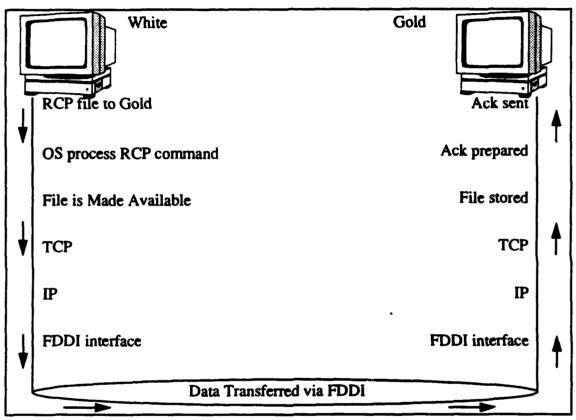


Figure 13: Flow of Data Across the FDDI Network Using the RCP Command

The Neal Nelson Business Benchmark is a multitasking benchmark with a parent/child design. A parent process creates child processes and instructs them to run tests in various combinations. There can be from one to one hundred child processes running simultaneously during a benchmark session. During a test session the parent process creates a single child process and instructs the child to perform a series of tests. Then the parent creates a second child and directs both children through the same series of tests. This process is repeated until a desired maximum number of child processes is reached, or until the system runs out of some resource such as disk space [NNBM94].

The benchmark consists of thirty tests, which are divided into three groups.

Group 1: Tests a of mix of activities that are intended to approximate the processing activities for the following five types of users. Group 1 includes the following tests:

- 1) Simulated Office Automation Workload
- 2) Simulated Database Workload
- 3) Simulated Software Development Workload
- 4) Simulated Transaction Processing Workload
- 5) Simulated Calculation Workload (Math/Statistics/CAD/CAM)

Group 2: Tests designed to perform various types of calculation tasks and thereby profile the performance of the computer's calculation subsystem. Group 2 includes the following tests:

6) Write to Shared Memory

- 7) Read from Memory, Small Instruction Area, Small Data Area
- 8) Read from Memory, Small Instruction Area, Larger Data Area
- 9) Read from Memory, Larger Instruction Area, Small Data Area
- 10) Read from Memory, Larger Instruction Area, Larger Data Area
- 11) Make Machine Page or Swap with 'malloc' and 'free'
- 12) Combined Integer and Floating Point Math
- 13) Math Library Functions
- 14) Semaphores, Shared Memory, Context Switch
- 15) Write to and Read from Pipes, Context Switch
- 16) Sample System Calls
- 17) Increasing Depth of Function Calls

Group 3: Tests that perform a series of disk input and output functions to profile the

performance of the disk subsystem. Group 3 includes the following tests:

18) 1024 byte Sequential Reads from Unix File(s)

19) 1024 byte Sequential Writes from Unix File(s)

20) 8192 byte Sequential Reads from Unix Files(s)
21) 3192 byte Sequential Writes to Unix File(s)
22) 4096 byte Synchronized Reads from Unix File(s)
23) 4096 byte Synchronized Reads from Raw Device(s)
24) 16384 byte Synchronized Reads from Unix File(s)
25) 16384 byte Synchronized Reads from Raw Device(s)
26) 4096 byte Pseudo Random Reads from Unix File(s)
27) 4096 byte Pseudo Random Reads from Raw Device(s)
28) Profile Disk Cache for Unix File(s)
29) Profile Disk Cache for Raw Device(s)

30) 8192 byte Sequential Writes then 'sync'

During each of the above tests, measures will be obtained at load factors from 1 to 20. This load factor number indicates the number of copies of the benchmark program which were running simultaneously. Each load factor unit might approximate the workload of one or two heavy users or possibly twenty light users. The measurements will be in seconds to complete the measured task. The system which takes less time to accomplish the measured task is the faster system.

C. NEW TEST TRANSMISSION CONTROL PROTOCOL

New Test TCP (*nttcp*) uses Test TCP (*ttcp*) as the basic tool for determining measured throughput over any physical network media. *nttcp* provides the option of dynamically changing the TCP/IP window size during the throughput test. *ttcp* was developed by the U. S. Army's Ballistic Research Lab (BRL) which is now the U. S. Army's Research Lab (ARL) and is considered one of the default network performance benchmarks.

nttcp tests TCP and UDP performance by timing the transmission and reception of data between two systems using the UDP or TCP protocols. It differs from common "blast" tests, which tend to measure the remote *inetd* as much as the network performance, and which usually do not allow measurements at the remote end of a UDP transmission.

For testing, the transmitter should be started with -t after the receiver has been started with -r. For testing various window sizes, *nttcp* allows a -w option which permits the user

to specify the desired TCP/IP window size. Some of the other options which were used during this investigation are shown below:

- -t Transmit mode.
- -r Receive mode.
- -u Use UDP instead of TCP. *
- -n Number of source buffers transmitted.
- -l Length of buffers in bytes.
- -w TCP/IP window size in k bytes.
- -p Port number to send to or listen on.

Below are the commands used in a typical session during this investigation:

Receiving system (gold): gold: *nttcp* -r -p3000 -w12 Transmitting system (white): white: *nttcp* -t -p3000 -l65536 -n1024 -w12 gold

The shell scripts along with the *nttcp* program are in Appendix A. The shell scripts *doit.sh* and *ttest.sh* were written by personnel at the U. S. Army Research Lab (ARL) and modified to fit this investigation. These scripts were designed to be used with the program *nttcp*. The first script, *doit.sh*, provides the various combinations of data sizes to be transferred along with starting and stopping times of each run. This script runs through six iterations of identical data sets. The shell script *ttest.sh*, provides the calls to the program *nttcp*. Using the data length and number of packets specified in the shell script *doit.sh*, *ttest.sh* makes numerous calls to *nttcp* varying the window size from 4 k to 60 k in 8 k increments. This combination of amount of data transferred, number of test runs and number of window sizes provides a total of 576 measured data transfers during a single run. Amount of data transferred (12 sizes) * number of test runs (6 runs) * number of window

sizes (8 different window sizes) = 576 measured data transfers. Below is an example of the results from a single call to *nttcp* with the amount of data to be transferred equal to 33.554,432 bytes of data and the TCP/IP window size being varied from 4 k to 60 k in 8 k increments:

Window Size(bytes)	Transfer Rate (Mb/s)
4096	• 32.7680
12288	29.1271
20480	37.4491
28672	43.6907
36864	52.4288
45056	43.6907
53248	43.6907
61440	37.4491

The TCP/IP window size is adjusted during these runs using the setsockopt system call. After the window size has been adjusted, the getsockopt system call is performed to verify that the TCP/IP window size has been changed as requested. Figure 14 shows an example of the setsockopt and getsockopt system calls used in the nttcp program.

if (setsockopt (fd, SOL_SOCKET, SO_SNDBUF, (char *) & sendwin, sizeof(sendwin)) < 0) printf("get send window size didn't work\n");
if (setsockopt (fd, SOL_SOCKET, SO_RCVBUF, (char *) &rcvwin, sizeof(rcvwin)) < 0)
printf("get rcv window size didn't work\n");
if (getsockopt (fd, SOL_SOCKET, SO_RCVBUF, (char *) & sendwin, & optlen) < 0)
printf("get send window size didn't work\n");
else printf("send window size = %d\n", sendwin);
if (getsockopt (fd. SOL_SOCKET, SO_RCVBUF, (char *) &rcvwin, & optien) < 0)
printf("get rcv window size didn't work'n");
else printf("receive window size = %d\n", rcvwin);

Figure 14: Example of setsockopt and getsockopt System Calls

D. REMOTE COPY PROTOCOL TRANSFER

Another program being used to measure the data transfer rate is a simple C program which issues a rcp command transferring a file from one workstation to another (Appendix B). The primary reason for choosing the rcp command is that it uses TCP which is a reliable transfer agent versus UDP which is unreliable. By using the rcp command, we are able to measure the time from the rcp command being issued to the time the ack is received back from the other workstation. The system can access the clock prior to issuing the rcp command, and then again after it receives the ack from the other workstation. Since the rcp provides for reliable data transfer, this allows a measurement of the total transfer time. Figure 15 shows the code obtaining the current system time, issuing the rcp command and then obtaining the system time again after the transfer is complete.

a = gettimeofday(×tart, zonestart); if (a != 0) printf ("Oops ! %d\n", a); /* Use system call to do file transfer */ system ("rcp large_file gold-fddi:/usr/test/gtow_test"); /* Get stop time in sec&usec and check if successful */ b = gettimeofday(&timedone, zonedone); if (b != 0) printf ("Oops! %d\n", b);

Figure 15: Implementation of RCP System Call

This method includes all the overhead from the operating system, *rcp*, TCP, IP and FDDI. After the *rcp* command is issued, the file is located in the file system and loaded into memory. Next, the workstation from which the command is being executed must perform a name/address resolution to determine where the file is being transferred. DNS provides this name/address resolution. Once this name/address resolution is performed the file is handed off to TCP to begin the transfer from workstation A to workstation B. TCP hands

the file transfer off to IP which forwards the file to the FDDI protocol. At this point the FDDI SBus card transfers the file from workstation A to workstation B. At workstation B the reverse scenario takes place. The file is handed off from the FDDI protocol to the IP protocol, to the TCP protocol, and finally reaches the OS on workstation B. At this point, TCP on workstation B must issue an *ack* to let workstation A know that the file has been correctly received and handed off to the OS.

The *rcp* command copies files between machines. Each filename or directory argument is either a remote file name of the form:

hostname:path

or a local file name (containing no: characters, or a / before any: characters).

If a filename is not a full path name, it is interpreted relative to the users home directory on hostname. A path on a remote host may be quoted (using $\$, ", or ') so that the metacharacters are interpreted remotely.

rcp does not prompt for passwords; your current local user name must exist on hostname and allow remote command execution by *rsh*.

rcp handles third party copies, where neither source nor target files are on the current machine. Hostnames may also take the form

username@hostname:filename

To use username rather than your current local user name as the user name on the remote host. *rcp* also supports Internet domain addressing of the remote host, so that:

username@host.domain:filename

specifies the username to be used, the hostname, and the domain in which that host resides. Filenames that are not full path names will be interpreted relative to the home directory of the user named username, on the remote host.

E. PARAMETERS WHICH AFFECT BOTH TEST

The following driver parameters will be tuned under Solaris 2.3.

sbf_num_llc_rx	/* For LLC network traffic: /* Number of 4k receive buffers, maximum is 64 4k buffers /* Default is 48 4k buffers per NP-SB adapter
nfs_async_thread	ds /* Number of NFS thread for handling network file service /* Default is 8
sbf_treq	/* Amount of time for TTRT, default is 8ms /* Range is from 2ms to 165ms
sbf_mtu	/* Maximum protocol packet size, default is 4352 bytes

The above 4 tunable parameters along with the TCP/IP window size will be varied during the *rcp* and *nttcp* transfer test. The TCP/IP window size controls the amount of data permitted to be transferred between TCP acknowlegments. Numerous tests will be run varing each of the four parameters to determine what combination of values provides the optimum throughput performance and what weight each parameter has on the changes. The baseline test will be the values the manufacture recommends as the default values.

F. FILE SIZES FOR BOTH TRANSFERS

In order to measure the impact of the TCP, IP and FDDI overhead during the test, various sizes of files will be transferred. For the *rcp* test, the properties of the four files to be used are shown in TABLE 1. These files range in size from 6 bytes to 17,989,936 bytes. The amount of overhead during the transfers can be estimated as follows:

For the *nttcp* test, the amounts of data to be transferred is shown is TABLE 2. The amounts of data to be transferred is obtained by specifying the length of a buffer to be transferred and the number of buffers. As an example, if 2048 buffers of length 8192 bytes

are transferred, then a total of 16,777,216 bytes of data are being transferred. The combinations listed in TABLE 2 give a range from 4,194,304 bytes to 2.684354e+08 bytes being transferred.

	File Size	Total Overhead	
Huge	(17,989,936 bytes)	1.37%	
Large	(1,314,923 bytes)	1.37%	
Medium	(48,072 bytes)	1.42%	- ورانته
Tiny	(6 bytes)	90.9%	

TABLE 1: RCP FILE SIZES AND ASSOCIATED OVERHEAD

In order to make it easier to reference which file size has been used in the various test, the files will be referred to as File A through File H with File A being the smallest file, 4,194,304 bytes, and File H being the largest file, 268,435,400 bytes. The rest of the files are in order of size from the smallest file to the largest file.

length of Buffers Number of Buffers	8192 bytes (Files A - D)	65536 bytes (Files E -H)	
512	4194304 bytes	33554432 bytes	
1024	8388608 bytes	67108864 bytes	
2048	16777216 bytes	1.342177e+08 bytes	
4096	33554432 bytes	2.684354e+08 bytes	

TABLE 2: FILES (DATA SIZES) FOR NTTCP TEST

G. SYSTEM CONFIGURATIONS FOR ALL TESTS

As described in the previous sections, various tunable parameters and file sizes will be used during this investigation. In order to obtain reliable results, numerous test must be conducted to achieve a comfortable confidence level. Unfortunately, it is not practicable to perform all the test runs necessary to test all combinations possible let alone run enough iterations of each test to obtain the desired confidence level in the results.

As an example, just running the various combinations of tests described earlier with the *nttcp* program, there were 576 measured data transfers during a single run. One such test took a combined total of 3 hours and 15 minutes to run. During initial runs of the *nttcp* program, the TCP/IP window size was varied in 4 k increments. It was determined that there was little difference between the individual transfer rates of 4 k window sizes. Therefore, follow-on test were run at intervals of 8 k window sizes. This change reduced the run times from over 6 hours to just over 3 hours with little to no loss of usable results.

As noted earlier, there are other tunable parameters which can be modified by using the set command in the /etc/system file. Once again, it is not possible to test all possible combinations of parameters. As an example, if we start with the 576 measured data transfers which took over 6 hours with a 4 k TCP/IP window size increment, then test the TTRT parameter at 5 ms increments (33 tests), then the *sbf_num_llc_rx* buffers at 4 k increments (15 test), then the *sbf_num_smt_rx* buffers at 4 k increments (15 tests) and assume that we would like a confidence level which requires 50 runs of each test, we would have a total of 33*15*15*50 = 371250 tests needed to reach any conclusions. If each test took over six hours to conduct, it would take a total of 2,227,500 hours or 92,812.5 days just to finish conducting the tests.

In his book [JAIN91], Raj Jain discusses this dilemma of having too many variables to consider. The solution is to first get a gross picture of the impact of changing selective parameters. Once a parameter's impact on performance has been determined, then more thorough testing can be conducted by adjusting the correct parameters to obtain the desired confidence level. An example of this method in practice is changing from 4 k intervals in the TCP/IP window size to 8 k windows sizes.

In addition to the tunable parameters already discussed, this investigation is looking into the impact of the workstations running in multiprocessor modes and using a recently developed operating system, Solaris 2.3. This now doubles the required testing! First, tests will be conducted in the two processor configuration. Then, each Sun SPARCstation will be tested with only a single process, but still running Solaris. Once again, it is not possible to test all possible tunable parameters especially in both hardware configurations. Once a pattern has been established in the single processor configuration, follow-on tests in the multi-processor hardware configuration will be focused to limit the scope of tests to changing those parameters which produce the best results.

H. PARAMETER BASELINE

First, a baseline condition must be established before any changes are made to the system. This baseline will be with the following parameter values shown in TABLE 3. This table pertains more to the parameter settings in the *nttcp* and *rcp* test than the Neal Nelson Benchmark test. The first parameter, *NFS_asynch_threads*, has an impact on all three test. The other three parameters only impact the results of the *nttcp* and *rcp* test. No changes will be made to the workstations other than the changes to the tunable parameters listed below. Stored with the results of each *nttcp* and *rcp* test run is a README file with the below parameters and their values for that test.

While the below parameters are changed for the *nttcp* and *rcp* test, the TCP/IP window size will also be varied. The TCP/IP window size is not listed below in TABLE 3 as a tunable parameter. It is being treated differently due to the method it is varied during the test transfers. The *nttcp* program will be varying the TCP/IP window size during the test whereas the below listed tunable parameters must be changed by rebooting the workstations in-between the various tests.

	NFS_asynch_thre ads	t_req	sbf_aum_lic_rx	sbf_mtu
Neal Nelson Benchmark	8	8ms	48K	4352
NTTCP	8	8ms	48K	4352
RCP	8	8ms	48K	4352

TABLE 3: DEFAULT PARAMETERS USED FOR ALL THREE TEST

Below is a review of the parameter descriptions:

sbf_num_llc_rx	/* For LLC network traffic. Number of 4k receive buffers
	/* maximum is 64 4k buffers
sbf_mtu	/* Maximum protocol packet size, default is 4352 bytes
t_req	/* Token holding time, default is 8ms
nfs_asynch_threads	/* For NFS service. Number of threads alloted. Default is 8

The results of the initial *nttcp* baseline test during the single processor test are shown below in TABLE 4. The results shown in this table are the averaged results obtained from running this test for six runs. The first column shows the TCP/IP window size used during the test. The next 8 columns which are labeled File A through File H, show the averaged measured throughput in Mbps achieved during this test run.

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File H Mbps
4	32.77	38.23	40.05	36.06	32.46	31.92	31.51	31.96
12	118.33	29.13	32.77	30.95	24.63	25.42	24.93	26.21
20	32.77	43.69	41.87	40.57	40.57	40.33	40.62	39.86
28	32.77	49.15	38.23	42.65	40.57	40.89	41.67	41.81
36	32.77	43.69	38.23	43.69	41.61	40.89	41.67	42.38
44	32.77	49.15	38.23	42.65	40.57	39.43	42.26	42.09
52	76.96	49.15	38.23	41.61	38.75	37.93	39.35	36.15
60	32.77	43.69	38.23	41.61	33.72	34.37	30.09	30.60

TABLE 4: TEST RESULTS IN SINGLE PROCESSOR MODE

V. TEST RESULTS AND ANALYSIS

In this chapter, the results from the three tests discussed in Chapter IV will be presented. First, the results from the Neal Nelson Benchmark tests will be presented. These results will show that the newer, faster 50MHz processors should outperform the older 40MHz processors. Next, the results from the New Test TCP (*nttcp*) network throughput tests will be presented. These results will show under what conditions the highest throughput can be achieved and what throughput bottlenecks exists. Last, the results from the *rcp* transfer tests will be presented. These results will help to identify bottlenecks within the workstation as a whole. The *nttcp* tests directly access the TCP/IP layer and denote the provide a true measure of all the overhead present in distributed processing.

A. NEAL NELSON BENCHMARK

The Neal Nelson Benchmark is the tool being used to measure the capabilities of the workstations and the operating systems being tested. It is important to verify that the hardware we believe will perform faster has been verified to perform faster.

To begin with, two system disks were configured with the Solaris 2.3 operating system and one system disk was configured with the SunOS 4.1.3 operating system. A three gigabyte disk was partitioned and half of it made into a Unix file system, leaving the other half as a raw disk partition. The source code for the benchmark was obtained, installed, and compiled under Solaris 2.3 and SunOS 4.1.3 with the default tuning parameters.

The benchmark was started in the background and took approximately 20 hours to run under each of the following four hardware configurations: Gold with two 50HMz processors and White with two 40MHz processors, each running Solaris 2.3; Gold with one 50MHz processor running Solaris 2.3; Gold with one 50MHz processor running SunOS 4.1.3. Solaris 2.3 is Sun Microsystem's new operating system based on AT&T System V unix while SunOS 4.1.3 is based on Berkley's unix. Once the benchmark testing was completed, the results were collected and electronically mailed to Neal Nelson & Associates, where the test reports were generated. The results from the three different configurations discussed below are listed in Appendix C with approval from Neal Nelson & Associates.

1. Gold Versus White, Two Processors and Solaris 2.3

In group 1 tests, which are intended to approximate the processing activities of five types of users, Gold consistently performed the tasks approximately 20 percent faster than White.

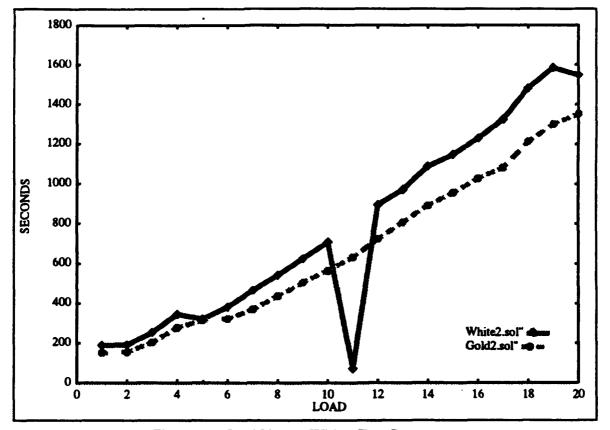


Figure 16: Gold Versus White, Two Processors

In group 2 tests, which are designed to perform various types of calculation tasks and thereby profile the performance of the computer's calculation subsystem, Gold continued to perform the tasks approximately 20 percent faster than White. In group 3 tests, which performed a series of disk input and output functions to profile the performance of the disk subsystem, the results were mixed, but Gold still outperformed White on the average. These results varied from Gold outperforming White an average of 20 percent, to times when White outperformed Gold.

In Figure 16 on page 42 are the graphical results of Test 1, Simulated Office Automation Workload. Gold, with two 50MHz processors running Solaris 2.3, clearly took less time to perform the test than White with two 40MHz processors running Solaris 2.3 except at a load of 11. Once again, a load can signify either several light users or a single heavy user. As the loads increase you have either more light users or multiple heavy users.

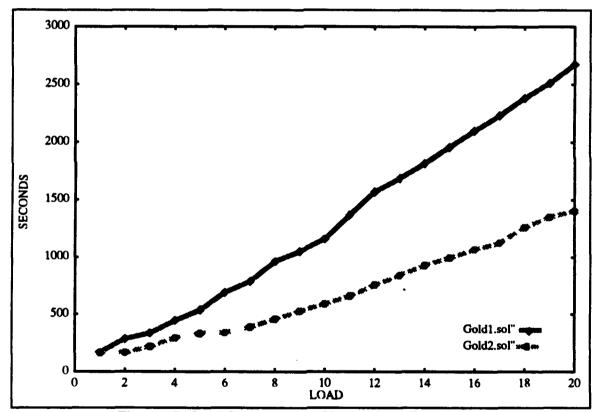


Figure 17: Gold One Processor Versus Gold Two Processors

2. Gold One Processor Versus Gold Two Processors and Solaris 2.3

In group 1 tests, the two processor configuration consistently outperformed the single processor configuration by 80 to 90 percent.

In group 2 tests, the two processor configuration continued to outperform the single processor configuration by 80 to 90 percent in all areas but one. In test 14, Semaphores, Shared Memory and Context Switch, the two processor configuration only outperformed the single processor configuration by 5 to 7 percent.

In group 3 tests, the results were once again mixed. The two processor configuration outperformed the single processor configuration in all tests but three by 50 percent. In test 19, 1024 byte Sequential Writes from Unix File(s) and test 21, 3192 byte Sequential Writes to Unix File(s), the single processor outperformed the two processor configuration by an average of over 200 percent. In test 30, 8192 byte Sequential Writes then 'sync', the single processor configuration outperformed the two processor configuration by approximately 20 percent.

In Figure 17 on page 43 are the graphical results of Test 1, Simulated Office Automation Workload. Gold with one 50MHz processor running Solaris 2.3 clearly took more time to perform the test than Gold with two 50MHz processors running Solaris 2.3.

3. Gold With One Processor, Solaris 2.3 Versus SunOS 4.1.3

In group 1 tests, the results were once again varied. SunOS 4.1.3 outperformed Solaris 2.3 in 4 of the 5 tests at the higher load levels by 3 to 4 percent. Solaris 2.3 outperformed SunOS 4.1.3 in two of the test at the lighter load levels by 3 to 4 percent.

In group 2 test, the results were more consistently in favor of SunOS 4.1.3. In 7 of the 12 test, SunOS 4.1.3 outperformed Solaris 2.3 by 4 to 5 percent. In test 13, Math Library Functions, SunOS 4.1.3 outperformed Solaris 2.3 by an average of 40 percent. Solaris 2.3 only outperformed SunOS 4.1.3 in three of the test areas. Two of the areas the percent was once again, only by 2 to 3 percent. In test 17, Increasing Depth of Function Calls, Solaris 2.3 outperformed SunOS 4.1.3 by an average of 40 to 50 percent.

In group 3 tests, the results were once again varied. In 6 of the tests, SunOS 4.1.3 outperformed Solaris 2.3 by anywhere from 15 to over 500 percent. In seven of the tests, Solaris 2.3 outperformed SunOS by anywhere from 100 to over 400 percent. Once again

though, it appears that SunOS 4.1.3 came out slightly ahead in the high load area over Solaris 2.3

Below in Figure 18 are the graphical results of Test 1, Simulated Office Automation Workload. Gold with one 50MHz processor running SunOS 4.1.3 slightly beat out Gold with one 50MHz processor running Solaris 2.3 at the higher loads.

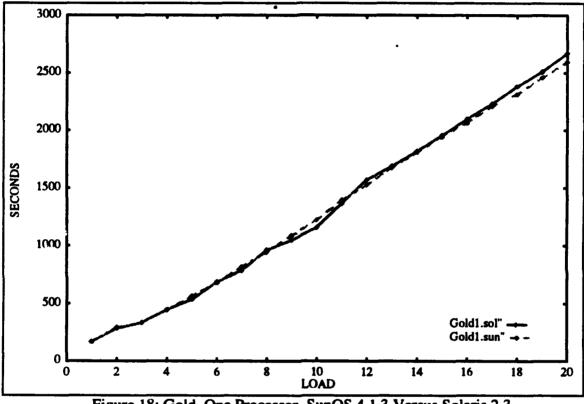


Figure 18: Gold, One Processor, SunOS 4.1.3 Versus Solaris 2.3

B. NEW TEST TRANSMISSION CONTROL PROTOCOL

As discussed in Chapter IV, the file sizes used during the test runs with New Test TCP (*nttcp*) are shown below in TABLE 5. The files are created by specifying the length of the buffer to be created and the number of buffers to be sent. The files will be referred to as File A through File H with File A being the smallest file, 4,194,304 bytes, and File H being the

largest file, 268,435,400 bytes. The rest of the files are in order of size from the smallest file to the largest file.

length of Buffers Number of Buffers	8192 bytes (Files A - D)	65536 bytes (Files E -H)
512	FILE A 4194304 bytes	FILE E 33554432 bytes
1024	FILE B 8388608 bytes	FILE F 67108864 bytes
2048	FILE C 16777216 bytes	FILE G 1.342177e+08 bytes
4096	FILE D 33554432 bytes	FILE H 2.684354e+08 bytes

TABLE 5: FILES (DATA SIZES) FOR NTTCP TEST

After conducting several test runs and observing the results, it became obvious that some smaller file sizes were not large enough to obtain accurate results. Whenever data is transferred using the *nttcp* program, the actual CPU time is the time used for calculating the throughput. If the CPU time used is too small, less than 0.1 seconds, the results become unreliable. An example of an unreliable transfer rate is given below in Figure 19. The reason for the inaccurate throughput result is the small amount of CPU time taken during this data transfer.

