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Abstract: This paper presents a review of the multidisciplinary approach to the design of a fleet
of cooperative gliders capable of extended endurance operation. The flock of autonomous gliders
is able to harvest energy from the environment, both through photo-voltaic energy generation
and through exploitation of natural convective lift in the surrounding air, and act cooperatively
to meet mission requirements and to share knowledge of the local environment. The paper
begins with a brief overview of the total-energy approach required for such a feat, along with
a short description of key system components and the principal technologies. This is followed
by details of the evolution of a previously-developed architecture that supported autonomous
thermaling, to an architecture that considers the total-energy budget in all flight segments, and
utilizes the cooperative flight to maximize the cumulative energy capture while simultaneously
meeting mission objectives.
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1. INTRODUCTION

One of the most critical limiting factors impacting effec-
tive collaborative autonomy today is the lack of range
and endurance that are typical in most of the existing
autonomous aircraft; see a comprehensive review in Com-
mittee on Autonomous Vehicles in Support of Naval Op-
erations [2005]. Despite almost two decades of significant
advances in low-power and high-performance microelec-
tronics development including CPUs, sensors, actuators,
and communication circuits (see Tong [1995], Singh and
Shukla [2010]), the only task addressed was to lower
the power consumption and to reduce the pace of en-
ergy expenditures. In turn, the progress in energy renew-
able technologies has also been advancing fast, especially
in the flight-relevant areas of solar photovoltaics (PV)
(Hamakawa [2004]) and electro-chemical battery technolo-
gies, see Tarascon and Armand [2001]. Yet, the balance
of energy use and the regenerated energy income has not
been met. Since the loss of energy is unavoidable due to
the limited efficiency of energy conversion, storage, and
transmission, the traditional mission duration will always
be limited. However, coupling these existing advances with
convective air (thermal) soaring capabilities and novel
approaches in the cooperative mission planning and execu-
tion can not only further reduce the rate of loss of onboard
energy, but can also result in energy increase during the
? The project has been supported over the last 3 years by a num-
ber of sponsors including the NPS Consortium for Robotics and
Unmanned Systems Education and Research, the Army Research
Lab, and ”The Multidisciplinary Studies Support for USMC Expe-
ditionary Energy Office” program.

autonomous mission; this capability is not readily available
today in any of the available technologies, see Siciliano and
Khatib [2008], Martinez et al. [2008], and Nonami et al.
[2013].

Considering the state of the art in aerial robotics (algo-
rithmic support, instrumentation, size weight and power
constraints), it is our belief that the best approach to
enable long duration flight would combine the collabo-
rative mission management with the energy harvesting
and onboard storage. Collaboration is the first key ca-
pability that spans across every element of the mission
as it enables effective search for available energy sources.
Most of the available energy sources can be detected by
autonomous vehicles equipped with appropriate sensors.
Thus, multiple agents would have much better chances of
finding ”free energy“ when cooperating and sharing their
findings. Second, the operational utility of multiple agents
equipped with complementary sensors is superior to the
capability of an individual agent. Finally, robustness of
the collaborative mission execution is significantly higher
because partial loss of a subset of the vehicles does not
lead to the loss of entire flock capability. Energy harvest-
ing and storage is the second complementary enabler of
long endurance flight that allows for the accumulation of
energy. The feasible methods of energy extraction in aerial
application include the solar PV and airflow soaring; the
soaring can be based on the convective air (thermaling) or
wind shear energy extraction. While the PV boost can be
achieved only during the daylight, the extraction of power
of surrounded moving air can be utilized even during the



nighttime. The combination of harvesting and storage is
the ultimate solution for the ”eternal“ flight.

Therefore, it is envisioned that enhancing mission per-
formance can be achieved by implementing the en-
ergy harvesting-storage and collaboration capabilities on-
board of multiple autonomous solar-powered and thermal-
soaring gliders. Thus, the triplet of (i) mission manage-
ment, (ii) energy harvesting-storage and (iii) collabo-
ration builds the fundamental architecture of future en-
ergy enhanced autonomy. The remainder of the paper
briefly outlines the core ideas implemented to date in
autonomous thermaling. Therefore, the section 2 describes
the ”individual gliders“ algorithms. The following section
3 outlines the development of the collaborative autonomy
algorithms. Section 4 provides details of the developed
high-fidelity simulation environment used to verify the
algorithms.