Transfers using the number of buffers = 512 and the length of buffer = 8192 were the only ones which had the unreliable transfer rates. There were typically only one or two transfer rates in each test which were unreliable. However, the window size was not always the same at which the unreliable transfer rate occurred. Therefore, the results of File A transfers were not used in this analysis.

ttcp-r: nbuf=512, buflen=8192, port=2001
send window size = 12288
receive window size = 12288
ttcp-r: 4194304 bytes in 0.06 real seconds = 68266.67 KB/sec = 546.1333 Mb/s

Figure 19: NTTCP Output for File Size of 4194304 Bytes

1. Single Processor Results

The first 32 test were run while Gold and White were set up in a single-processor configuration running Solaris 2.3. These 32 test represent a small subset of all possible tunable parameter combinations. The primary focus of this first set of test was to determine the effect of modifying the TCP/IP window size, the $nfs_async_threads$ and the t_req parameters. Additionally, tests were conducted transferring data from White to Gold, Gold to White and both ways simultaneously. The 32 tests and the values of the tunable parameters are listed in TABLE 36, Appendix D.

The data gathered in the above 32 tests was analyzed using multiple linear regression analysis according to the model $y = \beta_o + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_m x_m + \varepsilon$ which relates the behavior of a dependent variable y to a linear function of the set of independent variables $x_1, x_2, ..., x_m$. The β_j 's are the parameters that specify the nature of the relationship, and ε is the random error term. The dependent variable y in this model is throughput. Refer to Figure 20 on page 49 under the bold face number 12 for the list of β_j 's used in this model.

The tool used to produce the multiple linear regression analysis is Statistical Analysis System (SAS). The SAS tool is used to assist data analysts in analyzing data using regression analysis. Below in Figure 20 is an analysis of data throughput between White and Gold in the single processor configuration using the results from tests 1 - 32. Below is a description of the output from SAS as explained in [SASI91]. The bold face numbers have been added to aid in a description of the output.

1. The name of the dependent variable is THRUPUT.

2. The degrees of freedom (DF) associated with the sums of squares (SS).

3. The Regression SS (called Model SS) is 61279.61308, and the Residual SS (called ERROR SS) is 65217.01718. The sum of these two sums of squares is the C TOTAL (corrected total) SS = 126496.63026. This illustrates the basic identity in regression analysis that TOTAL SS = MODEL SS + ERROR SS. Usually, a good model results in the MODEL SS being a large fraction of the C TOTAL SS.

4. The corresponding Mean Squares are the Sum of Squares divided by the respective DF. The MS for ERROR (MSE) is an unbiased estimate of σ^2 , provided the model is correctly specified.

5. The value of the F statistic, 239.470, is the ratio of the MODEL Mean Square divided by the ERROR Mean Square. It is used to test the hypothesis that all coefficients in the model, except the intercept, are 0. In this case, this hypothesis is:

Ho:
$$\beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5$$

6. The p value (Prob>F) of 0.0001 indicates that some of the β , are not equal to 0.

7. Root MSE = 6.04621 is the square root of the ERROR MS and estimates the error standard deviation.

8. Dep Mean = 30.21891 is simply the average of the values of the variable THRUPUT over all observations in the data set.

9. C.V. = 20.00803 is the coefficient of variation expressed as a percentage. This measure of relative variation is the ratio of Root MSE to Dep Mean, multiplied by 100.

10. R-SQUARE = 0.4844 shows that a large portion of the variation in THRUPUT can be explained by variation in the independent variables in the model.

11. ADJ R-SQ is an alternative R-SQUARE and is an alternative to R-SQUARE that is adjusted for the number of parameters in the model according to the formula

$$ADJ R-SQ = 1 - (1 - R-SQUARE)((n - 1)/(n - m - 1))$$

where n is the number of observations in the data set and m is the number of regression parameters in the model, excluding the intercept. This adjustment is used to overcome an objection to R-SQUARE as a measure of goodness of fit of the model. This objection stems from the fact that R-SQUARE can be driven to 1 simply by adding superfluous variables to the model with no real improvement in fit. This is not the case with ADJ R-SQ, which tends to stabilize to a certain value when an adequate set of variables is include in the model.

		205		See 1					
Mode: SINGLE PP OCESSOR MODEL									
Dependent V	ariable	: TH	RUPUT		•				
			1			i			
Analysis of Variance									
			3	4					
	2	Su	m of	Mean	5	6			
Source	DF	Sq	uares	Square	F Value	Prob>F			
Model	7	61	279.61308	8754.23044	239.470	0.0001			
Error	1784		217.01718	36.55662					
C Total	1791		496.63026	J0.0000E					
		120							
7 R	oot MS	E	6.0462	10 R-squ	are 0.484	4			
8 Dep Mean 30.21891				11 Adj R-sq 0.4824					
			20.00803	•	•				
			Parameter	Estimates					
			13	14	15	5			
12			Parameter	Standar					
Variab	le	DF	Estimate	Error	Paramet	ter=0 Prob>ITi			
					•				
INTERC	EP	1	27.673306	0.6862	5789 40.3	0.0001			
SINGLE		1	8.620893	0.28565	5645 30.1	79 0.0001			
WHITR/	AN	1	5.140603	0.28565	5645 17.9	96 0.0001			
NUMBU	FF	1	-0.000246	0.00010	0718 -2.2	95 0.0219			
LENBU	नः	1	-0.000107	0.0000	0511 -20.9	27 0.0001			
WINDSI	ZE	1	0.008507	0.00779	9192 1.0	92 0.2751			
TTRT		1	0.016060	0.01864	1409 0.8	61 0.3891			
THREAD	DS	1	0.008069	0.03570	0706 0.2	26 0.8212			
	-								

Figure 20: SAS Analysis of Single Processor Transfers

12. The labels INTERCEP, SINGLE, WHITRAN, NUMBUFF, LENBUFF, WINDSIZE, TTRT and THREADS identify the coefficient estimates. The parameter SINGLE is used to show if the transfers were just between one workstation at a time, or if both White and Gold were transmitting at the same time. The parameter WHITRAN is used to show if White is transmitting or if Gold is transmitting. The other parameters were previously describ. .1 Chapter IV, Test Design Plan.

13. The Parameter Estimates give the fitted model

THRUPUT = 27.673306 + 8.620893(SINGLE) + 5.140603(WHITRAN) - 0.000246(NUMBUFF) - 0.000107(LENBUFF) + 0.008507(WINDSIZE) + 0.016060(TTRT) + 0.008069(THREADS)

Thus, for example, a window size of 1k contributes 0.008507 to the throughput of data if all other parameters are held fixed. If the window size is 45k, then it contributes 0.382815 if all other parameters are held fixed.

14. These are the (estimated) standard errors of the parameter estimates and are useful for constructing confidence intervals for the parameters.

15. The *t* tests (T for H0: Parameter = 0) are used for testing hypotheses about individual parameters. The complete model for all of these *t* tests contains all the variables on the right side of the MODEL statement. The reduced model for a particular test contains all these variables except the one being tested. Thus, the t statistic = 0.008507(WINDSIZE) for testing the hypothesis Ho: β = 0 is actually testing whether the complete model containing NUMBUFF, LENBUFF, WINDSIZE, TTRT and THREADS fits better than the reduced model containing only NUMBUFF, LENBUFF, TTRT and THREADS.

16. The p value (Prob > |T|) for this test is p = 0.0001.

As shown in Figure 20 under item 16, Prob<ITI, the parameters NUMBUFF, WINDSIZE, TTRT and THREADS had the least impact on THRUPUT in this model. This shows up as the higher the Prob<ITI of the independent variable, the less impact it has on the dependent variable being modeled. Included in this model was the system transferring the data (WHITRAN) and whether it was a one way transfer or two way transfer (SINGLE). Therefore, the tunable parameters are competing with the fact that a 40MHz workstation is being compared to a 50MHz workstation and whether or not another station is competing for the token to transfer data.

The end result in this model is that the independent variable SINGLE has the most impact on THRUPUT and WHITRAN has the next largest impact on THRUPUT. This shows that competition for the token has more impact on throughput than tuning the system. However, there is still a performance gain to be realized with tuning the system for better throughput. In Figure 21 is a graphic comparison of the 1st Test with the 29th Test. As a reminder, the 1st Test is using the default parameters and the 29th Test is using the following parameter settings: $t_{req} = 25$ ms; $nfs_{async_{threads}} = 16$; $sbf_{num_{llc_{rx}}} = 48$.

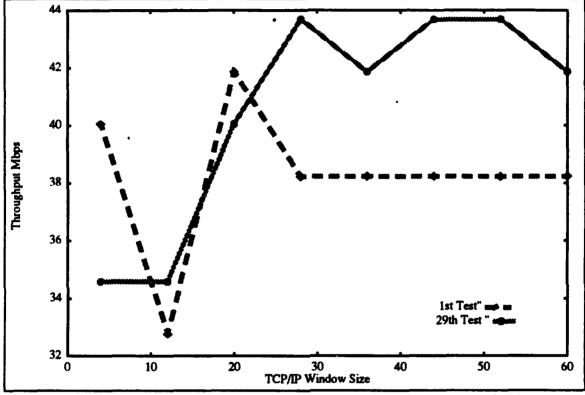


Figure 21: Single Processor, File D Transfer From White to Gold

2. Two Processor Results

The second set of test were run while Gold and White were set up in a twoprocessor configuration running Solaris 2.3. These 48 tests represent a small subset of all possible tunable parameter combinations. The primary focus of this set of test was to determine the effect of modifying the TCP/IP window size, the *nfs_async_threads*, *t_req*, *sbf_num_llc_rx* and the *sbf_mtu* parameters. The 48 test and the values of the tunable parameters are listed in TABLE 71, Appendix E. The primary difference between this set of tests and the single processor test is that all transfers were made from White to Gold. To have also included transfers from Gold to White in this set of test would have doubled the number of transfers to 96 tests. Originally it was thought that by increasing the number of parameters being observed the R-square value would also have increased. The intention here was to account for more of the factors which impact the dependent variable THRUPUT.

Mode: TWO PROCESSOR MODEL Dependent Variable: THRUPUT										
Analysis of Variance										
Source	DF	Sum of Squares	Mean Square	F Value	Prob>F					
Model Ептог C Total		66901.88212 375842.31356 442744.19568	9557.41173 140.23967	68.151	0.0001					
D	Root MSE11.84228R-square0.1511Dep Mean40.72729Adj R-sq0.1489C.V.29.07702									
		Parameter	Estimates							
Variable	e I	Parameter DF · Estimate	Standard Error	T for H(Parameter						
INTERCH NUMBUI LENBUF WINDSIZ TTRT THREAD LLC MTU	FF 1 F 1 ZE 1	-0.000068 -0.0000620 -0.019754 -0.024980 -0.034226 0.643378		141 -0.401 317 -7.664 095 -1.585 591 -0.838 325 -0.599 346 18.399	0.6884 0.0001 0.1130 0.4022 0.5490 0.0001					

Figure 22: SAS Analysis of Two Processor Transfers

As shown in Figure 22 on page 52, the R-square value decreased considerably between the single processor test and the dual processor test. As it will be shown later on, the cause for this decrease was the removal of the largest impact on throughput, competing with other stations for the token. Another indicator of the lack of confidence in the data being modeled is the large Standard Error for the independent variable INTERCEP. In the single processor model INTERCEP had a value of 0.68625789. In the dual processor model, the error has increased to 12.35679655.

The independent variables, NUMBUFF, THREADS and TTRT continued to have the least amount of impact on the dependent variable THRUPUT as indicated by their low Prob>ITI values. The independent variables with the largest impact were LENBUFF, LLC and MTU.

3. One And Two Processor Results

In the final analysis of both one and two processor tests, some additional facts need to be presented. There were a total of 4,480 throughputs measured in this analysis. There were 896 measurements in the one processor configuration and 2688 measurements in the two processor configuration. These are averaged measurements taken from the six runs in each 32 + 48 = 80 tests. Also, there were 896 measurements where both Gold and White were transmitting at the same time and 2688 measurements where only one station was transmitting.

When the model was first run including all the data from the one and two processor tests the R-square value was only 0.3559. This was higher than in the two processor model but lower than in the one processor model. A scatter plot was made of the various parameters to determine where there might be some problems with individual parameters. The most obvious problem was seen with the large variation of throughput with the parameter window size. At both the high end and the low end, the plot of window size versus throughput was not linear. By restricting the analysis of data to window sizes less than 50k and greater than 16k the R-square value increased to 0.6600. This reduced the number of measured observations from 4,480 throughputs to 2,240 measured throughputs.

Mode: ONE & Dependent Va		ROCESSOR N HRUPUT	MODEL							
		Analysis	of Variance							
		Sum of	• Mean	•						
Source	DF	Squares	Square	F Value	Prob>F					
Model	10 1	79959.58511	17995.95851	432.681	0.0001					
Error	2229	92708.03657	41.59176							
C Total	2239 2	72667.62168								
Do	ot MSE	6.44917	P. sources	0.6600						
		42.53933	R-square	0.6585						
	p Mean	42.55955	Adj R-sq	0.0363						
L.	v.	13.10046								
Parameter Estimates										
		Parameter	Standard	T for H0:						
Variable	: DF	Estimate	Error	Parameter=0	Prob>ITI					
INTERCE	P 1	-70.427345	9.87019489	-7.135	0.0001					
SINGLE	1	9.928996	0.43090313	23.042	0.0001					
WHTRAN	۲ <u>۱</u>	3.652165	0.43090313	8.476	0.0001					
NUMBUF	ፑ 1	-0.00005207	0 0.00010226	-0.509	0.6107					
LENBUF	F 1	-0.00004737	0.00000487	-9.719	0.0001					
WINDSIZ	E 1	-0.200113	0.01523473	-13.135	0.0001					
TTRT	1	-0.012831	0.01778717	-0.721	0.4708					
THREAD	S 1	-0.039099	0.03406588	-1.148	0.2512					
LLC	1	0.583336	0.02693145	21.660	0.0001					
MTU	1	0.015782	0.00219894	7.177	0.0001					
SD	1	9.535964	0.44849820	21.262	0.0001					

Figure 23: SAS Analysis of Single and Two Processor Transfers

The results of the one and two processor analysis are above in Figure 23. One new independent variable, SD is used to model whether the transfer comes from the one processor tests or the two processor tests. Just as before, the independent variables

NUMBUFF, TTRT, and THREADS have the least amount of impact on THRUPUT. With the removal of the window sizes noted above, WINDSIZE now carries more weight in this model. The largest impact on THRUPUT in order of impact is caused by the variables SINGLE, SD, LLC and WINDSIZE. This statement will be covered in more detail later. This indicates once again that processor power has the largest impact on throughput. A graphical model of the difference is below in Figure 24. In this figure are plots of throughput from identical parameter configurations, but one is from a two processor run and the other is from a one processor run.

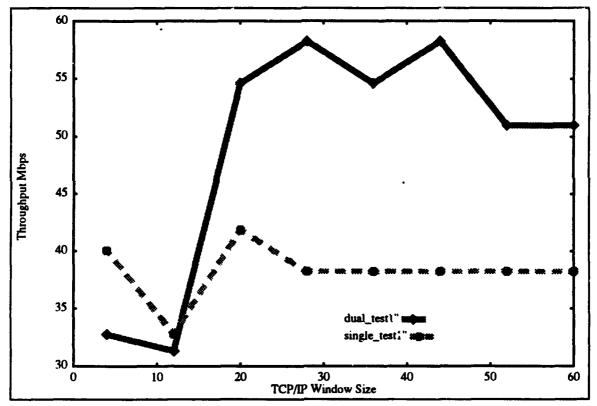


Figure 24: White Single Processor vrs White Two Processors

Another useful result which can be determined from the analysis of the one and two processor tests is a predicted throughput. Below in Figure 25 are SAS predictions of THRUPUT based on the 2,240 measured throughputs used in this analysis. To achieve the minimum predicted throughput, the following test was run using the parameter settings indicated in Figure 25. Data was transferred from Gold to White and White to Gold simultaneously. The results were taken from Gold with NUMBUFF = 4096, LENBUFF = 65536, WINDSIZE = 44, TTRT = 25, THREADS = 16, LLC = 40 and MTU = 4192. The results are below in TABLE 6.

The SAS predictions for the minimum predicted throughput was for a rate of 15.5302 Mbps. As shown in TABLE 6 the results from the actual tests was an average of 15.1463 Mbps and an mean of 15.0454 Mbps. Since the data used in the model was averaged data instead of mean data, the averaged achieved rate is the more accurate throughput rate to use. The SAS predictions for the maximum predicted throughput was for a rate of 58.7810 Mbps. As shown in TABLE 6 the results from the actual tests was an average of 60.07 Mbps and an mean of 65.5360 Mbps. In both cases the average throughput measured was very close to the predicted throughput. This shows that the SAS model was very accurate

				•	W						
		W	N	L	I		Т				Т
	S	Н	U	Ε	Ν		Η				Н
	I	Ι	Μ	Ν	D		R				R
	Ν	Т	В	В	S	Т	Ε				U
0	G	R	U	U	I	Т	Α	L	Μ	S	Р
В	L	Α	F	F	Ζ	R	D	L	Т	D	U
S	Ε	Ν	F	F	Ε	Т	S	С	U		Т
1	1	1	1024	8192	20	5	8	56	4352	2	58.7544
2	0	0	4096	65536	44	25	16	40	4192	1	15.5302

Figure 25: SAS Throughput Prediction

PREDICTION	RUN1	RUN2	RUN3	RUN4	RUNS	RUN6	AVG	MEAN
LOW	17.4763	16.3840	12.8660	13.7069	20.1649	10.2802	15.1463	15.0454
HIGH	32 7680	65 5360	65 5360	65 5360	65,5360	65 5360	60.07	65,536()

TABLE 6: RESULTS OF SAS PREDICTIONS

The following formula relates the behavior of the dependent variable THRUPUT to a linear function of the set of independent variables SINGLE, WHITRAN, NUMBUFF, LENBUFF, WINDSIZE, TTRT, THREADS, LLC, MTU and SD. These are the values calculated in the One and Two Processor Model, Figure 23 on page 54.

> THRUPUT = -70.427345 + 9.928996(SINGLE) + 3.652165(WHITRAN) - 0.000052070(NUMBUFF) - 0.000047372(LENBUFF) - 0.200113 (WINDSIZE) - 0.012831(TTRT) - 0.039099(THREADS) + 0.583336(LLC) + 0.015782(MTU) + 9.535964(SD)

When the minimum and maximum throughput was predicted above in Figure 25 on page 56, it was simply a matter of inserting the largest parameter value in the above formula the parameter estimate is positive and the smallest parameter value if the parameter estimate is negative. This resulted in the maximum predicted throughput. For the minimum predicted throughput, the largest parameter value is used if the parameter estimate is negative and the smallest parameter value if the parameter estimate is positive.

Below are the formulas for minimum and maximum throughput with the parameter estimates and parameter values multiplied together.

Maximum Throughput:

58.7544 = -70.427345 + 9.928996 + 3.652165 - 0.05331968 - 0.38807142 - 4.00226 - 0.064155 - 0.312792 + 32.666816 + 68.683264 + 19.071928

Minimum Throughput

15.5302 = -70.42734 + 0 + 0 - 0.21327872 - 3.1045714 - 8.804972 - 0.320775 - 0.625584 + 23.33344 + 66.158144 + 9.535964

Once the minimum and maximum throughputs were computed, the relative value of each parameter was calculated by subtracting the parameter's minimum value from it's maximum value. Below in Figure 26 are the results from this calculation. The value from the maximum calculation is listed, then the value from the minimum value is listed and finally the difference is listed. It is this difference which shows the impact each parameter has on the end throughput. The higher the difference is, the more weight that parameter carries in determining the maximum throughput.

p	_									
					W					
		W	Ν	L	I		Т			
l	S	Н	U	E	N		Н			
	I	Ι	М	Ν	D.		R			
	Ν	Т	В	В	S	Т	Ε			
	G	R	U	U	I	Т	Α	L	Μ	S
	L	Α	F۰	F	Ζ	R	D	L	Т	D
	Ε	Ν	F	F	Ε	Т	S	С	U	
MAX:	9.92	3.65	-0.05	-0.38	-4.00	-0.06	-0.31	32.66	68.68	19.07
MIN:	0	0	-0.21	-3.10	-8.80	- 0.32	-0.62	23.33	66.15	9.53
DIFF:	9.92	3.65	0.16	2.72	4.8	0.26	0.31	9.33	2.53	9.54
1										

Figure 26: Relative Importance of Each nttcp Parameter

The results listed above show that the following parameters, in order of importance, have the most impact on throughput using the current model:

- If the data was only being transferred from one workstation to another or if both workstations were transferring data to each other simultaneously.
- Whether the workstation had one or two processors
- The number of 4K receive buffers allotted for receiving data.
- The number of TCP/IP windows available for sending data.

Since the TCP/IP window size was limited in the above model to a range of 20k to 44k, this parameter showed up having less of an impact than it really has. As an example, in TABLE 72 on page 120 of Appendix E, the throughput rate for File C is 32.77 Mbps for a window size of 4k and 58.25 Mbps for a window size of 44k. That means the throughput rate at a 4k window size is only 56 percent the rate of the 44k window size. In this case, the window size has the largest impact on throughput performance. Unfortunately though, the results at the lower and higher window sizes were not consistent in all cases and the data was removed from the analysis. In most cases though, the difference in throughput performance between a TCP/IP window size of 4k and a window size of greater than 20k is more significant than any other factor considered in this investigation.

Based on the visual inspection of the results from both the one processor tests and the two processor tests, below is a revised list in order of importance the parameters having the most impact on throughput:

- The number of TCP/IP windows available for sending data.
- If the data was only being transferred from one workstation to another or if both workstations were transferring data to each other simultaneously.
- Whether the workstation had one or two processors
- The number of 4K receive buffers allotted for receiving data.

Another parameter which showed unexpected results is the WHITRAN parameter. This parameter is used to track any differences in throughput between transmitting data from White to Gold, or from Gold to White. The result in Figure 25 on page 56 indicates that transmitting data from White to Gold was faster than transmitting data from Gold to White. In the first 32 one processor tests, White had one 40MHz processor and Gold had one 50MHz processor. In the second 48 tests, White had two 40MHz processors and Gold had two 50MHz processors. Based on the Neal Nelson Benchmark tests, Gold should be capable of transferring data faster than White.

Several additional tests were conducted to determine why White was able to transmit data at a higher throughput than Gold. First, the FDDI cards were swapped to see if the FDDI card in Gold was causing the problem. The results of these tests are in TABLE 69 on page 117 and TABLE 70 on page 118. There was not any noticeable difference in throughput rates with the boards swapped. Next, the two 50MHz processors were placed in White and the two 40MHz processors were placed in Gold. The results of these tests are in TABLE 121 and TABLE 122 on page 137. As shown in Figure 27, even when both transmitting systems had two 50MHz processors and both receiving systems had 40MHz processors, White still had a higher throughput rate with File C than Gold.

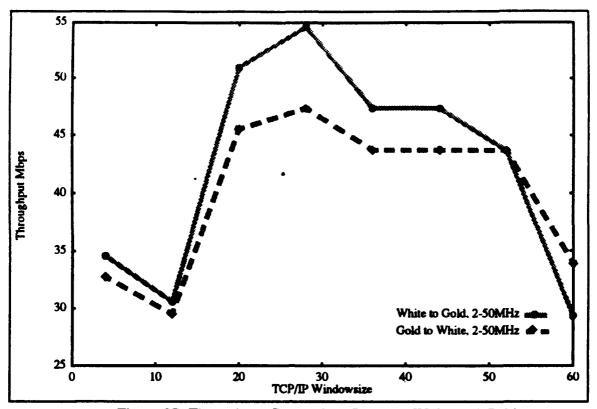


Figure 27: Throughput Comparison Between White and Gold

The only other difference between White and Gold is that Gold is the server on the FDDI network. Since the FDDI network only had three workstations on the network, this additional load on Gold should not be that great.

C. REMOTE COPY PROTOCOL TRANSFERS

Initially, the plan was to conduct file transfers using the rcp system call varying the tunable parameters just as in the *nttcp* tests. However, it was quickly observed that there were not any noticeable differences in measured throughput at the different parameter settings. This was understandable with the parameters $nfs_async_threads$ and t_req . The SAS model showed that these tunable parameters had little effect on throughput. However, it was expected that there would be some different throughput rates with the TCP/IP window size, *llc* and *mtu* parameters varied.

The reason why the these parameters did not have an impact was that *rcp* does small size read()'s and write()'s, so the syscall overhead dominates over the time spent in the kernel in TCP. If an application wants optimum bulk data throughput, it should increase the receive buffering, and also do moderately large read()'s and write()'s so that the syscall overhead does not dominate. Also, *rcp* has to go through a complete login, exec of the user's shell, and run through the user's ".cshrc" or ".profile" on the server side before it begins transferring any data. If the data transfer is not really huge, the time spent logging in will be much greater than the time spent transferring the data.

Knowing that the largest impact on throughput based on the SAS modeled data is TCP/ IP window size, processor power and whether or not another station is also transmitting, four different transfer tests were conducted with each of the four file sizes. As shown below in TABLE 7 and TABLE 8 on page 62, tests were conducted in the one processor configuration and the two processor configuration while transferring files one-way and two-way (between White and Gold simultaneously).

	TENY (6 bytes	MEDIUM (48,072 bytes)	LARGE (1,314,923 bytes)	HUGE (17,989,936 bytes)
ONE-WAY TRANSFER White to Gold				
TO: /FILE-NAME	.000032 Mbps	.25 Mbps	4.91 Mbps	13.20 Mbps
TO: /DEV/NULL	.000032 Mbps	.25 Mbps	5.85 Mbps	26.41 Mbps
TWO: WAY TRANSFERS White to Goid & Gold to White			•	
TO: /FILE-NAME	.000027 Mbps	.23 Mbps	4.47 Mbps	11.49 Mbps
TO: /DEV/NULL	.000027 Mbps	.22 Mbps	4.73 Mbps	16.72 Mbps

TABLE 7: RCP ONE PROCESSOR TRANSFER RESULTS

Also, files were transferred from disk to disk and from disk to /dev/null. This second transfer method does not result in a disk write at the destination workstation. The device driver, /dev/null, is used to dispose of files without needing to delete them. Files can be sent to /dev/null and this device driver accepts the data without writing them to disk.

The largest impact seen in this set of tests was the file size. The lowest throughput rate was observed when transferring the smallest file, TINY. This file has an associated overhead of 90.9% when being transferred over FDDI. The highest throughput was seen with the file HUGE. This file only had an overhead of 1.37% when transferred over FDDI. These overhead figures include the overhead associated with the FDDI, IP and TCP protocols. Another area with similar results as the *nttcp* test is whether the transfers are one-way or two-way. When the two workstations have to compete for the token the throughput drops.

	TINY (6 bytes	MEDIUM (48,072 bytes)	LARGE (1,314,923 bytes)	HUGE (17,989,936 bytes)
ONE-WAY TRANSFER White to Gold				
TO: /FILE-NAME	.000031 Mbps	.25 Mbps	4.94 Mbps	13.54 Mbps
TO: /DEV/NULL	.000031 Mbps	.25 Mbps	5.87 Mbps	28.42 Mbps
ONE-WAY TRANSFER Gold to White				
TO: /FILE-NAME	.000029 Mbps	.24 Mbps	5.26 Mbps	21.66 Mbps
TO: /DEV/NULL	.000029 Mbps	.24 Mbps	5.81 Mbps	29.82 Mbps
TWO-WAY TRANSFERS White to Gold & Gold to White				
TO: /FILE-NAME	.000029 Mbps	.24 Mbps	4.64 Mbps	13.27 Mbps
TO: /DEV/NULL	.000030 Mbps	.24 Mbps	5.55 Mbps	23.18 Mbps

TABLE 8: RCP TWO PROCESSOR TRANSFER RESULTS

The results during the *rcp* tests were much lower than during the *nttcp* tests. As an example, on the transfer of a file size of over 17 Mbytes from Gold with two processors to White:/dev/null, the best achieved throughput rate was 29.82 Mbps with *rcp*. This is only 29.82 percent of FDDI's available bandwidth and only 43.7 percent of the highest achieved throughput using *nttcp* (65Mbps). When transferring the same file from Gold to White and writing the file to disk, the transfer rate was 21.66 Mbps. This rate is only 72 percent of the transfer rate of transferring the data to /dev/null. Below in Figure 28 on page 63 is a

graphical plot of the transfer rates just mentioned while transferring the 17.9 Mbyte file from Gold with two 50MHz processors to White with two 40 MHz processors.

There were two main differences between the transfer methods: First, the *rcp* transfers add another layer of protocols to the transfers. The *rcp* protocol hands off the data to be transferred to the TCP/IP protocol layers. This of course increases the amount of overhead transferred. Second, using *rcp* to transfer the data involves reading the data from disk before it can be transferred. Even though large amounts of data can be cached in the SuperCache 1-Mbyte external cache, this is not large enough for extremely large files being transferred to be completely cached. During this test files were transferred 9 times and then the median throughput rate was used for the results.

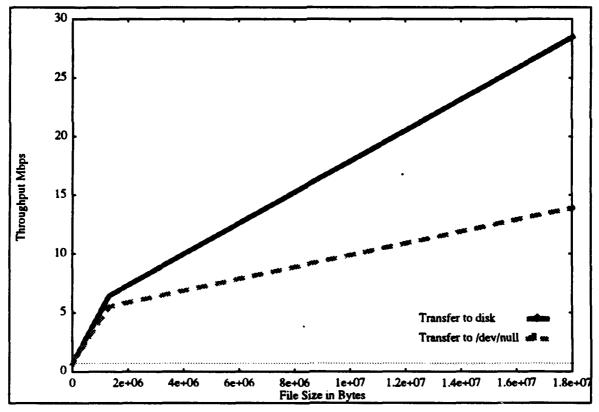


Figure 28: RCP File Transfers From Gold To White

The results from the *rcp* tests were pretty much as expected. The two processor transfers were faster than the single processor transfers and the one-way transfers were

faster than the two-way transfers. However, the difference in these throughput rates was not as large as that seen with the *nttcp* tests. Since the additional overhead from the *rcp* system call should affect the transfer rates evenly, then the only other difference is that the data was transferred from disk instead of being generated by the CPU. The large difference in throughput rates achieved between the two test methods would indicate that the disk access is a very large bottle neck in throughput performance.

A quick comparison of the throughput rate observed using *nttcp* for a file size of 16,777,216 bytes (File C) and a *rcp* transfer of a file size 17,989,936 bytes shows a throughput rate of 32.77 Mbps for the *nttcp* transfer and a throughput rate of 28.42 Mbps when transferred to /dev/null. Both of these tests were one-way tests from White to Gold with both systems in the two processor configuration. In this comparison, the *rcp* tests had a throughput rate which is 86.7 percent of the *nttcp* throughput rate. This seems to indicate that the retrieval of the file from disk and the overhead of the *rcp* protocol are responsible for 13.7 percent of the slow down in throughput when transferring files.

When comparing the transfer rate of an *rcp* transfer from White to a file location on Gold with the *nttcp* throughput rate, there is a much larger difference in throughput. The *nttcp* throughput rate is still 32.77 Mbps and the throughput rate for the *rcp* file to file transfer is 13.54 Mbps. Here the *rcp* throughput rate is 41.3 percent of the *nttcp* throughput rate. This means that the time to receive and process the file at the destination workstation accounts for 45 percent of the reduced throughput. This is the 58.7 percent reduction minus the 13.7 percent attributed to the retrieval of the file from disk and the overhead of the rcp protocol.

D. ANALYSIS SUMMARY

The results from the Neal Nelson Benchmark showed that the systems being investigated were functioning as expected. The 50MHz system outperformed the 40MHz system and the two processor system outperformed the one processor system. One unexpected result was that SunOS 4.1.3 slightly outperformed Solaris 2.3 in just about every test except disk access to unix files. Solaris 2.3 was the clear winner in this area.

The *nttcp* results were analyzed using a linear multiple regression analysis model. Even though the throughput results were not linear, the model is believed to be accurate enough to show the relationship between the parameters being investigated. The analysis of this data provides the most concrete results of the two throughput tests methods.

The number of workstations on an FDDI network transmitting has the largest impact on throughput among the parameters investigated according to the one processor and two processor models. An example of this impact is to take the SAS prediction shown in Figure 25 on page 56 and change the parameter SINGLE from its one-way value to the two-way value. This allows SAS to predict a new throughput rate based on all the previous values except the change just noted. The result of the new prediction shows a new throughput prediction of 48.8254 Mbps. This is only 83.1 percent of the original throughput predication of 58.7544 Mbps.

The power of the workstation itself is a major factor in throughput potential. This is seen in the fact that the second largest impact on throughput in the one processor and two processor model is whether or not the workstation had two processors. The result of the new one processor prediction shows a throughput predication of 49.2184 Mbps. This is 83.7 percent of the original throughput predication of 58.7544 Mbps.

Since the TCP/IP window size was limited in the model to a range of 20k to 44k, this parameter showed up having less of an impact than it really has. In most cases though, the difference in throughput performance between a TCP/IP window size of 4k and a window size of greater than 20k is more significant than any other factor considered in this investigation.

The results from the *rcp* tests are more of an observation of the effects of the disk drive on throughput performance. Since both tests measure the time from start of test to receiving the *ack* from TCP on the receiving workstation that the data has been received, the only other real differences is the *rcp* protocol and the fact that the data is being transferred as files instead of being generated by the processor.

As pointed out earlier, the overhead of the *rcp* protocol and the time spent retrieving the file from disk is approximately 13.7 percent of the throughput rate observed during the *nttcp* throughput tests. Additionally, the overhead of processing the file at the receiving workstation is approximately 45 percent of the throughput rate observed during the *nttcp* throughput tests.

The observation made in the *nttcp* tests that white with only 40MHz processors could transfer data faster than Gold with 50MHz processors was not seen again in the *rcp* tests. In the *rcp* tests, Gold was able to transfer data at a higher throughput rate than White when Gold had the two 50MHz processors and White had the two 40MHz processors.

VI. CONCLUSIONS AND TOPICS FOR FUTURE RESEARCH

A. CONCLUSION

The objective of this research was to measure actual throughput between high performance workstations over an FDDI network to determine what bottlenecks, if any, exits between Sun Microsystem SPARC 10 multiprocessors running the Solaris 2.3 and Network Peripheral Inc.'s (NPI) FDDI network interface cards and to evaluate Transmission Control Protocol/Internet Protocol (TCP/IP) as a high speed transport protocol.

At the beginning of this investigation there were many speculations as to what throughput rates could be achieved and what effect varying the different tunable parameters would have on the throughput rates. It was assumed that the workstation with the 50MHz processor would have a faster throughput rate than the workstation with the 40MHz processors. It was also assumed that since Sun Microsystems was encouraging their users to switch from SunOS to Solaris, that Solaris 2.3 would clearly out perform SunOS 4.1.3.

The following sections outline the conclusions drawn from these investigations:

1. Workstation Conclusions

There were four benchmark tests conducted using the Neal Nelson Business Benchmark run on the two workstations, Gold and White.

- Gold had two 50MHz processors installed and was running Solaris 2.3.
- Gold had one 50MHz processor installed and was running Solaris 2.3.
- Gold had one 50MHz processor installed and was running SunOS 4.1.3.
- White had two 40MHz processors installed and was running Solaris 2.3.

Three test comparisons were conducted by Neal Nelson and Associates and the results can be summarized as follows:

• A workstation running Solaris 2.3 with two 50MHz processors can be expected to outperform a workstation running Solaris 2.3 with two 40MHz processors

in most areas of performance by approximately 20 percent.

- A workstation running Solaris 2.3 with two 50MHz processors can be expected to outperform a workstation running Solaris 2.3 with one 50MHz processor in most areas of performance by approximately 90 percent.
- A workstation running SunOS 4.1.3 with one 50MHz processor can be expected to outperform a workstation running Solaris 2.3 with one 50MHz processor in most areas of performance by approximately 2 percent.

Of the three comparisons noted above, the first two results were expected. However, it was assumed that Sun Microsystem's release of Solaris 2.3 would result in improved operating system performance, not a slight drop in performance. These results were very important in the next step of the investigation. Knowing that the workstation with two 50MHz processors should outperform the workstation with two 40MHz processors helped isolate some unexpected results in workstation throughput.

2. Throughput Conclusions

There were two methods used in this investigation to measure throughput. First, a public domain network throughput measurement tool, New Test TCP (*nttcp*), was used in order to minimize the workstation overnead. Next, the Remote Copy Protocol (*rcp*) system call was used in order to include all the overhead of daily distributed processing. The results obtained from these two test methods were consistent with each other.

New Test TCP (*nttcp*): During the *nttcp* tests the following tunable parameters were varied to determine their impact on throughput performance:

- TCP/IP window size, the amount of data that can be in transient at any one time between workstations.
- *sbf_num_llc_rx*, number of receive buffers (4k each) on the FDDI board allotted for receiving data.
- *nfs_async_threads*, number of asynchronous threads allotted for handling network file system service.
- *sbf_treq*, amount of time allotted for each workstation to transfer data prior to passing on the token. This is the TTRT.
- *sbf_mtu*, maximum protocol packet size.

Additionally, the *nttcp* tests were run on both single processor configurations and on two processor configurations. During this investigation the *nttcp* tests results showed that the four most significant impacts on throughput and the order of impact were as follows:

- Whether data was being transferred one-way or if both workstations were transferring data simultaneously.
- Whether the workstation had one or two processors
- The number of 4K receive buffers allotted for receiving data.
- The size of TCP/IP window available for sending data.

One note about the TCP/IP window size. During this investigation TCP/IP window sizes less than 20k and greater than 44k had too large of a deviation in their throughput results to be included in the final analysis. When the all of the TCP/IP window sizes are included, this parameter ends up having the largest impact on throughput rates. The rest of the results retain the above order of impact on throughput.

The other tunable parameters varied during these tests had little impact on throughput performance. Below are the rest of the factors affecting throughput in their order of importance:

- The length of the buffers being transmitted. This equates to the size of the data being transmitted.
- The Maximum Transmission Unit (MTU) size. This is the size of the FDDI frames of data being transmitted.
- The number of NFS asynchronous threads allowed for servicing network file service.
- The number of buffers (file size) being transmitted.

Remote Copy Protocol (rcp): During the rcp tests the tunable parameters were varied, but there was no noticeable difference in these throughput rates. The TCP/IP window size, which had the largest impact in the *nttcp* tests, did not have any noticable impact on throughput. The reason why the TCP/IP window did not have an impact was that rcp does small size read()'s and write()'s, so the all overhead dominates over the time spent in the kernel in TCP. If an application want. optimum bulk data throughput, it should increase the recieve buffering, and also do moderately large read()'s and write()'s so that the syscall overhead does not dominate.

The only difference between the *nttcp* tests and the *rcp* tests was the additional overhead with the *rcp* disk transfers and the *rcp* protocol overhead. Therefore, the conclusion can be drawn that one of these two differences accounted for the very large drop in throughput between the *nttcp* tests and the *rcp* tests.

On the transfer of a file size of over 17 Mbytes from White with two processors to Gold, the best achieved throughput rate was 13.54 Mbps with *rcp* when the transferred data is written to disk. This is only 13.54 percent of FDDI's available bandwidth and only 41.3 percent of the highest achieved throughput using *nttcp* at the same TCP/IP window size of 8k. Most of this 41.3 percent difference between *rcp* and *nttcp* can be attributed to the *rcp* protocol overhead. *RCP* has to go through a complete login, exec of the user's shell, and run through the user's ".cshrc" or ".profile" on the server side before it begins transfering any data. If the data transfer is not really huge, the time spent logging in will be much greater than the time spent transfering the data

B. TOPICS FOR FUTURE RESEARCH

Several topics for further study can be derived from this investigation. All of them are related to either improving throughput or to explaining events which were not explained in this thesis.

Since the *nttcp* tests were only able to obtain a maximum throughput using TCP transfers of 65 Mbps, 35 percent of the available bandwidth of FDDI is not being used. What portion of this unused bandwidth is due to lack of processor power and what portion is due to inefficiencies in the TCP/IP protocol?

This investigation primarily looked at throughput rates associated with TCP transfers, not User Datagram Protocol (UDP) transfers. The UDP frames have a header of 8 bytes and the TCP frames have a header of 20 bytes. Also, UDP is not a reliable transport protocol. How much of a throughput can be achieved using UDP and what problems occur when using an unreliable transfer protocol?

File transfers using the rcp system call displayed a throughput rate of only 13.54 Mbps when the transferred data is written to disk. What percentage of this bottleneck is caused by the throughput rate on the SCSI-2 controller and what percentage is caused by other overhead associated with file transfers?

APPENDIX A: NTTCP PROGRAM and TEST SCRIPTS

DOIT.SH Script

#!/bin/sh

date > start
date > run1_start_time

date > run1_finish_time

mkdir run1 mv *.log *.out run1/. mv *time run1/.

date > run2_start_time

date > run2_finish_time

mkdir run2 mv *.log *.out run2/. mv *time run2/.

date > run3_start_time

ttest.sh 65536 512 ttest.sh 8192 512 ttest.sh 65536 1024 ttest.sh 8192 1024 ttest.sh 65536 2048 ttest.sh 8192 2048 ttest.sh 65536 4096 ttest.sh 8192 4096

date > run3_finish_time mkdir run3 mv *.log *.out run3/. mv *time run3/.

date > run4_start_time

date > run4_finish_time

mkdir run4 mv *.log *.out run4/. mv *time run4/.

date > run5_start_time

date > run5_finish_time

mkdir run5 mv *.log *.out run5/. mv *time run5/. date > run6_start_time

date > run6_finish_time

mkdir run6 mv *.log *.out run6/. mv *time run6/.

date > finish

sleep 5 grep 'Mb/s' tmp1 | awk '{print '\$SIZE'*1024,\$12}' >> ttest.out cat tmp1 >> ttest.recv.log SIZE=`expr \$SIZE + 8` done

rm -f tmp1 mv ttest.out ttest.\$DATALEN.\$NPKTS.out mv ttest.tran.log ttest.\$DATALEN.\$NPKTS.tran.log mv ttest.recv.log ttest.\$DATALEN.\$NPKTS.recv.log

TTEST.SH Script

#!/bin/sh

#

Use nttcp to test network throughput.

Usage: ttest.sh byte_per_write

number_of_writes

#

DATALEN=\$1 NPKTS=\$2

#White to Gold RECHOST=131.120.1.2 RSH=/usr/ucb/rsh NTTCP=nttcp

rm -f ttest.out rm -f ttest.tran.log rm -f ttest.recv.log

from 4KB to 60KB windows in steps of 8KB
SIZE=4
while test \$SIZE -lt 61
do
 \$RSH \$RECHOST \$NTTCP -r -w\$SIZE
 > tmp1 2>&1 &
 sleep 5

\$NTTCP -t -I\$DATALEN -n\$NPKTS -w\$SIZE \$RECHOST >> ttest.tran.log 2>&1

NTTCP Program

NTTCP.C * Test TCP connection. Makes a connection on port 2000 * and transfers zero buffers or data copied from stdin. * Usable on 4.2, 4.3, and 4.1a systems by defining one of * BSD42 BSD43 (BSD41a) * Modified for operation under 4.2BSD, 18 Dec 84 T.C. Slattery, USNA * Minor improvements, Mike Muuss and Terry Slattery, 16-Oct-85. * Modified on 5 Apr 94 for opertion under Solaris 2.3 based on changes * for the TTCP.C program provided by Don Merritt of ARL. CPT Mark Schivley, USA */ #ifndef lint static char RCSid[] = "@(#)SHeader: /src/opt/brl/sbin/ucp/RCS/ucp.c.v 1.2 1993/11/30 20:15:39 root Exp \$ (BRL)"; #endif #define BSD43 /* #define BSD42 */ /* #define BSD41a */ #include <stdio.h> #include <ctype.h> #include <errno.h> #include <sys/types.h> #include <sys/socket.h> #include <netinet/in.h> #include <netdb.h> #include <sys/time.h> /* struct timeval */ #ifdef SYSV #include <svs/times.h> #include <sys/param.h> #else #include <sys/resource.h> #endif #ifdef SYSV #define bcopy(s,d,l) memcpy(d, s, (size_t) l) #define bzero(s,l) memset(s, 0, (size_t) l) #endif struct sockaddr_in sinme; struct sockaddr_in sinhim; struct sockaddr_in sindum: struct sockaddr_in frominet: int domain, fromlen;

```
int fd:
                                   /* fd of network socket */
int sendwin = 32 * 1024:
int revwin = 32 * 1024;
int option = sizeof(int);
int buflen = 1024:
                                   /* length of buffer */
char *buf:
                                   /* ptr to dynamic buffer */
int nbuf = 1024;
                                   /* number of buffers to send in sinkmode */
int udp = 0;
                                   /* 0 = tcp, !0 = udp */
int options = 0:
                                   /* socket options */
int one = 1:
                                   /* for 4.3 BSD style setsockopt() */
short port = 2001;
                                   /* TCP part number */
char *host:
                                   /* ptr to name of host */
int trans:
                                   /* 0=receive, !0=transmit mode */
int sinkmode = 1:
                                   /* 0=normal I/O, !0=sink/source mode */
int verbose = 0:
int nodelay = 0;
                                   /* set TCP NODELAY socket option */
int window = 0:
                                   /* O=use default l=set to specified size*/
struct hostent *addr:
extern int ermo:
char Usage[] = "\
Usage: ttcp -t [-options] host <in\n\
        -1##
                 length of bufs written to network (default 1024)\n\
                 don't source a pattern to network, use stdin/n/
        -S
        -n##
                 number of bufs written to network (-s only, default 1024)\n\
        -p##
                 port number to send to (default 2000)\n\
                 use UDP instead of TCP\n\
        -U
Usage: ttcp -r [-options] >out\n\
        -\##
                 length of network read buf (default 1024)\n\
                 sink (discard) all data from network\n\
        -S
        -D##
                 port number to listen at (default 2000)\n\
        -B
                 Only output full blocks, as specified in -l## (for TAR)\n\
                 use UDP instead of TCP\n\
        -11
char stats[128];
double t:
                                   /* transmission time */
long nbytes:
                                   '/* bytes on net */
int b_flag = 0;
                                   /* use mread() */
void prep_timer();
double read_timer();
double cput, realt;
                                  /* user, real time (seconds) */
main(argc,argv)
int argc:
char **argv;
   unsigned long addr_tmp;
   if (argc < 2) goto usage:
   argv++; argc--;
   while( argc>0 \&\& argv[0][0] == '-' )  {
   switch (argv[0][1]) {
   case 'B':
        b_flag = 1;
```

```
75
```

```
break:
    case 't':
         trans = 1;
         break;
    case 'r':
         trans = 0;
        break:
    case 'd':
        options \models SO_DEBUG;
        break;
    case 'n':
         nbuf = atoi(\&argv[0][2]);
        break:
    case T:
        buflen = atoi(\&argv[0][2]);
        break;
    case 'w':
        window=1;
        sendwin = 1024 * atoi(&argv[0][2]);
        rcvwin = 1024 * atoi(&argv[0][2]);
        break;
    case 's':
        sinkmode = 1;/* source or sink, really */
        break:
    case 'p':
        port = atoi(&argv[0][2]);
        break;
   case 'u':
        udp = 1;
        break:
    default:
        goto usage;
    ł
   argv++; argc--;
   ł
   if(trans) {
   /* xmitr */
   if (argc != 1) goto usage;
   bzero((char *)&sinhim, sizeof(sinhim));
   host = argv[0];
   if (atoi(host) > 0) {
        /* Numeric */
        sinhim.sin_family = AF_INET;
#ifdef cray
        addr_tmp = inet_addr(host);
        sinhim.sin_addr = addr_tmp;
#else
        sinhim.sin_addr.s_addr = inet_addr(host);
#endif
   } else {
        if ((addr=gethostbyname(host)) == NULL)
```