2. ALGORITHMS OF INDIVIDUAL GLIDERS

This section discusses key components necessary for a suc-
cessful glider flight. The algorithms run online and enable
identification of the flight dynamics of the glider which are
in turn used to detect the thermal updrafts. When flying in
the updraft, the guidance algorithm is engaged to enable
the maximum energy harvesting efficiency of the updraft’s
free energy, and on the other hand estimates the updraft
geometry and motion, that are used to georeference the
updraft and share its utility properties (strength) across
the network of collaborative gliders. While in autonomous
soaring mode, the electrical management system that con-
sists of solar PV panels, batteries and the maximum peak
power energy tracking (MPPT) unit, supports the avionics
and recharges the batteries keeping them evenly balanced.

2.1 Electric Energy Management Subsystem

The project considers two sources of energy input into
the system: photovoltaic and atmospheric convection, and
typically two methods of energy storage; potential energy
stored chemically in batteries and potential energy stored
via altitude. This section describes the electrical half of
that system; electricity harvesting through PV conversion
and energy storage in rechargeable batteries.

While the electrical system architecture is conceptually
well-understood, the variation of physical and mechanical
properties of PV panels and batteries presents the most
significant uncertainty, and thus poses the challenge for
the overall system design. Not only basic physical prop-
erties of all components vary significantly, but also the
same properties depend on the mode of operation (e.g.
discharge rate) and environmental parameters(e.g. tem-
perature). Thus, before the electrical system is integrated
onboard it is necessary to characterize mathematically the
solar-powered energy generation, storage, and the energy
expenditure system, so that the particular uncertain pa-
rameters could be identified on the ground and during the
flight of a particular glider platform. The need for online
identification arises as the properties of the system are
expected to change over time.

As an example of variation of system parameters, the
following data represent the results of the discharge ex-
periment performed with 2 different types of batteries

Table 1. Measured battery performance

Type C-rate Energy (Wh) Energy Density (Wh/kg)

LiPo 0.209 115.5 177.7
LiPo 2.502 105.8 162.8
LiIon 0.171 107.9 167.3

at different discharge rates; the experiment utilized the
Lithium polymer (LiPo) and the Lithium-Ion (LiIon)
packs. Figure.1 illustrates how voltage drops over the
discharge cycle, a feature that is convenient for estimating
remaining energy in the battery pack.
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Fig. 1. Pack voltage as a function of normalized discharge
time for 2 different chemistries of the battery packs
at different discharge rates.

Figure.2 illustrates how much energy can be extracted
from the same sample batteries at different discharge rates.
During the experiment, the discharge cycles were halted
when the pack voltage reached 3.2 V/cell or 12.8 V for the
pack. The measured useful pack energy and energy-density
are shown in Table 1. While the sensitivity to drain rate
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Fig. 2. Energy output as a function of normalized discharge
time for different discharge rates; at 1C rate the
discharge current discharges the battery in 1 hour.

is clear, it is also clear that advertised energy and energy-
density might not be achievable in a practical application.
While the LiIon cells would appear to be far superior based
on manufacturers’ specifications, experiments suggest that
LiPo batteries are superior for onboard integration.

A number of other uncertainties and design considerations
still need to be identified and formalized. Among them
are the structural integrity of the wings and the PV cells
under the flex load in flight, dissipation of heat induced
by the dark surface of solar panels and its effect on the
structural integrity, performance of the MPPT unit under
the variable exposure of the PV cells to the sun, stability of
the battery chemistry under variable temperature, losses



in the mechanical gear system and the propulsion motors
at different load, to name a few. Moreover, it is needless to
say that PV-enhanced system may gain energy, however it
won’t help if the aircraft loses that same energy through
increased viscous drag or loss of lift. Therefore the cells
need to be built into the wing surface such that they are
conformal with only subtle fine-texture differences.

Addressing this challenge, the projects built a generalized
prototype of the onboard system that consists of the semi-
rigid research-grade mono-crystalline Silicon cells with an
advertised efficiency of 22.5%, MPPT unit, rechargeable
batteries with balancing circuitry, and the load represented
by the well-defined power load of avionics and the uncer-
tain load of the propulsion system. An example of the lab-
oratory prototype used for multi-day data acquisition and
system identification experiment is presented in Figure. 3.