76

```
err("bad hostname");
        sinhim.sin_family = addr->h_addrtype;
        bcopy(addr->h_addr,(char*)&caddr_tmp, addr->h_length); '
#ifdef cray
        sinhim.sin_addr = addr_tmp;
#else
        sinhim.sin_addr.s_addr = addr_tmp;
#endif cray
    ł
   sinhim.sin_port = htons(port);
   sinme.sin_port = 0;/* free choice */
   | else |
   /* rcvr */
   sinme.sin_port = htons(port);
   if( (buf = (char *)malloc(buflen)) == (char *)NULL)
   err("malloc");
   fprintf(stderr,"ttcp%s: nbuf=%d, buflen=%d, port=%d\n",
   trans?"-t":"-r".
   nbuf, buflen, port);
   if ((fd = socket(AF_INET, udp?SOCK_DGRAM:SOCK_STREAM, 0)) < 0)
   err("socket"):
   mes("socket");
/* Try the getsockopt & setsockopt for Solaris here */
#ifndef SOLARIS
   if (bind(fd, \&sinme, sizeof(sinme)) < 0)
   err("bind"):
#else
   /*
    * Under Solaris, calling connect() on a stream socket binds the
   * socket to an address. If a bind() is done before the connect(),
    * an error "connect: Address family not supported by protocol family"
    * results. Only call bind() for the cases where you're not going
    * to call connect().
    */
   if (udp || (!udp && !trans) )
   if (bind(fd. (struct sockaddr *) \&sinme, sizeof(sinme)) < 0)
       err("bind");
#endif /* SOLARIS */
   if (!udp) {
     if (trans) {
   /* We are the client if transmitting */
   if(options) {
#ifdef BSD42
       if setsockopt(fd, SOL_SOCKET, options, 0, 0) < 0
#else BSD43
#ifndef SOLARIS
       if (setsockopt(fd, SOL_SOCKET, options, &one. sizeof(one)) < 0)
#else
       if( setsockopt(fd, SOL_SOCKET, options, (char *) & one, sizeof(one)) <
0)
```

```
#endif /* SOLARIS */
#endif
            err("setsockopt");
    Ł
#ifndef SOLARIS
   if (connect(fd, \&sinhim, size of(sinhim)) < 0)
#else
   if(connect(fd, (struct sockaddr *) & sinhim, sizeof(sinhim)) < 0) {
#endif /* SOLARIS */
       err("connect");
   ł
   mes("connect");
  if(window){
   if (setsockopt (fd, SOL_SOCKET, SO_SNDBUF, (char *) & sendwin,
   sizeof(sendwin)) < 0)
     printf("get send window size didn't work\n"):
   if (setsockopt (fd, SOL_SOCKET, SO_RCVBUF, (char *) &rcvwin,
   sizeof(rcvwin)) < 0)
   printf("get rcv window size didn't work\n");
   if (getsockopt (fd, SOL_SOCKET, SO_RCVBUF, (char *) & sendwin, & optlen) < 0)
     printf("get send window size didn't work\n");
   else printf("send window size = %d\n", sendwin);
   if (getsockopt (fd, SOL_SOCKET, SO_RCVBUF, (char *) &rcvwin, &optlen) < 0)
     printf("get rcv window size didn't work\n");
   else printf("receive window size = %d\n", rcvwin);
   ł
     } else {
   /* otherwise, we are the server and
        * should listen for the connections
        */
#ifndef SOLARIS
   listen(fd,0); /* allow a queue of 0 */
#else
      * Under Solaris, specifying a queue length of 0
      * results in a "connection refused".
      */
   listen(fd,1);
#endif /* SOLARIS */
   if(options) {
#ifdef BSD42
       if (setsockopt(fd, SOL_SOCKET, options, 0, 0) < 0)
#else BSD43
#ifndef SOLARIS
       if (setsockopt(fd, SOL_SOCKET, options, &one, sizeof(one)) < 0)
#else
       if( setsockopt(fd, SOL_SOCKET, options, (char *) &one, sizeof(one)) <
0)
#endif /* SOLARIS */
#endif
           err("setsockopt");
```

```
78
```

```
1
   fromlen = sizeof(frominet);
   domain = AF_INET:
#ifndef SOLARIS
   if((fd=accept(fd, &frominet, &fromlen)) < 0)
#else
   if((fd=accept(fd, (struct sockaddr *) & frominet, & fromlen)) < 0)
#endif /* SOLARIS */
       err("accept");
   mes("accept");
   if (window){
   if (setsockopt (fd, SOL_SOCKET, SO_SNDBUF, (char *) & sendwin,
   sizeof(sendwin)) < 0)
    printf("get send window size didn't work\n");
   if (setsockopt (fd, SOL_SOCKET, SO_RCVBUF, (char *) &rcvwin,
   sizeof(rcvwin)) < 0)
   printf("get rcv window size didn't work'n");
   if (getsockopt (fd, SOL_SOCKET, SO_RCVBUF, (char *) & sendwin, & optlen) < 0)
     printf("get send window size didn't work\n");
   else printf("send window size = %d\n", sendwin);
   if (getsockopt (fd, SOL_SOCKET, SO_RCVBUF, (char *) &rcvwin, &optlen) < 0)
     printf("get rcv window size didn't work'n");
   else printf("receive window size = %d\n", rcvwin);
   1
   ł
  prep_timer();
  errno = 0;
  if (sinkmode) {
   register int cnt;
   if (trans) {
       pattern( buf, buflen );
       if(udp) (void)Nwrite(fd, buf, 4); /* rcvr start */
       while (nbuf-- && Nwrite(fd, buf, buflen) == buflen)
           nbytes += buflen;
       if(udp) (void)Nwrite( fd, buf, 4 ); /* rcvr end */
   } else {
       while ((cnt=Nread(fd,buf,buflen)) > 0) {
           static int going = 0;
           if( cnt <= 4 ) {
           if(going)
               break:/* "EOF" */
           going = 1;
           prep_timer();
           } else
           nbytes += cnt;
       ł
   ł
  } else {
  register int cnt;
  if (trans) {
```

```
while((cnt=read(0,buf,buflen)) > 0 &&
           Nwrite(fd.buf.cnt) == cnt)
             nbytes += cnt;
    else (
        while((cnt=Nread(fd.buf.buflen)) > 0 &&
           write(1.buf.cnt) == cnt)
             nbytes += cnt;
    ł
    ł
   if(ermo) err("10");
   (void)read_timer(stats,sizeof(stats));
   if(udp&&trans) {
    (void)Nwrite( fd, buf, 4 ); /* rcvr end */
    (void)Nwrite( fd, buf, 4 ); /* rcvr end */
    (void)Nwrite( fd. buf, 4 ); /* rcvr end */
    (void)Nwrite( fd, buf, 4 ); /* rcvr end */
    1
   fprintf(stdout,
     "ttcp%s: %ld bytes in %.2f real seconds = %.2f KB/sec = %.4f Mb/s/n".
          trans?"-t":"-r",
          nbytes, realt, ((double)nbytes)/realt/1024,
                    ((double)nbytes)/realt/128000);
     if (verbose) {
        fprintf(stdout,
          "ttcp%s: %ld bytes in %.2f CPU seconds = %.2f KB/cpu sec\n",
          trans?"-t":"-r",
          nbytes, cput, ((double)nbytes)/cput/1024 );
   }
   exit(0);
usage:
   fprintf(stderr.Usage);
   exit(1);
}
err(s)
char *s;
{
   fprintf(stderr,"ttcp%s: ", trans?"-t":"-r");
   perror(s);
   fprintf(stderr,"errno=%d\n",errno);
   exit(1);
}
mes(s)
char*s;
{
   fprintf(stderr,"ttcp%s: %s\n", trans?"-t":"-r", s);
}
pattern( cp, cnt )
register char *cp;
register int cnt;
1
   register char c;
```

```
c = 0;
    while (cnt - > 0) {
    while( !isprint((c&0x7F)) ) c++;
    *cp++ = (c++ \&0x7F);
    }
 ł
 /****** timing ********/
#ifdef SYSV
extern long time();
#if sgi
static void tvsub();
static structtimeval time0;/* Time at which timeing started */
#else
static long time0;
#endif
static struct tms tms0;
#else
static structtimeval time0;/* Time at which timeing started */
static structrusage ru0:/* Resource utilization at the start */
static void prusage();
static void tvadd();
static void tvsub();
static void psecs();
#endif
/*
 *
        PREP_TIMER
*/
void
prep_timer()
ł
#ifdef SYSV
#if sgi
   gettimeofday(&time0, (struct timezone *)0);
#else
   (void)time(&time0);
#endif
   (void)times(&tms0);
#else
   gettimeofday(&time0, (struct timezone *)0);
   getrusage(RUSAGE_SELF, &ru0);
#endif
}
/*
       READ_TIMER
*/
double
read_timer(str.len)
char *str;
#ifdef SYSV
```

```
long now;
    struct tms tinsnow:
    char line[132]:
#ifdef sgi
    struct timeval timedol;
    struct timeval td;
    gettimeofday(&timedol, (struct timezone *)0);
    tvsub( &td, &timedol, &time() );
   realt = td.tv_sec + ((double)td.tv_usec) / 1000000;
#else
    (void)time(&now);
   realt = now-time();
                                             .
#endif
   (void)times(&tmsnow);
   cput = tmsnow.tms_utime - tms0.tms_utime;
   cput /= HZ;
   if( cput < 0.00001 ) cput = 0.01;
    if (realt < 0.00001) realt = cput;
    sprintf(line,"%g CPU secs in %g elapsed secs (%g%%)".
    cout, realt.
    cput/realt*100);
   (void)strncpy( str, line, len );
   return( cput );
#else
   /* BSD */
   struct timeval timedol:
   struct rusage rul;
   struct timeval td;
   struct timeval tend, tstart;
   char line[132]:
   getrusage(RUSAGE_SELF, &ru1);
   gettimeofday(&timedol, (struct timezone *)0);
   prusage(&ru0, &ru1, &timedol, &time0, line);
   (void)strncpy( str, line, len );
   /* Get real time */
   tvsub( &td, &timedol, &time0 );
   realt = td.tv_sec + ((double)td.tv_usec) / 1000000;
   /* Get CPU time (user+sys) */
   tvadd( &tend, &ru1.ru_utime, &ru1.ru_stime );
   tvadd( &tstart, &ru0.ru_utime, &ru0.ru_stime );
   tvsub( &td, &tend, &tstart );
   cput = td.tv_sec + ((double)td.tv_usec) / 1000000;
   if( cput < 0.00001 ) cput = 0.00001;
   return( cput );
#endif
}
#ifndef SYSV
static void
prusage(r0, r1, e, b, outp)
   register struct rusage *r0, *r1;
   struct timeval *e, *b;
```

```
char *outo:
ł
   struct timeval tdiff:
   register time_t t;
   register char *cp:
   register int i;
   int ms:
   t = (r_1 - r_u_utime.tv_sec - r_0 - r_u_utime.tv_sec) + 100 +
     (r1->ru_utime.tv_usec-r0->ru_utime.tv_usec)/10000+
     (r1->ru stime.tv sec-r0->ru stime.tv sec)*100+
     (r1->ru_stime.tv_usec-r0->ru_stime.ty_usec)/10000;
   ms = (e > tv_sec-b > tv_sec) + 100 + (e > tv_usec-b > tv_usec)/10000;
#define END(x){while(*x) x++;}
   cp = "%Uuser %Ssys %Ereal %P %Xi+%Dd %Mmaxrss %F+%Rpf %Ccsw";
   for (; *cp; cp++) {
   if (*cp != '\%')
        *outp++ = *cp;
   else if (cp[1]) switch(*++cp) {
   case 'U':
        tvsub(&tdiff, &r1->ru utime, &r0->ru utime);
        sprintf(outp,"%d.%01d", tdiff.tv_sec, tdiff.tv_usec/100000);
        END(outp);
       break:
   case 'S':
        tvsub(&tdiff, &r1->ru stime, &r()->ru stime);
        sprintf(outp, "%d.%01d", tdiff.tv_sec, tdiff.tv_usec/100000);
        END(outp);
        break;
   case 'E':
        psecs(ms / 100, outp);
        END(outp);
       break:
   case 'P':
        sprintf(outp,"%d%%", (int) (t*100 / ((ms ? ms : 1))));
       END(outp);
       break:
   case 'W':
       i = r1->ru_nswap - r0->ru_nswap;
        sprintf(outp,"%d", i);
       END(outp):
       break:
   case 'X':
        sprintf(outp, "%d", t == 0 ? 0 : (r1 ->ru_ixrss-r0 ->ru_ixrss)/t);
        END(outp):
       break;
   case 'D':
        sprintf(outp, "%d", t == 0?0:
          (r1->ru_idrss+r1->ru_isrss-(r0->ru_idrss+r0->ru_isrss))/t);
       END(outp);
       break:
   case 'K':
```

```
sprintf(outp, "%d", t == 0?0:
          ((r1->ru_ixrss+r1->ru_isrss+r1->ru_idrss) -
          (r0->ru_ixrss+r0->ru_idrss+r0->ru_isrss))/t):
       END(outp);
       break:
   case 'M':
       sprintf(outp,"%d", r1->ru_maxrss/2);
       END(outp);
       break:
   case 'F':
       sprintf(outp,"%d", r1->ru_majflt-r0->ru_majflt);
       END(outp):
       break:
   case 'R':
       sprintf(outp,"%d", r1->ru_minflt-r()->ru_minflt);
       END(outp);
       break:
   case T:
       sprintf(outp,"%d", r1->ru_inblock-r0->ru_inblock);
       END(outp);
       break;
   case 'O':
       sprintf(outp,"%d", r1->ru_oublock-r0->ru_oublock);
       END(outp);
       break;
   case 'C':
       sprintf(outp,"%d+%d", r1->ru_nvcsw-r0->ru_nvcsw,
           r1->ru_nivcsw-r0->ru_nivcsw );
       END(outp):
       break;
   ł
   ł
   *outp = '0';
static void
tvadd(tsum, t0, t1)
   struct timeval *tsum, *t0, *t1;
   tsum->tv_sec = t0->tv_sec + t1->tv_sec;
   tsum->tv_usec = t0->tv_usec + t1->tv_usec;
   if (tsum->tv\_usec > 1000000)
   tsum->tv_sec++, tsum->tv_usec -= 1000000;
static void
tvsub(tdiff, t1, t0)
   struct timeval *tdiff, *t1, *t0;
   tdiff->tv_sec = t1->tv_sec - t0->tv_sec;
   tdiff->tv_usec = t1->tv_usec - t0->tv_usec;
   if (tdiff->tv_usec < 0)
```

```
tdiff->tv_sec--, tdiff->tv_usec += 1000000;
```

}

ł

}

ł

```
}
 static void
psecs(l.cp)
long I:
register char *cp;
 Ł
    register int i;
    i = 1/3600;
    if (i) {
    sprintf(cp,"%d:", i);
    END(cp);
    i = 1 % 3600;
    sprintf(cp,"%d%d", (i/60) / 10, (i/60) % 10);
    END(cp);
    } else {
    i=1:
    sprintf(cp,"%d", i / 60);
    END(cp);
    ł
   i %= 60:
    *CD++ = ':':
   sprintf(cp,"%d%d", i / 10, i % 10);
}
#endif
 ٠
        NREAD
 */
Nread( fd, buf, count )
ł
   struct sockaddr_in from;
   int len = sizeof(from);
   register int cnt;
   if(udp) {
   cnt = recvfrom( fd, (char *) buf, count, 0, (struct sockaddr *) & from, & len );
   } else {
   if( b_flag )
        cnt = mread( fd, buf, count );/* fill buf */
   else
        cnt = read( fd, buf, count );
   }
   return(cnt);
ł
۴
.
        NWRITE
•/
Nwrite( fd, buf, count )
ł
   register int cnt;
   if( udp ) {
again:
```

```
cnt = sendto( fd, (char *) buf, count, 0, (struct sockaddr *) & sinhim,
```

```
sizeof(sinhim));
   if( cnt<0 & & ermo == ENOBUFS ) {
        delay(18000);
        ermo = 0:
        goto again:
   ł
   | else |
   cnt = write( fd
                        ...unt );
   ł
   return(cnt);
}
delay(us)
ł
   struct timeval tv;
   tv.tv\_sec = 0;
   tv.tv_usec = us;
   (void)select( 1, (fd_set *)0, (fd_set *)0, (fd_set *)0, &tv );
   return(1);
1
۴
*
        MREAD
* This function performs the function of a read(II) but will
* call read(II) multiple times in order to get the requested
* number of characters. This can be necessary because
* network connections don't deliver data with the same
* grouping as it is written with. Written by Robert S. Miles, BRL.
*/
int
mread(fd, bufp, n)
int fd:
register char*bufp;
unsignedn;
ł
   register unsigned count = \theta;
   register inturead;
   do {
   nread = read(fd, bufp, n-count);
   if (nread < 0) {
        perror("ttcp_mread");
        return(-1);
   }
   if(nread == 0)
        return((int)count);
   count += (unsigned)nread;
   bufp += nread;
   } while(count < n);
   return((int)count);
#if sgi
static void
```

```
tvsub(tdiff, t1, t0)
struct timeval *tdiff, *t1, *t0;
{
    tdiff->tv_sec = t1->tv_sec - t()->tv_sec;
    tdiff->tv_usec = t1->tv_usec - t()->tv_usec;
    if (tdiff->tv_usec < 0)
    tdiff->tv_sec-, tdiff->tv_usec += 1000000;
}
```

#endif

APPENDIX B: RCP PROGRAM

```
#include <stdio.h>
#include <sys/time.h>
main ()
ł
                       /* Seconds variable
 long elapsed_sec.
                                                   */
                      /* Microseconds variable
    elapsed_usec;
                                                    */
 int file_size;
 float total_time,
    part_usec.
    transfer_rate;
 float average_time = 0;
 int loop_counter,
                 /* Subroutine result variables */
    a,
    b:
 int n = 5;
 char name[30], system_name[30];
 char rcp_string[30] = "rcp";
 char blank_string[2] = " ";
 int true = 1:
 char answer[2];
 char* get_name(char *string);
 /* Variable structure defns */
 struct timeval timestart, timedone;
 struct timezone zonestart, zonedone;
 /* Get file name & Dest machine name & path
                                                     */
 printf("\n\n\n Here is a list of availble files for transfering: \n\n");
 system ("is -al");
 while(answer[0] != 'y')
  Ł
   printf("\n Input the file name to be transfered: \n\n");
   gets(name);
   printf("\n Is the below input correct? Enter y if yes or n if incorrect: \n\n");
```

```
puts(name);
   printf("\n");
   gets(answer):
  ł
                   /* reset for next loop */
 answer[0] = 'n';
/* Get file size
                                       */
 while(answer[0] != 'y')
  ł
   printf("\n Input the file size to be transfered: \n\n");
   scanf("%d", &file_size);
   printf("\n Is the below input correct? Enter y if yes or n if incorrect: \n\n");
   printf("%d\n", file_size);
   gets(answer);
   gets(answer):
 answer[0] = 'y';
  ł
 answer[0] = 'n'; /* reset for next loop */
 while(answer[0] != 'y')
  ł
   printf("\n Input the Dest machine name & path to be transfered: \n\n");
   printf("An example would be: gold-fddi:/usr/test/wtog_test/n/n");
   gets(system_name);
   printf("\n Is the below input correct? Enter y if yes or n if incorrect: \n\n");
   puts(system_name);
   printf("\n");
   gets(answer);
  ł
 streat(rep_string, blank_string);
 strcat(rcp_string, name);
 strcat(rcp_string, blank_string);
 strcat(rcp_string, system_name);
 /* Set up outer loop to execute transfers n times */
 for (loop_counter = 1; loop_counter <= n; loop_counter += 1)
  ł
   /* Get start time in sec&usec and check if successful */
  a = gettimeofday(&timestart, zonestart);
  if (a != 0)
    printf ("Oops ! %d\n", a);
   /* Use system call to do file transfer */
  system (rcp_string):
/* system ("rcp american_pie.au gold-fddi:/usr/test/wtog_test"); */
   /* Get stop time in sec&usec and check if successful */
```

```
h = gettimeofday(&timedone, zonedone);
```

```
if (b!=0)
   printf ("Oops! %d\n", b);
   /* Get structure values for calculations. */
  elapsed_sec = timedone.tv_sec - timestart.tv_sec;
  elapsed_usec = timedone.tv_usec - timestart.tv_usec;
   /* Make sure that we account for the usec */
   /* variable rooling over (through zero) */
 if (elapsed_sec \ge 1)
  1
   if (elapsed_usec < 0)
   ł
elapsed_sec -= 1;
elapsed\_usec += 1000000;
   1
  ł
   /* Convert the usec variable to a floating point number. */
 part_usec = elapsed_usec/1.0e6;
   /* Add the seconds to the microseconds to get a real number */
 total_time = elapsed_sec + part_usec;
   /* And print the results on the CRT */
 printf ("%f \r%f\n", total_time, ((file_size*8/total_time)/1000000));
 average_time =+ total_time;
3
```

/* Print out the results of the avg transfer rate */

printf("\n\nls this time correct? %f", average_time);

printf("VThe average time was %f and the average transfer rate was %f\n", average_time/n, ((file_size*8/total_time)/1000000));

/* This is the end of the control loop. */ exit (0); }

APPENDIX C: NEAL NELSON BENCHMARK RESULTS

GOLD2.SOL	White	Gold
СРИ Туре	Sparc	Sparc
CPU Clock Speed	45 MHz	50 MHz
Total Size of Main Memory	224 Mbytes	224 Mbytes
Speed of Main Memory Chips	80 ns	80 ns
Type and Speed of Math Coprocessor	None	None
Number of Main CPUs	2	2

TABLE 9: CPU SUBSYSTEM

•

TABLE	10:	DISK	SUBSYSTEM
-------	-----	------	-----------

	White	Gold
Total Number of Disk Controllers	1	1
Total Number of Disk Devices	2	2
Disk Drive Type	SCSI	SCSI
Disk Drive Brand/Model	Seagate	Seagate
Disk Average Seek Time Seagate ST11200 Seagate ST1480	1-10.5ms 1-10.5ms	2-10.5 ms
Does system have I/O buses separate from the main bus?	Yes	Yes

	White	Gold
Does the system have instruction or data cache?	Yes	Yes
How many levels of instruction/data cache are there?	2	2
How is cache coherency accomplished?	Snooping with invalidation	Snooping with invalidation
Does CPU have separate instruction and data caches?	Yes	Yes
Total size of all instructions/data caches: On-board Instruction Data (Note: External SuperCache controller provides 1 Mbyte external cache)	20 Kbytes 16 Kbytes	20 Kbytes 16 Kbytes
Total swap	approx 280 Mbytes	approx 280 Mbytes

TABLE 11: CACHE INFORMATION

Group 1: Tests a of mix of activities that are intended to approximate the processing activities for the following five types of users. Group 1 includes the following tests:

- 1) Simulated Office Automation Workload
- 2) Simulated Database Workload
- 3) Simulated Software Development Workload
- 4) Simulated Transaction Processing Workload
- 5) Simulated Calculation Workload (Math/Statistics/CAD/CAM)

Group 2: Tests designed to perform various types of calculation tasks and thereby profile the performance of the computer's calculation subsystem. Group 2 includes the following tests:

6) Write to Shared Memory

7) Read from Memory, Small Instruction Area, Small Data Area

8) Read from Memory, Small Instruction Area, Larger Data Area

9) Read from Memory, Larger Instruction Area, Small Data Area

10) Read from Memory, Larger Instruction Area, Larger Data Area

11) Make Machine Page or Swap with 'malloc' and 'free'

12) Combined Integer and Floating Point Math

13) Math Library Functions

14) Semaphores, Shared Memory, Context Switch

15) Write to and Read from Pipes, Context Switch

16) Sample System Calls

17) Increasing Depth of Function Calls

Group 3: Tests that perform a series of disk input and output functions to profile the performance of the disk subsystem. Group 3 includes the following tests:

18) 1024 byte Sequential Reads from Unix File(s)

19) 1024 byte Sequential Writes from Unix File(s)

20) 8192 byte Sequential Reads from Unix Files(s)

21) 3192 byte Sequential Writes to Unix File(s)

22) 4096 byte Synchronized Reads from Unix File(s)

23) 4096 byte Synchronized Reads from Raw Device(s)

24) 16384 byte Synchronized Reads from Unix File(s)

25) 16384 byte Synchronized Reads from Raw Device(s)

26) 4096 byte Pseudo Random Reads from Unix File(s)

27) 4096 byte Pseudo Random Reads from Raw Device(s)

28) Profile Disk Cache for Unix File(s)

29) Profile Disk Cache for Raw Device(s)

30) 8192 byte Sequential Writes then 'sync'

Gold Verses White, Two Processors

	Te	st I	I	Tes	ST 2	le	st 3		le	st 4
Load	White	Gold		White	Gold	White	Gold		White	Gold
	Secs	Secs		Secs	Secs	Secs	Secs		Secs	Secs
1	242	163	T	117	97	110	76	Ľ	12	107
2	284	166		120	101	117	99		118	99
3	245	217		166	141	16	130		157	138
4	363	293		211	185	202	176		191	167
5	339	333		300	243	245	200		227	199
•	401	339		318	311	30	241		273	225
7	455	389		396	324	31	289		321	261
	566	458		48	399	318	326		309	300
9	653	528		572	460	364	305		309	337
10	738	590		657	560	392	344		353	319
1	- 14	659		76	687	460	386		393	351
12	932	756		958	763	544	429		436	402
13	1012	841		1185	396	560	472		502	421
14	1132	928		1322	1023	686	516		542	568
15	1192			171	1286	647	556		588	496
16	1278	·••5***		180	1557	728	598		619	519
17	1378	1125		2004	1534	769	655		675	563
18	1540	1261	1	219	1789	822	666		694	599
19	147	1351		2413	1920	902	727		145	655
20	1649	1444		2256	2112	92	750		800	650

TABLE 12: GOLD2.SOL VRS WHITE2.SOL, TEST 1 & 2 & 3 & 4

 TABLE 13: GOLD2.SOL VRS WHITE2.SOL, TEST 5 & 6 & 7 & 8

	Te	st 5	Te	st 6	le	st 7	Te	st 8
Load	White	Gold	White	Gold	White	Gold	White	Gold
	Secs	Secs	· Secs	Secs	Secs	Secs	Secs	Secs
	203	164	125	103	130	1 186	130	105
2	266	167	128	164	131	166	133	107
3	273	221	192	155	195	160	205	166
4	333	298	254	264	257	211	281	243
5	367	319	318	260	322	259	399	335
6	477	398	378	307	391	311	514	436
7	585	477	432	353	447	363		539
8	701	570	487	400	507	445	765	641
,	798	641	540	443	551	452	846	722
10	931	737	612	493	611	500	994	131
11	999	818	676	547	678	554	1095	921
12	1157	926	739	611	748	620	1257	1669
13	1290	-1651	\$41	664	889	640	1359	1190
14	1377	1124	366	712	848	725	1522	1303
15	1707	1376	914	757	948	769	1945	1620
16	1953	1573	983	811	1005	\$15	2216	1844
17	2062	1693	1643	853	1667	\$81	2377	1996
18	2239	1756	1116	901	1124	926	2530	2147
19	2385	1912	1171	972	1198	942	2738	2279
20	2497	2025	1226	1024	1260	1640	2870	2458

	Te	st 9		Tes	tlu	Tes	t II	Tes	112
Load	White	Gold		White	Gold	White	Gold	White	Gold
	Secs	Secs		Secs	Secs	Secs	Secs	Secs	Secs
	130	196		134	100		V	149	1
2	131	107		133	166			148	87
3	203	162		209	169			162	131
4	268	219		294	249			216	181
5	339	284		426	360		•	274	219
•	4499	343		553	463	•	•	325	263
7	455	407		699	583			378	345
8	560	445		833	766	•	•	434	351
9	644	537		967	793			485	391
10	725	689		1166	939			540	436
11	807	697	_	1223	1444		•	596	488
12	887	773		1391	1200		•	649	523
13	986	834		1544	1318		•	718	569
14	1662	905		1726	1468			761	615
15	1141	983		2160	1847			810	653
16	1244	1452		2355	2023			866	764
17	1296	1130		2588	2139			921	745
18	1378	1190		2748	2330		•	986	787
19	1462	1278		2956	2472			1846	855
20	1543	1342		3067	2766			1105	885

 TABLE 14: GOLD2.SOL VRS WHITE2.SOL, TEST 9 & 10 & 11 & 12

TABLE 15: GOLD2.SOL VRS WHITE2.SOL, TEST 13 & 14 & 15 & 16

	Tes	I 13	Tes	t14		Tes	it 15	Tes	t 16
Load	White	Gold	White	Gold	M	/hite	Gold	White	Gold
	Secs	Secs	Secs	Secs		Secs	Secs	Secs	Secs
	102	81	34	28		109	9 /	32	44
2	163	81	141	124		131	111	56	50
3	158	126	217	187		179	156	LS -	74
4	211	175	290	253		245	217	118	96
5	262	223	393	334		346	269	145	121
•	344	268	491	421		386	328	175	147
7	377	301	588	50 1		434	395	205	172
8	422	341	784	593		516	452	239	196
9	485	390	813	678		576	501	267	219
10	525	430	966	774		626	548	303	244
Π	593	469	1013	865		686		329	230
12	685	535	1105	951		750	673	359	300
13	713	586	1205	1639		816	699	463	317
14	779	618	1296	1098		874	752	418	356
15	365	640	1410	1173		965	791	443	381
16	701	775	1541	1257		1005	839	471	383
17	897	747	1590	1344		1067	902	496	417
18	1005	820	1705	1416		1127	932	520	447
	1661	863	1810	1513		1176	969	555	481
20	1118	932	1941	1602		1238	1118	612	496

	Tes	t 17		Tes	it 18	Tes	19	Tes	1 20
Load	White	Gold		White	Gold	White	Gold	White	Gold
	Secs	Secs		Secs	Secs	Secs	Secs	Secs	Secs
	Î Î Î	82		3	4	18	13	2	2
2	95	76	•	•	5	92	93	2	2
3	144	117		9	7	137	145	3	2
4	200	169		12	10	231	221	4	3
5	270	217		15	13	325	372	5	4
6	340	274		23	19	388	378	10	8
7	579	468		27	24	433	427	14	12
8	839	685		32	27	518	474	17	14
9	1077	869		37	30	540	539	19	17
10	1356	1683		39	34	655	574	21	18
11-	1431	1314		43	38	691	662	24	20
12	1887	1533		49	42	694	727	23	22
13	2188	1761		332	334	1662	1230	300	320
14	2478	2005		298	273	1898	2316	229	426
15	2734	2213		254	402	2393	2149	264	252
16	3672	2631		266	260	1683	1714	257	246
17	3347	2707		274	278	1920	1865	268	270
18	3679	2939		288	295	2696	2046	282	284
19	3998	3364		389	299	3063	2247	360	299
20	4337	3574		324	324	2238	2139	326	331

 TABLE 16:
 GOLD2.SOL VRS WHITE2.SOL, TEST 17 & 18 & 19 & 20

TABLE 17: GOLD VRS WHITE2.SOL, TEST 21 & 22 & 23 & 24

	Tes	121		Tes	t 22	Tes	t 23	Tes	124
Load	White	Gold	\cdot	White	Gold	White	Gold	White	Gold
	Secs	Secs	. 1	Secs	Secs	Secs	Secs	Secs	Secs
-	4	- 18		3	I		- 3	4	
2	115	114		3	2	4	3	2	2
3	156	160		4	3	6	5	3	2
4	217	224		6	5		7	4	3
5	313	292		7	•	11	2	5	4
6	347	286		14	12	14	12	•	7
	472	356		19	16	18	15	13	11
	691	412		23	19	21	18	16	13
,	556	499		24	22	24	28	18	15
10	646	499		28	25	243	366	20	16
11	571	668		33	28	 223	230	37	36
12	613	733		34	32	177	174	91	4
13	756	655		277	233	193	180	218	193
14	835	938		333	367	542	259	178	238
15	788	407		345	543	246	201	181	197
16	907	820		527	567	206	196	193	445
17	815	919		467	424	538	215	206	449
18	954	1637		443	478	241	236	500	376
19	951	1091		835	463	260	251	338	351
20	1171	1175		927	984	277	243	368	481

	18	25	Tes	1 26	18	t 27	16	[28
Load	White	Gold	White	Gold	white	Gold	White	Gold
	Secs	Secs	Secs	Secs	Secs	Secs	Secs	Secs
	3		3	4	3	2	I	I
2	4	3	3	2	4	3	2	1
3		5	4	• 3	•	5	2	2
4	8	•	5	4	7	•	3	3
5	9	8	7	6	10	•	4	3
•	13	—	n	,	13	n	5	
7	15	13	17	14	17	15	8	- 3
8	18	15	22	18	29	17	7	6
	20	17	26	22	23	29	15	7
10	386	345	30	25	264	306	10	
Π	466	390	41	41	779	562	9	8
12	491	495		52	942	930		10
13	601	507	412	426	955	950	5	4
14	549	498	558	644	1163	1166	n	10
15	585	525	\$45	847	1251	1195	16	10
16	709	565	1128	1109	1354	1279	31	21
17	644	655	1259	1274	1549	1498	49	31
18	751	765	1570	1567	1666	1568	77	- 59
19	951	943	1701	1685	1788	1895	82	
20	957	1006	1925	1897	1913	1916	116	166

TABLE 18: GOLD2.SOL VRS WHITE2.SOL, TEST 25 & 26 & 27 & 28

	16	1 29	Tes	t 30
Load	White	Gold	White	Gold
	Secs	Secs	Secs	Secs
Τ	1		147	1405
2	1		1496	1392
3	1	1	154	1386
4	2		162	1511
5	2	2	1552	1583
	3	3	1760	1713
7	4	3	2429	1745
	4	5	2489	2069
•	4	4	2913	2498
10	2	4	2522	2766
11	38	39	3317	2781
12	62	- 59	274	2226
13	78	71	270	2249
14	87	97	2703	2268
15	100	101	2621	2533
16	186	107	2682	2733
17	120	131	2576	2694
1	139	125	3664	2661
- 19	142	133	3466	2666
20	146	156	2862	2786

TABLE 19: GOLD2.SOL VRS WHITE2.SOL, TEST 29 & 30

	Te	st I	Te	st Z	Te	st 3	Te	st 4
Load	GoldI	GoldZ	GoldI	Goldz	GoldI	Gold	Gold	Goldz
	Secs	Secs	Secs	Secs	Secs	Secs	Secs	Secs
	165	103				- W		107
2	245	166	170	101	170	99	143	99
3	336	217	 231	141	223	139	216	138
4	446	293	340	185	366	176	290	167
3	538	333	367	243	347	200	372	144
•	689	339	514	311	390	241	340	225
7	788	389	633	324	441	239	342	261
	963	458	826	399	533	326	456	300
	1650	528	917	240	686	345	493	337
10	1158	590	1095	540	634	344	549	319
11	1366	659	1266	667	767	346	629	351
12	1569	756	1472	703	963	4	735	462
В	1655	14 1	1650	896	961	472	773	4
14	1818	928	1839	1623	1063	516	64	396
15	1958	994	2379	1286	1153	556	911	476
16	2698	1063	2626	1557	1221	594	943	519
17	2230	1125	2435	1534	1296	635	1025	543
18	2383	1261	3201	1789	1360	666	1095	599
. 19	2512	1351	3368	1920	144	727	 1126	635
20	2672	1464	 3660	2112	1553	750	1215	654

TABLE 20: GOLDI.SOL VRS GOLD2.SOL, TEST 1 & 2 & 3 & 4

TABLE 21: GOLDI.SOL VRS GOLD2.SOL, TEST 5 & 6 & 7 & 8

.

	le	st 5	 Te	St 6	Te	st 7	Te	st 8
Load	GoldI	Goldz	GoldI	Goldz	GoldI	Gold	Gold I	Goldz
	Secs	Secs	Secs	Secs	Secs	Secs	Secs	Secs
	191	164	107	UD 1	 100	10	107	105
2	284	167	209	164	220	166	214	107
3	333	221	307	155	312	160	 321	166
4	444	298	399	264	469	211	445	243
3	593	319	414	240	529	259	636	335
	785	394	573	367	601	311	 667	436
7	922	477	689	353	644	343	962	539
	1155	570	753	440	769	485	1171	641
	1251	641	851	403	865	452	1256	722
10	1456	737	941	413	965		1510	IJ
11	1675	818	1633	547	1652	- 354	1760	921
12	1967	726	 1130	611	1130	620	1664	Tera
13	2112	1651	1265	664	1331	- 686	2002	1190
14	2343	1124	 1307	712	1333	725	2371	1303
15	2092	1376	1445	757	1450	769	2959	1620
16	37216	1573	1909	- 811	1559	815	3221	1844
17	3464	1693	1664	353	1679	83	3343	1996
18	3691	1786	1725	901	1744	924	345	2147
U	3978	1912	1611	972	1832	903	3668	2279
2	423	2425	1921	104	1962	1040	3745	2455

	Te	st 9	Te	a tu	Te	115	Те	112
Load	GoldI	Goldz	GoldI	Goldz	GoldI	Gold	GoldI	Goldz
	Secs	Secs	Secs	Secs	Secs	Secs	Secs	Secs
	112	10	107	100				87
7	219	107	221	10			177	87
3	323	162	337	169		•	265	131
	435	219	41	249	•		353	181
5	545	284	679	360		•	445	219
•	663	343	- 11	463		•	523	263
7	783	467	1066	583	•		614	38
	964	463	 1256	786			689	351
•	1652	537	169	793		•	100	391
10	1191	689	1725	939		•	394	436
11	1314	697	19/2	1644			770	41
12	1372	773	1157	1200	•	•	 1001	523
13	1583	834	2502	1318		•	1125	569
14	1643	965	2544	1465	•	•	1266	615
15	1750	983	2954	1847			1256	653
16	1543	1632	3267	2023	•		1444	74
17	1966	1130	3547	2139			1544	745
18	2005	1190	3777	2330			1623	787
19	2241	1275	4459	2472			1683	855
78	2338	1342	4312	2700			1767	845

TABLE 22: GOLDI.SOL VRS GOLD2.SOL, TEST 9 & 10 & 11 & 12

TABLE 23: GOLD1.SOL VRS GOLD2.SOL, TEST 13 & 14 & 15 & 16

	Te	1 13	Ies	t 14	Tes	t 15	16	t 16
Load	GoldI	Goldz	GoldI	Goldz	GoldI	Gold	GONET	GOICZ
	Secs	Secs	Secs	Secs	Secs	Secs	Secs	Secs
	6	<u>81</u>	26	4		97	8	-
2	212	81	101	124	173	111	2	9
3	296	126	167	187	263	156	137	74
4	445	175	277	253	344	217		
3	443	223	357	334	42	269	230	121
	589	265	447	41	591	328	372	147
	643	301	523	591	649	395	319	172
	717	341	666	593	713	452	362	196
,	856	396	710	678	776	501	416	219
10	932	436	763	774	369	54	465	244
11	1006	469		848	1010	- 411	510	250
L R	1109	535	955	951	1072	673	547	300
13	1189	586	1656	1639	1135	699	596	317
14	1269	618	1128	1076	1207	752	662	356
15	1340	640	1227	1173	1243	791	713	31
6	1453	775	1376	1257	1364	139	799	343
17	1516	747	146	1364	1498	942	314	417
u	1660	2.20	149	1416	1364	132	850	447
. 19	1736	843	1991	1513	169	94 9	914	41
20	1366	932	1659	1642	1759		 955	499

	Te	117		18	815	Te	1 19	16	[20
Load	GOID	Golaz		Gold	Goldz	Gold	Gold	Gold	Goldz
	Secs	Secs		Secs	Secs	Secs	Secs	Secs	Secs
1	8	N I				8	17		
2	155	76		7	3	37	IJ	3	1
3	237	117		11		54	145	- 4	2
	327	169		15		61	221	•	- 3 - 1
5	433	217		19	13	86	372		
•	550	274		2	19	103	378	14	
7	41	463		34	24	 119	427	17	11
•	1345	685		37	27	135	474		14 -
•	17/6	869		8	39	150	539	2	17
10	2366	1013		4	24	169	574	В	16
11	2814	1314		2	3	190	662	27	28
13	3424	1533	•		8	264	727	29	2
13	3561	1761		153	334	4	1230	47	320
14	3961	2005		198	173	437	2316	156	426
15	4359	2213		237	40	43	2149	14	252
16	5082	2631		745	260	470	1714	200	246
17	5465	2707		263	278	528	1865	238	270
18	6327	2939		250	295	344	2645	286	234
19	6377	3364		301	299	587	2247	291	299
	6842	3574		321	374	 674	2139	307	331

 TABLE 24:
 GOLD1.SOL VRS GOLD2.SOL, TEST 17 & 18 & 19 & 20

TABLE 25: GOLD1.SOL VRS GOLD2.SOL, TEST 21 & 22 & 23 & 24

	I est 21 I lest 22					I TEST 23 I TEST 24					
				16	1 44		10	120		10	
LOSG	GORI	Goldz		GOIDI	Golaz		GOIDI	GOID		GOILI	GOKAZ
	Secs	Secs		Secs	Secs		Secs	Secs		Secs	Secs
1	18	16		7			3	3			
2	36	114		4	2		5	3		- 3	2
3	53	160		6	3			3		1	2
4	7	224			5		10	7			3
5	86	292		10	6		14	9		7	
•	107	286		17	11		u u	12		14	7
7	120	356		Ľ	16		22	15		16	
	143	412		25	IJ		2	18		19	13
•	154	499		Я	22		29	20		2	15
10	171	499		B	25		228	366		25	16
11	190	468		39	25		4466	230			3
12	210	733		33	32		192	174		- 3	
13	225	655		167	233		245	150		195	193
14	247	938		328	367		219	259		134	236
13	240	807		412	543		242	201		196	197
16	346	820		514	567		223	196		295	45
17	366	919		677	4		226	215		315	449
18	321	1037		646	476		242	236		279	370
19	346	101		779	- 465		285	251		44	351
20	359	1175		100	785		370	213		436	41

	ास	t 25	Tes	1 26	Tes	127	16	1 28
Deol	Ciolal	Goldz	GOIGI	GOIAZ	GoldI	GOID	(FOID)	Goldz
	Secs	Secs	Secs	Secs	Secs	Secs	Secs	Secs
	2	2	Z		2	2		1
2	4	3	4	2	4	3	1	1
3	7	5	•	-3	7	5	3	2
4	9	6		4	10	•	4	3
5	12	8	10	6	13		•	3
•	15	11	15	,	16	' 11		4
7	17	13	21	14	21	15	7	5
8	79	15	26	1	24	17	9	•
,	24	17	32	2	29	20	- 11	
10	345	345	37	25	241	366	п	
11	467	390	43	41	816	342	13	
12	469	495	47	52	915	930	17	10
13	476	567	364	426	944	950		4
14	542	498	611	644	1105	1166	11	10
15	652	525	837	847	1201	1195	14	10
16	764	565	1035	1160	1315	1279	72	21
17	725	655	1313	1274	1469	1498	31	31
18	827	765	1455	1567	1659	1568	63	59
19	969	943	1678	1685	1763	1395	96	94
2	1012	1006	1798	1897	1959	1916	100	166

TABLE 26: GOLD1.SOL VRS GOLD2.SOL, TEST 25 & 26 & 27 & 28

	Tes	1 29	Tes	t 30
Load	Goldi	GOIOZ	Gold	Goldz
	Secs	Secs	Secs	Secs
1			100	1405
2	1		465	1362
3	2		1665	1366
4	3		1114	1511
5	3	2	1197	1983
6	•	3	1256	1713
	- 3	3	1564	1745
	3	5	1688	2009
•	7	4	2667	2496
10	3	4	2321	2766
11	4	39	2419	2781
12	62	39	2190	2226
13	75	71	2229	2249
14		97	2284	2268
15		101	2525	2533
16	110	107	2693	2733
17	127	131	2657	2694
18	131	125	2674	2661
19	142	133	2668	2666
2	152	156	2746	2766

TABLE 27: GOLDI.SOL VRS GOLD2.SOL, TEST 29 & 30

Solaris 2.3 ()ne Processor Verses Sun()S 4.1.3 ()ne Processor Results

	Te	<u>st 1</u>	Te	st Z	I I TO	st 3		514
Load	Gold	Gold	Gold	Gold	Geld	I Gold	Gold	T Gold
	Secs	Secs	Secs	Secs	Secs	Secs	Secs	Secs
	100	164 1		7/				T IVI
2	285	294	170	130	170	177	163	164
3	336	333	231	746	223	239	216	213
-	446	446	346	350	386	323	290	793
3	338	564	367	385	347	346	322	367
•	49	644	514	517	390	342	340	332
7	745	817	633	661	441	- 253 -	382	390
	963	947	826	817	533	530	- 454	447
	169	107	917	740	600	618	473	512
10	1155	1224	105	TLA		712	540	570
11	1366	1394	1260	1241	767	795	63	629
2	1569	1537	1472	1416	943	- 293	735	724
น	1665	1672	1650	1517	991	740	773	778
4	1918	1810	1839	1766	1063	1848	824	826
य	1959	1944	2379	2319	1153	1077	911	894
16	265	2663	2626	2379	1221	1187	943	967
17	2230	2210	2435	2997	12.0	130	1625	1626
11	2363	2315	3201	3948	1369	1366	1095	1095
U	2512	2469	3368	3156	144	ारा	1126	1176
7	2672	2994	3600	3445	1553	1475	1213	1217

TABLE 28: GOLDI.SOL VRS GOLDI.SUN, TEST 1 & 2 & 3 & 4

TABLE 29: GOLDI.SOL VRS GOLDI.SUN, TEST 5 & 6 & 7 & 8

	Te	a 5 T	I Te	86	T	\$ 17		Te	a 8
LOOD	Gold	Gold	Gold	Gold	011	I Gold		Gold	Gold
	Secs	Secs	Secs		 				
				Secs	iecs	Secs	_	Secs	Secs
	166	164			100	10			
	244	287	209	201	200	24		214	207
3	30	324	307	25	312	300		31	307
	44	450	395	386	4	34		445	- 20
5	9 93	610		479	20	453		636	666
6	785	72	573	545	601	574		867	765
7	921	997	. 689	646		636		962	773
	1133	1144	753	735	769	740		1171	1149
	1251	1296	851	8.2.2		745		1200	1237
10	1456	1531	941	963	56	918		1510	163
	1675	1765	1653	788	1	1413		1700	1637
13	1967	1891	1130	1064	190	1100		1864	1773
B	2112	2072	1366	1157	1.11	1185		2002	1981
1	2343	2291	1307	1247	333	1272		2371	2343
-13	2002	2542	146	1376	100	140	-	2339	3657
16	3216	3179	1300	TO	550	1469		3221	3180
W	3464	3371	1644	1531	079	1953		330	3362
- 18	3691	3614	1725	1633	744	105		3485	3501
	3776	3923	1011	1719	193	1789		3668	3751
7	443	41153	121	1760	1.1	183	-	3965	4463

	Te	st 9 📗	Te	st 10	Tes	115		Ies	it 12
Load	Gold	Gold	Gold	Gold	Gold	Gol		Gold	Gold
	Secs	Secs	Secs	Secs	Secs	Secs		Secs	Secs
T	112	1.441	107				r i	म	87
2	219	219	221	224	•	•		177	174
3	323	326	337	337				245	J J
4	435	435	481	444	•	•		753	346
3	545	548	679	670				445	431
•	663	634	41	835		•		523	517
7	783	767	1066	1070	•	•		614	60T
8	964	111	1296	1267	•	•		689	646
	1652	78.5	1459	1464				301	772
10	1191	1118	1725	1636	•	•		894	854
11	1314	1271	1722	1835				978	937
12	1392	1378	2157	2436		•		1641	1625
13	1583	1494	2302	2241	•	•		T123	1166
14	1663	1993	2544	2511	•	•		1266	1201
15	1750	1760	2954	3172				1298	1291
16	1848	1840	3267	3197		•		1444	1391
17	1966	190	3547	3453	•			1544	1469
18	2053	2652	3797	3457	•	•		1623	1550
TT I	2241	2213	4459	3958	•	•		1683	1623
24	2338	2239	4312	4484				1767	1731

TABLE 30: GOLDI.SOL VRS GOLDI.SUN, TEST 9 & 10 & 11 & 12

.

•

TABLE 31: GOLD1.SOL VRS GOLD1.SUN, TEST 13 & 14 & 15 & 16

	Tes	t 13	Tes	14	Te	at 15	Te	st 16
Load	Gold	Gold	Gold	Gold	Gold	Gold	Gold	Gold
	Secs	Secs	Secs	Secs	Secs	Secs	Secs	Secs
	25	W I	1 2	-		X	0	41
2	212	123	10	165	172	135	92	2
3	293	186	167	273	263	234	137	121
	445	249	277	348	344	366	181	162
5	413	312	357	444	443	394	230	205
6	389	374	447	567	531	500	272	244
7	643	438	523	674	609	596	319	246
	717	502	648	774	763	691	362	328
	856	564	710	913	776	776	416	370
10	932	636	782	997	369	\$96	446	414
11	1006	749	388	1056	1016	995	510	454
12	1109	301	955	1237	1072	1043	549	497
13	1189	149	1656	1399	1133	1216	598	532
14	1269	956	1128	1429	1207	1260	662	597
15	1340	1648	1227	1585	1243	1466	703	629
16	1453	1101	1376	1723	1364	1415	799	667
17	1516	1129	1466	105	1436	1566	814	718
18	1660	1230	149	2010	1564	1612	150	765
19	1736	1283	1581	2005	1669	1719	914	816
29	1866	1399	1659	2132	1739	1815	955	836

and a second sec

	Tes	17	Ies	1 18	Tes	19	Ies	1 20
Load	Gold	Gold	Gold	Gold	Gold	Gold	Gold	Gold
	Secs	Secs	Secs	Secs	Secs	Secs	Secs	Secs
	1	74	4	•	18	म		2 -
2	155	149	7		37	29	3	3
3	237	224	11	1	R	4	 4	7
4	327	311	15	15	69	59	•	10
5	433	489	19			73	8	
•	550	525	2	23	103	89	14	15
	941	1234	34	27	112	107	17	18
	1345	1945	37	31	135	124	 19	21
	1776	2662	U	35	150	144	22	24
10	2386	3433	 4	52	169	165	25	27
11	2814	4134	53	171	196	193	27	Ж
12	3424	4892		344	264	491	29	169
13	3561	5656	153	395	-128	911	47	649
14	3961	6441	198	40	437	1664	186	769
15	4359	7658	237	656	434	1115	14	789
16	5662	7875	248	656	470	969	264	618
17	5465	8678	268	646	528	1243	238	1013
18	6327	9460	280	555	- 344	1530	280	1125
19	6379	10157	301	646	587	1835	291	1226
20	6842	11052	321	834	674	1895	307	1234

TABLE 32: GOLD1.SOL VRS GOLD1.SUN, TEST 17 & 18 & 19 & 20

TABLE 33: GOLD1.SOL VRS GOLD1.SUN, TEST 21 & 22 & 23 & 24

•

	Tes	t 21	Tes	1 22	Tes	1 23	Tes	124
Load	Gold	Gold						
	Secs	Secs						
	18	14			3	3		7
2	36	32		5	5	3	3	4
3	53	- 46	•				4	•
4	ท	61		11	10	11	•	
5	36	77	10	16	14	14	7	11
•	107	92	17	19	18	17	14	14
7	120	111	23	24	22	7	 16	16
	143	127	25	29	24	22	19	19
9	156	147	31	33	20	26	12	
10	171	168	33	38	224	36	25	24
11	190	190	39	- C	400	73	30	247
12	210	298	39	244	192	109	30	367
13	225	230	167	169	265	116	195	297
N I	247	249	328	368	219	125	 186	398
15	266	276	412	245	263	136	199	399
16	366	292	524	350	223	142	200	440
17	366	318	677	321	226	152	315	411
14	321	345	646	622	262	157	279	476
- 19	346	365	779	621	285	169	494	562
29	359	393	1699	1015	320	120	436	649

	Tes	1 25	Tes	1 26	Te	st 27		Tes	1 28
Load	Gold	Gold	Gold IS	Gold	Gold	Gold		Gold	Gold
	Secs	Secs	ecs	Secs	Secs	Secs		Secs	Secs
	2	2	7 2	3	7	1		1	- 1
2	4		4	4	4	4		2	1
3	7	5			7	7		3	3
		8	8	п	10	10	_	4	3
5	12	10	10	17	13	14		•	4
	15	12	15	21	16	17		6	5
7	17	14	21	26	31	- 11		7	6
	20	16	26	- 30	24	23		•	7
3	74	18	32	35	25	26		11	8
10	345	21	37		281	29		11	10
1	467	22	43	769	316	32	_	13	- U
12	469	237	- 47	1174	915	39	_	17	131
13	476	285	364	1336	984	- 74		7	193
14	592	224	611	1687	1165	1		11	221
15	652	130	837	1837	1201	<u> </u>		14	259
16	764	152	1035	1934	1315	i122		22	277
17	725	225	1313	1964	1469			31	296
18	827	193	1455	2066	1644	1848		63	319
1	969	165	1678	2361	1743	2248		%	349
20	1012	184	1798	2449	1959	2453		100	389

TABLE 34: GOLD1.SOL VRS GOLD1.SUN, TEST 25 & 26 & 27 & 28

.

Test 30 Test 29 Load Gold Gold Gold Gold Secs Secs Secs Secs Т Т 1564 T607 X -п æ IJ

TABLE 35: GOLDI.SOL VRS GOLDI.SUN, TEST 29 & 30

APPENDIX D: NTTCP SINGLE PROCESSOR RESULTS

Test Number	From:	10:	NFS_ASYACE	TIKI	SDI NUM
			threads		<u>Uc rx</u>
Ist lest	White	Cold	8	8ms	48K
2nd Test	Gold	White	8	8ms	48K
3rd Test &	White	Gold	8	8ms	48K
4thTest	Gold	White			
5th Test	White	Gold	16	8ms	48K
6th Test	Gold	White	16	8ms	48K
7th Test &	White	Gold	16	8ms	48K
8th Test	Gold	White			
9th Test	White	Gold	8	5ms	48K
10th Test	Gold	White	8	5ms	48K
11th Test	White	Gold	8	5ms	48K
12th Test	Gold	White			
13th Test	White	Gold	16	5ms	48K
14th Test	Gold	White	16	5ms	48K
15th Test	White	Gold	16	5ms	48K
16th Test	Goid	White	1		
17th Test	White	Gold	8	llms	48K
18th Test	Gold	White	8	llms	48K
19th Test &	White	Gold	8	Ilms	48K
20th Test	Gold	White			
21st Test	White	Gold	16	Ilms	48K
22nd Test	Gold	White	16	llms	48K
23rd Test &	White	Gold	16	11ms	48K
24th Test	Gold	White	1		
25th Test	White	Gold	8	25ms	48K
26st Test	Gold	White	8	25ms	48K
27th Test &	White	Gold	8	25ms	48K
28th Test	Gold	White			
29th Test	• White	Gold	16	25ms	48K
30th Test	Gold	White	16	25ms	48K
31st Test &	White	Gold	16	25ms	48K
32nd Test	Gold	White	1 1		
33rd Test	White	Gold	8	8	48K
FDDI Boards switched					
34th Test	Gold	White	8	8	48K
FDDI Boards switched					

TABLE 36: SINGLE PARAMETER TEST RESULTS

(12.0)	es) Mbp:	File B Mbps	File C Mbps	File D Mbps	File E Mbps	Flie F Mbps	File G Mbps	File H Mbps
4	32.77	38.23	40.05	36.06	32.46	31.92	31.51	31.96
12	118.33	29.13	32.77	30.95	24.63	25.42	24.93	26.21
20	32.77	43.69	41.87	40.57	40.57	40.33	40.62	39.86
28	32.77	49.15	38.23	42.65	40.57	40.89	41.67	41.81
36	32.77	43.69	38.23	43.69	41.61	40.89	41.67	42.38
- 44	32.77	49.15	38,23	42.65	40.57	39.43	42.26	42.09
52	76.96	49.15	38.23	41.61	38.75	37.93	39.35	36.15
60	32.77	43.69	38.23	41.61	33.72	34.37	30.09	30.60

. **TABLE 38: SINGLE PROCESSOR, 2ND TEST RESULTS** WINDOW Size File A THE D FIE E File B FIR C Flie F File G FIE H (K bytes) Mbps Mbps Mbps Mbps Mbps Mbps Mbps Mbps 34.33 30.34 32.77 32.77 32.77 29.47 30.12 29.98 4 30.04 30.34 23.08 21.41 12 29.49 24.09 21.16 29.13 33.55 34.59 35.84 20 32.77 30.95 38.23 33.55 33.33 34.57 36.67 36.67 28 35.89 35.56 35.85 43.69 34.59 32.77 34.64 35.00 36 32.77 38.23 36.41 34.02 35.37 35.25 32.77 49.15 36.41 37.45 35.11 34.80 35.37 44 14.58 32.77 43.69 52 163.84 40.05 35.28 14.42 13.45 14.21 60 32.77 32.77 36.67 7.79 7.56 6.93 From: Gold Threads: 8 LLC Buffers: 48K To: White TTRT: 8ms Single Test

(K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	Mbps	Flie F Mbps	Flie G Mbps	Mbp
4	30.04	25.49	29.34	26.55	19.58	20.98	18.93	20.79
12	27.31	26.40	23.35	25.73	18.06	20.37	17.58	19.44
20	24.58	27.31	26.99	29.61	28.29	28.94	28.43	27.37
28	102.60	33.68	26.42	25.57	24.81	28.75	29.03	29.47
36	30.04	32.77	28.61	28.09	29.65	29.49	29.92	27.91
-14	30.04	41.87	28.76	30.41	25.92	30.08	30.08	29.29
52	30.04	34.59	32.25	30.97	24.08	25.94	28.24	25.58
60	32.77	28.22	31.68	30.03	26.60	26.37	24.03	25.23

(K bytes)	File A Mbps	Fue B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File Mbj
4	67.36	27.31	30.58	28.26	20.59	70.35	19.34	20.6
12	27.31	29.13	25.67	25.75	19.40	18.77	18.81	18.98
20	24.58	30.95	26.94	27.87	27.53	26.52	25.20	24.40
28	32.77	29.13	28.76	27.81	25.92	26.26	27.00	25.9
36	32.77	34.59	30.58	28.78	28.47	27.76	26.69	26.1
44	30.04	38.23	31.68	31.38	27.32	27.69	28.15	28.74
52	27.31	23.67	32.40	30.99	14.88	15.30	14.03	14.7
60	27.31	32,77	26.42	32.51	8.58	8.44	7.95	41.0

TABLE 41: SINGLE PROCESSOR, 5TH TEST RESULTS

Window (K byte		File B Mbps	File C Mbps	File D Mbps	File E Mbps	Fue F Mbps	File G Mbps	File F Mbp:
4	32.77	32.77	38.23	36.67	33.55	32.49	32.44	32.95
12	30.04	32.77	34.59	34.40	26.51	26.17	27.10	27.53
20	32.77	43.69	38.23	40.57	39.53	39.85	40.14	41.26
28	128.04	43.69	41.87	40.57	41.61	42.01	42.28	41.95
36	32.77	38.23	41.87	41.61	41.61	42.09	42.53	41.69
44	136.53	38.23	43.69	42.65	40.57	42.57	42.53	41.98
52	32.77	43.69	38.23	42.65	38.49	38.11	39.00	35.48
60	32.77	49.15	40.05	40.57	32.94	35.84	34.70	33.80

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	Flie F Mbps	File G Mbps	File I Mbp
4	32.77	43.69	31.68	33.55	29.13	29.47	30.13	29.03
12	32.77	30.95	27.31	29.13	21.28	23.01	24.97	22.51
20	95.57	32.77	31.68	33.72	33.72	33.54	34.95	33.52
28	81.92	38.23	34.59	35.89	35.89	35.78	35.57	34.62
36	32.77	49.15	34.59	37.45	33.55	35.42	35.96	35.40
- 44	105.33	38.23	34.59	36.67	33.72	34.74	34.06	34.41
52	95.57	\$1.69	34.39	35.89	12.57	12.03	10.84	10.90
60	30.04	36.41	34.59	34.33	6.86	6.52	6.24	6.17