Fig. 3. Laboratory prototype of the solar-driven electrical
management system; the setup is instrumented with
a set of voltage and current sensors at key points to
allow for the system identification.

An example of multi-day experiment focused on pre-
cise characterization of the system is presented next in
Figure.4. The data illustrates the time history of electrical
energy input from the PV array, the dynamics of the
batteries charge and discharge under the constant load,
and the estimated losses of energy due to the wiring,
data acquisition sensors and adverse uncertainties. Close
inspection of the data suggests that the state dynamics of
batteries (both charge and discharge) can be accurately
described by the first order differential equations, while
the solar input is closely represented by the gain that is
directly proportional to the angle of incidence toward the
sun. Although not representing all the envisioned flight
conditions, the result still allows to recognize the key
functions that can be used to formally describe the states
of the system components and the total electrical energy
balance. When the result is further enhanced with the
feedback from the flight dynamics and the operational
environment, it can be used to precisely characterize the
range and endurance of a particular glider platform. The
system identification phase of this work is under way.

2.2 Glider Identification and Updraft Detection

There is a number of prior efforts devoted to the thermal
soaring flight. First demonstrated by human pilots in 1900s

Fig. 4. Results of the multi-day experiment with the
prototype installed in a fixed location.

(see Simons and Schweizer [1998]) the idea of soaring in
convective air became feasible for onboard autonomous
implementation only in the 1990s, see Wharington [1998].
While enabling the desired functionality by primarily
mimicking the birds flight and indeed achieving significant
extended flight capabilities (see Edwards [2008], Allen
[2006], and Allen and Lin [2007]), most of the algorithms
used heuristics in the identification of the updraft strength,
its potential utility in energy gain, and the decision of when
and how to enter the updraft. The reason for employing
heuristic approaches is obvious, since both the strength of
the updraft and its efficiency are both subject to significant
uncertainties and are hard to formalize. Next, when a
glider moves through unsteady air the estimation of the
updraft strength and geometry, which are critical utility
parameters of the updraft, significantly lacks of spatial
content in noisy onboard measurements. Thus, it takes
significant time before the updraft utility is identified and
the guidance algorithm is engaged.

The algorithm of detecting a thermal is based on two
complementary approaches. The first approach utilizes the
inherent sink rate polar, and the second one is based on the
total energy of the system. However, conceptually they are
similar as they compare the natural metrics of the system
with the same metrics actually measured in flight.

Characterization of the sink polar - the function of ver-
tical sink rate versus the true airspeed (TAS) - of a
particular glider can be practically achieved in extensive
experimentation. However, flight-experimentation in real-
world environment can hardly provide ideally controlled
conditions. In the developed approach, the estimates of the
sink-polar were first made by post-processing a collection
of experimental flight results obtained in low-wind, low-lift
conditions, see Andersson et al. [2012b]. Sink polars are
roughly quadratic in nature, and a least-squares approach
yields suitable coefficients based on the historical data.
Further in flight, a recursive linear least square estimator
is used in real-time to account for specific variation in the
platform and atmospheric conditions at that moment. An
example of accuracy of this approach is presented below
in Figure.5 for a full-scale ASW-27 glider; the result was
obtained using the Condor simulator (Condor [2013]) and
”true“ data of Boermans and Van Garrel [1994], see more
details in sec.4. The detection of a thermal and estimation



of its intensity, that contributes to the recursive identifica-
tion of its parameters (see sec.3.1), are based on compari-
son of the currently measured sink rate with the sink rate
predicted by the polar for a measured TAS; if the measured
sink rate is smaller than predicted, then there is a thermal.
The analytical representation of the sink polar contributes

Fig. 5. Identifying the inherent sink polar: both the sink
rate and the TAS are directly measured by the on-
board sensors. Minimum sink rate Vsmin and the
optimal crusing speed Vcc corresponding to the max-
imum glide ratio ( typical for the ”cross-country“
flight) are presented.

not only to the identification of thermal updrafts, but also
to the mission planning of a specific glider, see Piggott
[1997] and FAA [2011]. In particular, the polar defines
the minimum sink rate Vsmin and the corresponding TAS
command for the autopilot to follow. While Vsmin may
be too close to the stall speed Vstall ≈ Vsmin and should
be avoided, the effective speed commanded in thermaling
mode Vth may be slightly higher. The polar also defines the
optimal TAS command Vcc for the maximum glide ratio
flight that is used by the navigation task in planning for the
maximum range ”cross-country“ segment; the tangent line
from the origin defines Vcc. While the sink polar should be
ideally obtained in no-wind environment, its application
to the known wind conditions is also straightforward and
allows for the calculation of the distances to be traveled in
cross-country flight, see more details in Piggott [1997] and
FAA [2011].