23.67		Mbps	Mbps	Mbps	Mbps	Mbp
43.07	28.40	23.96	21.84	21.81	21.76	19.3
30.95	24.08	23.60	17.60	18.03	20.25	18.84
30.04	26.03	22.41	26.15	26.58	28.29	30.8
32.77	26.60	24.93	31.45	25.68	29.00	30.8
32.77	36.04	29.30	27.02	27.77	29.50	29.20
36.41	28.24	29.13	28.17	29.14	30.14	29.1
30.95	32.40	29.09	24.96	25.41	30.13	28.46
30.95	29.73	28.37	28.24	25.39	26.77	25.6
	30.04 32.77 32.77 36.41 30.95 30.95	30.04 26.03 32.77 26.60 32.77 36.04 36.41 28.24 30.95 32.40	30.04 26.03 22.41 32.77 26.60 24.93 32.77 36.04 29.30 36.41 28.24 29.13 30.95 32.40 29.09 30.95 29.73 28.37	30.04 26.03 22.41 26.15 32.77 26.60 24.93 31.45 32.77 36.04 29.30 27.02 36.41 28.24 29.13 28.17 30.95 32.40 29.09 24.96 30.95 29.73 28.37 28.24	30.04 26.03 22.41 26.15 26.58 32.77 26.60 24.93 31.45 25.68 32.77 36.04 29.30 27.02 27.77 36.41 28.24 29.13 28.17 29.14 30.95 32.40 29.09 24.96 25.41 30.95 29.73 28.37 28.24 25.39	30.04 26.03 22.41 26.15 26.58 28.29 32.77 26.60 24.93 31.45 25.68 29.00 32.77 36.04 29.30 27.02 27.77 29.50 36.41 28.24 29.13 28.17 29.14 30.14 30.95 32.40 29.09 24.96 25.41 30.13 30.95 29.73 28.37 28.24 25.39 26.77

TABLE 44: SINGLE PROCESSOR, 8TH TEST RESULTS Window Size Flie A FIE B File C File D FIE E File F **Fie** G File H Mbps 19.40 Mbps **Mbps** 27.31 **Mbps** 27.31 Mbps Mbps 18.04 (K bytes) Mbps Mbps 29.86 29.72 21.90 20.86 4 25.49 25.49 12 32.77 26.94 27.15 18.86 17.60 15.65 16.14 20 30.04 30.58 28.88 24.93 26.16 24.07 27.03 28.90 25.32 28 30.04 29.13 30.06 30.65 15.74 28.52 26.92 27.56 36 32.77 38.23 30.95 30.64 23.87 26.27 29.95 34.40 29.44 44 63.59 27.31 25.75 23.72 26.29 29.50 11.49 32 92.84 24.58 32.77 11.60 12.76 12.36 60 30.04 32.77 28.52 30.44 7.29 6.81 7.12 7.14 From: Gold Threads: 16 LLC Buffers: 48K To: White TTRT: 8ms **Dual Test**

(K bytes)	Mbps	File B Mbps	File C Mbps	File D Mbps	Flie E Mbps	File F Mbps	File G Mbps	File Mbp
4	32.77	32.77	40.05	35.28	34.33	34.28	33.32	33.84
12	32.77	36.41	31.68	32.33	25.18	25.74	26.67	25.12
36	70.09	43.69	38.23	40.83	38.49	39.99	40.10	40.14
44	163.84	43.69	38.23	40.57	41.61	41.53	41.99	41.84
52	105.33	43.69	43.69	42.65	39.53	42.57	42.26	42.09
60	63.72	38.23	43.69	42.65	40.83	42.01	41.67	41.85
60	32.77	38.23	43.69	43.69	37.71	35.84	37.67	35.03
60	32.77	38.23	40.05	41.87	28.08	31.95	30.55	28.37

F

Window Size (K bytes)	File A Mbps	Fue B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	Flie H Mbps
	32.77	38.23	37.14	33.72	29.13	28.72	25.90	28.24
12	32.77	30.95	30.58	31.24	25.99	26.49	24.57	25.87
20	32.77	38.23	34.59	35.11	34.50	33.54	33.84	30.69
28	81.92	32.77	36.41	33.72	35.89	32.14	32.43	28.50
36	63.72	38.23	38.23	35.11	31.45	31.36	3	27.85
44	32.77	38.23	38.23	35.89	32.23	30.41	32.58	28.65
52	32.77	38.23	36.41	35.89	18.37	16.68	17.16	14.76
60	95.57	32.77	34.59	34.33	10.29	9.33	10.37	10.62

TABLE 47: SINGLE PROCESSOR, 11TH TEST RESULTS

Window Size (K bytes)	Fue A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	Flie F Mbps	File G Mbps	File H Mbps
4	24.58	25.85	27.51	28.37	17.43	22.19	18.28	21.07
12	30.04	26.40	23.69	24.29	17.16	18.86	17.80	18.53
20	24.58	32.77	28.76	31.14	23.90	27.62	26.91	28.62
28	27.31	40.05	26.99	30.69	28.87	28.22	30.12	27.73
-36	27.31	30.40	27.67	31.78	27.12	28.88	30.55	27.66
44	30.04	28.22	28.24	32.41	27.48	28.94	29.32	27.23
52	26.40	36.41	31.68	33.41	24.90	26.21	26.51	26.90
60	32.77	25.49	26.94	31.92	25.05	24.15	23.11	26.35
From: White		Threads:	8]	LLC Buff	fers: 48K	ζ	
To: Gold	•	TTRT:	5ms	1	Dual Test	t		

(K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	Flie E Mbps	File F Mbps	File G Mbps	File Mbp
4	30.04	30.95	29.49	25.93	21.57	20.89	18.25	20.2
12	32.77	25.49	24.45	24.10	21.28	18.79	16.74	19.2
20	23.67	30.95	25.69	29.36	26.48	24.24	24.88	26.2
28	30.04	43.69	24.60	29.68	27.36	26.13	25.99	27.2
36	66.32	24.58	27.12	30.41	31.24	25.13	25.63	27.2
44	90.11	30.95	29.86	30.50	27.36	27.06	27.42	28.6
52	30.04	30.95	27.31	32.94	14.03	13.82	14.52	13.2
60	30.04	27.31	29.13	29.68	7.64	7.39	7.99	7.37

110

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	Fue E Mbps	Flie F Mbps	File G Mbps	File I Mbp
4	32.77	32.77	36.41	35.11	32.94	33.13	32.95	33.14
12	32.77	30.95	36.41	33.24	25.91	27.67	27.67	26.42
20	81.92	49.15	43.69	38.49	39.53	40.33	41.14	40.86
28	105.33	38.23	40.05	42.65	40.57	41.05	42.55	42.66
36	32.77	43.69	43.69	43.69	40.57	42.57	42.26	42.67
44	185.69	49.15	40.05	43.69	40.57	43.13	40.95	42.66
52	105.33	49.15	43.69	44.11	38.49	37.98	39.83	39.73
60	132.18	54.61	41.87	42.65	36.67	34.18	37.50	32.25

TABLE 50: SINGLE PROCESSOR, 14TH TEST RESULTS

Window Size (K bytes)	Flie A Mbps	File B Mbps	M M	File D Mbps	File E Mbps	Fue F Mbps	Flie G Mbps	File H Mbps
4	32.77	38.23	36.	35.89	30.34	29.86	29.55	30.18
12	27.31	32.77	29.49	29.25	25.18	25.72	24.92	24.77
20	191.75	38.23	31.68	35.89	33.72	33.54	34.78	34.86
28	32.77	38.23	34.59	36.67	35.28	34.95	35.39	35.56
36	87.99	43.69	31.68	36.67	33.11	34.95	35.76	36.07
44	32.77	43.69	34.59	35.11	32.16	35.37	35.56	35.29
52	81.92	32.77	32.77	37.45	15.45	15.43	15.98	14,90
60	32.77	32.77	32.77	35.89	8.64	7.45	7.87	7.25
From: Gold To: White		Threads: TTRT:	16 5 ms		LLC Bufi Single Te	fers: 48k	ς	

(K bytes)	File A Mbps	Fue B Mbps	File C Mbps	Mbps	File E Mbps	File F Mbps	Mbps	File Mbp
4	30.04	29.13	25.49	24.90	19.39	18.90	20.87	20.8
12	24.58	21.85	24.03	21.71	15.54	15.74	17.77	17.3
20	30.04	27.31	27.51	27.81	25.49	25.35	25.31	25.5
28	30.04	36.41	31.68	23.05	26.24	24.51	27.38	25.9
36	32.77	34.59	28.76	29.54	30.15	25.61	27.72	27.2
44	32.77	41.87	31.68	34.66	31.54	26.63	27.74	27.8
52	30.04	32.77	32.40	29.93	29.98	24.58	25.73	28.30
6 0	30.04	34.39	29.86	30.20	28.26	22.75	22.52	24.2
From: White To: Gold		Ihreads: ITRT:			LLC Buff Dual Test		5	

Window Size (K bytes)	File A Mbps	Fue B Mbps	File C Mbps	File D Mbps	File E Mbps	Fle F Mbps	File G Mbps	File H Mbps
4	27.31	33.68	25.21	28.53	21.70	19.56	21.78	19.03
12	30.04	28.22	26.42	22.17	22.02	20.35	19.08	19.66
20	30.04	30.95	29.34	25.57	26.82	23.18	23.95	24.41
28	32.77	29.13	24.42	29.13	26.60	24.88	26.10	25.81
36	30.04	36.41	28.76	27.81	25.20	24.02	26.76	25.70
44	24.58	30.95	28.40	27.81	27.76	25.20	26.26	25.67
52	32.77	34.59	26.69	28.87	13.07	14.29	13.63	13.95
60	32.77	29.13	33.37	30.95	7.36	8.01	8.58	8.33
From: Gold To: White		Threads: TTRT:			LLC Buf Dual Tes	fers: 481	K	

TABLE 53: SINGLE PROCESSOR, 17TH TEST RESULTS Window Size File A File B File C File B File C File E File F File G File H (K bytes) Mbps Mbps Mbps Mbps Mbps Mbps Mbps Mbps 4 30.04 36.41 35.89 31.68 33.17 33.32 33.05

(K byt	tes) M	bps	Mbps						
4	34	.04	36.41	36.41	35.89	31.68	33.17	33.32	33.05
12	- 3	π	32.77	36.41	36.67	27.36	29.96	27.08	27.11
20	16	8.13	43.69	40.05	38.75	39.53	39.37	39.49	39.99
28	32	.77	43.69	40.05	41.61	39.53	43.13	41.00	42.53
36	3	2,77	32.77	40.05	42.65	41.87	40.41	41.56	42.23
- 44		3.84	38.23	41.87	39.79	40.83	42.57	43.11	41.78
52	3.	2.77	54.61	41.87	39.79	35.28	34.29	36.22	38.24
60	25	3.31	43.69	40.05	40.83	29.91	31.85	34.62	30.06

(K bytes)	Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File Mbp
4	32.77	32.77	36.41	36.67	31.55	30.01	30.12	29.8
12	32.77	30.95	28.40	27.76	25.45	24.21	23.51	24.1
20	61.44	38.23	34.59	36.67	35.11	34.32	34.40	34.4
28	118.33	32.77	38.23	37.10	35.11	36.25	35.96	35.9
36	32.77	32.77	38.23	35.89	35.89	36.62	35.58	35.70
- 44	32.77	38.23	36.41	36.67	35.89	35.42	36.20	35.19
52	69.32	32.77	38.23	37.45	16.28	15.68	18.83	14.8
60	32.77	54.61	36.41	35.28	8.92	8.11	8.33	7.13

(K bytes)	Mbps	Mbps	Mbps	File D Mbps	Fue E Mbps	File F Mbps	File G Mbps	Мър
4	30.04	24.58	21.05	24.90	21.30	• 21.92	21.04	21.36
12	24.58	30.95	22.26	23.96	18.24	19.59	21.64	18.60
20	32.77	32.77	25.69	26.51	27.29	28.42	27.54	29.22
28	30.04	27.31	26.58	28.24	33.41	26.04	29.59	29.77
.36	32.77	27.67	28.76	27.75	33.11	26.92	30.67	29.45
	79.19	36.41	2767	28.85	30.15	27.21	28.95	28.52
52	30.04	36.41	36.41	27.05	28.76	26.75	27.56	26.44
60	30.04	34.59	29.86	25.61	30.06	25.97	24.51	23.74

TABLE 56: SINGLE PROCESSOR, 20TH TEST RESULTS

(K bytes)	e Flie A Mbps	File B Mbps	File C Mbps	Fue D Mbps	File E Mbps	Flie F Mbps	File G Mbps	Fue H Mbps
4	133.80	30.95	31.31	26.86	23.60	19.96	20.18	21.23
12	32.77	28.22	25.85	26.19	22.68	18.91	16.92	18.46
20	32.77	29.13	28.76	29.72	27.97	22.66	24.06	25.52
28	30.04	27.31	28.24	28.14	28.57	24.44	25.14	28.26
36	90.11	35.50	28.40	29.72	30.36	26.22	24.20	28.82
- 44	32.77	38.23	29.49	31.14	28.74	24.76	26.79	28.91
52	84.35	27.31	27.51	31.02	14.08	13.99	12.68	13.08
60	29.13	30.95	32.40	29.72	8.80	8.24	7.74	7.60

(K bytes)	File A Mbps	File B Mbps	File C Mbps	Mbps	File E Mbps	File F Mbps	File G Mbps	File Mbp
- 4	32.77	32.77	38.23	34.33	32.16	31.48	31.97	33.1
12	30.04	32.TI	32.77	34.50	24.63	27.89	27.05	25.9
20	32.77	43.69	36.41	39.53	36.93	39.43	39.09	39.80
28	136.53	43.69	38.23	40.57	39.01	40.63	39.72	42.1
36	136.53	43.69	43.69	41.61	40.83	39.51	39.00	41.95
44	136.53	38.23	41.87	40.57	39.01	40.55	38.91	41.28
52	32.77	38.23	41.87	41.61	36.58	38.77	33.83	40.30
60	32.77	49.15	38.23	43.69	32.16	31.82	29.50	30.95

(K bytes)	File A Mbps	Flie B Mbps	File C Mbps	File D Mbps	Flie E Mbps	File F Mbps	File G Mbps	File Fi Mbps
	32.77	32.7.	34.59	36.67	29.13	29.16	29.54	29.35
12	30.04	32.77	32.77	34.3.	24.44	24.92	23.94	12.26
20	63.72	38.23	34.59	35.11	33.55	33.86	34.39	33.23
28	29.13	43.64	38.23	37.45	34.33	34.64	34.99	35.17
36	32.77	43.69	34.23	35.89	32.77	34.64	34.61	35.85
44	72.82	32.77	36.41	35.89	33.55	35.37	34,99	35.75
52	32.77	49.15	38.23	35.89	14.02	14.08	14.24	14.37
60	30.04 .	32.77	38.23	35.89	8.09	7.82	7.03	6.93

TABLE 59: SINGLE PROCESSOR, 23RD TEST RESULTS Fle D Window Size Fue F FIEG Fle A FIE B FIEC FBe E FIEH Mbps 30.04 Mbps 29.49 Mbps Mbps Mbps Mbps Mbps Mbps (K bytes) 25.57 30.04 21.70 19.28 20.61 20.01 4 12 27.31 27.31 24.24 24.63 11.06 18.14 16.77 16.71 26.42 23.72 26.53 24.93 25.37 27.40 20 27.31 29.13 29.34 25.57 31.01 28.52 27.70 29.68 28 30.04 29.13 36 26.40 38.23 28.76 27.15 30.77 27.12 28.27 27.80 32.40 34.66 44 34.59 30.36 29.42 29.66 29.73 32.77 27.95 23.90 52 27.31 30.95 31.68 33.67 28.64 27.30 26.68 34.59 25.33 24.70 60 133.80 31.68 32.02 24.02 From: White Threads: 16 LLC Buffers: 48K To: Gold TTRT: 11ms **Dual Test**

Window Size (K bytes)	Flie A Mbos	File B Mbps	File C Mbps	Mbps	Fle E Mbps	Flie F Mbps	Flie G Mibps	File I Mbp
4	133.80	40.96	27.67	26.72	22.18	20.34	21.30	20.30
12	30.04	28.22	24.76	25.05	20.82	22.10	20.67	20.47
20	30.04	32.77	29.34	29.27	25.49	28.41	25.45	26.34
28	81.92	29.13	32.77	30.06	25.78	27.02	26.38	26.00
36	32.77	27.31	28.97	28.05	26.55	26.62	25.74	26.12
- 44	30.04	31.86	34.59	29.96	25.99	27.71	26.01	27.89
52	27.31	29.13	27.15	27.81	15.88	16.08	14.63	16.43
60	30.04	41.87	27.91	29.15	9.39	9.50	8.59	8.95

31.63 31.8 24.70 26.5
74 70 74 8
24.70 20.3
41.14 40.3
42.55 42.3
41.67 42.0
42.23 42.2
39.35 38.4
34.75 30.1

 TABLE 62: SINGLE PROCESSOR, 26TH TEST RESULTS

(K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	Flie F Mbps	File G Mbps	File H Mbps
4	32.77	38.23	32.77	34.33	29.13	29.16	29.43	29.34
12	32.77	30.95	31.68	31.55	26.55	26.01	27.20	25.66
20	79.19	32.77	32.77	36.67	34.33	34.22	34.58	33.94
28	72.82	36.41	36.41	37.45	35.89	35.78	35.57	34.96
36	32.77	32.77	32.77	35.28	34.33	35.42	35.96	35.46
44	32.77	32.77	34.59	36.67	34.33	35.37	34.87	35.06
52	32.77	32,77	34.59	37.45	19.49	17.71	17.49	16.59
60	32,77	32.77	35.32	34.33	8.42	8.54	8.36	8.31

rion:	COR
To:	White

TTRT: 25ms

LLC Buffers: 48K Single Test

.

(K bytes)	File A Mbps	Fue B Mbps	File C Mbps	Fue D Mbps	Flie L Mbps	File F Mbps	File G Mbps	Mbp
4	27.31	26.40	25.33	23.65	20.05	19.52	20.50	17.4
12	30.04	21.30	23.30	23.39	21.25	17.41	15.50	15.28
20	27.31	32.77	31.16	25.99	30.22	24.59	22.45	26.9
28	27.31	2 1. 22	30.43	25.94	32.23	26.52	27.08	29.5
36	30.04	47.33	28.76	27.15	32.94	28.14	27.63	29.92
	32.77	28.22	30.95	33.11	31.63	30.47	30.05	30.40
52	30.04	36.41	35.32	32.80	27.39	30.66	27.91	27.93
60	102.60	38.23	29.49	31.75	25.66	29.02	25.58	23.69

(K bytes)	File A Mbps	Flie B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	Flie G Mbps	File H Mbps
- 4	78.28	27.31	27.12	26.99	17.56	20.76	21.53	20.65
12	32.77	32.77	24.27	25.21	21.19	21.80	19.80	20.10
20	32.77	27.67	28.61	28.76	24.46	24.38	24.76	26.12
28	32.77	34.59	24.21	27.15	28.14	26.36	26.74	26.47
36	30.04	29.13	29.49	25.17	26.96	25.85	26.93	25.70
44	32.77	30.95	25.85	29.99	25.99	26.06	27.33	26.33
52	67.36	24.58	27.18	28.74	15.88	15.51	14.99	14.10
60	95.57	30.95	28.24	29.56	8.73	8.66	6.49	8.91

TABLE 65: SINGLE PROCESSOR, 29TH TEST RESULTS

Window Size (K bytes)	Plie A Mbps	File B Mbps	File C Mbps	Flie D Mbps	File E Mbps	Flie F Mbps	File G Mbps	Plie H Mbps
4	32.77	38.23	34.59	35.89	31.68	32.49	32.79	32.14
12	32.77	32.77	34.59	32.33	27.48	29.08	28.00	26.95
20	32.77	41.69	40.05	40.57	39.53	41.45	40.60	40.86
28	105.33	43.69	43.69	40.57	40.57	42.01	41.67	41.67
36	81.92	43.69	41.87	43.69	40.83	40.41	41.94	41.83
- 44	135.62	49.15	43.69	42.65	41.61	41.53	42.53	42.24
52	30.04	49.15	43.69	42.65	32.94	38.59	37.68	36.14
60	81.92	49.15	41.87	43.69	35.11	35.54	33.86	30.88
From: White		Threads:	16	1	LC Buff	fers: 48K	<u> </u>	
To: Gold	•	TTRT:	25ms	9	Single Te	st		

(K bytes)	File A Mbps	File B Mbps	Mbps	Fue D Mbps	Fue E Mbps	File F Mbps	File G Mbps	Mbp
4	32.77	32.77	34.59	35.89	29.13	29.78	29.84	30.3
12	32.77	32.77	29.49	32.16	27.27	26.78	26.37	24.84
20	32.77	38.23	34.59	35.11	35.11	33.90	34.76	34.54
28	32.77	34.23	34.59	37.45	36.67	36.20	35.96	35.4
36	32.77	43.69	34.59	35.11	35.89	36.20	35.58	35.46
44	32.77	49.15	34.59	35.89	35.89	35.78	35.97	35.96
52	69.32	43.69	38.23	36.67	16.94	15.90	15.77	16.73
60	32.77	30.95	34.59	36.67	7.35	8.08	8.53	7.31

(K bytes)	File A Mbps	File B Mbps	Plie C Mbps	File D Mbps	Pue E Mbps	rite r Mbps	File G Mbps	File F Mbp
4	24.58	29.13	27.31	27.12	25.21	21.11	18.25	20.21
12	110.14	27.31	25.69	24.44	20.41	19.38	19.74	[9.99
20	30.04	22.76	33.50	29.68	24.33	29.28	28.41	27.24
28	24.58	33.13	23.87	27.35	29.82	31.37	30.80	29.15
36	32.77	29.13	30.95	33.70	29.63	32.85	29.96	28.01
- 44	30.04	30.95	28,40	32.91	32.63	30.73	29.57	28.26
52	32.77	34.23	30.58	32.49	26.44	26.24	26.29	27.34
60	30.04	25.49	28.42	29.05	26.27	25.55	23.73	25.90
From: White		Threads:	16		LLC Buf	fers: 48k		
From: White To: Gold		Threads: FTRT:			LLC Buf Dual Tes		C	

•

TABLE 68: SINGLE PROCESSOR, 32ND TEST RESULTS

(K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	Fue E Mbps	File F Mbps	Flie G Mbps	File H Mbps
4	30.04	31.86	28.03	26.75	20.72	19.48	19.31	19.47
12	27.31	29.13	26.21	24.13	20.00	16.33	17.72	18.47
20	23.67	30.95	27.70	29.02	27.03	25.25	25.38	24.82
28	30.04	28.22	31.16	30.23	21.42	26.06	25.82	25.73
36	23.67	29.13	30.06	28.50	26.68	26.97	25.30	27.19
- 44	27.31	30.95	31.65	28.80	27.06	27.23	26.22	27.90
52	\$7.99	27.31	25.33	29.14	15.18	14.30	14.79	14.26
60	21.85	29.13	27.67	30.13	7.79	8.34	8.33	7.93

(K bytes)	Flie A Mbps	Flie B Mbps	Pile C Mbps	Fue D Mbps	Pue E Mbps	Pue P Mbps	File G Mbps	File F Mbps
4	32.77	32.77	34.23	34.11	32.33	· 32.40	32.29	33.4
12	32.77	43.69	44.45	34.50	27.12	29.79	31.03	27.60
20	137.14	54.61	43.69	39.53	39.53	39.37	41.16	44.22
28	69.32	34,95	41.37	39.79	41.61	40.97	42.82	41.54
36	32.77	32.77	41.87	42.65	44.43	44.89	44.93	39.95
44	\$7.99	43.69	43.69	43.69	31.65	33.65	35.01	35.42
52	32.77	49.15	41.57	39.01	15.12	12.40	14.07	13.66
	69.32	36.41	44.65	41.61	13.01	11.07	12.96	13.66
From: White		36.41 Threads:				11.07		13.6

29.13		Mbps	Mbps	Mbps	Mbps	Mbps	File A Mbps	Window Size (K bytes)
	28.86	28.64	28.16	32.77	34.41	34.23	32.77	4
20.56	19.77	26.72	26.13	31.12	30.58	34.23	32.77	12
33.65	33.48	34.22	32.77	32.77	32.77	32.77	32.77	20
33.35	32.33	33.13	31.55	35.11	34.59	34.23	72.82	28
23.74	23.71	25.96	22.50	35.89	36.41	32.77	32.77	36
5.66	6.35	331	6.76	32.46	31.68	34.95	32.77	44
3.91	4.22	4.17	411	22.77	21.87	26.39	17.29	52
3.53	3.48	3.48	3.54	17.10	14.59	12.56	11.38	60
	6.35 4.22	531 417	6.76 4.11	32.46 22.77	31.68 21.87	34.95 24.39	32.77 17.29	44 52

.

APPENDIX E: NTTCP TWO PROCESSORS RESULTS

Test Number	From:	To:	NFS_asynch threads	TTRT	sbf_num_ lk_rx	sbf_mtu
1st Test	White	Gold	8	8ms	48K	4352
2nd Test	White	Gold	16	8ms	48K	4352
3rd Test	White	Gold	8	5ms	48K	4352
4th Test	White	Gold	16	5ms	48K	4352
5th Test	White	Gold	8	11ms	48K	4352
6th Test	White	Gold	16	11ms	48K	4352
7th Test	White	Gold	8	25ms	48K	4352
8th Test	White	Gold	16	25ms	48K	4352
9th Test	White	Gold	8	8ms	56K	4352
10th Test	White	Gold	16	8ms	56K	4352
11th Test	White	Gold	8	5ms	56K	4352
12th Test	White	Gold	16	5ms	56K	4352
13th Test	White	Gold	8	11ms	56K	4352
14th Test	White	Gold	16	11ms	56K	4352
15th Test	White	Gold	8	25ms	56K	4352
16th Test	White	Gold	16	25ms	56K	4352
17th Test	White	Gold	8	8ms	40K	4352
18th Test	White	Gold	16	8ms	40K	4352
19th Test	White	Gold	8	5ms	40K	4352
20th Test	White	Gold	16	5ms	40K	4352
21st Test	White	(8	11ms	40K	4352
22nd Test	White	<u>(</u>	16	11ms	40K	4352
23th Test	White	Gold	8	25ms	40K	4352
24th Test	White	Gold	16	25ms	40K	4352
25th Test	White	Gold	8	8ms	48K	4192
26th Test	White	Gold	16	8ms	48K	4192
27th Test	White	Gold	8	5ms	48K	4192
28th Test	White	Gold	16	5ms	48K	4192
29th Test	White	Gold	8	11ms	48K	4192

TABLE 71: PARAMETERS USED FOR TWO PROCESSOR TEST

.