The total energy approach is also widely used in human
piloted soaring flight. It is based on the concept that the
mechanical energy Etot of the soaring glider combines
the potential energy, Ep = mgh, and kinetic energy,

Ek = m·V 2

2 , of the airframe minus the ”leakage“ of the
energy due to the work of the parasitic and induced
aerodynamic drag, ED. For an ”aerodynamically clean“
glider with an objective to minimize the total energy
loss, the control commands of its autopilot will necessarily
result in mild variations of the angle of attack, thus leading
to the relatively constant parasitic drag and ĖD ≈ 0.
Consequently, for the total energy and its rate of change
over sufficiently long time intervals one can consider the
following:

Etot = mgh+
m · V 2

2
− ED, E =

Etot

mg
,

Ė = ḣ+
V · V̇
g

, Ë =
V̇ 2 + V · V̈

g
+ ḧ, (1)

where m is the mass of the airframe, g is the gravi-
tational constant, E is the normalized total mechanical
energy of the system (also called the specific energy), h
is the height, and V is the inertial speed. Therefore, the
longitudinal long period oscillations represent the natural
tradeoff of kinetic and potential energy while their sum
remains nearly constant. As a consequence, in no updraft
conditions the rate of change of the total energy Ė ≈ 0.
Therefore, if there is a significant variation of the total
energy, then the energy rate will be significantly away from
zero thus indicating the energy variation due to updraft or
downdraft airflow. In fact, the total energy management
just presented is widely used in manned aviation being
implemented in the so-called total energy compensating
(TEK) variometer, see for example PitLab [2013].

All the components of equation (1) are available in on-
board autopilot. Both equations in (1) are included into
one Kalman filter along with the inertial and barometric
sensors outputs. The resulting energy rate-based solution
provides another accurate indication of the updraft event.
A comparison of the output of the total energy approach
with the output of the TEK variometer ḣTEK is presented
next in Figure.6.
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Fig. 6. Energy-based detection of updrafts; the data is
simulated by the Condor [2013] software, see sec.4.

2.3 Guidance in Thermal Centering Mode

When a thermal updraft is detected the glider needs to
automatically maneuver to enable staying in the ther-
mal with the objective of increasing the glider’s poten-
tial energy through a rapid increase of the height. The
theoretical development of the thermaling guidance law
has been recently reported in Andersson et al. [2012b]).
The most recent experimental results and findings that
motivate further refinement of the solution were discussed
in Andersson et al. [2012a]. This development was recently
modified to include explicitly the sign of the turn rate
command that is defined by the estimate of the body roll
angle φ; it was observed in a number of flights that entering
the thermal induces the motion that rolls the wings away
from the thermal (see Figure.6), thus suggesting the turn
in opposite direction.

The thermal centering guidance law produces a turn rate
command ψ̇c to the autopilot, and is based on the feedback



control law that takes into account the desire to get
closer to the updraft center (defined by the ρd), where its
intensity (the positive vertical speed) is the highest. On
the other hand, the control balances the height increase
and the turn-induced sink by a measure proportional to
the rate of increase of the total energy (defined by the Ë
in (1)), see the geometry of the guidance task in Figure.7
and the resulting guidance law in (2):

ψ̇c =
V

ρd
− k1 · Ë, (2)

where ρ and ρd are the current distance and the desired
orbital radius around the center of the thermal updraft,
and k1 is the feedback gain determined by the stability and
performance requirements. For the feasibility of theoretical
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Fig. 7. Kinematics of guidance around a stationary thermal
updraft; the desired orbit is represented by the red
dashed line defined by ρd.

development the thermal center is assumed stationary
with its position unknown. The desired distance (ρd)
toward the center at this point is not defined, however
for the stability of the control law it is assumed to be
away from zero. The best value of ρd is initially assigned
based on statistical observations of the glider performance
and the shapes of updrafts in the area. Later on, when
collaborative gliders contribute to the identification of the
updraft geometry this value is updated, thus resulting in
a feedback that improves the collaborative efficiency of
utilizing the free energy of the updraft. For the stability
analysis of the thermaling guidance law it is assumed that
the intensity of the updraft can be represented by the
Gaussian distribution function of the form:

ω = ωp · e−[
(x−x0)2+(y−y0)2

2σ2
], (3)

where x, y represent the coordinates of the glider, x0, yo
represent the unknown coordinates of the center of up-
draft, ωp is the peak intensity of the updraft,and σ defines
the geometry of the symmetric updraft (in general case
σx 6= σy). For a stationary updraft modeled by Gaussian
distribution function with σ > 0, ωp > 0 and the glider
with V > 0, ρd > 0, it is proven that the feedback
guidance law in (2) is locally asymptotically stable with
an equilibrium at (η, ρ − ρd) = (0, 0) and a region of
attraction Ω = {(η, ρ− ρd) : |ρ− ρd| ≤ β, |η| ≤ α}, where
β < ρd, α < π/2, for any

k1 > tanα
σ2

ωp(ρd − β)2
e(
−(ρd + β)2

2σ2
).

The physical meaning of the guidance law (2) is to increase
the commanded turn rate until the rate of climb in the
latched updraft is compensated by the sink resulted from
the steep banking; most traditional autopilots implement
bank-to-turn control laws.

3. COOPERATIVE ALGORITHMS

The initial approach to the estimation of thermals (2D
coordinates of the center vs. the glider altitude) by uti-
lizing the measurements of single glider in soaring mode
was based on two classical nonlinear filtering techniques:
first - the nonlinear Kalman filter with the ”bearings
only measurements“, and second - the kinematic relation
ρ̇ = −Vg · sin(η) between the speed over ground Vg and
the ”navigation error“ η, see Figure.7. In both formula-
tions the bearing to the updraft center was assumed to
be constant at π/2 (λ − ψ = π/2) with respect to the
direction of turning flight; the turn is defined toward the
center of the updraft. When entering a strong updraft,
the performance of either filter was slow but reasonable,
resulting in a converging solution in about 2 full orbits and
precision of the thermal center estimation of 75m.

3.1 Bayesian Mapping of Thermals

To further improve the efficiency of updraft estimation the
solution should integrate the knowledge gained by multi-
ple gliders and the prior meteorological observations (see
Pennycuick [1998], Hindman et al. [2007]), which might
be available for the area of operation. The latter data
can be conveniently interpreted as a map of probability
density of convective air activity with respect to the geo-
graphic latitude and longitude, see a conceptual example
in Figure.8. As a first step toward cooperative identifi-

Fig. 8. ”Heat map“ of probability of finding a thermal over
an area of operation.

cation and mapping of convective thermals over extended
areas with an account of prior methodological observation,
the probabilistic recursive Bayesian approach was adopted,
see details of the approach in Bergman [1999].

Consider a task where N gliders cooperatively estimate
the velocity fk = f(xk, yk, zk) of flow field at the inertial
coordinates xk, yk, zk of k-th glider, k = 1...N . Assume
that the onboard instrumentation enables measuring the
lateral and vertical components of the airflow. The convec-
tive airflow of interest is captured by a given parametric
model with unknown characteristics; see, for example, the
vertical updraft model in (3) with unknown parameters ωp,
σ, x0, y0. The objective of the task is to estimate f by using



noisy observations of the airflow provided by cooperative
gliders.

Let X(t) = (ωp, σ, x0, y0) be a state vector that encap-
sulates the unknown constant parameters of the convec-
tive flow velocity fk that is estimated at each point of
the discretized space at discrete time instance t, sk(t)
denote the noisy measurement of vehicle k at time t, and
Sk(t) = {sk(0), ..., sk(t)} define the set of samples up to
the current time t. Assume that sk(t) of each vehicle at
location xk, yk, zk is corrupted by Gaussian noise such that
sk(t) = fk(xk, yk, zk) + µh,k + µv,k, with µh,k ∼ N(0, σ2

h)
and µv,k ∼ N(0, σ2

v) being white noise components in the
lateral and vertical directions.