Test Number	From:	To:	NFS_asynch _threads	TTRT	sbf_num_ ik:_rx	sbf_mtu
30th Test	White	Gold	16	11ms	48K	4192
31st Test	White	Gold	8	25ms	48K	4192
32nd Test	White	Gold	16	25ms	48K	4192
33rd Test	White	Gold	8	8ms	56K	4192
34th Test	White	Gold	16	8ms	56K	4192
35th Test	White	Gold	8	5ms	56K	4192
36th Test	White	Gold	16	5ms	56K	4192
37th Test	White	Gold	8	lims	56K	4192
38th Test	White	Gold	16	llms	56K	4192
39th Test	White	Gold	8	25ms	56K	4192
40th Test	White	Gold	15	25ms	56K	4192
41st Test	White	Gold	8	8ms	40K	4192
42nd Test	White	Gold	16	8ms	40K	4192
43rd Test	White	Gold	8	5ms	40K	4192
44th Test	White	Gold	16	5ms	40K	4192
45th Test	White	Gold	8	11ms	40K	4192
46th Test	White	Gold	16	llms	40K	4192
47th Test	White	Gold	8	25ms	40K	4192
48th Test	White	Gold	16	25ms	40K	4192

TABLE 71-	PARAMETERS USED	FOR TWO	PROCESSOR TEST
IADLE /1.	TARAMETERS USED	PARA INTO	I KUCLOSUK I LUI

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File Mbp
4	30.04	32.77	32.77	32.77	30.34	31.80	30.71	31.0
12	30.04	32.77	31.31	29.37	30.46	30.34	30.43	30.86
20	353.17	60.07	54.61	54.61	50.97	52.43	50.84	51.36
28	746.38	54.61	58.25	58.98	49.52	52.43	52.47	52.88
36	105.33	60.07	54.61	55.34	50.97	50.84	52.47	53.12
44	32.77	49.15	58.25	52.43	49.52	51.63	52.52	53.33
52	32.77	43.69	50.97	56.80	48.06	51.63	52.06	52.28
60	502.44	54.61	\$0.97	53.16	50.97	46.71	50.80	47.17

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File H Mbps
4	32.77	32.77	32.77	33.55	31.55	31.16	31.77	31.54
12	27.31	32.77	29.49	30.95	31.55	29.98	30.27	30.69
20	32.77	54,61	50.97	50.97	49.52	51.63	50.76	52.22
28	32.77	60.07	54.61	53.16	50.97	51.63	52.47	51.68
36	266.70	60.07	47.33	55.34	50.97	52.61	52.89	52.88
44	367.47	54.61	47.33	54.61	50.97	54.55	52.52	53.60
52	240.30	60.07	50.97	58.98	48.06	53.40	50.76	52.25
60	32.77	49.15	43.69	50.97	49.52	49.25	52.10	44.91
From: White		Threads:	16		LLC Buf	fers: 481	ζ	
To: Gold		TTRT:	8ms		MTU:	43	52 Bytes	

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbp:	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File Mbp
4	32.77	32.77	32,77	35.11	30.95	32.13	31.46	31.70
12	30.04	30.95	30.58	30.95	30.34	30.55	31.02	30.55
20	118.33	60.07	58.25	54.61	52.43	50.05	49.59	50.97
28	573.44	43.69	58.25	52.43	52.43	51.63	51.60	51.21
36	32.77	43.69	58.25	52.43	50.97	54.37	52.89	53.11
44	303.10	60.07	58.25	56.80	49.52	51.63	52.52	52.67
52	385.93	60.07	54.61	53.16	47.02	50.05	49.59	50.70
60	95.57	54.61	50.97	56.80	49.20	47.79	44.75	44.41

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File I Mbp
4	32.77	32.77	32.77	32.77	32.16	31.48	31.95	32.18
12	32.77	32.77	30.58	31.68	31.24	31.20	34.76	31.95
20	458.49	54.61	50.97	56.80	50.97	52.61	52.09	52.25
28	95.57	54.61	54.61	54.61	53.16	52.43	53.35	51.89
36	136.53	65.54	54.61	56.80	50.97	52.61	55.70	54.48
44	32.77	60.07	58.25	53.16	52.43	51.63	53.39	53.56
52	249.40	43.69	58.25	56.80	48.06	50.84	50.42	52.23
60	281.91	49.15	54.61	58.98	48.06	50.84	47.54	46.71

•

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File I Mbp
4	30.04	32.77	32.77	34.33	30.95	31.16	31.95	31.44
12	27.31	27.31	30.58	30.95	33.01	29.16	30.45	30.18
20	230.94	6 0.07	58.25	53.16	46.60	50.18	51.60	50.35
28	32.77	60.07	54.61	52.43	52.43	50.18	51.64	51.80
36	32.77	54.61	54.61	54.61	53.16	48.82	52.47	52.68
44	398.68 .	41.87	54.61	61.17	52.43	52.43	52.52	52.08
52	136.53	38.23	54.61	54.61	51.70	51.51	50.08	51.45
60	32.77	54.61	58.25	54.61	52.12	47.54	46.37	45.30
From: White		Threads:	8		LLC Buf	fers: 481	<	
To: Gold		TTRT:	11ms		MTU:	43	52 Bytes	

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File Mbp
4	32.77	30.95	34.59	33.55	32.16	32.45	32.11	32.10
12	27.31	30.95	31.68	32.16	30.95	32.13	30.86	31.23
20	300.37	54.61	54.61	56.80	52.43	51.63	50.8 0	51.25
28	163.84	49.15	58.25	56.80	54.61	52.43	50.80	52.92
36	190.89	49.15	54.61	58.98	53.16	51.02	49.46	52.75
44	435.74	65.54	58.25	56.80	52.43	50.84	53.01	54.06
52	476.96	60.07	54.61	54.61	51.70	47.78	48.07	52.67
60	136.53	49.15	54.61	55.34	50.97	49.52	47.77	48.14

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File H Mbps
4	32.77	32.77	32.77	33.55	32.16	32.13	32.27	32.19
12	30.04	32.77	29.49	29.73	30.34	31.85	31.97	31.41
20	32.77	60.07	47.33	53.16	49.52	51.63	52.06	50.21
28	87.99	54.61	47.33	54.61	49.52	53.40	51.22	52.25
36	425.98	49.15	47.33	54.61	50.97	55.34	51.18	52.71
44	32.77	43.69	50.97	53.16	50.97	54.37	53.39	51.84
52	209.09	60.07	54.61	52.43	49.52	47.23	50.47	49.44
60	32.77	60.07	54.61	56.80	48.48	48.03	43.29	44.33
From: White		Threads:	8		LLC Buf	fers: 481	<u> </u>	
To: Gold		TTRT:	-		MTU:	43	52 Bytes	

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File H Mbps
4	30.04	32.77	32.77	34.33	32.77	31.16	31.94	31.86
12	32.77	30.95	33.50	32.16	31.73	30.59	31,49	31.87
20	222.09	60.07	54.61	50.97	52.43	52.61	52.43	51.26
28	95.57	54.61	58.25	56.80	54.61	51.81	53.85	53.10
36	32.77	43.69	50,97	58.98	53.16	50.05	52.60	54.26
44	191.75	54.61	50.97	54.61	49.93	52.78	53.47	53.40
52	32.77	60.07	50.97	53.16	45.56	50.18	49.66	53.37
60	313.12	60.07	47.33	54.61	44.52	51.02	51.26	47.16
From: White		Threads:	16		LLC Buf	fers: 481	(
To: Gold	•	TTRT:	25ms		MTU:	43	52 Bytes	

TABLE 79: TWO PROCESSORS, 8TH TEST RESULTS

.

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File Mbp
4	32.77	32.77	32.77	33.55	30.95	31.48	31.94	32.03
12	32,77	29.13	31.31	29.37	30.34	30.66	31.32	30.72
20	32.77	54.61	58.25	48.06	49.52	50.84	48.80	49.98
28	226.65	60.07	61.90	49.52	49.52	50.05	48.84	50.97
36	240.30	54.61	54.61	55.34	50.24	49.25	50.46	50.70
44	118.33	60.07	50.97	54.61	46.60	46.57	47.50	48.41
52	178.40	54.61	54.61	53.16	39.44	35.62	40.79	38.74
60	163.84	49.15	54.61	52.43	30.22	26.43	28.45	24.03

TABLE 81: TWO PROCESSORS, 10TH TEST RESULTS				
	TABLE 81:	TWO PROCESSO	RS, 10TH TEST	RESULTS

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	Flie D Mbps	File E Mbps	File F Mbps	File G Mbps	File H Mbps
4	32.77	32.77	32.77	34.33	32.16	32.13	32.27	32.79
12	32.77	29.13	31.68	31.55	32.94	31.80	32.17	31.47
20	136.53	60.07	58.25	56.80	50.97	50.84	52.93	51.27
28	862.63	60.07	61.90	52.43	53.16	53.58	52.93	52.88
36	289.45	65.54	54.61	56.8 0	52.43	53.40	52.98	54.04
44	32.77	60.07	50.97	56.80	45.15	\$1.02	53.01	52.32
52	105.33	49.15	50.97	54.61	40.05	44.35	43.05	43.66
60	118.33	49.15	47.33	56.80	35.46	36.32	30.46	30.52
From: White To: Gold		Threads: TTRT:	16 8ms		LLC Buf MTU:		K 52 Bytes	

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File f Mbp:
4	32.77	32.77	34.54	34.33	31.55	32.13	32.11	31.86
12	30.04	29.13	29.49	29.25	29.73	31.16	30.58	31.01
20	300.37	65.54	47.33	50.97	49.52	50.05	51.22	50.98
28	340.42	49.15	54.61	56.80	50.97	50.97	52.93	51.61
36	357.72	60.07	58.25	56.80	54.61	50.84	53.01	52.46
44	404.14	49.15	54.61	52.43	52.43	52.43	51.33	\$3.11
52	118.33	49.15	50.97	52.43	44.52	45.12	43.11	44.36
60	136.53	60.07	54.61	56.80	46.78	32.39	34.31	27.51
From: White		Threads:	8		LLC Buf	fers: 561	<	
To: Gold			5ms		MTU:		52 Bytes	

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File Mbp
4	30.04	30.95	34.59	33.55	32.16	31.80	31.47	32.11
12	30.04	32.77	30.58	28.64	30.34	30.55	30.70	30.48
20	87.99	65.54	50.97	52.43	49.52	50.84	51.18	50.96
28	209.09	54.61	50.97	56.80	52.43	53.40	53.39	52.66
36	32.77	43.69	58.25	52.43	50.97	51.81	52.47	52.33
44	209.09	49.15	61.90	52.43	51.70	49.38	52.43	49.68
52	267.61	49.15	54.61	54.61	37.97	40.27	43.53	41.02
60	136.53	49.15	47.33	52.43	38.77	35.34	27.04	28.61

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File H Mbp:	
4	32.77	32.77	32.77	34.33	32.16	31.80	31.62	31.54	
12	32.77	29.13	30.58	29.37	30.34	31.48	31.15	30.84	
20	105.33	49.15	54.61	54.61	48.06	53.40	52.06	51.40	
28	240.69	60.07	61.90	52.43	48.06	53.40	50.31	52.01	
36	136.53	60.07	54.61	61.17	52.43	52.43	52.47	51.29	
44	199.34	43.69	54.61	53.16	50.24	50.97	50.65	50.97	
52	32.77	38.23	50.97	53.16	39.43	42.37	42.94	37.45	
60	295.52	43.69	50.97	53.16	37.99	30.91	27.44	26.73	
From: White		Threads:	8		LLC Buffers: 56K				
To: Gold		TTRT:	-		MTU:		52 Bytes		

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File I Mbp
4	32.77	30.95	34.59	33.55	31.55	31.16	31.15	31.54
12	136.53	29.13	28.40	30.34	29.73	30.01	30.88	30.34
20	105.33	54.61	50.97	50.97	48.06	50.84	50.76	\$0.03
28	1	60.07	54.61	56.80	48.48	50.84	51.18	49.72
36		49.15	50,97	56.80	50.97	50.84	51.68	51.31
44	731.56	49.15	49.15	52.43	50.97	51.63	51.26	50.63
52	249,40	60.07	58.25	56.8 0	41.25	42.93	46.08	44.73
60	32.77	60.07	50.97	50.97	50.66	42.39	32.90	31.35
From: White		Threads:	16		LLC Buf	fers: 561	ς	
To: Gold		TTRT:	11ms		MTU:	43	52 Bytes	

TABLE 86: TWO PROCESSORS, 15TH TEST RESULTS Window Size File B File C File D File E **File** F File G File H File A (K bytes) Mbps Mbps Mbps Mbps Mbps Mbps Mbps Mbps 33.55 32.16 31.80 32.03 4 30.04 38.23 32.77 31.46 12 32.77 29.49 29.13 31.55 30.55 29.69 30,56 36.41 20 199.34 54.61 43.69 52.43 48.06 49.25 50.14 50.95 28 340.42 54.61 47.33 52.43 50.97 52.61 52.06 50.98 36 340.42 60.07 47.33 56.80 49.52 52.43 51.60 51.11 44 50.97 50.97 49.52 49.25 49.35 136.53 43.69 51.63 52 163.84 49.15 47.33 54.61 41.87 37.63 40.21 40.91 32.86 60 136.53 49.15 54.61 52.43 30.63 28.04 26.21 From: White LLC Buffers: 56K Threads: 8 Gold TTRT: 25ms 4352 Bytes To: MTU:

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File H Mbp
4	27.31	30.95	34.59	33.55	30.34	31.80	31.65	31.39
12	30.04	30.95	30.58	29.37	29.86	. 30.27	30.43	30.35
20	204 73	54.61	50.97	52.43	47.02	49.38	49.38	47.82
28	9: 57	38.23	50.97	54.61	49.52	50.84	51.79	49.47
36	32.77	49.15	50.97	56.80	52.43	50.18	51.67	50.90
-14	209.35	54.61	49.15	53.16	50.97	49.13	48.88	48.58
52	105.33	60.07	49.15	56.80	39.79	35.18	40.48	39.56
60	222.09	60.07	52.79	54.61	43.71	27.27	31.75	28.45
From: White	•	Threads:	16		LLC Buf	fers: 561	<	
To: Gold		TTRT:			MTU:		52 Bytes	

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File H Mbp:
4	32.77	32.77	32.77	35.11	32.33	32.13	31.77	31.46
12	27.31	30.95	29.49	30.46	30.95	31.16	30.56	30.85
20	95.57	54.61	54.61	56.80	48.06	52.43	50.08	50.35
28	875.63	49.15	54.61	52.43	48.06	50.84	50.49	49.55
36	267.61	60.07	58.25	56.80	34.88	31.68	31.52	29.14
44	105.33	60.07	43.69	50.97	16.61	16.03	15.43	13.97
52	32.77	43.64	45.51	42.29	10.42	10.39	10.46	10.47
60	202.07	29.13	26.21	28.50	15.76	9.98	8.60	8.61
From: White		Threads:	8		LLC Buf	fers: 401	<	
To: Gold			8ms		MTU:		52 Bytes	

.

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File Mbp
4	32.77	32.77	34.59	33.55	30.95	31.80	31.63	31.40
12	27.31	29.13	27.31	28.64	30.95	30.37	30.14	30.93
20	143.21	49.15	47.33	56.80	49.52	50.84	50.01	51.82
28	363.18	38.23	50.97	52.43	48.06	50.05	51.64	51.79
36	32.77	49.15	58.25	54.61	35.49	37.72	33.86	34.20
44	385.93	54.61	54.61	48.06	20.25	19.47	18.16	16.44
52	137.14	47.33	41.87	46.60	15.49	12.22	13.52	12.28
60	27.31	31.86	40.78	35.54	27.72	14.27	11.82	10.84

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File H Mbps	
4	30.04	32.77	32.77	35.11	32.77	32.13	31.63	31.62	
12	32.77	29.13	27.31	29.25	32.94	30.34	29.98	30.33	
20	1017.63	54.61	54.61	52.43	50.97	\$0.97	48.11	49.98	
28	240.30	49.15	54.61	54.61	49.52	49.25	50.76	49.29	
36	32.77	43.69	54.61	52.43	37.36	27.66	33.78	29.93	
44	236.35	60.07	50.97	55.34	17.61	17.01	15.02	15.97	
52	163.84	38.23	45.51	47.02	13.82	12.60	11.30	11.01	
60	24.58	41.87	34.22	40.21	10.92	9.22	9.88	9.02	
From: White		Threads:	8	LLC Buffers: 40K					
To: Gold		TTRT:	5ms		MTU:		52 Bytes		

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File H Mbps
4	30.04	32.77	32.77	33.55	32.16	31.80	32.44	31.94
12	32.77	29.13	32.40	32.33	30.95	31.48	32.60	32.28
20	95.57	60.07	54.61	55.34	50.97	52.61	51.64	51.81
28	163.84	49.15	54.61	58,98	52.43	51.81	5 <u>2</u> .47	52.11
36	580.72	49.15	61.90	57.53	42.70	42.85	41.20	42.48
44	408.39	60.07	58.25	52.43	24.17	23.76	22.88	24.98
52	136.53	49.15	52.79	49.52	21.30	16.31	15.64	14.92
60	161.11	45.51	45.51	44.52	34.37	22.15	11.93	13.02
From: White To: Gold		Threads: TTRT:	16 5ms		LLC Buf MTU:		K 52 Bytes	

TABLE 91: TWO PROCESSORS, 20TH TEST RESULTS

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File I Mbp:
4	32.77	29.13	34.59	33.55	30.95	30.84	31.46	31.07
12	27.31	29.13	28.40	29.25	29.86	30.27	29.85	30.25
20	163.84	60.07	50.97	54.61	50.97	50.41	48.11	50.97
28	155.65	54.61	50.97	53.16	49.52	49.14	50.54	49.60
36	32.77	54.61	54.61	52.43	38.21	39.04	38.28	39.86
44	300.37	38.23	50.97	54.61	20.70	22.40	20.85	19.60
52	237.57	36.41	49.15	55.34	15.74	14.62	13.49	12.56
60	32.77	36.41	38.23	39.43	28.27	• 16.50	11.57	10.39
From: White	· · · · · · · · · · · · · · · · · · ·	Threads:	8		LLC Buf	fers: 401	(
To: Gold		TTRT:	11ms		MTU:	43	52 Bytes	

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File Mbp
4	32.77	32.77	34.59	33.55	32.77	31.80	31.95	31.86
12	24.58	30.95	29.49	29.73	29.25	30.55	30.87	31.00
20	32.77	49.15	58.25	52.43	50.97	51.63	53.35	52.44
28	357.72	60.07	61.90	54.61	49.52	51.63	53.39	52.02
36	209.35	60.07	58.25	52.43	37.97	35.63	38.66	35.97
44	136.53	60.07	50.97	52.12	21.22	19.94	19.19	17.06
52	99.86	34.59	40.05	52.12	14.32	13.29	13.40	11.85
60	27.31	41.87	37.87	52.12	25.79	11.10	10.54	10.27

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File I Mbp	
4	32.77	32.77	32.77	33.55	32.77	31.48	31.94	32.19	
12	27.31	29.13	30.58	28.16	31.55	30.55	30.88	30.84	
20	163.84	43.69	58.25	54.61	50.97	48.59	50.01	50.37	
28	163.84	60.07	58.25	54.61	49.52	46.81	51.26	50.46	
36	236.40	60.07	61.90	54.61	40.21	30.18	32.97	36.09	
44	226.65	49.15	54.61	49.52	17.11	18.16	18.16	17.45	
52	163.84	40.05	38.96	42.03	13.61	12.51	13.09	11.20	
60	133.80	34.54	32.77	38.70	12.96	13.13	10.77	11.18	
From: White	;	Threads: 8			LLC Buffers: 40K				
To: Gold		TTRT:	25ms		MTU:	43	52 Bytes		

12 30.04 27.31 30.58 30.34 30.34 30.55 29.84 30 20 370.05 43.69 58.25 49.62 49.52 45.58 49.93 50 28 99.86 60.07 50.97 39.32 35.37 31.76 33.59 31 36 105.33 43.69 46.97 38.35 19.35 20.65 19.89 19 44 22.76 37.14 34.59 24.52 10.91 11.70 10.42 9	Window Size (K bytes)	File A Mbps.	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File H Mbp:
20 370.05 43.69 58.25 49.62 49.52 45.58 49.93 50 28 99.86 60.07 50.97 39.32 35.37 31.76 33.59 31 36 105.33 43.69 46.97 38.35 19.35 20.65 19.89 14 44 22.76 37.14 34.59 24.52 10.91 11.70 10.42 9	4	32.77	43.69	32.77	34.33	31.55	31.48	31.46	31.38
28 99.86 60.07 50.97 39.32 35.37 31.76 33.59 31 36 105.33 43.69 46.97 38.35 19.35 20.65 19.89 14 44 22.76 37.14 34.59 24.52 10.91 11.70 10.42 9	12	30.04	27.31	30.58	30.34	30.34	30.55	29.84	30.70
36 105.33 43.69 46.97 38.35 19.35 20.65 19.89 14 44 22.76 37.14 34.59 24.52 10.91 11.70 10.42 9	20	370.05	43.69	58.25	49.62	49.52	45.58	49.93	50.96
44 22.76 37.14 34.59 24.52 10.91 11.70 10.42 9	28	99.8 6	60.07	50.97	39.32	35.37	31.76	33.59	31.37
	36	105.33	43.69	46.97	38.35	19.35	20.65	19.89	19.76
	44	22.76	37.14	34.59	24.52	10.91	11.70	10.42	9.39
52 84.65 24.76 26.21 19.38 9.38 8.39 8.83 7.	52	84.65	24.76	26.21	19.58	9.58	8.59	8.83	7.65
60 22.76 26.76 18.98 18.03 8.01 8.58 7.65 6	60	22.76	26.76	18.98	18.03	8.01	8.58	7.65	6.35

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File Mbp	
4	32.77	32.77	34.59	37.45	35.11	36.20	36.16	36.16	
12	27.31	27.31	27.31	26.79	28.76	27.93	28.74	27.94	
20	209.09	43.69	54.61	52.43	49.52	50.05	50.39	50.47	
28	209.35	54.61	58.25	54.61	50.97	51.63	52.52	54.02	
36	313.12	54.61	54.61	52.43	50.66	53.40	51.64	53.81	
44	32.77	32.77	38.23	48.06	42.29	45.18	40.85	43.08	
52	62.39	24.58	31.37	33.72	27.15	34.44	28.68	25.57	
60	23.67	16.12	27.03	25.75	36.43	34.19	21.90	20.40	
From: White		Threads:	8		LLC Buffers: 48K				
To: Gold			8ms		MTU:		- 92 Bytes		

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	t de D Mbps	File E Mbps	File F Mbps	File G Mbps	File H Mbps	
4	32.77	32.77	36.41	34,33	36.67	36.20	36.37	36.58	
12	27.31	25.49	24.03	25.91	28.76	27.23	28.88	28.26	
20	573.44	54.61	47.33	49.52	53.16	46.04	50.88	49.85	
28	411.42	54.61	47.33	49.52	50.97	50.35	52.06	54,49	
36	105.33	49.15	45.51	53.16	49.52	\$0.10	51.60	51.79	
44	32.77	36.41	40.78	44.52	45.56	41.09	42.08	41.80	
52	25.49	24.32	28.61	29.94	22.45	28.66	26.59	28.23	
60	15.93	25.40	28.76	21.53	15.90	18.60	18.59	18.05	
From: White		Threads: 16			LLC Buffers: 48K				
To: Gold			8ms	MTU: 4192 Bytes					

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File I Mbp
4	32.77	43.69	36.41	37.45	33.55	36.20	35.96	36.06
12	27.31	25.49	25.49	25.91	29.25	30.59	29.28	29.70
20	32.77	54.61	50.97	52.43	50.97	52.61	51.60	51.63
28	115.60	54.61	52.79	49.93	52.43	54.55	52.98	54.73
36	32.77	54.61	52.43	43.74	44.18	49.62	46.53	45.11
44	161.11	24.58	37.18	34.74	34.59	36.42	33.22	30.57
52	106.04	25.49	18.70	28.65	27.51	26.02	23.55	21.87
_60	23.21	15.58	16.90	24.43	20.91	18.08	17.50	13.09

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File H Mbps
4	32.77	43.69	34.59	37.45	35.89	35.78	36.19	35.67
12	27.31	25.49	25.49	25.02	29.73	29.16	28.40	28.50
20	118.33	60.07	54.61	50.97	49.52	50.84	51.60	52.23
28	32.77	49.15	54.61	54.61	52.43	51.81	52.06	52.89
36	209.09	49.15	50.97	50.97	49.52	51.15	52.98	50.41
44	372.93	49.15	47.33	50.97	41.68	46.47	42.04	44.85
52	23.67	36.41	38.23	36.90	31.12	28.00	28.46	27.17
60	24.58	21.30	19.93	26.06	28.48	22.34	20.34	19.24

129

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File I Mbp
4	30.04	43.64	36.41	36.67	35.89	35.37	35.96	35.95
12	27.31	25.49	26.58	25.57	29.37	28.26	27.75	29.15
20	163.84	60.07	47.33	50.97	48.06	48.72	50.87	52.02
28	87.99	54.61	54.61	49.52	49.52	49.25	51.0U	53.91
36	32.77	49.15	49.15	53.16	49.52	49.25	52.61	53.38
44	233.62	32.77	40.05	42.03	39.86	42.85	43.83	44.70
52	27.31	28.22	30.58	34.05	27.88	26.02	28.30	30.9
60	14.11	20.21	25.30	22.95	19.72	20.17	25.32	18.62
From: White		Threads:	8		LLC Buf	fers: 481	ζ	
To: Gold			llms		MTU:	41	92 Bytes	

4			Mbps	Mbps	Mbps	Mbps	Mbps	Mbps
	72.82	32.77	40.05	36.67	34.33	35.37	36.37	36.47
12	24.58	27.31	26.21	25.82	28.64	29.07	29.02	28.77
20	144.73	54.61	47.33	52.43	49.52	50.35	52.01	52.25
28	87.99	54.61	50.97	49.52	53.16	51.63	54.27	55.44
36 2	294.91	49.15	41.87	49.20	49.93	53.58	54.27	52.24
44	92.84	43.69	36.04	40.15	40.64	45.91	45.30	42.43
52	23.67	27.31	21.20	35.08	26.25	34.25	32.36	28.54
60	22.76	19.48	22.44	20.04	16.91	21.30	17.75	17.78

12 24.58 29.13 26.58 25.82 27.19 28.96 28.90 29.13 20 118.33 54.61 50.97 52.43 50.97 50.18 52.43 50.17 28 406.87 49.15 50.97 52.43 52.43 52.78 54.31 52.13 36 163.84 38.23 54.61 53.16 50.24 55.52 52.19 54.31 44 118.33 41.87 40.05 45.56 45.56 48.46 44.18 46.05	Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File H Mbps
20 118.33 54.61 50.97 52.43 50.97 50.18 52.43 50.1 28 406.87 49.15 50.97 52.43 52.43 52.78 54.31 52.1 36 163.84 38.23 54.61 53.16 50.24 55.52 52.19 54.3 44 118.33 41.87 40.05 45.56 48.46 44.18 46.01	4	32.77	43.69	38.23	36.67	36.67	35.78	35.96	36.37
28 406.87 49.15 50.97 52.43 52.78 54.31 52.33 36 163.84 38.23 54.61 53.16 50.24 55.52 52.19 54.31 44 118.33 41.87 40.05 45.56 45.56 48.46 44.18 46.03	12	24.58	29.13	26.58	25.82	27.19	28.96	28.90	29.14
36 163.84 38.23 54.61 53.16 50.24 55.52 52.19 54.7 44 118.33 41.87 40.05 45.56 45.56 48.46 44.18 46.0	20	118.33	54.61	50.97	52.43	50.97	50.18	52.43	50.83
44 118.33 41.87 40.05 45.56 45.56 48.46 44.18 46.0	28	406.87	49.15	50.97	52.43	52.43	52.78	54.31	52.50
	36	163.84	38.23	54.61	53.16	50.24	55.52	52.19	\$4.73
52 155.45 24.40 22.77 33.11 21.85 34.02 31.40 30.0	44	118.33	41.87	40.05	45.56	45.56	48.46	44.18	46.00
52 155.05 20.40 52.17 55.11 51.45 50.02 51.40 50.	52	155.65	26.40	32.77	33.11	31.85	36.02	31.40	30.01
60 19.11 37.14 25.91 21.77 36.17 27.44 19.58 21.	60	19.11	37.14	25.91	21.77	36.17	27.44	19.58	21.12

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File I Mbp
4	105.33	32.77	32.77	35.89	36.67	35.78	35.76	35.75
12	27.31	27.31	24.76	26.79	28.76	28.39	29.19	29.01
20	163.84	60.07	58.25	49.52	52.43	50.84	52.43	51.26
28	118.33	60.07	58.25	52.43	52.43	51.81	52.52	52.29
36	423.25	43.69	58.25	50.97	50.97	53.40	50.85	52.66
44	27.31	43.69	43.69	46.60	41.61	19	40.60	43.53
52	105.59	27.31	28.40	28.45	35.32	32.74	27.23	29.29
60	198.88	21.85	22.05	23.14	28.05	25.07	18.12	21.63
From: White		Threads:	16		LLC Buf		K 92 Bytes	

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File I Mbp
4	173.08	38.23	34.59	36.67	36.67	35.78	35.96	36.80
12	27.31	25.49	24.76	25.91	29.46	28.90	29.30	28.88
20	95.57	49.15	54.61	52.43	49.52	51.63	50.80	52.27
28	118.33	60.07	54.61	52.43	\$0.97	53.58	52.93	53.12
36	209.35	54.6l	\$0.97	50.97	56.80	55.34	55.75	54.55
44	209.09	49.15	50.97	49.52	50.97	50.84	52.67	54.52
52	32.77	49.15	50.97	49.52	45.15	45.12	45.94	47.08
60	23.67	38.23	37.14	42.65	40.99	37.17	39.92	35.78

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File Mbp
4	32.77	49.15	40.05	36.67	35.89	36.62	36.59	36.06
12	30.04	30.95	26.21	25.91	28.64	• 28.67	28.70	28.35
20	105.33	60.07	52.79	50.97	52.43	52.43	52.06	52.23
28	337.09	60.07	50.97	52.43	53.16	52.61	54.27	53.85
36	199.34	54.61	50.97	50.97	53.16	52.43	54.27	53.63
44	105.33	49.15	50.97	50.97	50.97	51.63	50.39	52.63
52	178.40	36.41	41.87	49.52	41.61	47.13	48.51	48,04
60	133.80	32.77	35.32	39.79	45.20	46.24	37.52	34.26
From: White		Threads:	16		LLC Buf	fers: 56	ĸ	
To: Gold		TTRT:	8ms		MTU:	41	92 Bytes	

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File ł Mbp:
4	32.77	32.77	36.41	35.11	36.67	34.95	35.57	10.00
12	27.31	23.67	24.76	25.82	29.73	29.44	29.54	28.82
20	105.33	49.15	50.97	50.97	51.70	51.63	51.26	51.38
28	704.51	54.61	54.61	52.43	52.43	53.58	52.89	53.60
36	330.41	54,61	50.97	SU.97	51.70	53.58	54.27	55.27
44	219.06	60.07	54.61	\$0.97	51.70	53.58	52.52	52.41
52	101.68	54.61	41.87	45.15	45.20	47.86	50.54	48.87
60	168.13	52.79	36.41	42.36	41.75	38.63	38.67	39.02

Window Size (K bytes)	Flie A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File I Mbp
4	32.77	43.69	36.41	36.67	35.89	35.37	35.56	36.47
12	21.85	25.49	25.49	26.70	28.64	28.26	28.49	28.94
20	\$7.99	38.23	50.97	52.43	48.48	47.13	52.47	51.80
28	158.38	43.69	50.97	49.52	\$0.97	49.93	51.22	53.56
36	327.38	43.69	43.69	49.52	50.97	49.93	52.14	52.75
44	32.77	54.61	50.97	49.52	51.70	50.97	51.22	52.16
52	30.04	41.87	49.15	45.63	43.74	44,65	46.88	49.18
60	23.67	34.59	38.23	34.05	38.72	39.83	42.78	36.43
From: White		Threads:			LLC Buf			
To: Gold		TTRT:			MTU:		 92 Bytes	

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File H Mbps
4	30.04	38.23	38.23	35.89	35.89	35.37	36.16	36.47
12	30.04	27.31	27.31	25.91	28.16	27.72	27.61	28.12
20	185.69	49.15	49.15	48.06	47.02	48.82	49.89	49.57
28	32.77	49.15	47.33	49.52	48.06	50.97	52.93	50.38
36	245.90	49.15	43.69	45.98	50.24	50.84	53.35	50.26
44	87.99	54.61	45.51	49.52	45.56	48.96	51.26	49.38
52	144.99	49.15	43.69	38.40	41.92	39.66	42.78	40.30
60	114.69	28.22	29.34	27.95	34.41	32.18	30.40	30.66
From: White		Threads:	8		LLC Buf	fers: 56	БК	
To: Gold		TTRT:			MTU:		92 Bytes	

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File Mbj
4	149.51	32.77	36.41	35.89	35.89	36.20	36.39	36.4
12	30.04	21.85	25.49	25.42	28.16	28.56	28.78	28.8
20	105.33	43.69	50.97	50.97	50.97	51.81	51.60	52.2
28	32.77	43.69	54.61	50.97	52.43	53.58	54.36	52.3
36	32.77	60.07	58.25	52.43	50.97	53.40	53.49	52.9
44	502.44	65.54	54.61	52.12	52.43	52.61	52.93	53.4
52	118.33	60.07	43.69	46.60	47.02	51.81	50.08	46.4
60	27.31	52.79	32.40	41.92	44.83	40.43	38.40	35.5
From: White		Threads:	16		LLC Buf	fers: 56	ĸ	
To: Gold	•	TTRT:	llms		MTU:	41	92 Bytes	

•

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File I Mbp
4	30.04	32.77	34.59	36.67	35.89	36.20	35.35	35.75
12	30.04	27.31	24.76	26.70	28.28	30.01	29.03	28.99
20	136.53	54.61	54.61	48.06	50.97	51.63	50.84	51.26
28	105.33	49.15	54.61	50.97	52.43	50.05	53.39	54.07
36	87,99	54.61	50.97	50.97	52.43	51.81	53.81	54.97
44	355.59	60.07	50.97	48.06	48.06	50.84	53.39	53.11
52	85.26	60.07	43.69	46.60	41.32	46.09	50.95	49.18
60	112.87	30.95	38.23	38.07	48.48	37.84	41.38	36.57

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File I Mbp
4	32.77	38.23	34.59	37.45	37.45	35.37	36.60	36.58
12	21.85	29.13	24.03	27.67	27.67	. 28.16	28.23	28.48
20	32.77	54.61	50.97	48.06	48.06	51.63	50.87	52.44
28	209.35	49.15	54.61	50.97	52.43	53.40	52.47	52.92
36	190.89	38.23	54.61	50.97	51.70	50.84	53.39	52.44
44	353.17	38.23	50,97	52.43	49.20	50.84	52.52	55.20
52	32.77	60.07	49.15	44.52	45.15	45.35	46.79	48.13
60	27.31	32.77	32.98	40.57	44.52	35.98	39.81	35.67

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File H Mbp:
4	32.77	38.23	34.59	35.11	36.67	36.20	36.39	36.60
12	27.31	23.67	26.94	26.30	29.25	28.93	29.74	28.92
20	363.18	43.64	47.33	50.97	46.60	52.43	52.06	53.33
28	367.47	38.23	45.51	52.43	50.97	55.34	53.64	52.21
36	30.04	36.41	45.51	44.78	44.52	45.43	48.52	42.86
41	151.55	36.77	25.33	24.74	26.24	28.67	26.12	23.80
52	198.88	18.31	17.82	20.99	20.65	22.50	19.65	17.03
60	17.29	16.38	14.45	16.20	26.67	25.20	14.48	12.27

.

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File H Mbps
4	32.77	38.23	34.59	35.11	36.67	36.20	36.39	36.60
12	27.31	23.67	26.94	26.30	29.25	28.93	29.74	28.92
20	363.18	43.69	47.33	50.97	46.60	52.43	52.06	53.33
28	367,47	38.23	45.51	52.43	50.97	55.34	53.64	52.21
36	30.04	36.41	45.51	44.78	44.52	45.43	48.52	42.86
44	151.55	36.77	25.33	24.74	26.24	28.67	26.12	23.80
52	198.88	18.31	17.82	20.99	20.65	22.50	19.65	17.03
60	17.29	16.38	14.45	16.20	26.67	25.20	14.48	12.27

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File H Mbps
4	32.77	32.77	40.78	35.11	36.67	35.78	35.96	36.06
12	24.58	27.31	26.21	25.42	25.99	29.73	29.69	29.41
20	87.99	54.61	48.06	50.97	46.60	51.63	52.89	51.26
28	398.68	54.61	49.15	50.97	46.60	51.94	53.81	51.61
36	841.05	49.15	47.33	35.49	38.82	45.91	45.43	41.45
44	20.94	29.13	29.86	32.02	26.63	24.80	27.30	25.61
52	20.94	28.22	24.09	20.07	20.49	20.55	18.29	16.41
60	20.94	22.76	15.62	16.84	14.03	17.62	13.67	12.74
From: White		Threads:	8		LLC Buf	fers: 40	K	
To: Gold	•	TTRT:	5ms		MTU:		92 Bytes	

134

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File Mbp
4	30.04	38.23	34.59	30.56	34.33	36.20	36.37	36.0
12	32.77	29.13	26.21	21.96	27.67	27.62	28.26	28.9
20	336.33	49.15	44.42	41.69	47.70	44.64	48.24	46.5
28	22.39	38.59	29.09	22.83	37.34	37.23	39 .07	36.0
36	14.07	22.76	18.37	13.99	20.04	20.71	17.11	17.06
44	9.71	11.74	15.23	10.09	10.28	12.13	12.24	10.5
52	8.60	6.40	9.25	9.83	7.40	8.81	8.37	8.24
60	6.75	8.45	8.67	9.16	7.18	9.01	6.95	8.27
From: White		Threads:	16		LLC Buf	fers: 40	ĸ	
To: Gold		TTRT:	5ms		MTU:	41	92 Bytes	

TABLE 116: TWO PROCESSORS, 45TH TEST RESULTS Window Size File A File B File D File C File E **File F** File G File H (K bytes) Mbps Mbps Mbps Mbps Mbps Mbps Mbps Mbps 32.77 38.23 34.59 4 36.67 36.67 35.37 35.35 35.75 12 21.85 29.13 28.40 25.02 29.13 29.44 28.52 29.20 209.35 54.61 47.33 50.97 20 49.52 52.61 52.01 50.79 43.69 28 72.82 50.97 52.43 52.43 52.61 53.81 53.35 36 30.04 32.77 38.96 41.84 45.20 46.01 47.17 45.76 44 209.35 26.40 31.68 29.63 26.39 28.94 27.35 24.47 52 23.67 24.94 26.42 24.97 20.58 18.17 19.59 20.01 60 23.67 18.20 19.70 21.62 22.31 15.22 14.55 18.59 From: White Threads: 8 LLC Buffers: 40K Gold To: TTRT: 11ms MTU: 4192 Bytes

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File H Mbp:
4	32.77	38.23	34.59	36.67	36.67	35.78	36.37	36.27
12	27.31	25.49	26.21	26.21	27.67	30.55	31.15	29.34
20	118.33	60.07	47.33	48.06	49.52	50.84	50.88	50.90
28	219.06	54.61	54.61	52.43	52.43	52.61	54.27	52.96
36	32.77	43.69	43.69	43.07	38.70	42.65	47.77	42.97
44	20.94	30.95	24.60	39.08	29.80	28.13	25.86	28.63
52	20.94	18.57	22.78	24.66	22.02	21.26	18.62	19.02
60	21.85	18.02	20.62	17.74	24.82	19.41	17.07	14.54
From: White		Threads:	16		LLC Buf	fers: 40	<u> </u>	
To: Gold		TTRT:	11ms		MTU:	41	92 Bytes	

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File I Mbp
4	32.77	38.23	36.41	36.67	36.67	36.62	36.80	36.47
12	30.04	25.49	26.21	26.70	30.46	29.47	29.15	28.21
20	199.34	49.15	54.61	50.97	52.43	50.84	50.87	52.23
28	622.59	65.54	54.61	50.97	48.06	52.43	53.47	54.03
36	136.53	38.23	47.33	42.29	40.90	46.29	42.24	41.95
44	21.85	24.94	29.15	28.02	24.57	25.73	19.76	22 86
52	20.48	20.68	17.63	19.46	16.82	15.81	14.08	16.59
60	15.93	22.06	15.48	17.38	18.20	14.40	11.59	10.89
From: White To: Gold		Threads: TTRT:	8 25ms		LLC Buf MTU:		K 92 Bytes	

.

Window Size (K bytes)	File A Mbps.	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File I Mbp
4	32.77	38.23	34.59	35.11	36.67	36.20	36.17	36.16
12	32.77	23.67	26.58	27.67	28.16	28.90	28.75	28.30
20	118.33	54.61	58.25	54.61	49.52	50.84	51.18	51.60
28	253.69	49.15	58.25	49.52	50.97	51.81	53.39	50.76
36	30.04	30.95	37.14	36.32	40.21	41.78	37.38	39.04
44	26.40	20.39	24.88	21.32	24.71	26.89	24.72	22.68
52	21.85	14.93	14.40	17.64	17.74	13.89	13.84	13.94
60	18.20	12.85	13.86	15.15	18.12	12.20	13.85	12.18

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File I Mbp
4	32.77	32.77	32.77	33.55	31.55	32.77	31.95	31.86
12	30.04	29.13	31.68	31.55	31.55	31.84	31.46	31.55
20	249.40	60.07	54.61	\$2.43	50.97	52.43	50.14	49.30
28	209.35	65.54	54.61	52.43	52.43	52.61	52.93	51.52
36	32.77	54.61	58.25	52.43	54.61	54.37	52.47	51.58
44	190.89	60.07	54.61	53.16	50.97	52.61	52.47	51.84
52	372.93	38.23	50.97	52.43	42.65	45.78	44.43	40.78
60	136.53	43.69	47.33	51.70	45.56	36.85	37.14	29.40

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File Mbp
4	32.77	30.95	32.77	32.77	34.33	34.22	34.58	34.3
12	30.04	32.77	29.49	29.86	29.73	29.44	30.56	30.4
20	235.07	60.07	45.51	48.06	46.60	• 43.23	43.40	44.63
28	367.47	38.23	47.33	48.06	48.06	43.69	45.30	46.27
36	270.83	43.69	43.69	49.52	37.97	34.24	33.96	35.87
44	260.58	60.07	43.69	46.60	17.51	15.19	15.35	17.34
52	176.76	49.15	43.69	44.52	8.62	7.62	7.87	8.10
60	209.35	35.50	33.86	34.59	6.45	6.15	5.99	6.27
om: Gold-50MH White-50M		Threads: TTRT:	8 8ms		LLC Buf MTU:		K 52 Bytes	

Window Size (K bytes)	File A Mbps	File B Mbps	File C Mbps	File D Mbps	File E Mbps	File F Mbps	File G Mbps	File I Mbp:
4	32.77	32.77	34.59	35.89	34.33	34.95	34.58	34.86
12	30.04	30.95	30.58	30.95	29.25	30.59	30.13	30.05
20	264.57	54.61	50.97	48.06	42.65	43.79	44.64	45.13
28	105.33	54.61	54.61	50,97	47.02	45.78	46.63	46.44
36	32.TI	54.61	47.33	46.60	33.89	33.87	33.01	33.48
44	32.77	49.15	47.33	52.43	13.10	15.06	13.20	13.21
52	163.84	41.87	43.69	40.83	7.82	6.95	7.32	7.05
60	27.31	29.13	29.34	29.75	5.06	5.87	5.80	5.81
m: White-50M	Hz	Threads:	8		LLC Buf	fers: 48	ĸ	

APPENDIX F: GLOSSARY OF TERMS

802.2	IEEE standard for the Logical Link Control.
ACK	Acknowledge. A network packet acknowledging the receipt of data.
ARP	Address Resolution Protocol. A TCP/IP protocol to translate an IP address into a MAC address.
ANSI	American National Standards Institute. A private organization that coordinates some United states standards-making. Represents the United States to the International Standards Organization.
ARPA	Advanced Research Projects Agency. A Department of Defense agency that has helped fund many computer projects including ARPANET, the Berkeley version of Unix and TCP/IP. ARPA use to be known as DARPA.
ARPANET	Advanced Research Projects Agency Network. A Department of Defense sponsored network of military and research organizations. Replaced by the Defense Data Network (DDN).
ASIC	Application-Specific Integrated Circuits.
asynchronous	FDDI term for data transmission where all requests for service contend for a pool of ring bandwidth.
bandwidth	The amount of data that can be moved through a particular communications link. FDDI has a bandwidth of 100 Mb/s.
beacon	A token ring packet that signals a serious failure on the ring.
BER	Bit Error Rate.
bps	Bits per second. Transmission speed over some media.
CCITT	Comite Consultatif International Telegraphiqes et Telephonique (Consultative Committee for International Telephone and Telegraph). Standards-making body administered by the International Telecommunications Union.
DARPA	Defense Advanced Research Projects Agency. See ARPA.

DAS	Dual Attached Stations. FDDI term for a node that is attached to both the primary and secondary fiber optic cables (as opposed to a node that is connected to use ring via a concentrator or not dual attached.
DDN	Defense Data Network. A network for the Department of Defense and their contractors based on the TCP/IP and X.25 networking protocols.
DLL	•
DMA	Direct Memory Access. This is a device (controller) for controlling the transfer of data directly to or from the memory without involv g the processor. The DMA controller becomes the bus master and directs the reads or writes between itself and memory.
DNS	Domain Name System. A mechanism used in the Internet for translating names of host computers into addresses. The DNS also allows host computers not directly on the Internet to have registered names in the same style.
FDDI	Fiber Distributed Data Interface. A 100 M/bs fiber optic LAN standard based on the token ring.
FTP	File Transfer Protocol. FTP is the Internet standard for file transfer. FTP was designed from the start to work between different hosts, runing different operating systems and using different file structures. RFC 959 is the official specification for FTP.
ICMP	Internet Control Message Protocol. ICMP is often considered part of the IP layer. It communicates error messages and other conditions that require attention. ICMP messages are transmitted within IP datagrams. RFC 792 contains the official specification of ICMP.
IEEE	Institute of Electronic and Electrical Engineers. A leading standard- making body in the United States, responsible for the 802 standards for local area networks.
IGMP	Internet Group Management Protocol. IGMP lets all the systems on a physical network know which hosts currently belong to which multicast groups. This information is required by the multicast routers, so they know which multicast datagrams to forward onto which interfaces. IGMP is defined in FRC 1112.

.

Internet	A collection of networks that share the same namespace and use the TCP/IP protocols.
IP	Internet Protocol. The network layer protocol for the Internet.
ISO	International Standards Organization.
LAN	Local area network. Usually refers to Ethernet or token ring networks.
LLC	Logical Link Control. The upper portion of the data link layer, defined in the IEEE 802.2 standard. The logical link control layer presents a uniform interface to the user of the data link service, usually a network layer. Underneath the LLC sublayer of the data link layer is a Media Access Control (MAC) sublayer. The MAC sublayer is responsible for taking a packet of data from the LLC and submitting it to the particular data link being used.
МАС	Media Access Control. This layer provides fair and deterministic access to the medium.
Mbps	Million bits per second. 2^{20} bits of information (usually used to express a data transfer rate; as in, 1 megabit/second - 1 Mbps).
MTU	Maximum transfer unit. The biggest piece of data that can be transferred by the data link layer.
NAK	Negative acknowledgment. Response to nonreceipt or receipt of a corrupt packet of information.
NFS	Network File System. A distributed file system developed by Sun Microsystems and widely used on TCP/IP systems.
NIS	Network Information Service. Name service in the Sun Open Network Computing (ONC) family.
NPI	Network Peripheral Inc. The manufacture of the FDDI interface cards used in this investigation on the Sun SPARC workstations.
NRZI	Nonreturn-to-Zero Inverted. NRZI is an example of differential encoding. In differential encoding, the signal is decoded by comparing the polarity of adjacent signal elements rather than determining the absolute value of a signal element.
OSI	Open System Interconnection.
PCM	Physical Connection Management.

PHY Physical Layer. PHY provides the media independent functions associated with the OSI physical layer. PMD Physical Medium Dependent Layer. PMD specifies the transmitters, receivers and other associated hardware PROM Programmable Read-Only Memory. RARP Reverse Address Resolution Protocol. RISC Reduced Instruction Set Computer. Generic name for CPUs that use a simpler instruction set than more tradit onal designs. The Sun SPARC workstation uses RISC technology. SMT Station Management document. This layer provides the capability to monitor the FDDI network. SMT can provide services such as node initialization, bypassing faulty nodes and recovery. SPARC Scalable Processor Architecture. A reduced instruction set (RISC) processor developed by Sun and licensed by several vendors including AT&T and Texas Instruments. SUN Stanford University Network. This name was given for a printed circuit board developed in 1981 that was designed to run the UNXI operating system. Transmission Control Protocol/Internet Protocol. This is a common TCP/IP shorthand which refers to the suite of application and transport protocols which run over IP. These include FTP, Telnet, SMTP, and UDP. THT Token holding timer. Token ring and FDDI term for the amount of time a node can transmit data before sending the token back out to the ring. TTRT Target token rotation time. A term used in FDDI to set performance parameters. The TTRT serves as a measure of expected delay and is used, among other things, to set time-out parameters. User Datagram Protocol. UDP

LIST OF REFERENCES

- [ALBE94] Albert, B., Jayasumana, A., FDDI and FDDI-II, Architecture, Protocols, and Performance, Artech House, 1994
- [AMD92] Advanced Micro Devices, Multimedia Over FDDI, Conference Paper Reprint, 1992
- [COMM91] Communications Week, FDDI Poster, Access Media Inc, 1991
- [CLAR89] Clark, D., Jacobson, V., Romkey, J. and Salwen, H. An Analysis of TCP Processing Overhead, IEEE Communications Magazine, June 1989
- [DIG193] Digital Equipment Corporation, Digital's Solution to High-Speed Network Computing: FDDI EISA NICs, White Paper, 1993
- [DIG193] Digital Equipment Corporation, High Performance TCP/IP for OSF/1 Alpah AXP Workstaions, White Paper, March 1993
- [DRUS93] Druschel, P., Abbott, M., Pagels, M., Peterson, L., Network Subsystem Design, IEEE Network Magazine, July 1993
- [DOD83] .Department of Defence. Military Standard Internet Protocol, MIL-STD-1777, August 12, 1983
- [GRAY91] Gray, J., The Benchmark Handbook, Morgan Kaufmann Publishers, Inc., 1991
- [HEAT89] Heatley, S., Stokesberry, D., Analysis of Transport Measurements Over a Local Area Network, IEEE Communications Magazine, June 1989
- [HENN90] Hennessy, J., Patterson D, Computer Architecture A Quantitative Approach, Morgan Kaufmann Publishers Inc., 1990
- [HESL93] Heslop, B., Angell, D., Mastering Solaris 2, Sybex, 1993
- [JAIN91] Jain, R., The Art of Computer Systems Performance Ananlysis, John Wiley & Sons, Inc., 1991
- [JAIN94] Jain, R., FDDI Handbook, High-Speed Networking Using Fiber and Other Media, Addison Wesley, 1994
- [LANT93] LAN TIMES, Buyers Directory Issue, McGraw-Hill, August 1993
- [MALA92] Malamud, C., Analyzing Sun Networks, Van Nostrand Reinhold, 1992

- [MINO91] Minoli, D., Telecommunications Technology handbook, Artech House, Inc., 1991
- [NNBM94] Neal Nelson Bench Mark, Business Benchmark Test Descriptions, Neal Nelson & Associates, Chicago IL, 1994
- [NPI93] Network Peripherals Inc., SBus FDDI Interface, User's Manual, Netwok Peripherals Inc., 1993
- [PATT94] Patterson, D. Hennessy, J., Computer Organization & Design, The Hardware/Software Interface, Morgan Kaufmann Publishers Inc, 1994
- [POWE93] Powers, J., An Introduction to Fiber Optic Systems, Aksen Associates Inc., 1993
- [SASI91] Littell, R., Freund, R., Spector, P., SAS System for Linear Models, SAS Institute Inc, 1991
- [SILIC91] SiliconGraphics, Iris Indigo 4D/RPC Technical Report, SiliconGraphics 1991
- [STAL91] Stallings, W., Data and Computer Communications, 3rd ed., Macmillan Publishing Co., 1991
- [STEV94] Stevens, R., TCP/IP Illustrated, Volume 1, The Protocols, Addison Wesley, 1994
- [SUNM90] Sun Microsystems, Inc., SPARCstation 10 System Architecture, Technical White Paper, 1992

INITIAL DISTRIBUTION LIST

Defense Technical Information Center Cameron Station	2
Alexandria, VA 22304-6145	
Dudley Knox Library • Code 052	2
Naval Postgraduate School Monterey, CA 93943	
LTC Steven A. Ruegnitz 127 IMA Det R&D 17 Muirfield Lane	2
Bridgewater, NJ 08807-1269	
Director U.S. Army Research Laboratory ATTN: AMSRL-CI (CPT Schivley) APG, MD 21005-5067	10
Chairman, Code 37 CS Computer Science Department Naval Postgraduate School Monterey, CA 93943	2
Professor G.M. Lundy, Code CS/Ln Computer Science Department Naval Postgraduate School Monterey, CA 93943-5000	2
Professor Amar Zaky, Code CS/Za Computer Science Department Naval Postgraduate School Monterey, CA 93943-5000	2
Professor Shridhar Shukla, Code EC/Sh Computer Science Department Naval Postgraduate School Monterey, CA 93943-5000	2

Sun Microsystems Attn: Patrick Barrett 1842 N. Shoreline Blvd. MS UMTV80-01 Mountain View, CA 94043-1100

Network Peripherals Inc ATTN: Chia-ming Huang 1371 McCarthy Blvd Milpitas, CA 95035

Jourdan Bailey 1160 Pomeroy Ave. Santa Clara, CA 95051

2

2

2