Then in discrete settings where t−1 refers to the previous
time step, the conditional probability of the state X(t)
given the set of measurements Sk(t) of k-th glider alone is

p(X(t)|Sk(t)) = β · p(sk(t)|X) · p(X(t)|Sk(t− 1)), (4)

where β is the normalization coefficient chosen to guaran-
tee that p(X(t)|Sk(t)) at every instance of t has a unity
integral over the state-space X. The p(sk(t)|X) is the
likelihood function represented by the conditional prob-
ability of the measurement sk(t) given the state X, and
the p(X(t)|Sk(t − 1) is the prior probability distribution
that represents any given knowledge or intelligence about
the most likely location and intensity of thermals. In
our development p(X(0)|Sk(0) is what encapsulates the
probability ”heat map“ at the very first step, see Figure.8.

Finally, let each point of state X in the state-space
be represented by the multi-variate Gaussian likelihood
function:

p(sk(t)|X) =
1

[2π∆]
1
2

exp(
−[fk(X)− sk(t)]

2
∑

[fk(X)− sk(t)]
),

where ∆ = diag(µ2
h, µ

2
v). Assuming that measurements

are synchronously taken at each time step and the gliders
cooperatively share the data, the conditional probability
density of the state X(t) is updated through the natural
motion of the fleet of gliders sampling the airflow at
(xk, yk, zk) as

p(X(t)|S(t)) = β ·
N∏

k=1

p(sk(t)|X) · p(X(t)|S(t− 1)),(5)

where S(t − 1)includes the measurements from all N
gliders in the fleet. Now it is clear that the points of
the parameter space corresponding to the maximum of
the posterior probability density X(t) = max p(X(t)|S(t))
provide the maximum likelihood of the convective flow
field parameters.

An example of the recursive algorithm (5) for the case of
three simulated gliders cooperatively flying and estimating
parameters of a single stationary updraft in a given area
modeled by (3) is presented in Figure.9; note, there is
no horizontal component of airflow in the model. The
task is to find the updraft in a bounded area and to
converge to the same thermal by utilizing the detection
algorithms discussed above; the task mimics the setup
and the objectives of our first cooperative flight test of
two gliders reported earlier in Andersson et al. [2012b].

Fig. 9. Estimation of an updraft obtained onboard of glider
#1 from the cooperative sampling of environment.

Fig. 10. Cooperative flight of three gliders; starting at
different locations they all converge to the same up-
draft when glider #1 finds it and shares its estimated
location.

In the demonstrated result the prior probability density
is initialized by a uniform function over the entire area of
operation. The result corresponds to the progression of the
probability density function estimated onboard of glider
#1 along its flight path, see the corresponding cooperative
trajectories of gliders #2 and #3 in Figure.10, see more
details on the simulation setup in section 4.

4. SIMULATION ENVIRONMENT

To facilitate convenient design and verification of the de-
signed algorithms the project developt a realistic simu-
lation environment that is based on tight integration of
MatLab/Simulink (MATLAB [2013]) capabilities with the
high-fidelity flight dynamics and atmospheric effects of
the Condor soaring simulator, see Condor [2013]. Besides
providing a wide nomenclature of gliders, the software
integrates the cooperative behaviors of multiple agents
that is essential to the project; the collaboration is enabled
by sharing the states of gliders over the network. The
architecture of the software in the loop setup is presented
in Figure.11.

As an illustration of the achieved capabilities, Figure.10
represents the cooperative flight of three gliders in a sim-
plified scenario introduced above. The gliders start their
flight simultaneously at the same altitude, and initially
spend some time in search for thermals. When glider #1
detects an updraft utilizing either of the thermal detection



Fig. 11. Integration of Simulink and Condor capabilities.

approaches ( see sec.2.2), and shares the information about
the thermal, the other two gliders arrive to the same ther-
mal and successfully gain height all together. Time history
of the altitude of three cooperative gliders is presented
next in Figure.12. The result clearly demonstrates the
benefits and significant potential of collaborative strate-
gies in harvesting the convective updraft energy from the
environment.
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Fig. 12. An example of cooperative flight of three gliders.

5. CONCLUSION

The paper presents the initial development of convective
thermal and solar energy harvesting capability integrated
onboard of multiple cooperative gliders. The discussion
details the key technologies required to integrate the en-
ergy harvesting into a cooperative mission planning and
execution environment. The key technologies include the
online characterization of the electrical (PV solar and
batteries) management system, glider properties, convec-
tive thermals detection, and the collaborative environment
sensing by utilizing recursive Bayesian estimation.
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